blob: 49bde428f7f25680be18772456c9b63494e5fd5b [file] [log] [blame]
Paolo Valenteaee69d72017-04-19 08:29:02 -06001/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020052 * applications: interactive and soft real-time. In more detail, BFQ
53 * behaves this way if the low_latency parameter is set (default
54 * configuration). This feature enables BFQ to provide applications in
55 * these classes with a very low latency.
56 *
57 * To implement this feature, BFQ constantly tries to detect whether
58 * the I/O requests in a bfq_queue come from an interactive or a soft
59 * real-time application. For brevity, in these cases, the queue is
60 * said to be interactive or soft real-time. In both cases, BFQ
61 * privileges the service of the queue, over that of non-interactive
62 * and non-soft-real-time queues. This privileging is performed,
63 * mainly, by raising the weight of the queue. So, for brevity, we
64 * call just weight-raising periods the time periods during which a
65 * queue is privileged, because deemed interactive or soft real-time.
66 *
67 * The detection of soft real-time queues/applications is described in
68 * detail in the comments on the function
69 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70 * interactive queue works as follows: a queue is deemed interactive
71 * if it is constantly non empty only for a limited time interval,
72 * after which it does become empty. The queue may be deemed
73 * interactive again (for a limited time), if it restarts being
74 * constantly non empty, provided that this happens only after the
75 * queue has remained empty for a given minimum idle time.
76 *
77 * By default, BFQ computes automatically the above maximum time
78 * interval, i.e., the time interval after which a constantly
79 * non-empty queue stops being deemed interactive. Since a queue is
80 * weight-raised while it is deemed interactive, this maximum time
81 * interval happens to coincide with the (maximum) duration of the
82 * weight-raising for interactive queues.
83 *
84 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060085 * preserving both a low latency and a high throughput on NCQ-capable,
86 * rotational or flash-based devices, and to get the job done quickly
87 * for applications consisting in many I/O-bound processes.
88 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020089 * NOTE: if the main or only goal, with a given device, is to achieve
90 * the maximum-possible throughput at all times, then do switch off
91 * all low-latency heuristics for that device, by setting low_latency
92 * to 0.
93 *
Paolo Valente4029eef2018-05-31 16:45:05 +020094 * BFQ is described in [1], where also a reference to the initial,
95 * more theoretical paper on BFQ can be found. The interested reader
96 * can find in the latter paper full details on the main algorithm, as
97 * well as formulas of the guarantees and formal proofs of all the
98 * properties. With respect to the version of BFQ presented in these
99 * papers, this implementation adds a few more heuristics, such as the
100 * ones that guarantee a low latency to interactive and soft real-time
101 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600102 *
103 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105 * with O(log N) complexity derives from the one introduced with EEVDF
106 * in [3].
107 *
108 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109 * Scheduler", Proceedings of the First Workshop on Mobile System
110 * Technologies (MST-2015), May 2015.
111 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112 *
113 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115 * Oct 1997.
116 *
117 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118 *
119 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120 * First: A Flexible and Accurate Mechanism for Proportional Share
121 * Resource Allocation", technical report.
122 *
123 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124 */
125#include <linux/module.h>
126#include <linux/slab.h>
127#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200128#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600129#include <linux/elevator.h>
130#include <linux/ktime.h>
131#include <linux/rbtree.h>
132#include <linux/ioprio.h>
133#include <linux/sbitmap.h>
134#include <linux/delay.h>
135
136#include "blk.h"
137#include "blk-mq.h"
138#include "blk-mq-tag.h"
139#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600140#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200141#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600142
143#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600144void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600145{ \
146 __set_bit(BFQQF_##name, &(bfqq)->flags); \
147} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600148void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600149{ \
150 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
151} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600152int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600153{ \
154 return test_bit(BFQQF_##name, &(bfqq)->flags); \
155}
156
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200157BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600158BFQ_BFQQ_FNS(busy);
159BFQ_BFQQ_FNS(wait_request);
160BFQ_BFQQ_FNS(non_blocking_wait_rq);
161BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200162BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600163BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600164BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200165BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200166BFQ_BFQQ_FNS(coop);
167BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200168BFQ_BFQQ_FNS(softrt_update);
Paolo Valenteea25da42017-04-19 08:48:24 -0600169#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600170
Paolo Valenteaee69d72017-04-19 08:29:02 -0600171/* Expiration time of sync (0) and async (1) requests, in ns. */
172static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173
174/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175static const int bfq_back_max = 16 * 1024;
176
177/* Penalty of a backwards seek, in number of sectors. */
178static const int bfq_back_penalty = 2;
179
180/* Idling period duration, in ns. */
181static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182
183/* Minimum number of assigned budgets for which stats are safe to compute. */
184static const int bfq_stats_min_budgets = 194;
185
186/* Default maximum budget values, in sectors and number of requests. */
187static const int bfq_default_max_budget = 16 * 1024;
188
Paolo Valentec074170e2017-04-12 18:23:11 +0200189/*
Paolo Valented5801082018-08-16 18:51:17 +0200190 * When a sync request is dispatched, the queue that contains that
191 * request, and all the ancestor entities of that queue, are charged
192 * with the number of sectors of the request. In constrast, if the
193 * request is async, then the queue and its ancestor entities are
194 * charged with the number of sectors of the request, multiplied by
195 * the factor below. This throttles the bandwidth for async I/O,
196 * w.r.t. to sync I/O, and it is done to counter the tendency of async
197 * writes to steal I/O throughput to reads.
198 *
199 * The current value of this parameter is the result of a tuning with
200 * several hardware and software configurations. We tried to find the
201 * lowest value for which writes do not cause noticeable problems to
202 * reads. In fact, the lower this parameter, the stabler I/O control,
203 * in the following respect. The lower this parameter is, the less
204 * the bandwidth enjoyed by a group decreases
205 * - when the group does writes, w.r.t. to when it does reads;
206 * - when other groups do reads, w.r.t. to when they do writes.
Paolo Valentec074170e2017-04-12 18:23:11 +0200207 */
Paolo Valented5801082018-08-16 18:51:17 +0200208static const int bfq_async_charge_factor = 3;
Paolo Valentec074170e2017-04-12 18:23:11 +0200209
Paolo Valenteaee69d72017-04-19 08:29:02 -0600210/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600211const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600212
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100213/*
214 * Time limit for merging (see comments in bfq_setup_cooperator). Set
215 * to the slowest value that, in our tests, proved to be effective in
216 * removing false positives, while not causing true positives to miss
217 * queue merging.
218 *
219 * As can be deduced from the low time limit below, queue merging, if
220 * successful, happens at the very beggining of the I/O of the involved
221 * cooperating processes, as a consequence of the arrival of the very
222 * first requests from each cooperator. After that, there is very
223 * little chance to find cooperators.
224 */
225static const unsigned long bfq_merge_time_limit = HZ/10;
226
Paolo Valenteaee69d72017-04-19 08:29:02 -0600227static struct kmem_cache *bfq_pool;
228
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200229/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600230#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
231
232/* hw_tag detection: parallel requests threshold and min samples needed. */
Paolo Valentea3c92562019-01-29 12:06:35 +0100233#define BFQ_HW_QUEUE_THRESHOLD 3
Paolo Valenteaee69d72017-04-19 08:29:02 -0600234#define BFQ_HW_QUEUE_SAMPLES 32
235
236#define BFQQ_SEEK_THR (sector_t)(8 * 100)
237#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
Paolo Valented87447d2019-01-29 12:06:33 +0100238#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
239 (get_sdist(last_pos, rq) > \
240 BFQQ_SEEK_THR && \
241 (!blk_queue_nonrot(bfqd->queue) || \
242 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
Paolo Valenteaee69d72017-04-19 08:29:02 -0600243#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100244#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valente7074f072019-03-12 09:59:31 +0100245/*
246 * Sync random I/O is likely to be confused with soft real-time I/O,
247 * because it is characterized by limited throughput and apparently
248 * isochronous arrival pattern. To avoid false positives, queues
249 * containing only random (seeky) I/O are prevented from being tagged
250 * as soft real-time.
251 */
252#define BFQQ_TOTALLY_SEEKY(bfqq) (bfqq->seek_history & -1)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600253
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200254/* Min number of samples required to perform peak-rate update */
255#define BFQ_RATE_MIN_SAMPLES 32
256/* Min observation time interval required to perform a peak-rate update (ns) */
257#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
258/* Target observation time interval for a peak-rate update (ns) */
259#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600260
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200261/*
262 * Shift used for peak-rate fixed precision calculations.
263 * With
264 * - the current shift: 16 positions
265 * - the current type used to store rate: u32
266 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
267 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
268 * the range of rates that can be stored is
269 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
270 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
271 * [15, 65G] sectors/sec
272 * Which, assuming a sector size of 512B, corresponds to a range of
273 * [7.5K, 33T] B/sec
274 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600275#define BFQ_RATE_SHIFT 16
276
Paolo Valente44e44a12017-04-12 18:23:12 +0200277/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200278 * When configured for computing the duration of the weight-raising
279 * for interactive queues automatically (see the comments at the
280 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200281 * duration = (ref_rate / r) * ref_wr_duration,
282 * where r is the peak rate of the device, and ref_rate and
283 * ref_wr_duration are two reference parameters. In particular,
284 * ref_rate is the peak rate of the reference storage device (see
285 * below), and ref_wr_duration is about the maximum time needed, with
286 * BFQ and while reading two files in parallel, to load typical large
287 * applications on the reference device (see the comments on
288 * max_service_from_wr below, for more details on how ref_wr_duration
289 * is obtained). In practice, the slower/faster the device at hand
290 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200291 * reference device. Accordingly, the longer/shorter BFQ grants
292 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200293 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200294 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
295 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200296 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200297 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
298 * are the reference values for a rotational device, whereas
299 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
300 * non-rotational device. The reference rates are not the actual peak
301 * rates of the devices used as a reference, but slightly lower
302 * values. The reason for using slightly lower values is that the
303 * peak-rate estimator tends to yield slightly lower values than the
304 * actual peak rate (it can yield the actual peak rate only if there
305 * is only one process doing I/O, and the process does sequential
306 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200307 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200308 * The reference peak rates are measured in sectors/usec, left-shifted
309 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200310 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200311static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200312/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200313 * To improve readability, a conversion function is used to initialize
314 * the following array, which entails that the array can be
315 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200316 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200317static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200318
Paolo Valente8a8747d2018-01-13 12:05:18 +0100319/*
320 * BFQ uses the above-detailed, time-based weight-raising mechanism to
321 * privilege interactive tasks. This mechanism is vulnerable to the
322 * following false positives: I/O-bound applications that will go on
323 * doing I/O for much longer than the duration of weight
324 * raising. These applications have basically no benefit from being
325 * weight-raised at the beginning of their I/O. On the opposite end,
326 * while being weight-raised, these applications
327 * a) unjustly steal throughput to applications that may actually need
328 * low latency;
329 * b) make BFQ uselessly perform device idling; device idling results
330 * in loss of device throughput with most flash-based storage, and may
331 * increase latencies when used purposelessly.
332 *
333 * BFQ tries to reduce these problems, by adopting the following
334 * countermeasure. To introduce this countermeasure, we need first to
335 * finish explaining how the duration of weight-raising for
336 * interactive tasks is computed.
337 *
338 * For a bfq_queue deemed as interactive, the duration of weight
339 * raising is dynamically adjusted, as a function of the estimated
340 * peak rate of the device, so as to be equal to the time needed to
341 * execute the 'largest' interactive task we benchmarked so far. By
342 * largest task, we mean the task for which each involved process has
343 * to do more I/O than for any of the other tasks we benchmarked. This
344 * reference interactive task is the start-up of LibreOffice Writer,
345 * and in this task each process/bfq_queue needs to have at most ~110K
346 * sectors transferred.
347 *
348 * This last piece of information enables BFQ to reduce the actual
349 * duration of weight-raising for at least one class of I/O-bound
350 * applications: those doing sequential or quasi-sequential I/O. An
351 * example is file copy. In fact, once started, the main I/O-bound
352 * processes of these applications usually consume the above 110K
353 * sectors in much less time than the processes of an application that
354 * is starting, because these I/O-bound processes will greedily devote
355 * almost all their CPU cycles only to their target,
356 * throughput-friendly I/O operations. This is even more true if BFQ
357 * happens to be underestimating the device peak rate, and thus
358 * overestimating the duration of weight raising. But, according to
359 * our measurements, once transferred 110K sectors, these processes
360 * have no right to be weight-raised any longer.
361 *
362 * Basing on the last consideration, BFQ ends weight-raising for a
363 * bfq_queue if the latter happens to have received an amount of
364 * service at least equal to the following constant. The constant is
365 * set to slightly more than 110K, to have a minimum safety margin.
366 *
367 * This early ending of weight-raising reduces the amount of time
368 * during which interactive false positives cause the two problems
369 * described at the beginning of these comments.
370 */
371static const unsigned long max_service_from_wr = 120000;
372
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700373#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600374#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
375
Paolo Valenteea25da42017-04-19 08:48:24 -0600376struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
377{
378 return bic->bfqq[is_sync];
379}
380
381void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
382{
383 bic->bfqq[is_sync] = bfqq;
384}
385
386struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
387{
388 return bic->icq.q->elevator->elevator_data;
389}
390
Paolo Valenteaee69d72017-04-19 08:29:02 -0600391/**
392 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
393 * @icq: the iocontext queue.
394 */
395static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
396{
397 /* bic->icq is the first member, %NULL will convert to %NULL */
398 return container_of(icq, struct bfq_io_cq, icq);
399}
400
401/**
402 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
403 * @bfqd: the lookup key.
404 * @ioc: the io_context of the process doing I/O.
405 * @q: the request queue.
406 */
407static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
408 struct io_context *ioc,
409 struct request_queue *q)
410{
411 if (ioc) {
412 unsigned long flags;
413 struct bfq_io_cq *icq;
414
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700415 spin_lock_irqsave(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600416 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
Christoph Hellwig0d945c12018-11-15 12:17:28 -0700417 spin_unlock_irqrestore(&q->queue_lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600418
419 return icq;
420 }
421
422 return NULL;
423}
424
425/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200426 * Scheduler run of queue, if there are requests pending and no one in the
427 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600428 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600429void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600430{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200431 if (bfqd->queued != 0) {
432 bfq_log(bfqd, "schedule dispatch");
433 blk_mq_run_hw_queues(bfqd->queue, true);
434 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600435}
436
Paolo Valenteaee69d72017-04-19 08:29:02 -0600437#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
438#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
439
440#define bfq_sample_valid(samples) ((samples) > 80)
441
442/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600443 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
444 * We choose the request that is closesr to the head right now. Distance
445 * behind the head is penalized and only allowed to a certain extent.
446 */
447static struct request *bfq_choose_req(struct bfq_data *bfqd,
448 struct request *rq1,
449 struct request *rq2,
450 sector_t last)
451{
452 sector_t s1, s2, d1 = 0, d2 = 0;
453 unsigned long back_max;
454#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
455#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
456 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
457
458 if (!rq1 || rq1 == rq2)
459 return rq2;
460 if (!rq2)
461 return rq1;
462
463 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
464 return rq1;
465 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
466 return rq2;
467 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
468 return rq1;
469 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
470 return rq2;
471
472 s1 = blk_rq_pos(rq1);
473 s2 = blk_rq_pos(rq2);
474
475 /*
476 * By definition, 1KiB is 2 sectors.
477 */
478 back_max = bfqd->bfq_back_max * 2;
479
480 /*
481 * Strict one way elevator _except_ in the case where we allow
482 * short backward seeks which are biased as twice the cost of a
483 * similar forward seek.
484 */
485 if (s1 >= last)
486 d1 = s1 - last;
487 else if (s1 + back_max >= last)
488 d1 = (last - s1) * bfqd->bfq_back_penalty;
489 else
490 wrap |= BFQ_RQ1_WRAP;
491
492 if (s2 >= last)
493 d2 = s2 - last;
494 else if (s2 + back_max >= last)
495 d2 = (last - s2) * bfqd->bfq_back_penalty;
496 else
497 wrap |= BFQ_RQ2_WRAP;
498
499 /* Found required data */
500
501 /*
502 * By doing switch() on the bit mask "wrap" we avoid having to
503 * check two variables for all permutations: --> faster!
504 */
505 switch (wrap) {
506 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
507 if (d1 < d2)
508 return rq1;
509 else if (d2 < d1)
510 return rq2;
511
512 if (s1 >= s2)
513 return rq1;
514 else
515 return rq2;
516
517 case BFQ_RQ2_WRAP:
518 return rq1;
519 case BFQ_RQ1_WRAP:
520 return rq2;
521 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
522 default:
523 /*
524 * Since both rqs are wrapped,
525 * start with the one that's further behind head
526 * (--> only *one* back seek required),
527 * since back seek takes more time than forward.
528 */
529 if (s1 <= s2)
530 return rq1;
531 else
532 return rq2;
533 }
534}
535
Paolo Valentea52a69e2018-01-13 12:05:17 +0100536/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100537 * Async I/O can easily starve sync I/O (both sync reads and sync
538 * writes), by consuming all tags. Similarly, storms of sync writes,
539 * such as those that sync(2) may trigger, can starve sync reads.
540 * Limit depths of async I/O and sync writes so as to counter both
541 * problems.
542 */
543static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
544{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100545 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100546
547 if (op_is_sync(op) && !op_is_write(op))
548 return;
549
Paolo Valentea52a69e2018-01-13 12:05:17 +0100550 data->shallow_depth =
551 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
552
553 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
554 __func__, bfqd->wr_busy_queues, op_is_sync(op),
555 data->shallow_depth);
556}
557
Arianna Avanzini36eca892017-04-12 18:23:16 +0200558static struct bfq_queue *
559bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
560 sector_t sector, struct rb_node **ret_parent,
561 struct rb_node ***rb_link)
562{
563 struct rb_node **p, *parent;
564 struct bfq_queue *bfqq = NULL;
565
566 parent = NULL;
567 p = &root->rb_node;
568 while (*p) {
569 struct rb_node **n;
570
571 parent = *p;
572 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
573
574 /*
575 * Sort strictly based on sector. Smallest to the left,
576 * largest to the right.
577 */
578 if (sector > blk_rq_pos(bfqq->next_rq))
579 n = &(*p)->rb_right;
580 else if (sector < blk_rq_pos(bfqq->next_rq))
581 n = &(*p)->rb_left;
582 else
583 break;
584 p = n;
585 bfqq = NULL;
586 }
587
588 *ret_parent = parent;
589 if (rb_link)
590 *rb_link = p;
591
592 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
593 (unsigned long long)sector,
594 bfqq ? bfqq->pid : 0);
595
596 return bfqq;
597}
598
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100599static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
600{
601 return bfqq->service_from_backlogged > 0 &&
602 time_is_before_jiffies(bfqq->first_IO_time +
603 bfq_merge_time_limit);
604}
605
Paolo Valente8cacc5a2019-03-12 09:59:30 +0100606/*
607 * The following function is not marked as __cold because it is
608 * actually cold, but for the same performance goal described in the
609 * comments on the likely() at the beginning of
610 * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
611 * execution time for the case where this function is not invoked, we
612 * had to add an unlikely() in each involved if().
613 */
614void __cold
615bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200616{
617 struct rb_node **p, *parent;
618 struct bfq_queue *__bfqq;
619
620 if (bfqq->pos_root) {
621 rb_erase(&bfqq->pos_node, bfqq->pos_root);
622 bfqq->pos_root = NULL;
623 }
624
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100625 /*
626 * bfqq cannot be merged any longer (see comments in
627 * bfq_setup_cooperator): no point in adding bfqq into the
628 * position tree.
629 */
630 if (bfq_too_late_for_merging(bfqq))
631 return;
632
Arianna Avanzini36eca892017-04-12 18:23:16 +0200633 if (bfq_class_idle(bfqq))
634 return;
635 if (!bfqq->next_rq)
636 return;
637
638 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
639 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
640 blk_rq_pos(bfqq->next_rq), &parent, &p);
641 if (!__bfqq) {
642 rb_link_node(&bfqq->pos_node, parent, p);
643 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
644 } else
645 bfqq->pos_root = NULL;
646}
647
Paolo Valenteaee69d72017-04-19 08:29:02 -0600648/*
Paolo Valentefb53ac62019-03-12 09:59:28 +0100649 * The following function returns false either if every active queue
650 * must receive the same share of the throughput (symmetric scenario),
651 * or, as a special case, if bfqq must receive a share of the
652 * throughput lower than or equal to the share that every other active
653 * queue must receive. If bfqq does sync I/O, then these are the only
654 * two cases where bfqq happens to be guaranteed its share of the
655 * throughput even if I/O dispatching is not plugged when bfqq remains
656 * temporarily empty (for more details, see the comments in the
657 * function bfq_better_to_idle()). For this reason, the return value
658 * of this function is used to check whether I/O-dispatch plugging can
659 * be avoided.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200660 *
Paolo Valentefb53ac62019-03-12 09:59:28 +0100661 * The above first case (symmetric scenario) occurs when:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200662 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100663 * 2) all active queues belong to the same I/O-priority class,
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200664 * 3) all active groups at the same level in the groups tree have the same
Paolo Valente73d58112019-01-29 12:06:29 +0100665 * weight,
666 * 4) all active groups at the same level in the groups tree have the same
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200667 * number of children.
