blob: d02cf9829f1aae5e3de6f60004867b7339b982fd [file] [log] [blame]
Maxime Ripardb5f65172014-02-22 22:35:53 +01001/*
2 * Copyright (C) 2012 - 2014 Allwinner Tech
3 * Pan Nan <pannan@allwinnertech.com>
4 *
5 * Copyright (C) 2014 Maxime Ripard
6 * Maxime Ripard <maxime.ripard@free-electrons.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of
11 * the License, or (at your option) any later version.
12 */
13
14#include <linux/clk.h>
15#include <linux/delay.h>
16#include <linux/device.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/module.h>
20#include <linux/platform_device.h>
21#include <linux/pm_runtime.h>
Maxime Ripardb5f65172014-02-22 22:35:53 +010022
23#include <linux/spi/spi.h>
24
25#define SUN4I_FIFO_DEPTH 64
26
27#define SUN4I_RXDATA_REG 0x00
28
29#define SUN4I_TXDATA_REG 0x04
30
31#define SUN4I_CTL_REG 0x08
32#define SUN4I_CTL_ENABLE BIT(0)
33#define SUN4I_CTL_MASTER BIT(1)
34#define SUN4I_CTL_CPHA BIT(2)
35#define SUN4I_CTL_CPOL BIT(3)
36#define SUN4I_CTL_CS_ACTIVE_LOW BIT(4)
37#define SUN4I_CTL_LMTF BIT(6)
38#define SUN4I_CTL_TF_RST BIT(8)
39#define SUN4I_CTL_RF_RST BIT(9)
40#define SUN4I_CTL_XCH BIT(10)
41#define SUN4I_CTL_CS_MASK 0x3000
42#define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK)
43#define SUN4I_CTL_DHB BIT(15)
44#define SUN4I_CTL_CS_MANUAL BIT(16)
45#define SUN4I_CTL_CS_LEVEL BIT(17)
46#define SUN4I_CTL_TP BIT(18)
47
48#define SUN4I_INT_CTL_REG 0x0c
49#define SUN4I_INT_CTL_TC BIT(16)
50
51#define SUN4I_INT_STA_REG 0x10
52
53#define SUN4I_DMA_CTL_REG 0x14
54
55#define SUN4I_WAIT_REG 0x18
56
57#define SUN4I_CLK_CTL_REG 0x1c
58#define SUN4I_CLK_CTL_CDR2_MASK 0xff
59#define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK)
60#define SUN4I_CLK_CTL_CDR1_MASK 0xf
61#define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
62#define SUN4I_CLK_CTL_DRS BIT(12)
63
64#define SUN4I_BURST_CNT_REG 0x20
65#define SUN4I_BURST_CNT(cnt) ((cnt) & 0xffffff)
66
67#define SUN4I_XMIT_CNT_REG 0x24
68#define SUN4I_XMIT_CNT(cnt) ((cnt) & 0xffffff)
69
70#define SUN4I_FIFO_STA_REG 0x28
71#define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f
72#define SUN4I_FIFO_STA_RF_CNT_BITS 0
73#define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f
74#define SUN4I_FIFO_STA_TF_CNT_BITS 16
75
76struct sun4i_spi {
77 struct spi_master *master;
78 void __iomem *base_addr;
79 struct clk *hclk;
80 struct clk *mclk;
81
82 struct completion done;
83
84 const u8 *tx_buf;
85 u8 *rx_buf;
86 int len;
87};
88
89static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
90{
91 return readl(sspi->base_addr + reg);
92}
93
94static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
95{
96 writel(value, sspi->base_addr + reg);
97}
98
99static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
100{
101 u32 reg, cnt;
102 u8 byte;
103
104 /* See how much data is available */
105 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
106 reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
107 cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
108
109 if (len > cnt)
110 len = cnt;
111
112 while (len--) {
113 byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
114 if (sspi->rx_buf)
115 *sspi->rx_buf++ = byte;
116 }
117}
118
119static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
120{
121 u8 byte;
122
123 if (len > sspi->len)
124 len = sspi->len;
125
126 while (len--) {
127 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
128 writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
129 sspi->len--;
130 }
131}
132
133static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
134{
135 struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
136 u32 reg;
137
138 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
139
140 reg &= ~SUN4I_CTL_CS_MASK;
141 reg |= SUN4I_CTL_CS(spi->chip_select);
142
Marcus Weseloh218e0b52016-01-05 21:46:20 +0100143 /* We want to control the chip select manually */
144 reg |= SUN4I_CTL_CS_MANUAL;
145
Maxime Ripardb5f65172014-02-22 22:35:53 +0100146 if (enable)
147 reg |= SUN4I_CTL_CS_LEVEL;
148 else
149 reg &= ~SUN4I_CTL_CS_LEVEL;
150
151 /*
152 * Even though this looks irrelevant since we are supposed to
153 * be controlling the chip select manually, this bit also
154 * controls the levels of the chip select for inactive
155 * devices.
