Maxime Ripard | b5f6517 | 2014-02-22 22:35:53 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2012 - 2014 Allwinner Tech |
| 3 | * Pan Nan <pannan@allwinnertech.com> |
| 4 | * |
| 5 | * Copyright (C) 2014 Maxime Ripard |
| 6 | * Maxime Ripard <maxime.ripard@free-electrons.com> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU General Public License as |
| 10 | * published by the Free Software Foundation; either version 2 of |
| 11 | * the License, or (at your option) any later version. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/clk.h> |
| 15 | #include <linux/delay.h> |
| 16 | #include <linux/device.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/io.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/platform_device.h> |
| 21 | #include <linux/pm_runtime.h> |
| 22 | #include <linux/workqueue.h> |
| 23 | |
| 24 | #include <linux/spi/spi.h> |
| 25 | |
| 26 | #define SUN4I_FIFO_DEPTH 64 |
| 27 | |
| 28 | #define SUN4I_RXDATA_REG 0x00 |
| 29 | |
| 30 | #define SUN4I_TXDATA_REG 0x04 |
| 31 | |
| 32 | #define SUN4I_CTL_REG 0x08 |
| 33 | #define SUN4I_CTL_ENABLE BIT(0) |
| 34 | #define SUN4I_CTL_MASTER BIT(1) |
| 35 | #define SUN4I_CTL_CPHA BIT(2) |
| 36 | #define SUN4I_CTL_CPOL BIT(3) |
| 37 | #define SUN4I_CTL_CS_ACTIVE_LOW BIT(4) |
| 38 | #define SUN4I_CTL_LMTF BIT(6) |
| 39 | #define SUN4I_CTL_TF_RST BIT(8) |
| 40 | #define SUN4I_CTL_RF_RST BIT(9) |
| 41 | #define SUN4I_CTL_XCH BIT(10) |
| 42 | #define SUN4I_CTL_CS_MASK 0x3000 |
| 43 | #define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK) |
| 44 | #define SUN4I_CTL_DHB BIT(15) |
| 45 | #define SUN4I_CTL_CS_MANUAL BIT(16) |
| 46 | #define SUN4I_CTL_CS_LEVEL BIT(17) |
| 47 | #define SUN4I_CTL_TP BIT(18) |
| 48 | |
| 49 | #define SUN4I_INT_CTL_REG 0x0c |
| 50 | #define SUN4I_INT_CTL_TC BIT(16) |
| 51 | |
| 52 | #define SUN4I_INT_STA_REG 0x10 |
| 53 | |
| 54 | #define SUN4I_DMA_CTL_REG 0x14 |
| 55 | |
| 56 | #define SUN4I_WAIT_REG 0x18 |
| 57 | |
| 58 | #define SUN4I_CLK_CTL_REG 0x1c |
| 59 | #define SUN4I_CLK_CTL_CDR2_MASK 0xff |
| 60 | #define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK) |
| 61 | #define SUN4I_CLK_CTL_CDR1_MASK 0xf |
| 62 | #define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8) |
| 63 | #define SUN4I_CLK_CTL_DRS BIT(12) |
| 64 | |
| 65 | #define SUN4I_BURST_CNT_REG 0x20 |
| 66 | #define SUN4I_BURST_CNT(cnt) ((cnt) & 0xffffff) |
| 67 | |
| 68 | #define SUN4I_XMIT_CNT_REG 0x24 |
| 69 | #define SUN4I_XMIT_CNT(cnt) ((cnt) & 0xffffff) |
| 70 | |
| 71 | #define SUN4I_FIFO_STA_REG 0x28 |
| 72 | #define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f |
| 73 | #define SUN4I_FIFO_STA_RF_CNT_BITS 0 |
| 74 | #define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f |
| 75 | #define SUN4I_FIFO_STA_TF_CNT_BITS 16 |
| 76 | |
| 77 | struct sun4i_spi { |
| 78 | struct spi_master *master; |
| 79 | void __iomem *base_addr; |
| 80 | struct clk *hclk; |
| 81 | struct clk *mclk; |
| 82 | |
| 83 | struct completion done; |
| 84 | |
| 85 | const u8 *tx_buf; |
| 86 | u8 *rx_buf; |
| 87 | int len; |
| 88 | }; |
| 89 | |
| 90 | static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg) |
| 91 | { |
| 92 | return readl(sspi->base_addr + reg); |
| 93 | } |