668 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200669 * Unfortunately, keeping the necessary state for evaluating exactly
670 * the last two symmetry sub-conditions above would be quite complex
Paolo Valente73d58112019-01-29 12:06:29 +0100671 * and time consuming. Therefore this function evaluates, instead,
672 * only the following stronger three sub-conditions, for which it is
Federico Motta2d29c9f2018-10-12 11:55:57 +0200673 * much easier to maintain the needed state:
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200674 * 1) all active queues have the same weight,
Paolo Valente73d58112019-01-29 12:06:29 +0100675 * 2) all active queues belong to the same I/O-priority class,
676 * 3) there are no active groups.
Federico Motta2d29c9f2018-10-12 11:55:57 +0200677 * In particular, the last condition is always true if hierarchical
678 * support or the cgroups interface are not enabled, thus no state
679 * needs to be maintained in this case.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200680 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100681static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
682 struct bfq_queue *bfqq)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200683{
Paolo Valentefb53ac62019-03-12 09:59:28 +0100684 bool smallest_weight = bfqq &&
685 bfqq->weight_counter &&
686 bfqq->weight_counter ==
687 container_of(
688 rb_first_cached(&bfqd->queue_weights_tree),
689 struct bfq_weight_counter,
690 weights_node);
691
Paolo Valente73d58112019-01-29 12:06:29 +0100692 /*
693 * For queue weights to differ, queue_weights_tree must contain
694 * at least two nodes.
695 */
Paolo Valentefb53ac62019-03-12 09:59:28 +0100696 bool varied_queue_weights = !smallest_weight &&
697 !RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
698 (bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
699 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
Paolo Valente73d58112019-01-29 12:06:29 +0100700
701 bool multiple_classes_busy =
702 (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
703 (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
704 (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
705
Paolo Valentefb53ac62019-03-12 09:59:28 +0100706 return varied_queue_weights || multiple_classes_busy
Konstantin Khlebnikov42b1bd32019-03-29 17:01:18 +0300707#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente73d58112019-01-29 12:06:29 +0100708 || bfqd->num_groups_with_pending_reqs > 0
709#endif
Paolo Valentefb53ac62019-03-12 09:59:28 +0100710 ;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200711}
712
713/*
714 * If the weight-counter tree passed as input contains no counter for
Federico Motta2d29c9f2018-10-12 11:55:57 +0200715 * the weight of the input queue, then add that counter; otherwise just
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200716 * increment the existing counter.
717 *
718 * Note that weight-counter trees contain few nodes in mostly symmetric
719 * scenarios. For example, if all queues have the same weight, then the
720 * weight-counter tree for the queues may contain at most one node.
721 * This holds even if low_latency is on, because weight-raised queues
722 * are not inserted in the tree.
723 * In most scenarios, the rate at which nodes are created/destroyed
724 * should be low too.
725 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200726void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100727 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200728{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200729 struct bfq_entity *entity = &bfqq->entity;
Paolo Valentefb53ac62019-03-12 09:59:28 +0100730 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
731 bool leftmost = true;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200732
733 /*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200734 * Do not insert if the queue is already associated with a
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200735 * counter, which happens if:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200736 * 1) a request arrival has caused the queue to become both
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200737 * non-weight-raised, and hence change its weight, and
738 * backlogged; in this respect, each of the two events
739 * causes an invocation of this function,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200740 * 2) this is the invocation of this function caused by the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200741 * second event. This second invocation is actually useless,
742 * and we handle this fact by exiting immediately. More
743 * efficient or clearer solutions might possibly be adopted.
744 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200745 if (bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200746 return;
747
748 while (*new) {
749 struct bfq_weight_counter *__counter = container_of(*new,
750 struct bfq_weight_counter,
751 weights_node);
752 parent = *new;
753
754 if (entity->weight == __counter->weight) {
Federico Motta2d29c9f2018-10-12 11:55:57 +0200755 bfqq->weight_counter = __counter;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200756 goto inc_counter;
757 }
758 if (entity->weight < __counter->weight)
759 new = &((*new)->rb_left);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100760 else {
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200761 new = &((*new)->rb_right);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100762 leftmost = false;
763 }
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200764 }
765
Federico Motta2d29c9f2018-10-12 11:55:57 +0200766 bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
767 GFP_ATOMIC);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200768
769 /*
770 * In the unlucky event of an allocation failure, we just
Federico Motta2d29c9f2018-10-12 11:55:57 +0200771 * exit. This will cause the weight of queue to not be
Paolo Valentefb53ac62019-03-12 09:59:28 +0100772 * considered in bfq_asymmetric_scenario, which, in its turn,
Paolo Valente73d58112019-01-29 12:06:29 +0100773 * causes the scenario to be deemed wrongly symmetric in case
774 * bfqq's weight would have been the only weight making the
775 * scenario asymmetric. On the bright side, no unbalance will
776 * however occur when bfqq becomes inactive again (the
777 * invocation of this function is triggered by an activation
778 * of queue). In fact, bfq_weights_tree_remove does nothing
779 * if !bfqq->weight_counter.
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200780 */
Federico Motta2d29c9f2018-10-12 11:55:57 +0200781 if (unlikely(!bfqq->weight_counter))
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200782 return;
783
Federico Motta2d29c9f2018-10-12 11:55:57 +0200784 bfqq->weight_counter->weight = entity->weight;
785 rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
Paolo Valentefb53ac62019-03-12 09:59:28 +0100786 rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
787 leftmost);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200788
789inc_counter:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200790 bfqq->weight_counter->num_active++;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100791 bfqq->ref++;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200792}
793
794/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200795 * Decrement the weight counter associated with the queue, and, if the
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200796 * counter reaches 0, remove the counter from the tree.
797 * See the comments to the function bfq_weights_tree_add() for considerations
798 * about overhead.
799 */
Paolo Valente04715592018-06-25 21:55:34 +0200800void __bfq_weights_tree_remove(struct bfq_data *bfqd,
Federico Motta2d29c9f2018-10-12 11:55:57 +0200801 struct bfq_queue *bfqq,
Paolo Valentefb53ac62019-03-12 09:59:28 +0100802 struct rb_root_cached *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200803{
Federico Motta2d29c9f2018-10-12 11:55:57 +0200804 if (!bfqq->weight_counter)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200805 return;
806
Federico Motta2d29c9f2018-10-12 11:55:57 +0200807 bfqq->weight_counter->num_active--;
808 if (bfqq->weight_counter->num_active > 0)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200809 goto reset_entity_pointer;
810
Paolo Valentefb53ac62019-03-12 09:59:28 +0100811 rb_erase_cached(&bfqq->weight_counter->weights_node, root);
Federico Motta2d29c9f2018-10-12 11:55:57 +0200812 kfree(bfqq->weight_counter);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200813
814reset_entity_pointer:
Federico Motta2d29c9f2018-10-12 11:55:57 +0200815 bfqq->weight_counter = NULL;
Paolo Valente9dee8b32019-01-29 12:06:34 +0100816 bfq_put_queue(bfqq);
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200817}
818
819/*
Federico Motta2d29c9f2018-10-12 11:55:57 +0200820 * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
821 * of active groups for each queue's inactive parent entity.
Paolo Valente04715592018-06-25 21:55:34 +0200822 */
823void bfq_weights_tree_remove(struct bfq_data *bfqd,
824 struct bfq_queue *bfqq)
825{
826 struct bfq_entity *entity = bfqq->entity.parent;
827
Paolo Valente04715592018-06-25 21:55:34 +0200828 for_each_entity(entity) {
829 struct bfq_sched_data *sd = entity->my_sched_data;
830
831 if (sd->next_in_service || sd->in_service_entity) {
832 /*
833 * entity is still active, because either
834 * next_in_service or in_service_entity is not
835 * NULL (see the comments on the definition of
836 * next_in_service for details on why
837 * in_service_entity must be checked too).
838 *
Federico Motta2d29c9f2018-10-12 11:55:57 +0200839 * As a consequence, its parent entities are
840 * active as well, and thus this loop must
841 * stop here.
Paolo Valente04715592018-06-25 21:55:34 +0200842 */
843 break;
844 }
Paolo Valenteba7aeae2018-12-06 19:18:18 +0100845
846 /*
847 * The decrement of num_groups_with_pending_reqs is
848 * not performed immediately upon the deactivation of
849 * entity, but it is delayed to when it also happens
850 * that the first leaf descendant bfqq of entity gets
851 * all its pending requests completed. The following
852 * instructions perform this delayed decrement, if
853 * needed. See the comments on
854 * num_groups_with_pending_reqs for details.
855 */
856 if (entity->in_groups_with_pending_reqs) {
857 entity->in_groups_with_pending_reqs = false;
858 bfqd->num_groups_with_pending_reqs--;
859 }
Paolo Valente04715592018-06-25 21:55:34 +0200860 }
Paolo Valente9dee8b32019-01-29 12:06:34 +0100861
862 /*
863 * Next function is invoked last, because it causes bfqq to be
864 * freed if the following holds: bfqq is not in service and
865 * has no dispatched request. DO NOT use bfqq after the next
866 * function invocation.
867 */
868 __bfq_weights_tree_remove(bfqd, bfqq,
869 &bfqd->queue_weights_tree);
Paolo Valente04715592018-06-25 21:55:34 +0200870}
871
872/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600873 * Return expired entry, or NULL to just start from scratch in rbtree.
874 */
875static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
876 struct request *last)
877{
878 struct request *rq;
879
880 if (bfq_bfqq_fifo_expire(bfqq))
881 return NULL;
882
883 bfq_mark_bfqq_fifo_expire(bfqq);
884
885 rq = rq_entry_fifo(bfqq->fifo.next);
886
887 if (rq == last || ktime_get_ns() < rq->fifo_time)
888 return NULL;
889
890 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
891 return rq;
892}
893
894static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
895 struct bfq_queue *bfqq,
896 struct request *last)
897{
898 struct rb_node *rbnext = rb_next(&last->rb_node);
899 struct rb_node *rbprev = rb_prev(&last->rb_node);
900 struct request *next, *prev = NULL;
901
902 /* Follow expired path, else get first next available. */
903 next = bfq_check_fifo(bfqq, last);
904 if (next)
905 return next;
906
907 if (rbprev)
908 prev = rb_entry_rq(rbprev);
909
910 if (rbnext)
911 next = rb_entry_rq(rbnext);
912 else {
913 rbnext = rb_first(&bfqq->sort_list);
914 if (rbnext && rbnext != &last->rb_node)
915 next = rb_entry_rq(rbnext);
916 }
917
918 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
919}
920
Paolo Valentec074170e2017-04-12 18:23:11 +0200921/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600922static unsigned long bfq_serv_to_charge(struct request *rq,
923 struct bfq_queue *bfqq)
924{
Paolo Valente02a6d782019-01-29 12:06:37 +0100925 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
Paolo Valentefb53ac62019-03-12 09:59:28 +0100926 bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
Paolo Valentec074170e2017-04-12 18:23:11 +0200927 return blk_rq_sectors(rq);
928
Paolo Valented5801082018-08-16 18:51:17 +0200929 return blk_rq_sectors(rq) * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600930}
931
932/**
933 * bfq_updated_next_req - update the queue after a new next_rq selection.
934 * @bfqd: the device data the queue belongs to.
935 * @bfqq: the queue to update.
936 *
937 * If the first request of a queue changes we make sure that the queue
938 * has enough budget to serve at least its first request (if the
939 * request has grown). We do this because if the queue has not enough
940 * budget for its first request, it has to go through two dispatch
941 * rounds to actually get it dispatched.
942 */
943static void bfq_updated_next_req(struct bfq_data *bfqd,
944 struct bfq_queue *bfqq)
945{
946 struct bfq_entity *entity = &bfqq->entity;
947 struct request *next_rq = bfqq->next_rq;
948 unsigned long new_budget;
949
950 if (!next_rq)
951 return;
952
953 if (bfqq == bfqd->in_service_queue)
954 /*
955 * In order not to break guarantees, budgets cannot be
956 * changed after an entity has been selected.
957 */
958 return;
959
Paolo Valentef3218ad2019-01-29 12:06:27 +0100960 new_budget = max_t(unsigned long,
961 max_t(unsigned long, bfqq->max_budget,
962 bfq_serv_to_charge(next_rq, bfqq)),
963 entity->service);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600964 if (entity->budget != new_budget) {
965 entity->budget = new_budget;
966 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
967 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +0200968 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600969 }
970}
971
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200972static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
973{
974 u64 dur;
975
976 if (bfqd->bfq_wr_max_time > 0)
977 return bfqd->bfq_wr_max_time;
978
Paolo Valentee24f1c22018-05-31 16:45:06 +0200979 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200980 do_div(dur, bfqd->peak_rate);
981
982 /*
Davide Sapienzad4505422018-05-31 16:45:07 +0200983 * Limit duration between 3 and 25 seconds. The upper limit
984 * has been conservatively set after the following worst case:
985 * on a QEMU/KVM virtual machine
986 * - running in a slow PC
987 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
988 * - serving a heavy I/O workload, such as the sequential reading
989 * of several files
990 * mplayer took 23 seconds to start, if constantly weight-raised.
991 *
992 * As for higher values than that accomodating the above bad
993 * scenario, tests show that higher values would often yield
994 * the opposite of the desired result, i.e., would worsen
995 * responsiveness by allowing non-interactive applications to
996 * preserve weight raising for too long.
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200997 *
998 * On the other end, lower values than 3 seconds make it
999 * difficult for most interactive tasks to complete their jobs
1000 * before weight-raising finishes.
1001 */
Davide Sapienzad4505422018-05-31 16:45:07 +02001002 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001003}
1004
1005/* switch back from soft real-time to interactive weight raising */
1006static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1007 struct bfq_data *bfqd)
1008{
1009 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1010 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1011 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1012}
1013
Arianna Avanzini36eca892017-04-12 18:23:16 +02001014static void
Paolo Valente13c931b2017-06-27 12:30:47 -06001015bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1016 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +02001017{
Paolo Valente13c931b2017-06-27 12:30:47 -06001018 unsigned int old_wr_coeff = bfqq->wr_coeff;
1019 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1020
Paolo Valented5be3fe2017-08-04 07:35:10 +02001021 if (bic->saved_has_short_ttime)
1022 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001023 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02001024 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001025
1026 if (bic->saved_IO_bound)
1027 bfq_mark_bfqq_IO_bound(bfqq);
1028 else
1029 bfq_clear_bfqq_IO_bound(bfqq);
1030
1031 bfqq->ttime = bic->saved_ttime;
1032 bfqq->wr_coeff = bic->saved_wr_coeff;
1033 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1034 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1035 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1036
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001037 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001038 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001039 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02001040 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1041 !bfq_bfqq_in_large_burst(bfqq) &&
1042 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1043 bfq_wr_duration(bfqd))) {
1044 switch_back_to_interactive_wr(bfqq, bfqd);
1045 } else {
1046 bfqq->wr_coeff = 1;
1047 bfq_log_bfqq(bfqq->bfqd, bfqq,
1048 "resume state: switching off wr");
1049 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001050 }
1051
1052 /* make sure weight will be updated, however we got here */
1053 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -06001054
1055 if (likely(!busy))
1056 return;
1057
1058 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1059 bfqd->wr_busy_queues++;
1060 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1061 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +02001062}
1063
1064static int bfqq_process_refs(struct bfq_queue *bfqq)
1065{
Paolo Valente9dee8b32019-01-29 12:06:34 +01001066 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st -
1067 (bfqq->weight_counter != NULL);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001068}
1069
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001070/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1071static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1072{
1073 struct bfq_queue *item;
1074 struct hlist_node *n;
1075
1076 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1077 hlist_del_init(&item->burst_list_node);
Paolo Valente84a74682019-03-12 09:59:32 +01001078
1079 /*
1080 * Start the creation of a new burst list only if there is no
1081 * active queue. See comments on the conditional invocation of
1082 * bfq_handle_burst().
1083 */
1084 if (bfq_tot_busy_queues(bfqd) == 0) {
1085 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1086 bfqd->burst_size = 1;
1087 } else
1088 bfqd->burst_size = 0;
1089
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001090 bfqd->burst_parent_entity = bfqq->entity.parent;
1091}
1092
1093/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1094static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1095{
1096 /* Increment burst size to take into account also bfqq */
1097 bfqd->burst_size++;
1098
1099 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1100 struct bfq_queue *pos, *bfqq_item;
1101 struct hlist_node *n;
1102
1103 /*
1104 * Enough queues have been activated shortly after each
1105 * other to consider this burst as large.
1106 */
1107 bfqd->large_burst = true;
1108
1109 /*
1110 * We can now mark all queues in the burst list as
1111 * belonging to a large burst.
1112 */
1113 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1114 burst_list_node)
1115 bfq_mark_bfqq_in_large_burst(bfqq_item);
1116 bfq_mark_bfqq_in_large_burst(bfqq);
1117
1118 /*
1119 * From now on, and until the current burst finishes, any
1120 * new queue being activated shortly after the last queue
1121 * was inserted in the burst can be immediately marked as
1122 * belonging to a large burst. So the burst list is not
1123 * needed any more. Remove it.
1124 */
1125 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1126 burst_list_node)
1127 hlist_del_init(&pos->burst_list_node);
1128 } else /*
1129 * Burst not yet large: add bfqq to the burst list. Do
1130 * not increment the ref counter for bfqq, because bfqq
1131 * is removed from the burst list before freeing bfqq
1132 * in put_queue.
1133 */
1134 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1135}
1136
1137/*
1138 * If many queues belonging to the same group happen to be created
1139 * shortly after each other, then the processes associated with these
1140 * queues have typically a common goal. In particular, bursts of queue
1141 * creations are usually caused by services or applications that spawn
1142 * many parallel threads/processes. Examples are systemd during boot,
1143 * or git grep. To help these processes get their job done as soon as
1144 * possible, it is usually better to not grant either weight-raising
Paolo Valente84a74682019-03-12 09:59:32 +01001145 * or device idling to their queues, unless these queues must be
1146 * protected from the I/O flowing through other active queues.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001147 *
1148 * In this comment we describe, firstly, the reasons why this fact
1149 * holds, and, secondly, the next function, which implements the main
1150 * steps needed to properly mark these queues so that they can then be
1151 * treated in a different way.
1152 *
1153 * The above services or applications benefit mostly from a high
1154 * throughput: the quicker the requests of the activated queues are
1155 * cumulatively served, the sooner the target job of these queues gets
1156 * completed. As a consequence, weight-raising any of these queues,
1157 * which also implies idling the device for it, is almost always
Paolo Valente84a74682019-03-12 09:59:32 +01001158 * counterproductive, unless there are other active queues to isolate
1159 * these new queues from. If there no other active queues, then
1160 * weight-raising these new queues just lowers throughput in most
1161 * cases.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001162 *
1163 * On the other hand, a burst of queue creations may be caused also by
1164 * the start of an application that does not consist of a lot of
1165 * parallel I/O-bound threads. In fact, with a complex application,
1166 * several short processes may need to be executed to start-up the
1167 * application. In this respect, to start an application as quickly as
1168 * possible, the best thing to do is in any case to privilege the I/O
1169 * related to the application with respect to all other
1170 * I/O. Therefore, the best strategy to start as quickly as possible
1171 * an application that causes a burst of queue creations is to
1172 * weight-raise all the queues created during the burst. This is the
1173 * exact opposite of the best strategy for the other type of bursts.
1174 *
1175 * In the end, to take the best action for each of the two cases, the
1176 * two types of bursts need to be distinguished. Fortunately, this
1177 * seems relatively easy, by looking at the sizes of the bursts. In
1178 * particular, we found a threshold such that only bursts with a
1179 * larger size than that threshold are apparently caused by
1180 * services or commands such as systemd or git grep. For brevity,
1181 * hereafter we call just 'large' these bursts. BFQ *does not*
1182 * weight-raise queues whose creation occurs in a large burst. In
1183 * addition, for each of these queues BFQ performs or does not perform
1184 * idling depending on which choice boosts the throughput more. The
1185 * exact choice depends on the device and request pattern at
1186 * hand.