156 *
157 * If we don't set it, the chip select level will go low by
158 * default when the device is idle, which is not really
159 * expected in the common case where the chip select is active
160 * low.
161 */
162 if (spi->mode & SPI_CS_HIGH)
163 reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
164 else
165 reg |= SUN4I_CTL_CS_ACTIVE_LOW;
166
167 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
168}
169
Michal Suchanek794912c2016-06-13 17:46:50 +0000170static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
171{
172 return SUN4I_FIFO_DEPTH - 1;
173}
174
Maxime Ripardb5f65172014-02-22 22:35:53 +0100175static int sun4i_spi_transfer_one(struct spi_master *master,
176 struct spi_device *spi,
177 struct spi_transfer *tfr)
178{
179 struct sun4i_spi *sspi = spi_master_get_devdata(master);
180 unsigned int mclk_rate, div, timeout;
181 unsigned int tx_len = 0;
182 int ret = 0;
183 u32 reg;
184
185 /* We don't support transfer larger than the FIFO */
186 if (tfr->len > SUN4I_FIFO_DEPTH)
187 return -EINVAL;
188
189 reinit_completion(&sspi->done);
190 sspi->tx_buf = tfr->tx_buf;
191 sspi->rx_buf = tfr->rx_buf;
192 sspi->len = tfr->len;
193
194 /* Clear pending interrupts */
195 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
196
197
198 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
199
200 /* Reset FIFOs */
201 sun4i_spi_write(sspi, SUN4I_CTL_REG,
202 reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
203
204 /*
205 * Setup the transfer control register: Chip Select,
206 * polarities, etc.
207 */
208 if (spi->mode & SPI_CPOL)
209 reg |= SUN4I_CTL_CPOL;
210 else
211 reg &= ~SUN4I_CTL_CPOL;
212
213 if (spi->mode & SPI_CPHA)
214 reg |= SUN4I_CTL_CPHA;
215 else
216 reg &= ~SUN4I_CTL_CPHA;
217
218 if (spi->mode & SPI_LSB_FIRST)
219 reg |= SUN4I_CTL_LMTF;
220 else
221 reg &= ~SUN4I_CTL_LMTF;
222
223
224 /*
225 * If it's a TX only transfer, we don't want to fill the RX
226 * FIFO with bogus data
227 */
228 if (sspi->rx_buf)
229 reg &= ~SUN4I_CTL_DHB;
230 else
231 reg |= SUN4I_CTL_DHB;
232
Maxime Ripardb5f65172014-02-22 22:35:53 +0100233 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
234
235 /* Ensure that we have a parent clock fast enough */
236 mclk_rate = clk_get_rate(sspi->mclk);
Marcus Weseloh47284e32015-11-08 12:03:23 +0100237 if (mclk_rate < (2 * tfr->speed_hz)) {
238 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
Maxime Ripardb5f65172014-02-22 22:35:53 +0100239 mclk_rate = clk_get_rate(sspi->mclk);
240 }
241
242 /*
243 * Setup clock divider.