| 94 | |
| 95 | static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value) |
| 96 | { |
| 97 | writel(value, sspi->base_addr + reg); |
| 98 | } |
| 99 | |
| 100 | static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len) |
| 101 | { |
| 102 | u32 reg, cnt; |
| 103 | u8 byte; |
| 104 | |
| 105 | /* See how much data is available */ |
| 106 | reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG); |
| 107 | reg &= SUN4I_FIFO_STA_RF_CNT_MASK; |
| 108 | cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS; |
| 109 | |
| 110 | if (len > cnt) |
| 111 | len = cnt; |
| 112 | |
| 113 | while (len--) { |
| 114 | byte = readb(sspi->base_addr + SUN4I_RXDATA_REG); |
| 115 | if (sspi->rx_buf) |
| 116 | *sspi->rx_buf++ = byte; |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len) |
| 121 | { |
| 122 | u8 byte; |
| 123 | |
| 124 | if (len > sspi->len) |
| 125 | len = sspi->len; |
| 126 | |
| 127 | while (len--) { |
| 128 | byte = sspi->tx_buf ? *sspi->tx_buf++ : 0; |
| 129 | writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG); |
| 130 | sspi->len--; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | static void sun4i_spi_set_cs(struct spi_device *spi, bool enable) |
| 135 | { |
| 136 | struct sun4i_spi *sspi = spi_master_get_devdata(spi->master); |
| 137 | u32 reg; |
| 138 | |
| 139 | reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); |
| 140 | |
| 141 | reg &= ~SUN4I_CTL_CS_MASK; |
| 142 | reg |= SUN4I_CTL_CS(spi->chip_select); |
| 143 | |
| 144 | if (enable) |
| 145 | reg |= SUN4I_CTL_CS_LEVEL; |
| 146 | else |
| 147 | reg &= ~SUN4I_CTL_CS_LEVEL; |
| 148 | |
| 149 | /* |
| 150 | * Even though this looks irrelevant since we are supposed to |
| 151 | * be controlling the chip select manually, this bit also |
| 152 | * controls the levels of the chip select for inactive |
| 153 | * devices. |
| 154 | * |
| 155 | * If we don't set it, the chip select level will go low by |
| 156 | * default when the device is idle, which is not really |
| 157 | * expected in the common case where the chip select is active |
| 158 | * low. |
| 159 | */ |
| 160 | if (spi->mode & SPI_CS_HIGH) |
| 161 | reg &= ~SUN4I_CTL_CS_ACTIVE_LOW; |
| 162 | else |
| 163 | reg |= SUN4I_CTL_CS_ACTIVE_LOW; |
| 164 | |
| 165 | sun4i_spi_write(sspi, SUN4I_CTL_REG, reg); |
| 166 | } |
| 167 | |
| 168 | static int sun4i_spi_transfer_one(struct spi_master *master, |
| 169 | struct spi_device *spi, |
| 170 | struct spi_transfer *tfr) |
| 171 | { |
| 172 | struct sun4i_spi *sspi = spi_master_get_devdata(master); |
| 173 | unsigned int mclk_rate, div, timeout; |
| 174 | unsigned int tx_len = 0; |
| 175 | int ret = 0; |
| 176 | u32 reg; |
| 177 | |
| 178 | /* We don't support transfer larger than the FIFO */ |
| 179 | if (tfr->len > SUN4I_FIFO_DEPTH) |
| 180 | return -EINVAL; |
| 181 | |
| 182 | reinit_completion(&sspi->done); |
| 183 | sspi->tx_buf = tfr->tx_buf; |
| 184 | sspi->rx_buf = tfr->rx_buf; |
| 185 | sspi->len = tfr->len; |
| 186 | |
| 187 | /* Clear pending interrupts */ |
| 188 | sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0); |
| 189 | |
| 190 | |
| 191 | reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); |
| 192 | |
| 193 | /* Reset FIFOs */ |