1187 *
1188 * Unfortunately, false positives may occur while an interactive task
1189 * is starting (e.g., an application is being started). The
1190 * consequence is that the queues associated with the task do not
1191 * enjoy weight raising as expected. Fortunately these false positives
1192 * are very rare. They typically occur if some service happens to
1193 * start doing I/O exactly when the interactive task starts.
1194 *
Paolo Valente84a74682019-03-12 09:59:32 +01001195 * Turning back to the next function, it is invoked only if there are
1196 * no active queues (apart from active queues that would belong to the
1197 * same, possible burst bfqq would belong to), and it implements all
1198 * the steps needed to detect the occurrence of a large burst and to
1199 * properly mark all the queues belonging to it (so that they can then
1200 * be treated in a different way). This goal is achieved by
1201 * maintaining a "burst list" that holds, temporarily, the queues that
1202 * belong to the burst in progress. The list is then used to mark
1203 * these queues as belonging to a large burst if the burst does become
1204 * large. The main steps are the following.
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001205 *
1206 * . when the very first queue is created, the queue is inserted into the
1207 * list (as it could be the first queue in a possible burst)
1208 *
1209 * . if the current burst has not yet become large, and a queue Q that does
1210 * not yet belong to the burst is activated shortly after the last time
1211 * at which a new queue entered the burst list, then the function appends
1212 * Q to the burst list
1213 *
1214 * . if, as a consequence of the previous step, the burst size reaches
1215 * the large-burst threshold, then
1216 *
1217 * . all the queues in the burst list are marked as belonging to a
1218 * large burst
1219 *
1220 * . the burst list is deleted; in fact, the burst list already served
1221 * its purpose (keeping temporarily track of the queues in a burst,
1222 * so as to be able to mark them as belonging to a large burst in the
1223 * previous sub-step), and now is not needed any more
1224 *
1225 * . the device enters a large-burst mode
1226 *
1227 * . if a queue Q that does not belong to the burst is created while
1228 * the device is in large-burst mode and shortly after the last time
1229 * at which a queue either entered the burst list or was marked as
1230 * belonging to the current large burst, then Q is immediately marked
1231 * as belonging to a large burst.
1232 *
1233 * . if a queue Q that does not belong to the burst is created a while
1234 * later, i.e., not shortly after, than the last time at which a queue
1235 * either entered the burst list or was marked as belonging to the
1236 * current large burst, then the current burst is deemed as finished and:
1237 *
1238 * . the large-burst mode is reset if set
1239 *
1240 * . the burst list is emptied
1241 *
1242 * . Q is inserted in the burst list, as Q may be the first queue
1243 * in a possible new burst (then the burst list contains just Q
1244 * after this step).
1245 */
1246static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1247{
1248 /*
1249 * If bfqq is already in the burst list or is part of a large
1250 * burst, or finally has just been split, then there is
1251 * nothing else to do.
1252 */
1253 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1254 bfq_bfqq_in_large_burst(bfqq) ||
1255 time_is_after_eq_jiffies(bfqq->split_time +
1256 msecs_to_jiffies(10)))
1257 return;
1258
1259 /*
1260 * If bfqq's creation happens late enough, or bfqq belongs to
1261 * a different group than the burst group, then the current
1262 * burst is finished, and related data structures must be
1263 * reset.
1264 *
1265 * In this respect, consider the special case where bfqq is
1266 * the very first queue created after BFQ is selected for this
1267 * device. In this case, last_ins_in_burst and
1268 * burst_parent_entity are not yet significant when we get
1269 * here. But it is easy to verify that, whether or not the
1270 * following condition is true, bfqq will end up being
1271 * inserted into the burst list. In particular the list will
1272 * happen to contain only bfqq. And this is exactly what has
1273 * to happen, as bfqq may be the first queue of the first
1274 * burst.
1275 */
1276 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1277 bfqd->bfq_burst_interval) ||
1278 bfqq->entity.parent != bfqd->burst_parent_entity) {
1279 bfqd->large_burst = false;
1280 bfq_reset_burst_list(bfqd, bfqq);
1281 goto end;
1282 }
1283
1284 /*
1285 * If we get here, then bfqq is being activated shortly after the
1286 * last queue. So, if the current burst is also large, we can mark
1287 * bfqq as belonging to this large burst immediately.
1288 */
1289 if (bfqd->large_burst) {
1290 bfq_mark_bfqq_in_large_burst(bfqq);
1291 goto end;
1292 }
1293
1294 /*
1295 * If we get here, then a large-burst state has not yet been
1296 * reached, but bfqq is being activated shortly after the last
1297 * queue. Then we add bfqq to the burst.
1298 */
1299 bfq_add_to_burst(bfqd, bfqq);
1300end:
1301 /*
1302 * At this point, bfqq either has been added to the current
1303 * burst or has caused the current burst to terminate and a
1304 * possible new burst to start. In particular, in the second
1305 * case, bfqq has become the first queue in the possible new
1306 * burst. In both cases last_ins_in_burst needs to be moved
1307 * forward.
1308 */
1309 bfqd->last_ins_in_burst = jiffies;
1310}
1311
Paolo Valenteaee69d72017-04-19 08:29:02 -06001312static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1313{
1314 struct bfq_entity *entity = &bfqq->entity;
1315
1316 return entity->budget - entity->service;
1317}
1318
1319/*
1320 * If enough samples have been computed, return the current max budget
1321 * stored in bfqd, which is dynamically updated according to the
1322 * estimated disk peak rate; otherwise return the default max budget
1323 */
1324static int bfq_max_budget(struct bfq_data *bfqd)
1325{
1326 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1327 return bfq_default_max_budget;
1328 else
1329 return bfqd->bfq_max_budget;
1330}
1331
1332/*
1333 * Return min budget, which is a fraction of the current or default
1334 * max budget (trying with 1/32)
1335 */
1336static int bfq_min_budget(struct bfq_data *bfqd)
1337{
1338 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1339 return bfq_default_max_budget / 32;
1340 else
1341 return bfqd->bfq_max_budget / 32;
1342}
1343
Paolo Valenteaee69d72017-04-19 08:29:02 -06001344/*
1345 * The next function, invoked after the input queue bfqq switches from
1346 * idle to busy, updates the budget of bfqq. The function also tells
1347 * whether the in-service queue should be expired, by returning
1348 * true. The purpose of expiring the in-service queue is to give bfqq
1349 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001350 * for preempting the in-service queue is to achieve one of the two
1351 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001352 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001353 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1354 * expired because it has remained idle. In particular, bfqq may have
1355 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001356 *
1357 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1358 * and did not make it to issue a new request before its last
1359 * request was served;
1360 *
1361 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1362 * a new request before the expiration of the idling-time.
1363 *
1364 * Even if bfqq has expired for one of the above reasons, the process
1365 * associated with the queue may be however issuing requests greedily,
1366 * and thus be sensitive to the bandwidth it receives (bfqq may have
1367 * remained idle for other reasons: CPU high load, bfqq not enjoying
1368 * idling, I/O throttling somewhere in the path from the process to
1369 * the I/O scheduler, ...). But if, after every expiration for one of
1370 * the above two reasons, bfqq has to wait for the service of at least
1371 * one full budget of another queue before being served again, then
1372 * bfqq is likely to get a much lower bandwidth or resource time than
1373 * its reserved ones. To address this issue, two countermeasures need
1374 * to be taken.
1375 *
1376 * First, the budget and the timestamps of bfqq need to be updated in
1377 * a special way on bfqq reactivation: they need to be updated as if
1378 * bfqq did not remain idle and did not expire. In fact, if they are
1379 * computed as if bfqq expired and remained idle until reactivation,
1380 * then the process associated with bfqq is treated as if, instead of
1381 * being greedy, it stopped issuing requests when bfqq remained idle,
1382 * and restarts issuing requests only on this reactivation. In other
1383 * words, the scheduler does not help the process recover the "service
1384 * hole" between bfqq expiration and reactivation. As a consequence,
1385 * the process receives a lower bandwidth than its reserved one. In
1386 * contrast, to recover this hole, the budget must be updated as if
1387 * bfqq was not expired at all before this reactivation, i.e., it must
1388 * be set to the value of the remaining budget when bfqq was
1389 * expired. Along the same line, timestamps need to be assigned the
1390 * value they had the last time bfqq was selected for service, i.e.,
1391 * before last expiration. Thus timestamps need to be back-shifted
1392 * with respect to their normal computation (see [1] for more details
1393 * on this tricky aspect).
1394 *
1395 * Secondly, to allow the process to recover the hole, the in-service
1396 * queue must be expired too, to give bfqq the chance to preempt it
1397 * immediately. In fact, if bfqq has to wait for a full budget of the
1398 * in-service queue to be completed, then it may become impossible to
1399 * let the process recover the hole, even if the back-shifted
1400 * timestamps of bfqq are lower than those of the in-service queue. If
1401 * this happens for most or all of the holes, then the process may not
1402 * receive its reserved bandwidth. In this respect, it is worth noting
1403 * that, being the service of outstanding requests unpreemptible, a
1404 * little fraction of the holes may however be unrecoverable, thereby
1405 * causing a little loss of bandwidth.
1406 *
1407 * The last important point is detecting whether bfqq does need this
1408 * bandwidth recovery. In this respect, the next function deems the
1409 * process associated with bfqq greedy, and thus allows it to recover
1410 * the hole, if: 1) the process is waiting for the arrival of a new
1411 * request (which implies that bfqq expired for one of the above two
1412 * reasons), and 2) such a request has arrived soon. The first
1413 * condition is controlled through the flag non_blocking_wait_rq,
1414 * while the second through the flag arrived_in_time. If both
1415 * conditions hold, then the function computes the budget in the
1416 * above-described special way, and signals that the in-service queue
1417 * should be expired. Timestamp back-shifting is done later in
1418 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001419 *
1420 * 2. Reduce latency. Even if timestamps are not backshifted to let
1421 * the process associated with bfqq recover a service hole, bfqq may
1422 * however happen to have, after being (re)activated, a lower finish
1423 * timestamp than the in-service queue. That is, the next budget of
1424 * bfqq may have to be completed before the one of the in-service
1425 * queue. If this is the case, then preempting the in-service queue
1426 * allows this goal to be achieved, apart from the unpreemptible,
1427 * outstanding requests mentioned above.
1428 *
1429 * Unfortunately, regardless of which of the above two goals one wants
1430 * to achieve, service trees need first to be updated to know whether
1431 * the in-service queue must be preempted. To have service trees
1432 * correctly updated, the in-service queue must be expired and
1433 * rescheduled, and bfqq must be scheduled too. This is one of the
1434 * most costly operations (in future versions, the scheduling
1435 * mechanism may be re-designed in such a way to make it possible to
1436 * know whether preemption is needed without needing to update service
1437 * trees). In addition, queue preemptions almost always cause random
1438 * I/O, and thus loss of throughput. Because of these facts, the next
1439 * function adopts the following simple scheme to avoid both costly
1440 * operations and too frequent preemptions: it requests the expiration
1441 * of the in-service queue (unconditionally) only for queues that need
1442 * to recover a hole, or that either are weight-raised or deserve to
1443 * be weight-raised.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001444 */
1445static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1446 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001447 bool arrived_in_time,
1448 bool wr_or_deserves_wr)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001449{
1450 struct bfq_entity *entity = &bfqq->entity;
1451
Paolo Valente218cb892019-01-29 12:06:26 +01001452 /*
1453 * In the next compound condition, we check also whether there
1454 * is some budget left, because otherwise there is no point in
1455 * trying to go on serving bfqq with this same budget: bfqq
1456 * would be expired immediately after being selected for
1457 * service. This would only cause useless overhead.
1458 */
1459 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1460 bfq_bfqq_budget_left(bfqq) > 0) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001461 /*
1462 * We do not clear the flag non_blocking_wait_rq here, as
1463 * the latter is used in bfq_activate_bfqq to signal
1464 * that timestamps need to be back-shifted (and is
1465 * cleared right after).
1466 */
1467
1468 /*
1469 * In next assignment we rely on that either
1470 * entity->service or entity->budget are not updated
1471 * on expiration if bfqq is empty (see
1472 * __bfq_bfqq_recalc_budget). Thus both quantities
1473 * remain unchanged after such an expiration, and the
1474 * following statement therefore assigns to
1475 * entity->budget the remaining budget on such an
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001476 * expiration.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001477 */
1478 entity->budget = min_t(unsigned long,
1479 bfq_bfqq_budget_left(bfqq),
1480 bfqq->max_budget);
1481
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001482 /*
1483 * At this point, we have used entity->service to get
1484 * the budget left (needed for updating
1485 * entity->budget). Thus we finally can, and have to,
1486 * reset entity->service. The latter must be reset
1487 * because bfqq would otherwise be charged again for
1488 * the service it has received during its previous
1489 * service slot(s).
1490 */
1491 entity->service = 0;
1492
Paolo Valenteaee69d72017-04-19 08:29:02 -06001493 return true;
1494 }
1495
Paolo Valente9fae8dd2018-06-25 21:55:36 +02001496 /*
1497 * We can finally complete expiration, by setting service to 0.
1498 */
1499 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001500 entity->budget = max_t(unsigned long, bfqq->max_budget,
1501 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1502 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02001503 return wr_or_deserves_wr;
1504}
1505
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001506/*
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001507 * Return the farthest past time instant according to jiffies
1508 * macros.
1509 */
1510static unsigned long bfq_smallest_from_now(void)
1511{
1512 return jiffies - MAX_JIFFY_OFFSET;
1513}
1514
Paolo Valente44e44a12017-04-12 18:23:12 +02001515static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1516 struct bfq_queue *bfqq,
1517 unsigned int old_wr_coeff,
1518 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001519 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001520 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001521 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001522{
1523 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1524 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001525 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001526 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001527 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1528 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1529 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001530 /*
1531 * No interactive weight raising in progress
1532 * here: assign minus infinity to
1533 * wr_start_at_switch_to_srt, to make sure
1534 * that, at the end of the soft-real-time
1535 * weight raising periods that is starting
1536 * now, no interactive weight-raising period
1537 * may be wrongly considered as still in
1538 * progress (and thus actually started by
1539 * mistake).
1540 */
1541 bfqq->wr_start_at_switch_to_srt =
1542 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001543 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1544 BFQ_SOFTRT_WEIGHT_FACTOR;
1545 bfqq->wr_cur_max_time =
1546 bfqd->bfq_wr_rt_max_time;
1547 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001548
1549 /*
1550 * If needed, further reduce budget to make sure it is
1551 * close to bfqq's backlog, so as to reduce the
1552 * scheduling-error component due to a too large
1553 * budget. Do not care about throughput consequences,
1554 * but only about latency. Finally, do not assign a
1555 * too small budget either, to avoid increasing
1556 * latency by causing too frequent expirations.
1557 */
1558 bfqq->entity.budget = min_t(unsigned long,
1559 bfqq->entity.budget,
1560 2 * bfq_min_budget(bfqd));
1561 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001562 if (interactive) { /* update wr coeff and duration */
1563 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1564 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001565 } else if (in_burst)
1566 bfqq->wr_coeff = 1;
1567 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001568 /*
1569 * The application is now or still meeting the
1570 * requirements for being deemed soft rt. We
1571 * can then correctly and safely (re)charge
1572 * the weight-raising duration for the
1573 * application with the weight-raising
1574 * duration for soft rt applications.
1575 *
1576 * In particular, doing this recharge now, i.e.,
1577 * before the weight-raising period for the
1578 * application finishes, reduces the probability
1579 * of the following negative scenario:
1580 * 1) the weight of a soft rt application is
1581 * raised at startup (as for any newly
1582 * created application),
1583 * 2) since the application is not interactive,
1584 * at a certain time weight-raising is
1585 * stopped for the application,
1586 * 3) at that time the application happens to
1587 * still have pending requests, and hence
1588 * is destined to not have a chance to be
1589 * deemed soft rt before these requests are
1590 * completed (see the comments to the
1591 * function bfq_bfqq_softrt_next_start()
1592 * for details on soft rt detection),
1593 * 4) these pending requests experience a high
1594 * latency because the application is not
1595 * weight-raised while they are pending.
1596 */
1597 if (bfqq->wr_cur_max_time !=
1598 bfqd->bfq_wr_rt_max_time) {
1599 bfqq->wr_start_at_switch_to_srt =
1600 bfqq->last_wr_start_finish;
1601
1602 bfqq->wr_cur_max_time =
1603 bfqd->bfq_wr_rt_max_time;
1604 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1605 BFQ_SOFTRT_WEIGHT_FACTOR;
1606 }
1607 bfqq->last_wr_start_finish = jiffies;
1608 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001609 }
1610}
1611
1612static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1613 struct bfq_queue *bfqq)
1614{
1615 return bfqq->dispatched == 0 &&
1616 time_is_before_jiffies(
1617 bfqq->budget_timeout +
1618 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001619}
1620
1621static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1622 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001623 int old_wr_coeff,
1624 struct request *rq,
1625 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001626{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001627 bool soft_rt, in_burst, wr_or_deserves_wr,
1628 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001629 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001630 /*
1631 * See the comments on
1632 * bfq_bfqq_update_budg_for_activation for
1633 * details on the usage of the next variable.
1634 */
1635 arrived_in_time = ktime_get_ns() <=
1636 bfqq->ttime.last_end_request +
1637 bfqd->bfq_slice_idle * 3;
1638
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001639
Paolo Valenteaee69d72017-04-19 08:29:02 -06001640 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001641 * bfqq deserves to be weight-raised if:
1642 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001643 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001644 * - it has been idle for enough time or is soft real-time,
1645 * - is linked to a bfq_io_cq (it is not shared in any sense).
Paolo Valente44e44a12017-04-12 18:23:12 +02001646 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001647 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001648 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Paolo Valente7074f072019-03-12 09:59:31 +01001649 !BFQQ_TOTALLY_SEEKY(bfqq) &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001650 !in_burst &&
Davide Sapienzaf6c3ca02018-05-31 16:45:08 +02001651 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1652 bfqq->dispatched == 0;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001653 *interactive = !in_burst && idle_for_long_time;
Paolo Valente44e44a12017-04-12 18:23:12 +02001654 wr_or_deserves_wr = bfqd->low_latency &&
1655 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001656 (bfq_bfqq_sync(bfqq) &&
1657 bfqq->bic && (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001658
1659 /*
1660 * Using the last flag, update budget and check whether bfqq
1661 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001662 */
1663 bfqq_wants_to_preempt =
1664 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001665 arrived_in_time,
1666 wr_or_deserves_wr);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001667
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001668 /*
1669 * If bfqq happened to be activated in a burst, but has been
1670 * idle for much more than an interactive queue, then we
1671 * assume that, in the overall I/O initiated in the burst, the
1672 * I/O associated with bfqq is finished. So bfqq does not need
1673 * to be treated as a queue belonging to a burst
1674 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1675 * if set, and remove bfqq from the burst list if it's
1676 * there. We do not decrement burst_size, because the fact
1677 * that bfqq does not need to belong to the burst list any
1678 * more does not invalidate the fact that bfqq was created in
1679 * a burst.
1680 */
1681 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1682 idle_for_long_time &&
1683 time_is_before_jiffies(
1684 bfqq->budget_timeout +
1685 msecs_to_jiffies(10000))) {
1686 hlist_del_init(&bfqq->burst_list_node);
1687 bfq_clear_bfqq_in_large_burst(bfqq);
1688 }
1689
1690 bfq_clear_bfqq_just_created(bfqq);
1691
1692
Paolo Valenteaee69d72017-04-19 08:29:02 -06001693 if (!bfq_bfqq_IO_bound(bfqq)) {
1694 if (arrived_in_time) {
1695 bfqq->requests_within_timer++;
1696 if (bfqq->requests_within_timer >=
1697 bfqd->bfq_requests_within_timer)
1698 bfq_mark_bfqq_IO_bound(bfqq);
1699 } else
1700 bfqq->requests_within_timer = 0;
1701 }
1702
Paolo Valente44e44a12017-04-12 18:23:12 +02001703 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001704 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1705 /* wraparound */
1706 bfqq->split_time =
1707 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001708
Arianna Avanzini36eca892017-04-12 18:23:16 +02001709 if (time_is_before_jiffies(bfqq->split_time +
1710 bfqd->bfq_wr_min_idle_time)) {
1711 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1712 old_wr_coeff,
1713 wr_or_deserves_wr,
1714 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001715 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001716 soft_rt);
1717
1718 if (old_wr_coeff != bfqq->wr_coeff)
1719 bfqq->entity.prio_changed = 1;
1720 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001721 }
1722
Paolo Valente77b7dce2017-04-12 18:23:13 +02001723 bfqq->last_idle_bklogged = jiffies;
1724 bfqq->service_from_backlogged = 0;
1725 bfq_clear_bfqq_softrt_update(bfqq);
1726
Paolo Valenteaee69d72017-04-19 08:29:02 -06001727 bfq_add_bfqq_busy(bfqd, bfqq);
1728
1729 /*
1730 * Expire in-service queue only if preemption may be needed
1731 * for guarantees. In this respect, the function
1732 * next_queue_may_preempt just checks a simple, necessary
1733 * condition, and not a sufficient condition based on
1734 * timestamps. In fact, for the latter condition to be
1735 * evaluated, timestamps would need first to be updated, and
1736 * this operation is quite costly (see the comments on the
1737 * function bfq_bfqq_update_budg_for_activation).