244 *
245 * We have two choices there. Either we can use the clock
246 * divide rate 1, which is calculated thanks to this formula:
247 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
248 * Or we can use CDR2, which is calculated with the formula:
249 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
250 * Wether we use the former or the latter is set through the
251 * DRS bit.
252 *
253 * First try CDR2, and if we can't reach the expected
254 * frequency, fall back to CDR1.
255 */
Marcus Weseloh47284e32015-11-08 12:03:23 +0100256 div = mclk_rate / (2 * tfr->speed_hz);
Maxime Ripardb5f65172014-02-22 22:35:53 +0100257 if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
258 if (div > 0)
259 div--;
260
261 reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
262 } else {
Marcus Weseloh47284e32015-11-08 12:03:23 +0100263 div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
Maxime Ripardb5f65172014-02-22 22:35:53 +0100264 reg = SUN4I_CLK_CTL_CDR1(div);
265 }
266
267 sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
268
269 /* Setup the transfer now... */
270 if (sspi->tx_buf)
271 tx_len = tfr->len;
272
273 /* Setup the counters */
274 sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
275 sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
276
277 /* Fill the TX FIFO */
278 sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
279
280 /* Enable the interrupts */
281 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC);
282
283 /* Start the transfer */
284 reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
285 sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
286
287 timeout = wait_for_completion_timeout(&sspi->done,
288 msecs_to_jiffies(1000));
289 if (!timeout) {
290 ret = -ETIMEDOUT;
291 goto out;
292 }
293
294 sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
295
296out:
297 sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
298
299 return ret;
300}
301
302static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
303{
304 struct sun4i_spi *sspi = dev_id;
305 u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
306
307 /* Transfer complete */
308 if (status & SUN4I_INT_CTL_TC) {
309 sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
310 complete(&sspi->done);
311 return IRQ_HANDLED;
312 }
313
314 return IRQ_NONE;
315}
316
317static int sun4i_spi_runtime_resume(struct device *dev)
318{
319 struct spi_master *master = dev_get_drvdata(dev);
320 struct sun4i_spi *sspi = spi_master_get_devdata(master);
321 int ret;
322
323 ret = clk_prepare_enable(sspi->hclk);
324 if (ret) {
325 dev_err(dev, "Couldn't enable AHB clock\n");
326 goto out;
327 }
328
329 ret = clk_prepare_enable(sspi->mclk);
330 if (ret) {
331 dev_err(dev, "Couldn't enable module clock\n");
332 goto err;
333 }
334
335 sun4i_spi_write(sspi, SUN4I_CTL_REG,
336 SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
337
338 return 0;
339
340err:
341 clk_disable_unprepare(sspi->hclk);
342out:
343 return ret;
344}
345
346static int sun4i_spi_runtime_suspend(struct device *dev)
347{
348 struct spi_master *master = dev_get_drvdata(dev);
349 struct sun4i_spi *sspi = spi_master_get_devdata(master);
350
351 clk_disable_unprepare(sspi->mclk);
352 clk_disable_unprepare(sspi->hclk);
353
354 return 0;
355}
356
357static int sun4i_spi_probe(struct platform_device *pdev)
358{
359 struct spi_master *master;
360 struct sun4i_spi *sspi;
361 struct resource *res;
362 int ret = 0, irq;
363
364 master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
365 if (!master) {
366 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
367 return -ENOMEM;
368 }