| 194 | sun4i_spi_write(sspi, SUN4I_CTL_REG, |
| 195 | reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST); |
| 196 | |
| 197 | /* |
| 198 | * Setup the transfer control register: Chip Select, |
| 199 | * polarities, etc. |
| 200 | */ |
| 201 | if (spi->mode & SPI_CPOL) |
| 202 | reg |= SUN4I_CTL_CPOL; |
| 203 | else |
| 204 | reg &= ~SUN4I_CTL_CPOL; |
| 205 | |
| 206 | if (spi->mode & SPI_CPHA) |
| 207 | reg |= SUN4I_CTL_CPHA; |
| 208 | else |
| 209 | reg &= ~SUN4I_CTL_CPHA; |
| 210 | |
| 211 | if (spi->mode & SPI_LSB_FIRST) |
| 212 | reg |= SUN4I_CTL_LMTF; |
| 213 | else |
| 214 | reg &= ~SUN4I_CTL_LMTF; |
| 215 | |
| 216 | |
| 217 | /* |
| 218 | * If it's a TX only transfer, we don't want to fill the RX |
| 219 | * FIFO with bogus data |
| 220 | */ |
| 221 | if (sspi->rx_buf) |
| 222 | reg &= ~SUN4I_CTL_DHB; |
| 223 | else |
| 224 | reg |= SUN4I_CTL_DHB; |
| 225 | |
| 226 | /* We want to control the chip select manually */ |
| 227 | reg |= SUN4I_CTL_CS_MANUAL; |
| 228 | |
| 229 | sun4i_spi_write(sspi, SUN4I_CTL_REG, reg); |
| 230 | |
| 231 | /* Ensure that we have a parent clock fast enough */ |
| 232 | mclk_rate = clk_get_rate(sspi->mclk); |
| 233 | if (mclk_rate < (2 * spi->max_speed_hz)) { |
| 234 | clk_set_rate(sspi->mclk, 2 * spi->max_speed_hz); |
| 235 | mclk_rate = clk_get_rate(sspi->mclk); |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * Setup clock divider. |
| 240 | * |
| 241 | * We have two choices there. Either we can use the clock |
| 242 | * divide rate 1, which is calculated thanks to this formula: |
| 243 | * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1)) |
| 244 | * Or we can use CDR2, which is calculated with the formula: |
| 245 | * SPI_CLK = MOD_CLK / (2 * (cdr + 1)) |
| 246 | * Wether we use the former or the latter is set through the |
| 247 | * DRS bit. |
| 248 | * |
| 249 | * First try CDR2, and if we can't reach the expected |
| 250 | * frequency, fall back to CDR1. |
| 251 | */ |
| 252 | div = mclk_rate / (2 * spi->max_speed_hz); |
| 253 | if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) { |
| 254 | if (div > 0) |
| 255 | div--; |
| 256 | |
| 257 | reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS; |
| 258 | } else { |
| 259 | div = ilog2(mclk_rate) - ilog2(spi->max_speed_hz); |
| 260 | reg = SUN4I_CLK_CTL_CDR1(div); |
| 261 | } |
| 262 | |
| 263 | sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg); |
| 264 | |
| 265 | /* Setup the transfer now... */ |
| 266 | if (sspi->tx_buf) |
| 267 | tx_len = tfr->len; |
| 268 | |
| 269 | /* Setup the counters */ |
| 270 | sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len)); |
| 271 | sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len)); |
| 272 | |
| 273 | /* Fill the TX FIFO */ |
| 274 | sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH); |
| 275 | |
| 276 | /* Enable the interrupts */ |
| 277 | sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC); |
| 278 | |
| 279 | /* Start the transfer */ |
| 280 | reg = sun4i_spi_read(sspi, SUN4I_CTL_REG); |
| 281 | sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH); |
| 282 | |
| 283 | timeout = wait_for_completion_timeout(&sspi->done, |
| 284 | msecs_to_jiffies(1000)); |
| 285 | if (!timeout) { |