1738 */
1739 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
Paolo Valente77b7dce2017-04-12 18:23:13 +02001740 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001741 next_queue_may_preempt(bfqd))
1742 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1743 false, BFQQE_PREEMPTED);
1744}
1745
1746static void bfq_add_request(struct request *rq)
1747{
1748 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1749 struct bfq_data *bfqd = bfqq->bfqd;
1750 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02001751 unsigned int old_wr_coeff = bfqq->wr_coeff;
1752 bool interactive = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001753
1754 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1755 bfqq->queued[rq_is_sync(rq)]++;
1756 bfqd->queued++;
1757
Paolo Valente2341d6622019-03-12 09:59:29 +01001758 if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1759 /*
1760 * Periodically reset inject limit, to make sure that
1761 * the latter eventually drops in case workload
1762 * changes, see step (3) in the comments on
1763 * bfq_update_inject_limit().
1764 */
1765 if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1766 msecs_to_jiffies(1000))) {
1767 /* invalidate baseline total service time */
1768 bfqq->last_serv_time_ns = 0;
1769
1770 /*
1771 * Reset pointer in case we are waiting for
1772 * some request completion.
1773 */
1774 bfqd->waited_rq = NULL;
1775
1776 /*
1777 * If bfqq has a short think time, then start
1778 * by setting the inject limit to 0
1779 * prudentially, because the service time of
1780 * an injected I/O request may be higher than
1781 * the think time of bfqq, and therefore, if
1782 * one request was injected when bfqq remains
1783 * empty, this injected request might delay
1784 * the service of the next I/O request for
1785 * bfqq significantly. In case bfqq can
1786 * actually tolerate some injection, then the
1787 * adaptive update will however raise the
1788 * limit soon. This lucky circumstance holds
1789 * exactly because bfqq has a short think
1790 * time, and thus, after remaining empty, is
1791 * likely to get new I/O enqueued---and then
1792 * completed---before being expired. This is
1793 * the very pattern that gives the
1794 * limit-update algorithm the chance to
1795 * measure the effect of injection on request
1796 * service times, and then to update the limit
1797 * accordingly.
1798 *
1799 * On the opposite end, if bfqq has a long
1800 * think time, then start directly by 1,
1801 * because:
1802 * a) on the bright side, keeping at most one
1803 * request in service in the drive is unlikely
1804 * to cause any harm to the latency of bfqq's
1805 * requests, as the service time of a single
1806 * request is likely to be lower than the
1807 * think time of bfqq;
1808 * b) on the downside, after becoming empty,
1809 * bfqq is likely to expire before getting its
1810 * next request. With this request arrival
1811 * pattern, it is very hard to sample total
1812 * service times and update the inject limit
1813 * accordingly (see comments on
1814 * bfq_update_inject_limit()). So the limit is
1815 * likely to be never, or at least seldom,
1816 * updated. As a consequence, by setting the
1817 * limit to 1, we avoid that no injection ever
1818 * occurs with bfqq. On the downside, this
1819 * proactive step further reduces chances to
1820 * actually compute the baseline total service
1821 * time. Thus it reduces chances to execute the
1822 * limit-update algorithm and possibly raise the
1823 * limit to more than 1.
1824 */
1825 if (bfq_bfqq_has_short_ttime(bfqq))
1826 bfqq->inject_limit = 0;
1827 else
1828 bfqq->inject_limit = 1;
1829 bfqq->decrease_time_jif = jiffies;
1830 }
1831
1832 /*
1833 * The following conditions must hold to setup a new
1834 * sampling of total service time, and then a new
1835 * update of the inject limit:
1836 * - bfqq is in service, because the total service
1837 * time is evaluated only for the I/O requests of
1838 * the queues in service;
1839 * - this is the right occasion to compute or to
1840 * lower the baseline total service time, because
1841 * there are actually no requests in the drive,
1842 * or
1843 * the baseline total service time is available, and
1844 * this is the right occasion to compute the other
1845 * quantity needed to update the inject limit, i.e.,
1846 * the total service time caused by the amount of
1847 * injection allowed by the current value of the
1848 * limit. It is the right occasion because injection
1849 * has actually been performed during the service
1850 * hole, and there are still in-flight requests,
1851 * which are very likely to be exactly the injected
1852 * requests, or part of them;
1853 * - the minimum interval for sampling the total
1854 * service time and updating the inject limit has
1855 * elapsed.
1856 */
1857 if (bfqq == bfqd->in_service_queue &&
1858 (bfqd->rq_in_driver == 0 ||
1859 (bfqq->last_serv_time_ns > 0 &&
1860 bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
1861 time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1862 msecs_to_jiffies(100))) {
1863 bfqd->last_empty_occupied_ns = ktime_get_ns();
1864 /*
1865 * Start the state machine for measuring the
1866 * total service time of rq: setting
1867 * wait_dispatch will cause bfqd->waited_rq to
1868 * be set when rq will be dispatched.
1869 */
1870 bfqd->wait_dispatch = true;
1871 bfqd->rqs_injected = false;
1872 }
1873 }
1874
Paolo Valenteaee69d72017-04-19 08:29:02 -06001875 elv_rb_add(&bfqq->sort_list, rq);
1876
1877 /*
1878 * Check if this request is a better next-serve candidate.
1879 */
1880 prev = bfqq->next_rq;
1881 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1882 bfqq->next_rq = next_rq;
1883
Arianna Avanzini36eca892017-04-12 18:23:16 +02001884 /*
1885 * Adjust priority tree position, if next_rq changes.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01001886 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02001887 */
Paolo Valente8cacc5a2019-03-12 09:59:30 +01001888 if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02001889 bfq_pos_tree_add_move(bfqd, bfqq);
1890
Paolo Valenteaee69d72017-04-19 08:29:02 -06001891 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02001892 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1893 rq, &interactive);
1894 else {
1895 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1896 time_is_before_jiffies(
1897 bfqq->last_wr_start_finish +
1898 bfqd->bfq_wr_min_inter_arr_async)) {
1899 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1900 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1901
Paolo Valentecfd69712017-04-12 18:23:15 +02001902 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02001903 bfqq->entity.prio_changed = 1;
1904 }
1905 if (prev != bfqq->next_rq)
1906 bfq_updated_next_req(bfqd, bfqq);
1907 }
1908
1909 /*
1910 * Assign jiffies to last_wr_start_finish in the following
1911 * cases:
1912 *
1913 * . if bfqq is not going to be weight-raised, because, for
1914 * non weight-raised queues, last_wr_start_finish stores the
1915 * arrival time of the last request; as of now, this piece
1916 * of information is used only for deciding whether to
1917 * weight-raise async queues
1918 *
1919 * . if bfqq is not weight-raised, because, if bfqq is now
1920 * switching to weight-raised, then last_wr_start_finish
1921 * stores the time when weight-raising starts
1922 *
1923 * . if bfqq is interactive, because, regardless of whether
1924 * bfqq is currently weight-raised, the weight-raising
1925 * period must start or restart (this case is considered
1926 * separately because it is not detected by the above
1927 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02001928 *
1929 * last_wr_start_finish has to be updated also if bfqq is soft
1930 * real-time, because the weight-raising period is constantly
1931 * restarted on idle-to-busy transitions for these queues, but
1932 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1933 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02001934 */
1935 if (bfqd->low_latency &&
1936 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1937 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001938}
1939
1940static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1941 struct bio *bio,
1942 struct request_queue *q)
1943{
1944 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1945
1946
1947 if (bfqq)
1948 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1949
1950 return NULL;
1951}
1952
Paolo Valenteab0e43e2017-04-12 18:23:10 +02001953static sector_t get_sdist(sector_t last_pos, struct request *rq)
1954{
1955 if (last_pos)
1956 return abs(blk_rq_pos(rq) - last_pos);
1957
1958 return 0;
1959}
1960
Paolo Valenteaee69d72017-04-19 08:29:02 -06001961#if 0 /* Still not clear if we can do without next two functions */
1962static void bfq_activate_request(struct request_queue *q, struct request *rq)
1963{
1964 struct bfq_data *bfqd = q->elevator->elevator_data;
1965
1966 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001967}
1968
1969static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1970{
1971 struct bfq_data *bfqd = q->elevator->elevator_data;
1972
1973 bfqd->rq_in_driver--;
1974}
1975#endif
1976
1977static void bfq_remove_request(struct request_queue *q,
1978 struct request *rq)
1979{
1980 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1981 struct bfq_data *bfqd = bfqq->bfqd;
1982 const int sync = rq_is_sync(rq);
1983
1984 if (bfqq->next_rq == rq) {
1985 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1986 bfq_updated_next_req(bfqd, bfqq);
1987 }
1988
1989 if (rq->queuelist.prev != &rq->queuelist)
1990 list_del_init(&rq->queuelist);
1991 bfqq->queued[sync]--;
1992 bfqd->queued--;
1993 elv_rb_del(&bfqq->sort_list, rq);
1994
1995 elv_rqhash_del(q, rq);
1996 if (q->last_merge == rq)
1997 q->last_merge = NULL;
1998
1999 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2000 bfqq->next_rq = NULL;
2001
2002 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002003 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002004 /*
2005 * bfqq emptied. In normal operation, when
2006 * bfqq is empty, bfqq->entity.service and
2007 * bfqq->entity.budget must contain,
2008 * respectively, the service received and the
2009 * budget used last time bfqq emptied. These
2010 * facts do not hold in this case, as at least
2011 * this last removal occurred while bfqq is
2012 * not in service. To avoid inconsistencies,
2013 * reset both bfqq->entity.service and
2014 * bfqq->entity.budget, if bfqq has still a
2015 * process that may issue I/O requests to it.
2016 */
2017 bfqq->entity.budget = bfqq->entity.service = 0;
2018 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002019
2020 /*
2021 * Remove queue from request-position tree as it is empty.
2022 */
2023 if (bfqq->pos_root) {
2024 rb_erase(&bfqq->pos_node, bfqq->pos_root);
2025 bfqq->pos_root = NULL;
2026 }
Paolo Valente05e90282017-12-20 12:38:31 +01002027 } else {
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002028 /* see comments on bfq_pos_tree_add_move() for the unlikely() */
2029 if (unlikely(!bfqd->nonrot_with_queueing))
2030 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002031 }
2032
2033 if (rq->cmd_flags & REQ_META)
2034 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002035
Paolo Valenteaee69d72017-04-19 08:29:02 -06002036}
2037
2038static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
2039{
2040 struct request_queue *q = hctx->queue;
2041 struct bfq_data *bfqd = q->elevator->elevator_data;
2042 struct request *free = NULL;
2043 /*
2044 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2045 * store its return value for later use, to avoid nesting
2046 * queue_lock inside the bfqd->lock. We assume that the bic
2047 * returned by bfq_bic_lookup does not go away before
2048 * bfqd->lock is taken.
2049 */
2050 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2051 bool ret;
2052
2053 spin_lock_irq(&bfqd->lock);
2054
2055 if (bic)
2056 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2057 else
2058 bfqd->bio_bfqq = NULL;
2059 bfqd->bio_bic = bic;
2060
2061 ret = blk_mq_sched_try_merge(q, bio, &free);
2062
2063 if (free)
2064 blk_mq_free_request(free);
2065 spin_unlock_irq(&bfqd->lock);
2066
2067 return ret;
2068}
2069
2070static int bfq_request_merge(struct request_queue *q, struct request **req,
2071 struct bio *bio)
2072{
2073 struct bfq_data *bfqd = q->elevator->elevator_data;
2074 struct request *__rq;
2075
2076 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
2077 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2078 *req = __rq;
2079 return ELEVATOR_FRONT_MERGE;
2080 }
2081
2082 return ELEVATOR_NO_MERGE;
2083}
2084
Paolo Valente18e5a572018-05-04 19:17:01 +02002085static struct bfq_queue *bfq_init_rq(struct request *rq);
2086
Paolo Valenteaee69d72017-04-19 08:29:02 -06002087static void bfq_request_merged(struct request_queue *q, struct request *req,
2088 enum elv_merge type)
2089{
2090 if (type == ELEVATOR_FRONT_MERGE &&
2091 rb_prev(&req->rb_node) &&
2092 blk_rq_pos(req) <
2093 blk_rq_pos(container_of(rb_prev(&req->rb_node),
2094 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02002095 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002096 struct bfq_data *bfqd = bfqq->bfqd;
2097 struct request *prev, *next_rq;
2098
2099 /* Reposition request in its sort_list */
2100 elv_rb_del(&bfqq->sort_list, req);
2101 elv_rb_add(&bfqq->sort_list, req);
2102
2103 /* Choose next request to be served for bfqq */
2104 prev = bfqq->next_rq;
2105 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2106 bfqd->last_position);
2107 bfqq->next_rq = next_rq;
2108 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002109 * If next_rq changes, update both the queue's budget to
2110 * fit the new request and the queue's position in its
2111 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06002112 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002113 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002114 bfq_updated_next_req(bfqd, bfqq);
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002115 /*
2116 * See comments on bfq_pos_tree_add_move() for
2117 * the unlikely().
2118 */
2119 if (unlikely(!bfqd->nonrot_with_queueing))
2120 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002121 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002122 }
2123}
2124
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002125/*
2126 * This function is called to notify the scheduler that the requests
2127 * rq and 'next' have been merged, with 'next' going away. BFQ
2128 * exploits this hook to address the following issue: if 'next' has a
2129 * fifo_time lower that rq, then the fifo_time of rq must be set to
2130 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06002131 *
2132 * NOTE: in this function we assume that rq is in a bfq_queue, basing
2133 * on that rq is picked from the hash table q->elevator->hash, which,
2134 * in its turn, is filled only with I/O requests present in
2135 * bfq_queues, while BFQ is in use for the request queue q. In fact,
2136 * the function that fills this hash table (elv_rqhash_add) is called
2137 * only by bfq_insert_request.
2138 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06002139static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2140 struct request *next)
2141{
Paolo Valente18e5a572018-05-04 19:17:01 +02002142 struct bfq_queue *bfqq = bfq_init_rq(rq),
2143 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002144
Paolo Valenteaee69d72017-04-19 08:29:02 -06002145 /*
2146 * If next and rq belong to the same bfq_queue and next is older
2147 * than rq, then reposition rq in the fifo (by substituting next
2148 * with rq). Otherwise, if next and rq belong to different
2149 * bfq_queues, never reposition rq: in fact, we would have to
2150 * reposition it with respect to next's position in its own fifo,
2151 * which would most certainly be too expensive with respect to
2152 * the benefits.
2153 */
2154 if (bfqq == next_bfqq &&
2155 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2156 next->fifo_time < rq->fifo_time) {
2157 list_del_init(&rq->queuelist);
2158 list_replace_init(&next->queuelist, &rq->queuelist);
2159 rq->fifo_time = next->fifo_time;
2160 }
2161
2162 if (bfqq->next_rq == next)
2163 bfqq->next_rq = rq;
2164
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002165 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002166}
2167
Paolo Valente44e44a12017-04-12 18:23:12 +02002168/* Must be called with bfqq != NULL */
2169static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2170{
Paolo Valentecfd69712017-04-12 18:23:15 +02002171 if (bfq_bfqq_busy(bfqq))
2172 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02002173 bfqq->wr_coeff = 1;
2174 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02002175 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02002176 /*
2177 * Trigger a weight change on the next invocation of
2178 * __bfq_entity_update_weight_prio.
2179 */
2180 bfqq->entity.prio_changed = 1;
2181}
2182
Paolo Valenteea25da42017-04-19 08:48:24 -06002183void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2184 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02002185{
2186 int i, j;
2187
2188 for (i = 0; i < 2; i++)
2189 for (j = 0; j < IOPRIO_BE_NR; j++)
2190 if (bfqg->async_bfqq[i][j])
2191 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2192 if (bfqg->async_idle_bfqq)
2193 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2194}
2195
2196static void bfq_end_wr(struct bfq_data *bfqd)
2197{
2198 struct bfq_queue *bfqq;
2199
2200 spin_lock_irq(&bfqd->lock);
2201
2202 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2203 bfq_bfqq_end_wr(bfqq);
2204 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2205 bfq_bfqq_end_wr(bfqq);
2206 bfq_end_wr_async(bfqd);
2207
2208 spin_unlock_irq(&bfqd->lock);
2209}
2210
Arianna Avanzini36eca892017-04-12 18:23:16 +02002211static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2212{
2213 if (request)
2214 return blk_rq_pos(io_struct);
2215 else
2216 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2217}
2218
2219static int bfq_rq_close_to_sector(void *io_struct, bool request,
2220 sector_t sector)
2221{
2222 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2223 BFQQ_CLOSE_THR;
2224}
2225
2226static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2227 struct bfq_queue *bfqq,
2228 sector_t sector)
2229{
2230 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2231 struct rb_node *parent, *node;
2232 struct bfq_queue *__bfqq;
2233
2234 if (RB_EMPTY_ROOT(root))
2235 return NULL;
2236
2237 /*
2238 * First, if we find a request starting at the end of the last
2239 * request, choose it.
2240 */
2241 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2242 if (__bfqq)
2243 return __bfqq;
2244
2245 /*
2246 * If the exact sector wasn't found, the parent of the NULL leaf
2247 * will contain the closest sector (rq_pos_tree sorted by
2248 * next_request position).
2249 */
2250 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2251 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2252 return __bfqq;
2253
2254 if (blk_rq_pos(__bfqq->next_rq) < sector)
2255 node = rb_next(&__bfqq->pos_node);
2256 else
2257 node = rb_prev(&__bfqq->pos_node);
2258 if (!node)
2259 return NULL;
2260
2261 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2262 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2263 return __bfqq;
2264
2265 return NULL;
2266}
2267
2268static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2269 struct bfq_queue *cur_bfqq,
2270 sector_t sector)
2271{
2272 struct bfq_queue *bfqq;
2273
2274 /*
2275 * We shall notice if some of the queues are cooperating,
2276 * e.g., working closely on the same area of the device. In
2277 * that case, we can group them together and: 1) don't waste
2278 * time idling, and 2) serve the union of their requests in
2279 * the best possible order for throughput.
2280 */
2281 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2282 if (!bfqq || bfqq == cur_bfqq)
2283 return NULL;
2284
2285 return bfqq;
2286}
2287
2288static struct bfq_queue *
2289bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2290{
2291 int process_refs, new_process_refs;
2292 struct bfq_queue *__bfqq;
2293
2294 /*
2295 * If there are no process references on the new_bfqq, then it is
2296 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2297 * may have dropped their last reference (not just their last process
2298 * reference).
2299 */
2300 if (!bfqq_process_refs(new_bfqq))
2301 return NULL;
2302
2303 /* Avoid a circular list and skip interim queue merges. */
2304 while ((__bfqq = new_bfqq->new_bfqq)) {
2305 if (__bfqq == bfqq)
2306 return NULL;
2307 new_bfqq = __bfqq;
2308 }
2309
2310 process_refs = bfqq_process_refs(bfqq);
2311 new_process_refs = bfqq_process_refs(new_bfqq);
2312 /*
2313 * If the process for the bfqq has gone away, there is no
2314 * sense in merging the queues.
2315 */
2316 if (process_refs == 0 || new_process_refs == 0)
2317 return NULL;
2318
2319 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2320 new_bfqq->pid);
2321
2322 /*
2323 * Merging is just a redirection: the requests of the process
2324 * owning one of the two queues are redirected to the other queue.