369
370 platform_set_drvdata(pdev, master);
371 sspi = spi_master_get_devdata(master);
372
373 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
374 sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
375 if (IS_ERR(sspi->base_addr)) {
376 ret = PTR_ERR(sspi->base_addr);
377 goto err_free_master;
378 }
379
380 irq = platform_get_irq(pdev, 0);
381 if (irq < 0) {
382 dev_err(&pdev->dev, "No spi IRQ specified\n");
383 ret = -ENXIO;
384 goto err_free_master;
385 }
386
387 ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
388 0, "sun4i-spi", sspi);
389 if (ret) {
390 dev_err(&pdev->dev, "Cannot request IRQ\n");
391 goto err_free_master;
392 }
393
394 sspi->master = master;
Michal Suchanek0b06d8c2016-06-14 12:10:04 +0000395 master->max_speed_hz = 100 * 1000 * 1000;
396 master->min_speed_hz = 3 * 1000;
Maxime Ripardb5f65172014-02-22 22:35:53 +0100397 master->set_cs = sun4i_spi_set_cs;
398 master->transfer_one = sun4i_spi_transfer_one;
399 master->num_chipselect = 4;
400 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
Axel Linba476442014-03-02 22:25:10 +0800401 master->bits_per_word_mask = SPI_BPW_MASK(8);
Maxime Ripardb5f65172014-02-22 22:35:53 +0100402 master->dev.of_node = pdev->dev.of_node;
403 master->auto_runtime_pm = true;
Michal Suchanek794912c2016-06-13 17:46:50 +0000404 master->max_transfer_size = sun4i_spi_max_transfer_size;
Maxime Ripardb5f65172014-02-22 22:35:53 +0100405
406 sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
407 if (IS_ERR(sspi->hclk)) {
408 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
409 ret = PTR_ERR(sspi->hclk);
410 goto err_free_master;
411 }
412
413 sspi->mclk = devm_clk_get(&pdev->dev, "mod");
414 if (IS_ERR(sspi->mclk)) {
415 dev_err(&pdev->dev, "Unable to acquire module clock\n");
416 ret = PTR_ERR(sspi->mclk);
417 goto err_free_master;
418 }
419
420 init_completion(&sspi->done);
421
422 /*
423 * This wake-up/shutdown pattern is to be able to have the
424 * device woken up, even if runtime_pm is disabled
425 */
426 ret = sun4i_spi_runtime_resume(&pdev->dev);
427 if (ret) {
428 dev_err(&pdev->dev, "Couldn't resume the device\n");
429 goto err_free_master;
430 }
431
432 pm_runtime_set_active(&pdev->dev);
433 pm_runtime_enable(&pdev->dev);
434 pm_runtime_idle(&pdev->dev);
435
436 ret = devm_spi_register_master(&pdev->dev, master);
437 if (ret) {
438 dev_err(&pdev->dev, "cannot register SPI master\n");
439 goto err_pm_disable;
440 }
441
442 return 0;
443
444err_pm_disable:
445 pm_runtime_disable(&pdev->dev);
446 sun4i_spi_runtime_suspend(&pdev->dev);
447err_free_master:
448 spi_master_put(master);
449 return ret;
450}
451
452static int sun4i_spi_remove(struct platform_device *pdev)
453{
454 pm_runtime_disable(&pdev->dev);
455
456 return 0;
457}
458
459static const struct of_device_id sun4i_spi_match[] = {
460 { .compatible = "allwinner,sun4i-a10-spi", },
461 {}
462};
463MODULE_DEVICE_TABLE(of, sun4i_spi_match);
464
465static const struct dev_pm_ops sun4i_spi_pm_ops = {
466 .runtime_resume = sun4i_spi_runtime_resume,
467 .runtime_suspend = sun4i_spi_runtime_suspend,
468};
469
470static struct platform_driver sun4i_spi_driver = {
471 .probe = sun4i_spi_probe,
472 .remove = sun4i_spi_remove,
473 .driver = {
474 .name = "sun4i-spi",
Maxime Ripardb5f65172014-02-22 22:35:53 +0100475 .of_match_table = sun4i_spi_match,
476 .pm = &sun4i_spi_pm_ops,
477 },
478};
479module_platform_driver(sun4i_spi_driver);
480
481MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
482MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
483MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
484MODULE_LICENSE("GPL");