| 286 | ret = -ETIMEDOUT; |
| 287 | goto out; |
| 288 | } |
| 289 | |
| 290 | sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH); |
| 291 | |
| 292 | out: |
| 293 | sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0); |
| 294 | |
| 295 | return ret; |
| 296 | } |
| 297 | |
| 298 | static irqreturn_t sun4i_spi_handler(int irq, void *dev_id) |
| 299 | { |
| 300 | struct sun4i_spi *sspi = dev_id; |
| 301 | u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG); |
| 302 | |
| 303 | /* Transfer complete */ |
| 304 | if (status & SUN4I_INT_CTL_TC) { |
| 305 | sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC); |
| 306 | complete(&sspi->done); |
| 307 | return IRQ_HANDLED; |
| 308 | } |
| 309 | |
| 310 | return IRQ_NONE; |
| 311 | } |
| 312 | |
| 313 | static int sun4i_spi_runtime_resume(struct device *dev) |
| 314 | { |
| 315 | struct spi_master *master = dev_get_drvdata(dev); |
| 316 | struct sun4i_spi *sspi = spi_master_get_devdata(master); |
| 317 | int ret; |
| 318 | |
| 319 | ret = clk_prepare_enable(sspi->hclk); |
| 320 | if (ret) { |
| 321 | dev_err(dev, "Couldn't enable AHB clock\n"); |
| 322 | goto out; |
| 323 | } |
| 324 | |
| 325 | ret = clk_prepare_enable(sspi->mclk); |
| 326 | if (ret) { |
| 327 | dev_err(dev, "Couldn't enable module clock\n"); |
| 328 | goto err; |
| 329 | } |
| 330 | |
| 331 | sun4i_spi_write(sspi, SUN4I_CTL_REG, |
| 332 | SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP); |
| 333 | |
| 334 | return 0; |
| 335 | |
| 336 | err: |
| 337 | clk_disable_unprepare(sspi->hclk); |
| 338 | out: |
| 339 | return ret; |
| 340 | } |
| 341 | |
| 342 | static int sun4i_spi_runtime_suspend(struct device *dev) |
| 343 | { |
| 344 | struct spi_master *master = dev_get_drvdata(dev); |
| 345 | struct sun4i_spi *sspi = spi_master_get_devdata(master); |
| 346 | |
| 347 | clk_disable_unprepare(sspi->mclk); |
| 348 | clk_disable_unprepare(sspi->hclk); |
| 349 | |
| 350 | return 0; |
| 351 | } |
| 352 | |
| 353 | static int sun4i_spi_probe(struct platform_device *pdev) |
| 354 | { |
| 355 | struct spi_master *master; |
| 356 | struct sun4i_spi *sspi; |
| 357 | struct resource *res; |
| 358 | int ret = 0, irq; |
| 359 | |
| 360 | master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi)); |
| 361 | if (!master) { |
| 362 | dev_err(&pdev->dev, "Unable to allocate SPI Master\n"); |
| 363 | return -ENOMEM; |
| 364 | } |
| 365 | |
| 366 | platform_set_drvdata(pdev, master); |
| 367 | sspi = spi_master_get_devdata(master); |
| 368 | |
| 369 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 370 | sspi->base_addr = devm_ioremap_resource(&pdev->dev, res); |
| 371 | if (IS_ERR(sspi->base_addr)) { |
| 372 | ret = PTR_ERR(sspi->base_addr); |
| 373 | goto err_free_master; |
| 374 | } |
| 375 | |
| 376 | irq = platform_get_irq(pdev, 0); |
| 377 | if (irq < 0) { |
| 378 | dev_err(&pdev->dev, "No spi IRQ specified\n"); |
| 379 | ret = -ENXIO; |
| 380 | goto err_free_master; |
| 381 | } |
| 382 | |
| 383 | ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler, |
| 384 | 0, "sun4i-spi", sspi); |
| 385 | if (ret) { |
| 386 | dev_err(&pdev->dev, "Cannot request IRQ\n"); |
| 387 | goto err_free_master; |
| 388 | } |
| 389 | |
