| /* |
| * Copyright (C) 2012 - 2014 Allwinner Tech |
| * Pan Nan <pannan@allwinnertech.com> |
| * |
| * Copyright (C) 2014 Maxime Ripard |
| * Maxime Ripard <maxime.ripard@free-electrons.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| |
| #include <linux/spi/spi.h> |
| |
| #define SUN4I_FIFO_DEPTH 64 |
| |
| #define SUN4I_RXDATA_REG 0x00 |
| |
| #define SUN4I_TXDATA_REG 0x04 |
| |
| #define SUN4I_CTL_REG 0x08 |
| #define SUN4I_CTL_ENABLE BIT(0) |
| #define SUN4I_CTL_MASTER BIT(1) |
| #define SUN4I_CTL_CPHA BIT(2) |
| #define SUN4I_CTL_CPOL BIT(3) |
| #define SUN4I_CTL_CS_ACTIVE_LOW BIT(4) |
| #define SUN4I_CTL_LMTF BIT(6) |
| #define SUN4I_CTL_TF_RST BIT(8) |
| #define SUN4I_CTL_RF_RST BIT(9) |
| #define SUN4I_CTL_XCH BIT(10) |
| #define SUN4I_CTL_CS_MASK 0x3000 |
| #define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK) |
| #define SUN4I_CTL_DHB BIT(15) |
| #define SUN4I_CTL_CS_MANUAL BIT(16) |
| #define SUN4I_CTL_CS_LEVEL BIT(17) |
| #define SUN4I_CTL_TP BIT(18) |
| |
| #define SUN4I_INT_CTL_REG 0x0c |
| #define SUN4I_INT_CTL_TC BIT(16) |
| |
| #define SUN4I_INT_STA_REG 0x10 |
| |
| #define SUN4I_DMA_CTL_REG 0x14 |
| |
| #define SUN4I_WAIT_REG 0x18 |
| |
| #define SUN4I_CLK_CTL_REG 0x1c |
| #define SUN4I_CLK_CTL_CDR2_MASK 0xff |
| #define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK) |
| #define SUN4I_CLK_CTL_CDR1_MASK 0xf |
| #define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8) |
| #define SUN4I_CLK_CTL_DRS BIT(12) |
| |
| #define SUN4I_BURST_CNT_REG 0x20 |
| #define SUN4I_BURST_CNT(cnt) ((cnt) & 0xffffff) |
| |
| #define SUN4I_XMIT_CNT_REG 0x24 |
| #define SUN4I_XMIT_CNT(cnt) ((cnt) & 0xffffff) |
| |
| #define SUN4I_FIFO_STA_REG 0x28 |
| #define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f |
| #define SUN4I_FIFO_STA_RF_CNT_BITS 0 |
| #define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f |
| #define SUN4I_FIFO_STA_TF_CNT_BITS 16 |
| |
| struct sun4i_spi { |
| struct spi_master *master; |
| void __iomem *base_addr; |
| struct clk *hclk; |
| struct clk *mclk; |
| |
| struct completion done; |
| |
| const u8 *tx_buf; |
| u8 *rx_buf; |
| int len; |
| }; |
| |
| static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg) |
| { |
| return readl(sspi->base_addr + reg); |
| } |
| |
| static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value) |
| { |
| writel(value, sspi->base_addr + reg); |
| } |
| |
| static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len) |
| { |
| u32 reg, cnt; |
| u8 byte; |
| |
| /* See how much data is available */ |
| reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG); |
| reg &= SUN4I_FIFO_STA_RF_CNT_MASK; |
| cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS; |
| |
| if (len > cnt) |
| len = cnt; |
| |
| while (len--) { |
| byte = readb(sspi->base_addr + SUN4I_RXDATA_REG); |
| if (sspi->rx_buf) |
| *sspi->rx_buf++ = byte; |
| } |
| } |
| |
| static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len) |
| { |
| u8 byte; |
| |
| if (len > sspi->len) |
| len = sspi->len; |
| |
| while (len--) { |
| byte = sspi->tx_buf ? *sspi->tx_buf++ : 0; |
| writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG); |
| sspi->len--; |
| } |
| } |
| |
| static void sun4i_spi_set_cs(struct spi_device *spi, bool enable) |
| { |
| struct sun4i_spi *sspi = spi_master_get_devdata(spi->master); |
| u32 reg; |
| |
| reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); |
| |
| reg &= ~SUN4I_CTL_CS_MASK; |
| reg |= SUN4I_CTL_CS(spi->chip_select); |
| |
| /* We want to control the chip select manually */ |
| reg |= SUN4I_CTL_CS_MANUAL; |
| |
| if (enable) |
| reg |= SUN4I_CTL_CS_LEVEL; |
| else |
| reg &= ~SUN4I_CTL_CS_LEVEL; |
| |
| /* |
| * Even though this looks irrelevant since we are supposed to |
| * be controlling the chip select manually, this bit also |
| * controls the levels of the chip select for inactive |
| * devices. |
| * |
| * If we don't set it, the chip select level will go low by |
| * default when the device is idle, which is not really |
| * expected in the common case where the chip select is active |
| * low. |
| */ |
| if (spi->mode & SPI_CS_HIGH) |
| reg &= ~SUN4I_CTL_CS_ACTIVE_LOW; |
| else |
| reg |= SUN4I_CTL_CS_ACTIVE_LOW; |
| |
| sun4i_spi_write(sspi, SUN4I_CTL_REG, reg); |
| } |
| |