2325 * The latter queue, in its turn, is set as shared if this is the
2326 * first time that the requests of some process are redirected to
2327 * it.
2328 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002329 * We redirect bfqq to new_bfqq and not the opposite, because
2330 * we are in the context of the process owning bfqq, thus we
2331 * have the io_cq of this process. So we can immediately
2332 * configure this io_cq to redirect the requests of the
2333 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2334 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002335 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002336 * Anyway, even in case new_bfqq coincides with the in-service
2337 * queue, redirecting requests the in-service queue is the
2338 * best option, as we feed the in-service queue with new
2339 * requests close to the last request served and, by doing so,
2340 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002341 */
2342 bfqq->new_bfqq = new_bfqq;
2343 new_bfqq->ref += process_refs;
2344 return new_bfqq;
2345}
2346
2347static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2348 struct bfq_queue *new_bfqq)
2349{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002350 if (bfq_too_late_for_merging(new_bfqq))
2351 return false;
2352
Arianna Avanzini36eca892017-04-12 18:23:16 +02002353 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2354 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2355 return false;
2356
2357 /*
2358 * If either of the queues has already been detected as seeky,
2359 * then merging it with the other queue is unlikely to lead to
2360 * sequential I/O.
2361 */
2362 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2363 return false;
2364
2365 /*
2366 * Interleaved I/O is known to be done by (some) applications
2367 * only for reads, so it does not make sense to merge async
2368 * queues.
2369 */
2370 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2371 return false;
2372
2373 return true;
2374}
2375
2376/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002377 * Attempt to schedule a merge of bfqq with the currently in-service
2378 * queue or with a close queue among the scheduled queues. Return
2379 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2380 * structure otherwise.
2381 *
2382 * The OOM queue is not allowed to participate to cooperation: in fact, since
2383 * the requests temporarily redirected to the OOM queue could be redirected
2384 * again to dedicated queues at any time, the state needed to correctly
2385 * handle merging with the OOM queue would be quite complex and expensive
2386 * to maintain. Besides, in such a critical condition as an out of memory,
2387 * the benefits of queue merging may be little relevant, or even negligible.
2388 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002389 * WARNING: queue merging may impair fairness among non-weight raised
2390 * queues, for at least two reasons: 1) the original weight of a
2391 * merged queue may change during the merged state, 2) even being the
2392 * weight the same, a merged queue may be bloated with many more
2393 * requests than the ones produced by its originally-associated
2394 * process.
2395 */
2396static struct bfq_queue *
2397bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2398 void *io_struct, bool request)
2399{
2400 struct bfq_queue *in_service_bfqq, *new_bfqq;
2401
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002402 /*
Paolo Valente8cacc5a2019-03-12 09:59:30 +01002403 * Do not perform queue merging if the device is non
2404 * rotational and performs internal queueing. In fact, such a
2405 * device reaches a high speed through internal parallelism
2406 * and pipelining. This means that, to reach a high
2407 * throughput, it must have many requests enqueued at the same
2408 * time. But, in this configuration, the internal scheduling
2409 * algorithm of the device does exactly the job of queue
2410 * merging: it reorders requests so as to obtain as much as
2411 * possible a sequential I/O pattern. As a consequence, with
2412 * the workload generated by processes doing interleaved I/O,
2413 * the throughput reached by the device is likely to be the
2414 * same, with and without queue merging.
2415 *
2416 * Disabling merging also provides a remarkable benefit in
2417 * terms of throughput. Merging tends to make many workloads
2418 * artificially more uneven, because of shared queues
2419 * remaining non empty for incomparably more time than
2420 * non-merged queues. This may accentuate workload
2421 * asymmetries. For example, if one of the queues in a set of
2422 * merged queues has a higher weight than a normal queue, then
2423 * the shared queue may inherit such a high weight and, by
2424 * staying almost always active, may force BFQ to perform I/O
2425 * plugging most of the time. This evidently makes it harder
2426 * for BFQ to let the device reach a high throughput.
2427 *
2428 * Finally, the likely() macro below is not used because one
2429 * of the two branches is more likely than the other, but to
2430 * have the code path after the following if() executed as
2431 * fast as possible for the case of a non rotational device
2432 * with queueing. We want it because this is the fastest kind
2433 * of device. On the opposite end, the likely() may lengthen
2434 * the execution time of BFQ for the case of slower devices
2435 * (rotational or at least without queueing). But in this case
2436 * the execution time of BFQ matters very little, if not at
2437 * all.
2438 */
2439 if (likely(bfqd->nonrot_with_queueing))
2440 return NULL;
2441
2442 /*
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002443 * Prevent bfqq from being merged if it has been created too
2444 * long ago. The idea is that true cooperating processes, and
2445 * thus their associated bfq_queues, are supposed to be
2446 * created shortly after each other. This is the case, e.g.,
2447 * for KVM/QEMU and dump I/O threads. Basing on this
2448 * assumption, the following filtering greatly reduces the
2449 * probability that two non-cooperating processes, which just
2450 * happen to do close I/O for some short time interval, have
2451 * their queues merged by mistake.
2452 */
2453 if (bfq_too_late_for_merging(bfqq))
2454 return NULL;
2455
Arianna Avanzini36eca892017-04-12 18:23:16 +02002456 if (bfqq->new_bfqq)
2457 return bfqq->new_bfqq;
2458
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002459 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002460 return NULL;
2461
2462 /* If there is only one backlogged queue, don't search. */
Paolo Valente73d58112019-01-29 12:06:29 +01002463 if (bfq_tot_busy_queues(bfqd) == 1)
Arianna Avanzini36eca892017-04-12 18:23:16 +02002464 return NULL;
2465
2466 in_service_bfqq = bfqd->in_service_queue;
2467
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002468 if (in_service_bfqq && in_service_bfqq != bfqq &&
2469 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
Paolo Valente058fdec2019-01-29 12:06:38 +01002470 bfq_rq_close_to_sector(io_struct, request,
2471 bfqd->in_serv_last_pos) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002472 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2473 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2474 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2475 if (new_bfqq)
2476 return new_bfqq;
2477 }
2478 /*
2479 * Check whether there is a cooperator among currently scheduled
2480 * queues. The only thing we need is that the bio/request is not
2481 * NULL, as we need it to establish whether a cooperator exists.
2482 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002483 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2484 bfq_io_struct_pos(io_struct, request));
2485
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002486 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002487 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2488 return bfq_setup_merge(bfqq, new_bfqq);
2489
2490 return NULL;
2491}
2492
2493static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2494{
2495 struct bfq_io_cq *bic = bfqq->bic;
2496
2497 /*
2498 * If !bfqq->bic, the queue is already shared or its requests
2499 * have already been redirected to a shared queue; both idle window
2500 * and weight raising state have already been saved. Do nothing.
2501 */
2502 if (!bic)
2503 return;
2504
2505 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02002506 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002507 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002508 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2509 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02002510 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01002511 !bfq_bfqq_in_large_burst(bfqq) &&
2512 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02002513 /*
2514 * bfqq being merged right after being created: bfqq
2515 * would have deserved interactive weight raising, but
2516 * did not make it to be set in a weight-raised state,
2517 * because of this early merge. Store directly the
2518 * weight-raising state that would have been assigned
2519 * to bfqq, so that to avoid that bfqq unjustly fails
2520 * to enjoy weight raising if split soon.
2521 */
2522 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2523 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2524 bic->saved_last_wr_start_finish = jiffies;
2525 } else {
2526 bic->saved_wr_coeff = bfqq->wr_coeff;
2527 bic->saved_wr_start_at_switch_to_srt =
2528 bfqq->wr_start_at_switch_to_srt;
2529 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2530 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2531 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002532}
2533
Arianna Avanzini36eca892017-04-12 18:23:16 +02002534static void
2535bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2536 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2537{
2538 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2539 (unsigned long)new_bfqq->pid);
2540 /* Save weight raising and idle window of the merged queues */
2541 bfq_bfqq_save_state(bfqq);
2542 bfq_bfqq_save_state(new_bfqq);
2543 if (bfq_bfqq_IO_bound(bfqq))
2544 bfq_mark_bfqq_IO_bound(new_bfqq);
2545 bfq_clear_bfqq_IO_bound(bfqq);
2546
2547 /*
2548 * If bfqq is weight-raised, then let new_bfqq inherit
2549 * weight-raising. To reduce false positives, neglect the case
2550 * where bfqq has just been created, but has not yet made it
2551 * to be weight-raised (which may happen because EQM may merge
2552 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002553 * time for bfqq). Handling this case would however be very
2554 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002555 */
2556 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2557 new_bfqq->wr_coeff = bfqq->wr_coeff;
2558 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2559 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2560 new_bfqq->wr_start_at_switch_to_srt =
2561 bfqq->wr_start_at_switch_to_srt;
2562 if (bfq_bfqq_busy(new_bfqq))
2563 bfqd->wr_busy_queues++;
2564 new_bfqq->entity.prio_changed = 1;
2565 }
2566
2567 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2568 bfqq->wr_coeff = 1;
2569 bfqq->entity.prio_changed = 1;
2570 if (bfq_bfqq_busy(bfqq))
2571 bfqd->wr_busy_queues--;
2572 }
2573
2574 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2575 bfqd->wr_busy_queues);
2576
2577 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002578 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2579 */
2580 bic_set_bfqq(bic, new_bfqq, 1);
2581 bfq_mark_bfqq_coop(new_bfqq);
2582 /*
2583 * new_bfqq now belongs to at least two bics (it is a shared queue):
2584 * set new_bfqq->bic to NULL. bfqq either:
2585 * - does not belong to any bic any more, and hence bfqq->bic must
2586 * be set to NULL, or
2587 * - is a queue whose owning bics have already been redirected to a
2588 * different queue, hence the queue is destined to not belong to
2589 * any bic soon and bfqq->bic is already NULL (therefore the next
2590 * assignment causes no harm).
2591 */
2592 new_bfqq->bic = NULL;
2593 bfqq->bic = NULL;
2594 /* release process reference to bfqq */
2595 bfq_put_queue(bfqq);
2596}
2597
Paolo Valenteaee69d72017-04-19 08:29:02 -06002598static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2599 struct bio *bio)
2600{
2601 struct bfq_data *bfqd = q->elevator->elevator_data;
2602 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002603 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002604
2605 /*
2606 * Disallow merge of a sync bio into an async request.
2607 */
2608 if (is_sync && !rq_is_sync(rq))
2609 return false;
2610
2611 /*
2612 * Lookup the bfqq that this bio will be queued with. Allow
2613 * merge only if rq is queued there.
2614 */
2615 if (!bfqq)
2616 return false;
2617
Arianna Avanzini36eca892017-04-12 18:23:16 +02002618 /*
2619 * We take advantage of this function to perform an early merge
2620 * of the queues of possible cooperating processes.
2621 */
2622 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2623 if (new_bfqq) {
2624 /*
2625 * bic still points to bfqq, then it has not yet been
2626 * redirected to some other bfq_queue, and a queue
2627 * merge beween bfqq and new_bfqq can be safely
2628 * fulfillled, i.e., bic can be redirected to new_bfqq
2629 * and bfqq can be put.
2630 */
2631 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2632 new_bfqq);
2633 /*
2634 * If we get here, bio will be queued into new_queue,
2635 * so use new_bfqq to decide whether bio and rq can be
2636 * merged.
2637 */
2638 bfqq = new_bfqq;
2639
2640 /*
2641 * Change also bqfd->bio_bfqq, as
2642 * bfqd->bio_bic now points to new_bfqq, and
2643 * this function may be invoked again (and then may
2644 * use again bqfd->bio_bfqq).
2645 */
2646 bfqd->bio_bfqq = bfqq;
2647 }
2648
Paolo Valenteaee69d72017-04-19 08:29:02 -06002649 return bfqq == RQ_BFQQ(rq);
2650}
2651
Paolo Valente44e44a12017-04-12 18:23:12 +02002652/*
2653 * Set the maximum time for the in-service queue to consume its
2654 * budget. This prevents seeky processes from lowering the throughput.
2655 * In practice, a time-slice service scheme is used with seeky
2656 * processes.
2657 */
2658static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2659 struct bfq_queue *bfqq)
2660{
Paolo Valente77b7dce2017-04-12 18:23:13 +02002661 unsigned int timeout_coeff;
2662
2663 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2664 timeout_coeff = 1;
2665 else
2666 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2667
Paolo Valente44e44a12017-04-12 18:23:12 +02002668 bfqd->last_budget_start = ktime_get();
2669
2670 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02002671 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02002672}
2673
Paolo Valenteaee69d72017-04-19 08:29:02 -06002674static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2675 struct bfq_queue *bfqq)
2676{
2677 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002678 bfq_clear_bfqq_fifo_expire(bfqq);
2679
2680 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2681
Paolo Valente77b7dce2017-04-12 18:23:13 +02002682 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2683 bfqq->wr_coeff > 1 &&
2684 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2685 time_is_before_jiffies(bfqq->budget_timeout)) {
2686 /*
2687 * For soft real-time queues, move the start
2688 * of the weight-raising period forward by the
2689 * time the queue has not received any
2690 * service. Otherwise, a relatively long
2691 * service delay is likely to cause the
2692 * weight-raising period of the queue to end,
2693 * because of the short duration of the
2694 * weight-raising period of a soft real-time
2695 * queue. It is worth noting that this move
2696 * is not so dangerous for the other queues,
2697 * because soft real-time queues are not
2698 * greedy.
2699 *
2700 * To not add a further variable, we use the
2701 * overloaded field budget_timeout to
2702 * determine for how long the queue has not
2703 * received service, i.e., how much time has
2704 * elapsed since the queue expired. However,
2705 * this is a little imprecise, because
2706 * budget_timeout is set to jiffies if bfqq
2707 * not only expires, but also remains with no
2708 * request.
2709 */
2710 if (time_after(bfqq->budget_timeout,
2711 bfqq->last_wr_start_finish))
2712 bfqq->last_wr_start_finish +=
2713 jiffies - bfqq->budget_timeout;
2714 else
2715 bfqq->last_wr_start_finish = jiffies;
2716 }
2717
Paolo Valente44e44a12017-04-12 18:23:12 +02002718 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002719 bfq_log_bfqq(bfqd, bfqq,
2720 "set_in_service_queue, cur-budget = %d",
2721 bfqq->entity.budget);
2722 }
2723
2724 bfqd->in_service_queue = bfqq;
2725}
2726
2727/*
2728 * Get and set a new queue for service.
2729 */
2730static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2731{
2732 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2733
2734 __bfq_set_in_service_queue(bfqd, bfqq);
2735 return bfqq;
2736}
2737
Paolo Valenteaee69d72017-04-19 08:29:02 -06002738static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2739{
2740 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002741 u32 sl;
2742
Paolo Valenteaee69d72017-04-19 08:29:02 -06002743 bfq_mark_bfqq_wait_request(bfqq);
2744
2745 /*
2746 * We don't want to idle for seeks, but we do want to allow
2747 * fair distribution of slice time for a process doing back-to-back
2748 * seeks. So allow a little bit of time for him to submit a new rq.
2749 */
2750 sl = bfqd->bfq_slice_idle;
2751 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002752 * Unless the queue is being weight-raised or the scenario is
2753 * asymmetric, grant only minimum idle time if the queue
2754 * is seeky. A long idling is preserved for a weight-raised
2755 * queue, or, more in general, in an asymmetric scenario,
2756 * because a long idling is needed for guaranteeing to a queue
2757 * its reserved share of the throughput (in particular, it is
2758 * needed if the queue has a higher weight than some other
2759 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06002760 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002761 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
Paolo Valentefb53ac62019-03-12 09:59:28 +01002762 !bfq_asymmetric_scenario(bfqd, bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002763 sl = min_t(u64, sl, BFQ_MIN_TT);
Paolo Valente778c02a2019-03-12 09:59:27 +01002764 else if (bfqq->wr_coeff > 1)
2765 sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002766
2767 bfqd->last_idling_start = ktime_get();
Paolo Valente2341d6622019-03-12 09:59:29 +01002768 bfqd->last_idling_start_jiffies = jiffies;
2769
Paolo Valenteaee69d72017-04-19 08:29:02 -06002770 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2771 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002772 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06002773}
2774
2775/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002776 * In autotuning mode, max_budget is dynamically recomputed as the
2777 * amount of sectors transferred in timeout at the estimated peak
2778 * rate. This enables BFQ to utilize a full timeslice with a full
2779 * budget, even if the in-service queue is served at peak rate. And
2780 * this maximises throughput with sequential workloads.
2781 */
2782static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2783{
2784 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2785 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2786}
2787
Paolo Valente44e44a12017-04-12 18:23:12 +02002788/*
2789 * Update parameters related to throughput and responsiveness, as a
2790 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02002791 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02002792 */
2793static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2794{
Paolo Valentee24f1c22018-05-31 16:45:06 +02002795 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02002796 bfqd->bfq_max_budget =
2797 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02002798 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02002799 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002800}
2801
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002802static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2803 struct request *rq)
2804{
2805 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2806 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2807 bfqd->peak_rate_samples = 1;
2808 bfqd->sequential_samples = 0;
2809 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2810 blk_rq_sectors(rq);
2811 } else /* no new rq dispatched, just reset the number of samples */
2812 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2813
2814 bfq_log(bfqd,
2815 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2816 bfqd->peak_rate_samples, bfqd->sequential_samples,
2817 bfqd->tot_sectors_dispatched);
2818}
2819
2820static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2821{
2822 u32 rate, weight, divisor;
2823
2824 /*
2825 * For the convergence property to hold (see comments on
2826 * bfq_update_peak_rate()) and for the assessment to be
2827 * reliable, a minimum number of samples must be present, and
2828 * a minimum amount of time must have elapsed. If not so, do
2829 * not compute new rate. Just reset parameters, to get ready
2830 * for a new evaluation attempt.
2831 */
2832 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2833 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2834 goto reset_computation;
2835
2836 /*
2837 * If a new request completion has occurred after last
2838 * dispatch, then, to approximate the rate at which requests
2839 * have been served by the device, it is more precise to
2840 * extend the observation interval to the last completion.
2841 */
2842 bfqd->delta_from_first =
2843 max_t(u64, bfqd->delta_from_first,
2844 bfqd->last_completion - bfqd->first_dispatch);
2845
2846 /*
2847 * Rate computed in sects/usec, and not sects/nsec, for
2848 * precision issues.
2849 */
2850 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2851 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2852
2853 /*
2854 * Peak rate not updated if:
2855 * - the percentage of sequential dispatches is below 3/4 of the
2856 * total, and rate is below the current estimated peak rate
2857 * - rate is unreasonably high (> 20M sectors/sec)
2858 */
2859 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2860 rate <= bfqd->peak_rate) ||
2861 rate > 20<<BFQ_RATE_SHIFT)
2862 goto reset_computation;
2863
2864 /*
2865 * We have to update the peak rate, at last! To this purpose,
2866 * we use a low-pass filter. We compute the smoothing constant
2867 * of the filter as a function of the 'weight' of the new
2868 * measured rate.
2869 *
2870 * As can be seen in next formulas, we define this weight as a
2871 * quantity proportional to how sequential the workload is,
2872 * and to how long the observation time interval is.
2873 *
2874 * The weight runs from 0 to 8. The maximum value of the
2875 * weight, 8, yields the minimum value for the smoothing
2876 * constant. At this minimum value for the smoothing constant,
2877 * the measured rate contributes for half of the next value of
2878 * the estimated peak rate.
2879 *
2880 * So, the first step is to compute the weight as a function
2881 * of how sequential the workload is. Note that the weight
2882 * cannot reach 9, because bfqd->sequential_samples cannot
2883 * become equal to bfqd->peak_rate_samples, which, in its
2884 * turn, holds true because bfqd->sequential_samples is not
2885 * incremented for the first sample.
2886 */
2887 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2888
2889 /*
2890 * Second step: further refine the weight as a function of the
2891 * duration of the observation interval.
2892 */
2893 weight = min_t(u32, 8,
2894 div_u64(weight * bfqd->delta_from_first,
2895 BFQ_RATE_REF_INTERVAL));
2896
2897 /*
2898 * Divisor ranging from 10, for minimum weight, to 2, for
2899 * maximum weight.
2900 */
2901 divisor = 10 - weight;
2902
2903 /*
2904 * Finally, update peak rate:
2905 *
2906 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2907 */
2908 bfqd->peak_rate *= divisor-1;
2909 bfqd->peak_rate /= divisor;
2910 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2911
2912 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02002913
2914 /*
2915 * For a very slow device, bfqd->peak_rate can reach 0 (see
2916 * the minimum representable values reported in the comments
2917 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2918 * divisions by zero where bfqd->peak_rate is used as a
2919 * divisor.