| 390 | sspi->master = master; |
| 391 | master->set_cs = sun4i_spi_set_cs; |
| 392 | master->transfer_one = sun4i_spi_transfer_one; |
| 393 | master->num_chipselect = 4; |
| 394 | master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; |
Axel Lin | ba47644 | 2014-03-02 22:25:10 +0800 | [diff] [blame^] | 395 | master->bits_per_word_mask = SPI_BPW_MASK(8); |
Maxime Ripard | b5f6517 | 2014-02-22 22:35:53 +0100 | [diff] [blame] | 396 | master->dev.of_node = pdev->dev.of_node; |
| 397 | master->auto_runtime_pm = true; |
| 398 | |
| 399 | sspi->hclk = devm_clk_get(&pdev->dev, "ahb"); |
| 400 | if (IS_ERR(sspi->hclk)) { |
| 401 | dev_err(&pdev->dev, "Unable to acquire AHB clock\n"); |
| 402 | ret = PTR_ERR(sspi->hclk); |
| 403 | goto err_free_master; |
| 404 | } |
| 405 | |
| 406 | sspi->mclk = devm_clk_get(&pdev->dev, "mod"); |
| 407 | if (IS_ERR(sspi->mclk)) { |
| 408 | dev_err(&pdev->dev, "Unable to acquire module clock\n"); |
| 409 | ret = PTR_ERR(sspi->mclk); |
| 410 | goto err_free_master; |
| 411 | } |
| 412 | |
| 413 | init_completion(&sspi->done); |
| 414 | |
| 415 | /* |
| 416 | * This wake-up/shutdown pattern is to be able to have the |
| 417 | * device woken up, even if runtime_pm is disabled |
| 418 | */ |
| 419 | ret = sun4i_spi_runtime_resume(&pdev->dev); |
| 420 | if (ret) { |
| 421 | dev_err(&pdev->dev, "Couldn't resume the device\n"); |
| 422 | goto err_free_master; |
| 423 | } |
| 424 | |
| 425 | pm_runtime_set_active(&pdev->dev); |
| 426 | pm_runtime_enable(&pdev->dev); |
| 427 | pm_runtime_idle(&pdev->dev); |
| 428 | |
| 429 | ret = devm_spi_register_master(&pdev->dev, master); |
| 430 | if (ret) { |
| 431 | dev_err(&pdev->dev, "cannot register SPI master\n"); |
| 432 | goto err_pm_disable; |
| 433 | } |
| 434 | |
| 435 | return 0; |
| 436 | |
| 437 | err_pm_disable: |
| 438 | pm_runtime_disable(&pdev->dev); |
| 439 | sun4i_spi_runtime_suspend(&pdev->dev); |
| 440 | err_free_master: |
| 441 | spi_master_put(master); |
| 442 | return ret; |
| 443 | } |
| 444 | |
| 445 | static int sun4i_spi_remove(struct platform_device *pdev) |
| 446 | { |
| 447 | pm_runtime_disable(&pdev->dev); |
| 448 | |
| 449 | return 0; |
| 450 | } |
| 451 | |
| 452 | static const struct of_device_id sun4i_spi_match[] = { |
| 453 | { .compatible = "allwinner,sun4i-a10-spi", }, |
| 454 | {} |
| 455 | }; |
| 456 | MODULE_DEVICE_TABLE(of, sun4i_spi_match); |
| 457 | |
| 458 | static const struct dev_pm_ops sun4i_spi_pm_ops = { |
| 459 | .runtime_resume = sun4i_spi_runtime_resume, |
| 460 | .runtime_suspend = sun4i_spi_runtime_suspend, |
| 461 | }; |
| 462 | |
| 463 | static struct platform_driver sun4i_spi_driver = { |
| 464 | .probe = sun4i_spi_probe, |
| 465 | .remove = sun4i_spi_remove, |
| 466 | .driver = { |
| 467 | .name = "sun4i-spi", |
| 468 | .owner = THIS_MODULE, |
| 469 | .of_match_table = sun4i_spi_match, |
| 470 | .pm = &sun4i_spi_pm_ops, |
| 471 | }, |
| 472 | }; |
| 473 | module_platform_driver(sun4i_spi_driver); |
| 474 | |
| 475 | MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>"); |
| 476 | MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>"); |
| 477 | MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver"); |
| 478 | MODULE_LICENSE("GPL"); |