| static size_t sun4i_spi_max_transfer_size(struct spi_device *spi) |
| { |
| return SUN4I_FIFO_DEPTH - 1; |
| } |
| |
| static int sun4i_spi_transfer_one(struct spi_master *master, |
| struct spi_device *spi, |
| struct spi_transfer *tfr) |
| { |
| struct sun4i_spi *sspi = spi_master_get_devdata(master); |
| unsigned int mclk_rate, div, timeout; |
| unsigned int tx_len = 0; |
| int ret = 0; |
| u32 reg; |
| |
| /* We don't support transfer larger than the FIFO */ |
| if (tfr->len > SUN4I_FIFO_DEPTH) |
| return -EINVAL; |
| |
| reinit_completion(&sspi->done); |
| sspi->tx_buf = tfr->tx_buf; |
| sspi->rx_buf = tfr->rx_buf; |
| sspi->len = tfr->len; |
| |
| /* Clear pending interrupts */ |
| sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0); |
| |
| |
| reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); |
| |
| /* Reset FIFOs */ |
| sun4i_spi_write(sspi, SUN4I_CTL_REG, |
| reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST); |
| |
| /* |
| * Setup the transfer control register: Chip Select, |
| * polarities, etc. |
| */ |
| if (spi->mode & SPI_CPOL) |
| reg |= SUN4I_CTL_CPOL; |
| else |
| reg &= ~SUN4I_CTL_CPOL; |
| |
| if (spi->mode & SPI_CPHA) |
| reg |= SUN4I_CTL_CPHA; |
| else |
| reg &= ~SUN4I_CTL_CPHA; |
| |
| if (spi->mode & SPI_LSB_FIRST) |
| reg |= SUN4I_CTL_LMTF; |
| else |
| reg &= ~SUN4I_CTL_LMTF; |
| |
| |
| /* |
| * If it's a TX only transfer, we don't want to fill the RX |
| * FIFO with bogus data |
| */ |
| if (sspi->rx_buf) |
| reg &= ~SUN4I_CTL_DHB; |
| else |
| reg |= SUN4I_CTL_DHB; |
| |
| sun4i_spi_write(sspi, SUN4I_CTL_REG, reg); |
| |
| /* Ensure that we have a parent clock fast enough */ |
| mclk_rate = clk_get_rate(sspi->mclk); |
| if (mclk_rate < (2 * tfr->speed_hz)) { |
| clk_set_rate(sspi->mclk, 2 * tfr->speed_hz); |
| mclk_rate = clk_get_rate(sspi->mclk); |
| } |
| |
| /* |
| * Setup clock divider. |
| * |
| * We have two choices there. Either we can use the clock |
| * divide rate 1, which is calculated thanks to this formula: |
| * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1)) |
| * Or we can use CDR2, which is calculated with the formula: |
| * SPI_CLK = MOD_CLK / (2 * (cdr + 1)) |
| * Wether we use the former or the latter is set through the |
| * DRS bit. |
| * |
| * First try CDR2, and if we can't reach the expected |
| * frequency, fall back to CDR1. |
| */ |
| div = mclk_rate / (2 * tfr->speed_hz); |
| if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) { |
| if (div > 0) |
| div--; |
| |
| reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS; |
| } else { |
| div = ilog2(mclk_rate) - ilog2(tfr->speed_hz); |
| reg = SUN4I_CLK_CTL_CDR1(div); |
| } |
| |
| sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg); |
| |
| /* Setup the transfer now... */ |
| if (sspi->tx_buf) |
| tx_len = tfr->len; |
| |
| /* Setup the counters */ |
| sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len)); |
| sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len)); |
| |
| /* Fill the TX FIFO */ |
| sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH); |
| |
| /* Enable the interrupts */ |
| sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC); |
| |
| /* Start the transfer */ |
| reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); |
| sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH); |
| |
| timeout = wait_for_completion_timeout(&sspi->done, |
| msecs_to_jiffies(1000)); |
| if (!timeout) { |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| |
| sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH); |
| |
| out: |
| sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0); |
| |
| return ret; |
| } |
| |
| static irqreturn_t sun4i_spi_handler(int irq, void *dev_id) |
| { |
| struct sun4i_spi *sspi = dev_id; |
| u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG); |
| |
| /* Transfer complete */ |
| if (status & SUN4I_INT_CTL_TC) { |
| sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC); |
| complete(&sspi->done); |
| return IRQ_HANDLED; |
| } |
| |
| return IRQ_NONE; |
| } |
| |
| static int sun4i_spi_runtime_resume(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct sun4i_spi *sspi = spi_master_get_devdata(master); |
| int ret; |
| |
| ret = clk_prepare_enable(sspi->hclk); |
| if (ret) { |
| dev_err(dev, "Couldn't enable AHB clock\n"); |