2920 */
2921 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2922
Paolo Valente44e44a12017-04-12 18:23:12 +02002923 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002924
2925reset_computation:
2926 bfq_reset_rate_computation(bfqd, rq);
2927}
2928
2929/*
2930 * Update the read/write peak rate (the main quantity used for
2931 * auto-tuning, see update_thr_responsiveness_params()).
2932 *
2933 * It is not trivial to estimate the peak rate (correctly): because of
2934 * the presence of sw and hw queues between the scheduler and the
2935 * device components that finally serve I/O requests, it is hard to
2936 * say exactly when a given dispatched request is served inside the
2937 * device, and for how long. As a consequence, it is hard to know
2938 * precisely at what rate a given set of requests is actually served
2939 * by the device.
2940 *
2941 * On the opposite end, the dispatch time of any request is trivially
2942 * available, and, from this piece of information, the "dispatch rate"
2943 * of requests can be immediately computed. So, the idea in the next
2944 * function is to use what is known, namely request dispatch times
2945 * (plus, when useful, request completion times), to estimate what is
2946 * unknown, namely in-device request service rate.
2947 *
2948 * The main issue is that, because of the above facts, the rate at
2949 * which a certain set of requests is dispatched over a certain time
2950 * interval can vary greatly with respect to the rate at which the
2951 * same requests are then served. But, since the size of any
2952 * intermediate queue is limited, and the service scheme is lossless
2953 * (no request is silently dropped), the following obvious convergence
2954 * property holds: the number of requests dispatched MUST become
2955 * closer and closer to the number of requests completed as the
2956 * observation interval grows. This is the key property used in
2957 * the next function to estimate the peak service rate as a function
2958 * of the observed dispatch rate. The function assumes to be invoked
2959 * on every request dispatch.
2960 */
2961static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2962{
2963 u64 now_ns = ktime_get_ns();
2964
2965 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2966 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2967 bfqd->peak_rate_samples);
2968 bfq_reset_rate_computation(bfqd, rq);
2969 goto update_last_values; /* will add one sample */
2970 }
2971
2972 /*
2973 * Device idle for very long: the observation interval lasting
2974 * up to this dispatch cannot be a valid observation interval
2975 * for computing a new peak rate (similarly to the late-
2976 * completion event in bfq_completed_request()). Go to
2977 * update_rate_and_reset to have the following three steps
2978 * taken:
2979 * - close the observation interval at the last (previous)
2980 * request dispatch or completion
2981 * - compute rate, if possible, for that observation interval
2982 * - start a new observation interval with this dispatch
2983 */
2984 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2985 bfqd->rq_in_driver == 0)
2986 goto update_rate_and_reset;
2987
2988 /* Update sampling information */
2989 bfqd->peak_rate_samples++;
2990
2991 if ((bfqd->rq_in_driver > 0 ||
2992 now_ns - bfqd->last_completion < BFQ_MIN_TT)
Paolo Valented87447d2019-01-29 12:06:33 +01002993 && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002994 bfqd->sequential_samples++;
2995
2996 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2997
2998 /* Reset max observed rq size every 32 dispatches */
2999 if (likely(bfqd->peak_rate_samples % 32))
3000 bfqd->last_rq_max_size =
3001 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3002 else
3003 bfqd->last_rq_max_size = blk_rq_sectors(rq);
3004
3005 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3006
3007 /* Target observation interval not yet reached, go on sampling */
3008 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3009 goto update_last_values;
3010
3011update_rate_and_reset:
3012 bfq_update_rate_reset(bfqd, rq);
3013update_last_values:
3014 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
Paolo Valente058fdec2019-01-29 12:06:38 +01003015 if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3016 bfqd->in_serv_last_pos = bfqd->last_position;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003017 bfqd->last_dispatch = now_ns;
3018}
3019
3020/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06003021 * Remove request from internal lists.
3022 */
3023static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3024{
3025 struct bfq_queue *bfqq = RQ_BFQQ(rq);
3026
3027 /*
3028 * For consistency, the next instruction should have been
3029 * executed after removing the request from the queue and
3030 * dispatching it. We execute instead this instruction before
3031 * bfq_remove_request() (and hence introduce a temporary
3032 * inconsistency), for efficiency. In fact, should this
3033 * dispatch occur for a non in-service bfqq, this anticipated
3034 * increment prevents two counters related to bfqq->dispatched
3035 * from risking to be, first, uselessly decremented, and then
3036 * incremented again when the (new) value of bfqq->dispatched
3037 * happens to be taken into account.
3038 */
3039 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003040 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003041
3042 bfq_remove_request(q, rq);
3043}
3044
3045static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3046{
Arianna Avanzini36eca892017-04-12 18:23:16 +02003047 /*
3048 * If this bfqq is shared between multiple processes, check
3049 * to make sure that those processes are still issuing I/Os
3050 * within the mean seek distance. If not, it may be time to
3051 * break the queues apart again.
3052 */
3053 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3054 bfq_mark_bfqq_split_coop(bfqq);
3055
Paolo Valente44e44a12017-04-12 18:23:12 +02003056 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
3057 if (bfqq->dispatched == 0)
3058 /*
3059 * Overloading budget_timeout field to store
3060 * the time at which the queue remains with no
3061 * backlog and no outstanding request; used by
3062 * the weight-raising mechanism.
3063 */
3064 bfqq->budget_timeout = jiffies;
3065
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003066 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003067 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02003068 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003069 /*
3070 * Resort priority tree of potential close cooperators.
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003071 * See comments on bfq_pos_tree_add_move() for the unlikely().
Arianna Avanzini36eca892017-04-12 18:23:16 +02003072 */
Paolo Valente8cacc5a2019-03-12 09:59:30 +01003073 if (unlikely(!bfqd->nonrot_with_queueing))
3074 bfq_pos_tree_add_move(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02003075 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003076
3077 /*
3078 * All in-service entities must have been properly deactivated
3079 * or requeued before executing the next function, which
3080 * resets all in-service entites as no more in service.
3081 */
3082 __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003083}
3084
3085/**
3086 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3087 * @bfqd: device data.
3088 * @bfqq: queue to update.
3089 * @reason: reason for expiration.
3090 *
3091 * Handle the feedback on @bfqq budget at queue expiration.
3092 * See the body for detailed comments.
3093 */
3094static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3095 struct bfq_queue *bfqq,
3096 enum bfqq_expiration reason)
3097{
3098 struct request *next_rq;
3099 int budget, min_budget;
3100
Paolo Valenteaee69d72017-04-19 08:29:02 -06003101 min_budget = bfq_min_budget(bfqd);
3102
Paolo Valente44e44a12017-04-12 18:23:12 +02003103 if (bfqq->wr_coeff == 1)
3104 budget = bfqq->max_budget;
3105 else /*
3106 * Use a constant, low budget for weight-raised queues,
3107 * to help achieve a low latency. Keep it slightly higher
3108 * than the minimum possible budget, to cause a little
3109 * bit fewer expirations.
3110 */
3111 budget = 2 * min_budget;
3112
Paolo Valenteaee69d72017-04-19 08:29:02 -06003113 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3114 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3115 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3116 budget, bfq_min_budget(bfqd));
3117 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3118 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3119
Paolo Valente44e44a12017-04-12 18:23:12 +02003120 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003121 switch (reason) {
3122 /*
3123 * Caveat: in all the following cases we trade latency
3124 * for throughput.
3125 */
3126 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02003127 /*
3128 * This is the only case where we may reduce
3129 * the budget: if there is no request of the
3130 * process still waiting for completion, then
3131 * we assume (tentatively) that the timer has
3132 * expired because the batch of requests of
3133 * the process could have been served with a
3134 * smaller budget. Hence, betting that
3135 * process will behave in the same way when it
3136 * becomes backlogged again, we reduce its
3137 * next budget. As long as we guess right,
3138 * this budget cut reduces the latency
3139 * experienced by the process.
3140 *
3141 * However, if there are still outstanding
3142 * requests, then the process may have not yet
3143 * issued its next request just because it is
3144 * still waiting for the completion of some of
3145 * the still outstanding ones. So in this
3146 * subcase we do not reduce its budget, on the
3147 * contrary we increase it to possibly boost
3148 * the throughput, as discussed in the
3149 * comments to the BUDGET_TIMEOUT case.
3150 */
3151 if (bfqq->dispatched > 0) /* still outstanding reqs */
3152 budget = min(budget * 2, bfqd->bfq_max_budget);
3153 else {
3154 if (budget > 5 * min_budget)
3155 budget -= 4 * min_budget;
3156 else
3157 budget = min_budget;
3158 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06003159 break;
3160 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02003161 /*
3162 * We double the budget here because it gives
3163 * the chance to boost the throughput if this
3164 * is not a seeky process (and has bumped into
3165 * this timeout because of, e.g., ZBR).
3166 */
3167 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003168 break;
3169 case BFQQE_BUDGET_EXHAUSTED:
3170 /*
3171 * The process still has backlog, and did not
3172 * let either the budget timeout or the disk
3173 * idling timeout expire. Hence it is not
3174 * seeky, has a short thinktime and may be
3175 * happy with a higher budget too. So
3176 * definitely increase the budget of this good
3177 * candidate to boost the disk throughput.
3178 */
Paolo Valente54b60452017-04-12 18:23:09 +02003179 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003180 break;
3181 case BFQQE_NO_MORE_REQUESTS:
3182 /*
3183 * For queues that expire for this reason, it
3184 * is particularly important to keep the
3185 * budget close to the actual service they
3186 * need. Doing so reduces the timestamp
3187 * misalignment problem described in the
3188 * comments in the body of
3189 * __bfq_activate_entity. In fact, suppose
3190 * that a queue systematically expires for
3191 * BFQQE_NO_MORE_REQUESTS and presents a
3192 * new request in time to enjoy timestamp
3193 * back-shifting. The larger the budget of the
3194 * queue is with respect to the service the
3195 * queue actually requests in each service
3196 * slot, the more times the queue can be
3197 * reactivated with the same virtual finish
3198 * time. It follows that, even if this finish
3199 * time is pushed to the system virtual time
3200 * to reduce the consequent timestamp
3201 * misalignment, the queue unjustly enjoys for
3202 * many re-activations a lower finish time
3203 * than all newly activated queues.
3204 *
3205 * The service needed by bfqq is measured
3206 * quite precisely by bfqq->entity.service.
3207 * Since bfqq does not enjoy device idling,
3208 * bfqq->entity.service is equal to the number
3209 * of sectors that the process associated with
3210 * bfqq requested to read/write before waiting
3211 * for request completions, or blocking for
3212 * other reasons.
3213 */
3214 budget = max_t(int, bfqq->entity.service, min_budget);
3215 break;
3216 default:
3217 return;
3218 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003219 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003220 /*
3221 * Async queues get always the maximum possible
3222 * budget, as for them we do not care about latency
3223 * (in addition, their ability to dispatch is limited
3224 * by the charging factor).
3225 */
3226 budget = bfqd->bfq_max_budget;
3227 }
3228
3229 bfqq->max_budget = budget;
3230
3231 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3232 !bfqd->bfq_user_max_budget)
3233 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3234
3235 /*
3236 * If there is still backlog, then assign a new budget, making
3237 * sure that it is large enough for the next request. Since
3238 * the finish time of bfqq must be kept in sync with the
3239 * budget, be sure to call __bfq_bfqq_expire() *after* this
3240 * update.
3241 *
3242 * If there is no backlog, then no need to update the budget;
3243 * it will be updated on the arrival of a new request.
3244 */
3245 next_rq = bfqq->next_rq;
3246 if (next_rq)
3247 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3248 bfq_serv_to_charge(next_rq, bfqq));
3249
3250 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3251 next_rq ? blk_rq_sectors(next_rq) : 0,
3252 bfqq->entity.budget);
3253}
3254
Paolo Valenteaee69d72017-04-19 08:29:02 -06003255/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003256 * Return true if the process associated with bfqq is "slow". The slow
3257 * flag is used, in addition to the budget timeout, to reduce the
3258 * amount of service provided to seeky processes, and thus reduce
3259 * their chances to lower the throughput. More details in the comments
3260 * on the function bfq_bfqq_expire().
3261 *
3262 * An important observation is in order: as discussed in the comments
3263 * on the function bfq_update_peak_rate(), with devices with internal
3264 * queues, it is hard if ever possible to know when and for how long
3265 * an I/O request is processed by the device (apart from the trivial
3266 * I/O pattern where a new request is dispatched only after the
3267 * previous one has been completed). This makes it hard to evaluate
3268 * the real rate at which the I/O requests of each bfq_queue are
3269 * served. In fact, for an I/O scheduler like BFQ, serving a
3270 * bfq_queue means just dispatching its requests during its service
3271 * slot (i.e., until the budget of the queue is exhausted, or the
3272 * queue remains idle, or, finally, a timeout fires). But, during the
3273 * service slot of a bfq_queue, around 100 ms at most, the device may
3274 * be even still processing requests of bfq_queues served in previous
3275 * service slots. On the opposite end, the requests of the in-service
3276 * bfq_queue may be completed after the service slot of the queue
3277 * finishes.
3278 *
3279 * Anyway, unless more sophisticated solutions are used
3280 * (where possible), the sum of the sizes of the requests dispatched
3281 * during the service slot of a bfq_queue is probably the only
3282 * approximation available for the service received by the bfq_queue
3283 * during its service slot. And this sum is the quantity used in this
3284 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003285 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003286static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3287 bool compensate, enum bfqq_expiration reason,
3288 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003289{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003290 ktime_t delta_ktime;
3291 u32 delta_usecs;
3292 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06003293
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003294 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06003295 return false;
3296
3297 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003298 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003299 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003300 delta_ktime = ktime_get();
3301 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3302 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003303
3304 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003305 if (delta_usecs < 1000) {
3306 if (blk_queue_nonrot(bfqd->queue))
3307 /*
3308 * give same worst-case guarantees as idling
3309 * for seeky
3310 */
3311 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3312 else /* charge at least one seek */
3313 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003314
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003315 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003316 }
3317
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003318 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003319
3320 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003321 * Use only long (> 20ms) intervals to filter out excessive
3322 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003323 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003324 if (delta_usecs > 20000) {
3325 /*
3326 * Caveat for rotational devices: processes doing I/O
3327 * in the slower disk zones tend to be slow(er) even
3328 * if not seeky. In this respect, the estimated peak
3329 * rate is likely to be an average over the disk
3330 * surface. Accordingly, to not be too harsh with
3331 * unlucky processes, a process is deemed slow only if
3332 * its rate has been lower than half of the estimated
3333 * peak rate.
3334 */
3335 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3336 }
3337
3338 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3339
3340 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003341}
3342
3343/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003344 * To be deemed as soft real-time, an application must meet two
3345 * requirements. First, the application must not require an average
3346 * bandwidth higher than the approximate bandwidth required to playback or
3347 * record a compressed high-definition video.
3348 * The next function is invoked on the completion of the last request of a
3349 * batch, to compute the next-start time instant, soft_rt_next_start, such
3350 * that, if the next request of the application does not arrive before
3351 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3352 *
3353 * The second requirement is that the request pattern of the application is
3354 * isochronous, i.e., that, after issuing a request or a batch of requests,
3355 * the application stops issuing new requests until all its pending requests
3356 * have been completed. After that, the application may issue a new batch,
3357 * and so on.
3358 * For this reason the next function is invoked to compute
3359 * soft_rt_next_start only for applications that meet this requirement,
3360 * whereas soft_rt_next_start is set to infinity for applications that do
3361 * not.
3362 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003363 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3364 * happen to meet, occasionally or systematically, both the above
3365 * bandwidth and isochrony requirements. This may happen at least in
3366 * the following circumstances. First, if the CPU load is high. The
3367 * application may stop issuing requests while the CPUs are busy
3368 * serving other processes, then restart, then stop again for a while,
3369 * and so on. The other circumstances are related to the storage
3370 * device: the storage device is highly loaded or reaches a low-enough
3371 * throughput with the I/O of the application (e.g., because the I/O
3372 * is random and/or the device is slow). In all these cases, the
3373 * I/O of the application may be simply slowed down enough to meet
3374 * the bandwidth and isochrony requirements. To reduce the probability
3375 * that greedy applications are deemed as soft real-time in these
3376 * corner cases, a further rule is used in the computation of
3377 * soft_rt_next_start: the return value of this function is forced to
3378 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003379 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003380 * (a) Current time plus: (1) the maximum time for which the arrival
3381 * of a request is waited for when a sync queue becomes idle,
3382 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3383 * postpone for a moment the reason for adding a few extra
3384 * jiffies; we get back to it after next item (b). Lower-bounding
3385 * the return value of this function with the current time plus
3386 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3387 * because the latter issue their next request as soon as possible
3388 * after the last one has been completed. In contrast, a soft
3389 * real-time application spends some time processing data, after a
3390 * batch of its requests has been completed.
3391 *
3392 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3393 * above, greedy applications may happen to meet both the
3394 * bandwidth and isochrony requirements under heavy CPU or
3395 * storage-device load. In more detail, in these scenarios, these
3396 * applications happen, only for limited time periods, to do I/O
3397 * slowly enough to meet all the requirements described so far,
3398 * including the filtering in above item (a). These slow-speed
3399 * time intervals are usually interspersed between other time
3400 * intervals during which these applications do I/O at a very high
3401 * speed. Fortunately, exactly because of the high speed of the
3402 * I/O in the high-speed intervals, the values returned by this
3403 * function happen to be so high, near the end of any such
3404 * high-speed interval, to be likely to fall *after* the end of
3405 * the low-speed time interval that follows. These high values are
3406 * stored in bfqq->soft_rt_next_start after each invocation of
3407 * this function. As a consequence, if the last value of
3408 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3409 * next value that this function may return, then, from the very
3410 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3411 * likely to be constantly kept so high that any I/O request
3412 * issued during the low-speed interval is considered as arriving
3413 * to soon for the application to be deemed as soft
3414 * real-time. Then, in the high-speed interval that follows, the
3415 * application will not be deemed as soft real-time, just because
3416 * it will do I/O at a high speed. And so on.
3417 *
3418 * Getting back to the filtering in item (a), in the following two
3419 * cases this filtering might be easily passed by a greedy
3420 * application, if the reference quantity was just
3421 * bfqd->bfq_slice_idle:
3422 * 1) HZ is so low that the duration of a jiffy is comparable to or
3423 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3424 * devices with HZ=100. The time granularity may be so coarse
3425 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3426 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003427 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3428 * for a while, then suddenly 'jump' by several units to recover the lost
3429 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01003430 * To address this issue, in the filtering in (a) we do not use as a
3431 * reference time interval just bfqd->bfq_slice_idle, but
3432 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3433 * minimum number of jiffies for which the filter seems to be quite
3434 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003435 */
3436static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3437 struct bfq_queue *bfqq)
3438{
Paolo Valentea34b0242017-12-15 07:23:12 +01003439 return max3(bfqq->soft_rt_next_start,
3440 bfqq->last_idle_bklogged +
3441 HZ * bfqq->service_from_backlogged /
3442 bfqd->bfq_wr_max_softrt_rate,
3443 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003444}
3445
Paolo Valenteaee69d72017-04-19 08:29:02 -06003446/**
3447 * bfq_bfqq_expire - expire a queue.
3448 * @bfqd: device owning the queue.
3449 * @bfqq: the queue to expire.
3450 * @compensate: if true, compensate for the time spent idling.
3451 * @reason: the reason causing the expiration.
3452 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003453 * If the process associated with bfqq does slow I/O (e.g., because it
3454 * issues random requests), we charge bfqq with the time it has been
3455 * in service instead of the service it has received (see
3456 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3457 * a consequence, bfqq will typically get higher timestamps upon
3458 * reactivation, and hence it will be rescheduled as if it had
3459 * received more service than what it has actually received. In the
3460 * end, bfqq receives less service in proportion to how slowly its
3461 * associated process consumes its budgets (and hence how seriously it
3462 * tends to lower the throughput). In addition, this time-charging
3463 * strategy guarantees time fairness among slow processes. In
3464 * contrast, if the process associated with bfqq is not slow, we
3465 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003466 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003467 * Charging time to the first type of queues and the exact service to
3468 * the other has the effect of using the WF2Q+ policy to schedule the
3469 * former on a timeslice basis, without violating service domain
3470 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003471 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003472void bfq_bfqq_expire(struct bfq_data *bfqd,
3473 struct bfq_queue *bfqq,
3474 bool compensate,
3475 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003476{
3477 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003478 unsigned long delta = 0;
3479 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003480 int ref;
3481
3482 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003483 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003484 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003485 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003486
3487 /*
Paolo Valentec074170e2017-04-12 18:23:11 +02003488 * As above explained, charge slow (typically seeky) and
3489 * timed-out queues with the time and not the service
3490 * received, to favor sequential workloads.