| goto out; |
| } |
| |
| ret = clk_prepare_enable(sspi->mclk); |
| if (ret) { |
| dev_err(dev, "Couldn't enable module clock\n"); |
| goto err; |
| } |
| |
| sun4i_spi_write(sspi, SUN4I_CTL_REG, |
| SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP); |
| |
| return 0; |
| |
| err: |
| clk_disable_unprepare(sspi->hclk); |
| out: |
| return ret; |
| } |
| |
| static int sun4i_spi_runtime_suspend(struct device *dev) |
| { |
| struct spi_master *master = dev_get_drvdata(dev); |
| struct sun4i_spi *sspi = spi_master_get_devdata(master); |
| |
| clk_disable_unprepare(sspi->mclk); |
| clk_disable_unprepare(sspi->hclk); |
| |
| return 0; |
| } |
| |
| static int sun4i_spi_probe(struct platform_device *pdev) |
| { |
| struct spi_master *master; |
| struct sun4i_spi *sspi; |
| struct resource *res; |
| int ret = 0, irq; |
| |
| master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi)); |
| if (!master) { |
| dev_err(&pdev->dev, "Unable to allocate SPI Master\n"); |
| return -ENOMEM; |
| } |
| |
| platform_set_drvdata(pdev, master); |
| sspi = spi_master_get_devdata(master); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| sspi->base_addr = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(sspi->base_addr)) { |
| ret = PTR_ERR(sspi->base_addr); |
| goto err_free_master; |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| dev_err(&pdev->dev, "No spi IRQ specified\n"); |
| ret = -ENXIO; |
| goto err_free_master; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler, |
| 0, "sun4i-spi", sspi); |
| if (ret) { |
| dev_err(&pdev->dev, "Cannot request IRQ\n"); |
| goto err_free_master; |
| } |
| |
| sspi->master = master; |
| master->max_speed_hz = 100 * 1000 * 1000; |
| master->min_speed_hz = 3 * 1000; |
| master->set_cs = sun4i_spi_set_cs; |
| master->transfer_one = sun4i_spi_transfer_one; |
| master->num_chipselect = 4; |
| master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; |
| master->bits_per_word_mask = SPI_BPW_MASK(8); |
| master->dev.of_node = pdev->dev.of_node; |
| master->auto_runtime_pm = true; |
| master->max_transfer_size = sun4i_spi_max_transfer_size; |
| |
| sspi->hclk = devm_clk_get(&pdev->dev, "ahb"); |
| if (IS_ERR(sspi->hclk)) { |
| dev_err(&pdev->dev, "Unable to acquire AHB clock\n"); |
| ret = PTR_ERR(sspi->hclk); |
| goto err_free_master; |
| } |
| |
| sspi->mclk = devm_clk_get(&pdev->dev, "mod"); |
| if (IS_ERR(sspi->mclk)) { |
| dev_err(&pdev->dev, "Unable to acquire module clock\n"); |
| ret = PTR_ERR(sspi->mclk); |
| goto err_free_master; |
| } |
| |
| init_completion(&sspi->done); |
| |
| /* |
| * This wake-up/shutdown pattern is to be able to have the |
| * device woken up, even if runtime_pm is disabled |
| */ |
| ret = sun4i_spi_runtime_resume(&pdev->dev); |
| if (ret) { |
| dev_err(&pdev->dev, "Couldn't resume the device\n"); |
| goto err_free_master; |
| } |
| |
| pm_runtime_set_active(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| pm_runtime_idle(&pdev->dev); |
| |
| ret = devm_spi_register_master(&pdev->dev, master); |
| if (ret) { |
| dev_err(&pdev->dev, "cannot register SPI master\n"); |
| goto err_pm_disable; |
| } |
| |
| return 0; |
| |
| err_pm_disable: |
| pm_runtime_disable(&pdev->dev); |
| sun4i_spi_runtime_suspend(&pdev->dev); |
| err_free_master: |
| spi_master_put(master); |
| return ret; |
| } |
| |
| static int sun4i_spi_remove(struct platform_device *pdev) |
| { |
| pm_runtime_disable(&pdev->dev); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id sun4i_spi_match[] = { |
| { .compatible = "allwinner,sun4i-a10-spi", }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, sun4i_spi_match); |
| |
| static const struct dev_pm_ops sun4i_spi_pm_ops = { |
| .runtime_resume = sun4i_spi_runtime_resume, |
| .runtime_suspend = sun4i_spi_runtime_suspend, |
| }; |
| |
| static struct platform_driver sun4i_spi_driver = { |
| .probe = sun4i_spi_probe, |
| .remove = sun4i_spi_remove, |
| .driver = { |
| .name = "sun4i-spi", |
| .of_match_table = sun4i_spi_match, |
| .pm = &sun4i_spi_pm_ops, |
| }, |
| }; |
| module_platform_driver(sun4i_spi_driver); |
| |
| MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>"); |
| MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); |
| MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver"); |
| MODULE_LICENSE("GPL"); |