3491 *
3492 * Processes doing I/O in the slower disk zones will tend to
3493 * be slow(er) even if not seeky. Therefore, since the
3494 * estimated peak rate is actually an average over the disk
3495 * surface, these processes may timeout just for bad luck. To
3496 * avoid punishing them, do not charge time to processes that
3497 * succeeded in consuming at least 2/3 of their budget. This
3498 * allows BFQ to preserve enough elasticity to still perform
3499 * bandwidth, and not time, distribution with little unlucky
3500 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003501 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003502 if (bfqq->wr_coeff == 1 &&
3503 (slow ||
3504 (reason == BFQQE_BUDGET_TIMEOUT &&
3505 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec074170e2017-04-12 18:23:11 +02003506 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003507
3508 if (reason == BFQQE_TOO_IDLE &&
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003509 entity->service <= 2 * entity->budget / 10)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003510 bfq_clear_bfqq_IO_bound(bfqq);
3511
Paolo Valente44e44a12017-04-12 18:23:12 +02003512 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3513 bfqq->last_wr_start_finish = jiffies;
3514
Paolo Valente77b7dce2017-04-12 18:23:13 +02003515 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3516 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3517 /*
3518 * If we get here, and there are no outstanding
3519 * requests, then the request pattern is isochronous
3520 * (see the comments on the function
3521 * bfq_bfqq_softrt_next_start()). Thus we can compute
Paolo Valente20cd3242019-01-29 12:06:25 +01003522 * soft_rt_next_start. And we do it, unless bfqq is in
3523 * interactive weight raising. We do not do it in the
3524 * latter subcase, for the following reason. bfqq may
3525 * be conveying the I/O needed to load a soft
3526 * real-time application. Such an application will
3527 * actually exhibit a soft real-time I/O pattern after
3528 * it finally starts doing its job. But, if
3529 * soft_rt_next_start is computed here for an
3530 * interactive bfqq, and bfqq had received a lot of
3531 * service before remaining with no outstanding
3532 * request (likely to happen on a fast device), then
3533 * soft_rt_next_start would be assigned such a high
3534 * value that, for a very long time, bfqq would be
3535 * prevented from being possibly considered as soft
3536 * real time.
3537 *
3538 * If, instead, the queue still has outstanding
3539 * requests, then we have to wait for the completion
3540 * of all the outstanding requests to discover whether
3541 * the request pattern is actually isochronous.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003542 */
Paolo Valente20cd3242019-01-29 12:06:25 +01003543 if (bfqq->dispatched == 0 &&
3544 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02003545 bfqq->soft_rt_next_start =
3546 bfq_bfqq_softrt_next_start(bfqd, bfqq);
Paolo Valente20cd3242019-01-29 12:06:25 +01003547 else if (bfqq->dispatched > 0) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003548 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003549 * Schedule an update of soft_rt_next_start to when
3550 * the task may be discovered to be isochronous.
3551 */
3552 bfq_mark_bfqq_softrt_update(bfqq);
3553 }
3554 }
3555
Paolo Valenteaee69d72017-04-19 08:29:02 -06003556 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02003557 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3558 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003559
3560 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01003561 * bfqq expired, so no total service time needs to be computed
3562 * any longer: reset state machine for measuring total service
3563 * times.
3564 */
3565 bfqd->rqs_injected = bfqd->wait_dispatch = false;
3566 bfqd->waited_rq = NULL;
3567
3568 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06003569 * Increase, decrease or leave budget unchanged according to
3570 * reason.
3571 */
3572 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3573 ref = bfqq->ref;
3574 __bfq_bfqq_expire(bfqd, bfqq);
3575
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003576 if (ref == 1) /* bfqq is gone, no more actions on it */
3577 return;
3578
Paolo Valenteaee69d72017-04-19 08:29:02 -06003579 /* mark bfqq as waiting a request only if a bic still points to it */
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003580 if (!bfq_bfqq_busy(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06003581 reason != BFQQE_BUDGET_TIMEOUT &&
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003582 reason != BFQQE_BUDGET_EXHAUSTED) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06003583 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente9fae8dd2018-06-25 21:55:36 +02003584 /*
3585 * Not setting service to 0, because, if the next rq
3586 * arrives in time, the queue will go on receiving
3587 * service with this same budget (as if it never expired)
3588 */
3589 } else
3590 entity->service = 0;
Paolo Valente8a511ba2018-08-16 18:51:15 +02003591
3592 /*
3593 * Reset the received-service counter for every parent entity.
3594 * Differently from what happens with bfqq->entity.service,
3595 * the resetting of this counter never needs to be postponed
3596 * for parent entities. In fact, in case bfqq may have a
3597 * chance to go on being served using the last, partially
3598 * consumed budget, bfqq->entity.service needs to be kept,
3599 * because if bfqq then actually goes on being served using
3600 * the same budget, the last value of bfqq->entity.service is
3601 * needed to properly decrement bfqq->entity.budget by the
3602 * portion already consumed. In contrast, it is not necessary
3603 * to keep entity->service for parent entities too, because
3604 * the bubble up of the new value of bfqq->entity.budget will
3605 * make sure that the budgets of parent entities are correct,
3606 * even in case bfqq and thus parent entities go on receiving
3607 * service with the same budget.
3608 */
3609 entity = entity->parent;
3610 for_each_entity(entity)
3611 entity->service = 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003612}
3613
3614/*
3615 * Budget timeout is not implemented through a dedicated timer, but
3616 * just checked on request arrivals and completions, as well as on
3617 * idle timer expirations.
3618 */
3619static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3620{
Paolo Valente44e44a12017-04-12 18:23:12 +02003621 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003622}
3623
3624/*
3625 * If we expire a queue that is actively waiting (i.e., with the
3626 * device idled) for the arrival of a new request, then we may incur
3627 * the timestamp misalignment problem described in the body of the
3628 * function __bfq_activate_entity. Hence we return true only if this
3629 * condition does not hold, or if the queue is slow enough to deserve
3630 * only to be kicked off for preserving a high throughput.
3631 */
3632static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3633{
3634 bfq_log_bfqq(bfqq->bfqd, bfqq,
3635 "may_budget_timeout: wait_request %d left %d timeout %d",
3636 bfq_bfqq_wait_request(bfqq),
3637 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3638 bfq_bfqq_budget_timeout(bfqq));
3639
3640 return (!bfq_bfqq_wait_request(bfqq) ||
3641 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3642 &&
3643 bfq_bfqq_budget_timeout(bfqq);
3644}
3645
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003646static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
3647 struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003648{
Paolo Valenteedaf9422017-08-04 07:35:11 +02003649 bool rot_without_queueing =
3650 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3651 bfqq_sequential_and_IO_bound,
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003652 idling_boosts_thr;
Paolo Valented5be3fe2017-08-04 07:35:10 +02003653
Paolo Valenteedaf9422017-08-04 07:35:11 +02003654 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3655 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3656
Paolo Valented5be3fe2017-08-04 07:35:10 +02003657 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02003658 * The next variable takes into account the cases where idling
3659 * boosts the throughput.
3660 *
Paolo Valentee01eff02017-04-12 18:23:19 +02003661 * The value of the variable is computed considering, first, that
3662 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02003663 * (a) the device is not NCQ-capable and rotational, or
3664 * (b) regardless of the presence of NCQ, the device is rotational and
3665 * the request pattern for bfqq is I/O-bound and sequential, or
3666 * (c) regardless of whether it is rotational, the device is
3667 * not NCQ-capable and the request pattern for bfqq is
3668 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003669 *
3670 * Secondly, and in contrast to the above item (b), idling an
3671 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02003672 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003673 * the throughput in proportion to how fast the device
3674 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02003675 * above conditions (a), (b) or (c) is true, and, in
3676 * particular, happens to be false if bfqd is an NCQ-capable
3677 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003678 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02003679 idling_boosts_thr = rot_without_queueing ||
3680 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3681 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003682
3683 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003684 * The return value of this function is equal to that of
Paolo Valentecfd69712017-04-12 18:23:15 +02003685 * idling_boosts_thr, unless a special case holds. In this
3686 * special case, described below, idling may cause problems to
3687 * weight-raised queues.
3688 *
3689 * When the request pool is saturated (e.g., in the presence
3690 * of write hogs), if the processes associated with
3691 * non-weight-raised queues ask for requests at a lower rate,
3692 * then processes associated with weight-raised queues have a
3693 * higher probability to get a request from the pool
3694 * immediately (or at least soon) when they need one. Thus
3695 * they have a higher probability to actually get a fraction
3696 * of the device throughput proportional to their high
3697 * weight. This is especially true with NCQ-capable drives,
3698 * which enqueue several requests in advance, and further
3699 * reorder internally-queued requests.
3700 *
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003701 * For this reason, we force to false the return value if
3702 * there are weight-raised busy queues. In this case, and if
3703 * bfqq is not weight-raised, this guarantees that the device
3704 * is not idled for bfqq (if, instead, bfqq is weight-raised,
3705 * then idling will be guaranteed by another variable, see
3706 * below). Combined with the timestamping rules of BFQ (see
3707 * [1] for details), this behavior causes bfqq, and hence any
3708 * sync non-weight-raised queue, to get a lower number of
3709 * requests served, and thus to ask for a lower number of
3710 * requests from the request pool, before the busy
3711 * weight-raised queues get served again. This often mitigates
3712 * starvation problems in the presence of heavy write
3713 * workloads and NCQ, thereby guaranteeing a higher
3714 * application and system responsiveness in these hostile
3715 * scenarios.
Paolo Valentecfd69712017-04-12 18:23:15 +02003716 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003717 return idling_boosts_thr &&
Paolo Valentecfd69712017-04-12 18:23:15 +02003718 bfqd->wr_busy_queues == 0;
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003719}
Paolo Valentecfd69712017-04-12 18:23:15 +02003720
Paolo Valente530c4cb2019-01-29 12:06:32 +01003721/*
Paolo Valentefb53ac62019-03-12 09:59:28 +01003722 * There is a case where idling does not have to be performed for
3723 * throughput concerns, but to preserve the throughput share of
3724 * the process associated with bfqq.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003725 *
3726 * To introduce this case, we can note that allowing the drive
3727 * to enqueue more than one request at a time, and hence
3728 * delegating de facto final scheduling decisions to the
3729 * drive's internal scheduler, entails loss of control on the
3730 * actual request service order. In particular, the critical
3731 * situation is when requests from different processes happen
3732 * to be present, at the same time, in the internal queue(s)
3733 * of the drive. In such a situation, the drive, by deciding
3734 * the service order of the internally-queued requests, does
3735 * determine also the actual throughput distribution among
3736 * these processes. But the drive typically has no notion or
3737 * concern about per-process throughput distribution, and
3738 * makes its decisions only on a per-request basis. Therefore,
3739 * the service distribution enforced by the drive's internal
Paolo Valentefb53ac62019-03-12 09:59:28 +01003740 * scheduler is likely to coincide with the desired throughput
3741 * distribution only in a completely symmetric, or favorably
3742 * skewed scenario where:
3743 * (i-a) each of these processes must get the same throughput as
3744 * the others,
3745 * (i-b) in case (i-a) does not hold, it holds that the process
3746 * associated with bfqq must receive a lower or equal
3747 * throughput than any of the other processes;
3748 * (ii) the I/O of each process has the same properties, in
3749 * terms of locality (sequential or random), direction
3750 * (reads or writes), request sizes, greediness
3751 * (from I/O-bound to sporadic), and so on;
3752
3753 * In fact, in such a scenario, the drive tends to treat the requests
3754 * of each process in about the same way as the requests of the
3755 * others, and thus to provide each of these processes with about the
3756 * same throughput. This is exactly the desired throughput
3757 * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3758 * even more convenient distribution for (the process associated with)
3759 * bfqq.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003760 *
Paolo Valentefb53ac62019-03-12 09:59:28 +01003761 * In contrast, in any asymmetric or unfavorable scenario, device
3762 * idling (I/O-dispatch plugging) is certainly needed to guarantee
3763 * that bfqq receives its assigned fraction of the device throughput
3764 * (see [1] for details).
3765 *
3766 * The problem is that idling may significantly reduce throughput with
3767 * certain combinations of types of I/O and devices. An important
3768 * example is sync random I/O on flash storage with command
3769 * queueing. So, unless bfqq falls in cases where idling also boosts
3770 * throughput, it is important to check conditions (i-a), i(-b) and
3771 * (ii) accurately, so as to avoid idling when not strictly needed for
3772 * service guarantees.
3773 *
3774 * Unfortunately, it is extremely difficult to thoroughly check
3775 * condition (ii). And, in case there are active groups, it becomes
3776 * very difficult to check conditions (i-a) and (i-b) too. In fact,
3777 * if there are active groups, then, for conditions (i-a) or (i-b) to
3778 * become false 'indirectly', it is enough that an active group
3779 * contains more active processes or sub-groups than some other active
3780 * group. More precisely, for conditions (i-a) or (i-b) to become
3781 * false because of such a group, it is not even necessary that the
3782 * group is (still) active: it is sufficient that, even if the group
3783 * has become inactive, some of its descendant processes still have
3784 * some request already dispatched but still waiting for
3785 * completion. In fact, requests have still to be guaranteed their
3786 * share of the throughput even after being dispatched. In this
3787 * respect, it is easy to show that, if a group frequently becomes
3788 * inactive while still having in-flight requests, and if, when this
3789 * happens, the group is not considered in the calculation of whether
3790 * the scenario is asymmetric, then the group may fail to be
3791 * guaranteed its fair share of the throughput (basically because
3792 * idling may not be performed for the descendant processes of the
3793 * group, but it had to be). We address this issue with the following
3794 * bi-modal behavior, implemented in the function
3795 * bfq_asymmetric_scenario().
Paolo Valente530c4cb2019-01-29 12:06:32 +01003796 *
3797 * If there are groups with requests waiting for completion
3798 * (as commented above, some of these groups may even be
3799 * already inactive), then the scenario is tagged as
3800 * asymmetric, conservatively, without checking any of the
Paolo Valentefb53ac62019-03-12 09:59:28 +01003801 * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003802 * This behavior matches also the fact that groups are created
3803 * exactly if controlling I/O is a primary concern (to
3804 * preserve bandwidth and latency guarantees).
3805 *
Paolo Valentefb53ac62019-03-12 09:59:28 +01003806 * On the opposite end, if there are no groups with requests waiting
3807 * for completion, then only conditions (i-a) and (i-b) are actually
3808 * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3809 * idling is not performed, regardless of whether condition (ii)
3810 * holds. In other words, only if conditions (i-a) and (i-b) do not
3811 * hold, then idling is allowed, and the device tends to be prevented
3812 * from queueing many requests, possibly of several processes. Since
3813 * there are no groups with requests waiting for completion, then, to
3814 * control conditions (i-a) and (i-b) it is enough to check just
3815 * whether all the queues with requests waiting for completion also
3816 * have the same weight.
Paolo Valente530c4cb2019-01-29 12:06:32 +01003817 *
3818 * Not checking condition (ii) evidently exposes bfqq to the
3819 * risk of getting less throughput than its fair share.
3820 * However, for queues with the same weight, a further
3821 * mechanism, preemption, mitigates or even eliminates this
3822 * problem. And it does so without consequences on overall
3823 * throughput. This mechanism and its benefits are explained
3824 * in the next three paragraphs.
3825 *
3826 * Even if a queue, say Q, is expired when it remains idle, Q
3827 * can still preempt the new in-service queue if the next
3828 * request of Q arrives soon (see the comments on
3829 * bfq_bfqq_update_budg_for_activation). If all queues and
3830 * groups have the same weight, this form of preemption,
3831 * combined with the hole-recovery heuristic described in the
3832 * comments on function bfq_bfqq_update_budg_for_activation,
3833 * are enough to preserve a correct bandwidth distribution in
3834 * the mid term, even without idling. In fact, even if not
3835 * idling allows the internal queues of the device to contain
3836 * many requests, and thus to reorder requests, we can rather
3837 * safely assume that the internal scheduler still preserves a
3838 * minimum of mid-term fairness.
3839 *
3840 * More precisely, this preemption-based, idleless approach
3841 * provides fairness in terms of IOPS, and not sectors per
3842 * second. This can be seen with a simple example. Suppose
3843 * that there are two queues with the same weight, but that
3844 * the first queue receives requests of 8 sectors, while the
3845 * second queue receives requests of 1024 sectors. In
3846 * addition, suppose that each of the two queues contains at
3847 * most one request at a time, which implies that each queue
3848 * always remains idle after it is served. Finally, after
3849 * remaining idle, each queue receives very quickly a new
3850 * request. It follows that the two queues are served
3851 * alternatively, preempting each other if needed. This
3852 * implies that, although both queues have the same weight,
3853 * the queue with large requests receives a service that is
3854 * 1024/8 times as high as the service received by the other
3855 * queue.
3856 *
3857 * The motivation for using preemption instead of idling (for
3858 * queues with the same weight) is that, by not idling,
3859 * service guarantees are preserved (completely or at least in
3860 * part) without minimally sacrificing throughput. And, if
3861 * there is no active group, then the primary expectation for
3862 * this device is probably a high throughput.
3863 *
3864 * We are now left only with explaining the additional
3865 * compound condition that is checked below for deciding
3866 * whether the scenario is asymmetric. To explain this
3867 * compound condition, we need to add that the function
Paolo Valentefb53ac62019-03-12 09:59:28 +01003868 * bfq_asymmetric_scenario checks the weights of only
Paolo Valente530c4cb2019-01-29 12:06:32 +01003869 * non-weight-raised queues, for efficiency reasons (see
3870 * comments on bfq_weights_tree_add()). Then the fact that
3871 * bfqq is weight-raised is checked explicitly here. More
3872 * precisely, the compound condition below takes into account
3873 * also the fact that, even if bfqq is being weight-raised,
3874 * the scenario is still symmetric if all queues with requests
3875 * waiting for completion happen to be
3876 * weight-raised. Actually, we should be even more precise
3877 * here, and differentiate between interactive weight raising
3878 * and soft real-time weight raising.
3879 *
3880 * As a side note, it is worth considering that the above
3881 * device-idling countermeasures may however fail in the
3882 * following unlucky scenario: if idling is (correctly)
3883 * disabled in a time period during which all symmetry
3884 * sub-conditions hold, and hence the device is allowed to
3885 * enqueue many requests, but at some later point in time some
3886 * sub-condition stops to hold, then it may become impossible
3887 * to let requests be served in the desired order until all
3888 * the requests already queued in the device have been served.
3889 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003890static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3891 struct bfq_queue *bfqq)
3892{
Paolo Valente530c4cb2019-01-29 12:06:32 +01003893 return (bfqq->wr_coeff > 1 &&
3894 bfqd->wr_busy_queues <
3895 bfq_tot_busy_queues(bfqd)) ||
Paolo Valentefb53ac62019-03-12 09:59:28 +01003896 bfq_asymmetric_scenario(bfqd, bfqq);
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003897}
3898
3899/*
3900 * For a queue that becomes empty, device idling is allowed only if
3901 * this function returns true for that queue. As a consequence, since
3902 * device idling plays a critical role for both throughput boosting
3903 * and service guarantees, the return value of this function plays a
3904 * critical role as well.
3905 *
3906 * In a nutshell, this function returns true only if idling is
3907 * beneficial for throughput or, even if detrimental for throughput,
3908 * idling is however necessary to preserve service guarantees (low
3909 * latency, desired throughput distribution, ...). In particular, on
3910 * NCQ-capable devices, this function tries to return false, so as to
3911 * help keep the drives' internal queues full, whenever this helps the
3912 * device boost the throughput without causing any service-guarantee
3913 * issue.
3914 *
3915 * Most of the issues taken into account to get the return value of
3916 * this function are not trivial. We discuss these issues in the two
3917 * functions providing the main pieces of information needed by this
3918 * function.
3919 */
3920static bool bfq_better_to_idle(struct bfq_queue *bfqq)
3921{
3922 struct bfq_data *bfqd = bfqq->bfqd;
3923 bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
3924
3925 if (unlikely(bfqd->strict_guarantees))
3926 return true;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003927
3928 /*
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003929 * Idling is performed only if slice_idle > 0. In addition, we
3930 * do not idle if
3931 * (a) bfqq is async
3932 * (b) bfqq is in the idle io prio class: in this case we do
3933 * not idle because we want to minimize the bandwidth that
3934 * queues in this class can steal to higher-priority queues
3935 */
3936 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3937 bfq_class_idle(bfqq))
3938 return false;
3939
3940 idling_boosts_thr_with_no_issue =
3941 idling_boosts_thr_without_issues(bfqd, bfqq);
3942
3943 idling_needed_for_service_guar =
3944 idling_needed_for_service_guarantees(bfqd, bfqq);
3945
3946 /*
3947 * We have now the two components we need to compute the
Paolo Valented5be3fe2017-08-04 07:35:10 +02003948 * return value of the function, which is true only if idling
3949 * either boosts the throughput (without issues), or is
3950 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02003951 */
Paolo Valente05c2f5c2019-01-29 12:06:30 +01003952 return idling_boosts_thr_with_no_issue ||
3953 idling_needed_for_service_guar;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003954}
3955
3956/*
Paolo Valente277a4a92018-06-25 21:55:37 +02003957 * If the in-service queue is empty but the function bfq_better_to_idle
Paolo Valenteaee69d72017-04-19 08:29:02 -06003958 * returns true, then:
3959 * 1) the queue must remain in service and cannot be expired, and
3960 * 2) the device must be idled to wait for the possible arrival of a new
3961 * request for the queue.
Paolo Valente277a4a92018-06-25 21:55:37 +02003962 * See the comments on the function bfq_better_to_idle for the reasons
Paolo Valenteaee69d72017-04-19 08:29:02 -06003963 * why performing device idling is the best choice to boost the throughput
Paolo Valente277a4a92018-06-25 21:55:37 +02003964 * and preserve service guarantees when bfq_better_to_idle itself
Paolo Valenteaee69d72017-04-19 08:29:02 -06003965 * returns true.
3966 */
3967static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3968{
Paolo Valente277a4a92018-06-25 21:55:37 +02003969 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003970}
3971
Paolo Valente2341d6622019-03-12 09:59:29 +01003972/*
3973 * This function chooses the queue from which to pick the next extra
3974 * I/O request to inject, if it finds a compatible queue. See the
3975 * comments on bfq_update_inject_limit() for details on the injection
3976 * mechanism, and for the definitions of the quantities mentioned
3977 * below.
3978 */
3979static struct bfq_queue *
3980bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
Paolo Valented0edc242018-09-14 16:23:08 +02003981{
Paolo Valente2341d6622019-03-12 09:59:29 +01003982 struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
3983 unsigned int limit = in_serv_bfqq->inject_limit;
3984 /*
3985 * If
3986 * - bfqq is not weight-raised and therefore does not carry
3987 * time-critical I/O,
3988 * or
3989 * - regardless of whether bfqq is weight-raised, bfqq has
3990 * however a long think time, during which it can absorb the
3991 * effect of an appropriate number of extra I/O requests
3992 * from other queues (see bfq_update_inject_limit for
3993 * details on the computation of this number);
3994 * then injection can be performed without restrictions.
3995 */
3996 bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
3997 !bfq_bfqq_has_short_ttime(in_serv_bfqq);
Paolo Valented0edc242018-09-14 16:23:08 +02003998
3999 /*
Paolo Valente2341d6622019-03-12 09:59:29 +01004000 * If
4001 * - the baseline total service time could not be sampled yet,
4002 * so the inject limit happens to be still 0, and
4003 * - a lot of time has elapsed since the plugging of I/O
4004 * dispatching started, so drive speed is being wasted
4005 * significantly;
4006 * then temporarily raise inject limit to one request.
4007 */
4008 if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4009 bfq_bfqq_wait_request(in_serv_bfqq) &&
4010 time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4011 bfqd->bfq_slice_idle)
4012 )
4013 limit = 1;
4014
4015 if (bfqd->rq_in_driver >= limit)
4016 return NULL;
4017
4018 /*
4019 * Linear search of the source queue for injection; but, with
4020 * a high probability, very few steps are needed to find a
4021 * candidate queue, i.e., a queue with enough budget left for
4022 * its next request. In fact:
Paolo Valented0edc242018-09-14 16:23:08 +02004023 * - BFQ dynamically updates the budget of every queue so as
4024 * to accommodate the expected backlog of the queue;
4025 * - if a queue gets all its requests dispatched as injected
4026 * service, then the queue is removed from the active list
Paolo Valente2341d6622019-03-12 09:59:29 +01004027 * (and re-added only if it gets new requests, but then it
4028 * is assigned again enough budget for its new backlog).
Paolo Valented0edc242018-09-14 16:23:08 +02004029 */
4030 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4031 if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
Paolo Valente2341d6622019-03-12 09:59:29 +01004032 (in_serv_always_inject || bfqq->wr_coeff > 1) &&
Paolo Valented0edc242018-09-14 16:23:08 +02004033 bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
Paolo Valente2341d6622019-03-12 09:59:29 +01004034 bfq_bfqq_budget_left(bfqq)) {
4035 /*
4036 * Allow for only one large in-flight request
4037 * on non-rotational devices, for the
4038 * following reason. On non-rotationl drives,
4039 * large requests take much longer than
4040 * smaller requests to be served. In addition,
4041 * the drive prefers to serve large requests
4042 * w.r.t. to small ones, if it can choose. So,
4043 * having more than one large requests queued
4044 * in the drive may easily make the next first
4045 * request of the in-service queue wait for so
4046 * long to break bfqq's service guarantees. On
4047 * the bright side, large requests let the
4048 * drive reach a very high throughput, even if
4049 * there is only one in-flight large request
4050 * at a time.
4051 */
4052 if (blk_queue_nonrot(bfqd->queue) &&
4053 blk_rq_sectors(bfqq->next_rq) >=
4054 BFQQ_SECT_THR_NONROT)
4055 limit = min_t(unsigned int, 1, limit);
4056 else
4057 limit = in_serv_bfqq->inject_limit;
4058
4059 if (bfqd->rq_in_driver < limit) {
4060 bfqd->rqs_injected = true;
4061 return bfqq;
4062 }
4063 }
Paolo Valented0edc242018-09-14 16:23:08 +02004064
4065 return NULL;
4066}
4067
Paolo Valenteaee69d72017-04-19 08:29:02 -06004068/*
4069 * Select a queue for service. If we have a current queue in service,
4070 * check whether to continue servicing it, or retrieve and set a new one.
4071 */
4072static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4073{
4074 struct bfq_queue *bfqq;
4075 struct request *next_rq;
4076 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4077
4078 bfqq = bfqd->in_service_queue;
4079 if (!bfqq)
4080 goto new_queue;
4081
4082 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4083
Paolo Valente4420b092018-06-25 21:55:35 +02004084 /*
4085 * Do not expire bfqq for budget timeout if bfqq may be about
4086 * to enjoy device idling. The reason why, in this case, we
4087 * prevent bfqq from expiring is the same as in the comments
4088 * on the case where bfq_bfqq_must_idle() returns true, in
4089 * bfq_completed_request().
4090 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004091 if (bfq_may_expire_for_budg_timeout(bfqq) &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004092 !bfq_bfqq_must_idle(bfqq))
4093 goto expire;
4094
4095check_queue:
4096 /*
4097 * This loop is rarely executed more than once. Even when it
4098 * happens, it is much more convenient to re-execute this loop
4099 * than to return NULL and trigger a new dispatch to get a
4100 * request served.
4101 */
4102 next_rq = bfqq->next_rq;
4103 /*
4104 * If bfqq has requests queued and it has enough budget left to
4105 * serve them, keep the queue, otherwise expire it.
4106 */
4107 if (next_rq) {
4108 if (bfq_serv_to_charge(next_rq, bfqq) >
4109 bfq_bfqq_budget_left(bfqq)) {
4110 /*
4111 * Expire the queue for budget exhaustion,
4112 * which makes sure that the next budget is
4113 * enough to serve the next request, even if
4114 * it comes from the fifo expired path.
4115 */
4116 reason = BFQQE_BUDGET_EXHAUSTED;
4117 goto expire;
4118 } else {
4119 /*
4120 * The idle timer may be pending because we may
4121 * not disable disk idling even when a new request
4122 * arrives.
4123 */
4124 if (bfq_bfqq_wait_request(bfqq)) {
4125 /*
4126 * If we get here: 1) at least a new request
4127 * has arrived but we have not disabled the
4128 * timer because the request was too small,
4129 * 2) then the block layer has unplugged
4130 * the device, causing the dispatch to be
4131 * invoked.
4132 *
4133 * Since the device is unplugged, now the
4134 * requests are probably large enough to
4135 * provide a reasonable throughput.
4136 * So we disable idling.
4137 */
4138 bfq_clear_bfqq_wait_request(bfqq);
4139 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4140 }
4141 goto keep_queue;
4142 }
4143 }
4144
4145 /*
4146 * No requests pending. However, if the in-service queue is idling
4147 * for a new request, or has requests waiting for a completion and
4148 * may idle after their completion, then keep it anyway.
Paolo Valented0edc242018-09-14 16:23:08 +02004149 *
Paolo Valente2341d6622019-03-12 09:59:29 +01004150 * Yet, inject service from other queues if it boosts
4151 * throughput and is possible.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004152 */
4153 if (bfq_bfqq_wait_request(bfqq) ||
Paolo Valente277a4a92018-06-25 21:55:37 +02004154 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
Paolo Valente2341d6622019-03-12 09:59:29 +01004155 struct bfq_queue *async_bfqq =
4156 bfqq->bic && bfqq->bic->bfqq[0] &&
4157 bfq_bfqq_busy(bfqq->bic->bfqq[0]) ?
4158 bfqq->bic->bfqq[0] : NULL;
4159
4160 /*
4161 * If the process associated with bfqq has also async
4162 * I/O pending, then inject it
4163 * unconditionally. Injecting I/O from the same
4164 * process can cause no harm to the process. On the
4165 * contrary, it can only increase bandwidth and reduce
4166 * latency for the process.
4167 */
4168 if (async_bfqq &&
4169 icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4170 bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4171 bfq_bfqq_budget_left(async_bfqq))
4172 bfqq = bfqq->bic->bfqq[0];
4173 else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4174 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4175 !bfq_bfqq_has_short_ttime(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004176 bfqq = bfq_choose_bfqq_for_injection(bfqd);
4177 else
4178 bfqq = NULL;
4179
Paolo Valenteaee69d72017-04-19 08:29:02 -06004180 goto keep_queue;
4181 }
4182
4183 reason = BFQQE_NO_MORE_REQUESTS;
4184expire:
4185 bfq_bfqq_expire(bfqd, bfqq, false, reason);
4186new_queue:
4187 bfqq = bfq_set_in_service_queue(bfqd);
4188 if (bfqq) {
4189 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4190 goto check_queue;
4191 }
4192keep_queue:
4193 if (bfqq)
4194 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4195 else
4196 bfq_log(bfqd, "select_queue: no queue returned");
4197
4198 return bfqq;
4199}
4200
Paolo Valente44e44a12017-04-12 18:23:12 +02004201static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4202{
4203 struct bfq_entity *entity = &bfqq->entity;
4204
4205 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4206 bfq_log_bfqq(bfqd, bfqq,
4207 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4208 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4209 jiffies_to_msecs(bfqq->wr_cur_max_time),
4210 bfqq->wr_coeff,
4211 bfqq->entity.weight, bfqq->entity.orig_weight);
4212
4213 if (entity->prio_changed)
4214 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4215
4216 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004217 * If the queue was activated in a burst, or too much
4218 * time has elapsed from the beginning of this
4219 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02004220 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004221 if (bfq_bfqq_in_large_burst(bfqq))
4222 bfq_bfqq_end_wr(bfqq);
4223 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4224 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02004225 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4226 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004227 bfq_wr_duration(bfqd)))
Paolo Valente77b7dce2017-04-12 18:23:13 +02004228 bfq_bfqq_end_wr(bfqq);
4229 else {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02004230 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02004231 bfqq->entity.prio_changed = 1;
4232 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004233 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01004234 if (bfqq->wr_coeff > 1 &&
4235 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4236 bfqq->service_from_wr > max_service_from_wr) {
4237 /* see comments on max_service_from_wr */
4238 bfq_bfqq_end_wr(bfqq);
4239 }
Paolo Valente44e44a12017-04-12 18:23:12 +02004240 }
Paolo Valente431b17f2017-07-03 10:00:10 +02004241 /*
4242 * To improve latency (for this or other queues), immediately
4243 * update weight both if it must be raised and if it must be
4244 * lowered. Since, entity may be on some active tree here, and
4245 * might have a pending change of its ioprio class, invoke
4246 * next function with the last parameter unset (see the
4247 * comments on the function).
4248 */
Paolo Valente44e44a12017-04-12 18:23:12 +02004249 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02004250 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4251 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02004252}
4253
Paolo Valenteaee69d72017-04-19 08:29:02 -06004254/*
4255 * Dispatch next request from bfqq.
4256 */
4257static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4258 struct bfq_queue *bfqq)
4259{
4260 struct request *rq = bfqq->next_rq;
4261 unsigned long service_to_charge;
4262
4263 service_to_charge = bfq_serv_to_charge(rq, bfqq);
4264
4265 bfq_bfqq_served(bfqq, service_to_charge);
4266
Paolo Valente2341d6622019-03-12 09:59:29 +01004267 if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4268 bfqd->wait_dispatch = false;
4269 bfqd->waited_rq = rq;
4270 }
4271
Paolo Valenteaee69d72017-04-19 08:29:02 -06004272 bfq_dispatch_remove(bfqd->queue, rq);
4273
Paolo Valente2341d6622019-03-12 09:59:29 +01004274 if (bfqq != bfqd->in_service_queue)
Paolo Valented0edc242018-09-14 16:23:08 +02004275 goto return_rq;
Paolo Valented0edc242018-09-14 16:23:08 +02004276
Paolo Valente44e44a12017-04-12 18:23:12 +02004277 /*
4278 * If weight raising has to terminate for bfqq, then next
4279 * function causes an immediate update of bfqq's weight,
4280 * without waiting for next activation. As a consequence, on
4281 * expiration, bfqq will be timestamped as if has never been
4282 * weight-raised during this service slot, even if it has
4283 * received part or even most of the service as a
4284 * weight-raised queue. This inflates bfqq's timestamps, which
4285 * is beneficial, as bfqq is then more willing to leave the
4286 * device immediately to possible other weight-raised queues.
4287 */
4288 bfq_update_wr_data(bfqd, bfqq);
4289
Paolo Valenteaee69d72017-04-19 08:29:02 -06004290 /*
4291 * Expire bfqq, pretending that its budget expired, if bfqq
4292 * belongs to CLASS_IDLE and other queues are waiting for
4293 * service.
4294 */
Paolo Valente73d58112019-01-29 12:06:29 +01004295 if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
Paolo Valented0edc242018-09-14 16:23:08 +02004296 goto return_rq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004297
Paolo Valenteaee69d72017-04-19 08:29:02 -06004298 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
Paolo Valented0edc242018-09-14 16:23:08 +02004299
4300return_rq:
Paolo Valenteaee69d72017-04-19 08:29:02 -06004301 return rq;
4302}
4303
4304static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4305{
4306 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4307
4308 /*
4309 * Avoiding lock: a race on bfqd->busy_queues should cause at
4310 * most a call to dispatch for nothing
4311 */
4312 return !list_empty_careful(&bfqd->dispatch) ||
Paolo Valente73d58112019-01-29 12:06:29 +01004313 bfq_tot_busy_queues(bfqd) > 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004314}
4315
4316static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4317{
4318 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4319 struct request *rq = NULL;
4320 struct bfq_queue *bfqq = NULL;
4321
4322 if (!list_empty(&bfqd->dispatch)) {
4323 rq = list_first_entry(&bfqd->dispatch, struct request,
4324 queuelist);
4325 list_del_init(&rq->queuelist);
4326
4327 bfqq = RQ_BFQQ(rq);
4328
4329 if (bfqq) {
4330 /*
4331 * Increment counters here, because this
4332 * dispatch does not follow the standard
4333 * dispatch flow (where counters are
4334 * incremented)
4335 */
4336 bfqq->dispatched++;
4337
4338 goto inc_in_driver_start_rq;
4339 }
4340
4341 /*
Paolo Valentea7877392018-02-07 22:19:20 +01004342 * We exploit the bfq_finish_requeue_request hook to
4343 * decrement rq_in_driver, but
4344 * bfq_finish_requeue_request will not be invoked on
4345 * this request. So, to avoid unbalance, just start
4346 * this request, without incrementing rq_in_driver. As
4347 * a negative consequence, rq_in_driver is deceptively
4348 * lower than it should be while this request is in
4349 * service. This may cause bfq_schedule_dispatch to be
4350 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004351 *
4352 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01004353 * bfq_finish_requeue_request hook, if defined, is
4354 * probably invoked also on this request. So, by
4355 * exploiting this hook, we could 1) increment
4356 * rq_in_driver here, and 2) decrement it in
4357 * bfq_finish_requeue_request. Such a solution would
4358 * let the value of the counter be always accurate,
4359 * but it would entail using an extra interface
4360 * function. This cost seems higher than the benefit,
4361 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06004362 * requests very low.
4363 */
4364 goto start_rq;
4365 }
4366
Paolo Valente73d58112019-01-29 12:06:29 +01004367 bfq_log(bfqd, "dispatch requests: %d busy queues",
4368 bfq_tot_busy_queues(bfqd));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004369
Paolo Valente73d58112019-01-29 12:06:29 +01004370 if (bfq_tot_busy_queues(bfqd) == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004371 goto exit;
4372
4373 /*
4374 * Force device to serve one request at a time if
4375 * strict_guarantees is true. Forcing this service scheme is
4376 * currently the ONLY way to guarantee that the request
4377 * service order enforced by the scheduler is respected by a
4378 * queueing device. Otherwise the device is free even to make
4379 * some unlucky request wait for as long as the device
4380 * wishes.
4381 *
4382 * Of course, serving one request at at time may cause loss of
4383 * throughput.
4384 */
4385 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4386 goto exit;
4387
4388 bfqq = bfq_select_queue(bfqd);
4389 if (!bfqq)
4390 goto exit;
4391
4392 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4393
4394 if (rq) {
4395inc_in_driver_start_rq:
4396 bfqd->rq_in_driver++;
4397start_rq:
4398 rq->rq_flags |= RQF_STARTED;
4399 }
4400exit:
4401 return rq;
4402}
4403
Paolo Valente9b25bd02017-12-04 11:42:05 +01004404#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4405static void bfq_update_dispatch_stats(struct request_queue *q,
4406 struct request *rq,
4407 struct bfq_queue *in_serv_queue,
4408 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004409{
Paolo Valente9b25bd02017-12-04 11:42:05 +01004410 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004411
Paolo Valente24bfd192017-11-13 07:34:09 +01004412 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01004413 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01004414
4415 /*
4416 * rq and bfqq are guaranteed to exist until this function
4417 * ends, for the following reasons. First, rq can be
4418 * dispatched to the device, and then can be completed and
4419 * freed, only after this function ends. Second, rq cannot be
4420 * merged (and thus freed because of a merge) any longer,
4421 * because it has already started. Thus rq cannot be freed
4422 * before this function ends, and, since rq has a reference to
4423 * bfqq, the same guarantee holds for bfqq too.
4424 *
4425 * In addition, the following queue lock guarantees that
4426 * bfqq_group(bfqq) exists as well.
4427 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004428 spin_lock_irq(&q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004429 if (idle_timer_disabled)
4430 /*
4431 * Since the idle timer has been disabled,
4432 * in_serv_queue contained some request when
4433 * __bfq_dispatch_request was invoked above, which
4434 * implies that rq was picked exactly from
4435 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4436 * therefore guaranteed to exist because of the above
4437 * arguments.
4438 */
4439 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4440 if (bfqq) {
4441 struct bfq_group *bfqg = bfqq_group(bfqq);
4442
4443 bfqg_stats_update_avg_queue_size(bfqg);
4444 bfqg_stats_set_start_empty_time(bfqg);
4445 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4446 }
Christoph Hellwig0d945c12018-11-15 12:17:28 -07004447 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01004448}
4449#else
4450static inline void bfq_update_dispatch_stats(struct request_queue *q,
4451 struct request *rq,
4452 struct bfq_queue *in_serv_queue,
4453 bool idle_timer_disabled) {}
Paolo Valente24bfd192017-11-13 07:34:09 +01004454#endif
4455
Paolo Valente9b25bd02017-12-04 11:42:05 +01004456static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4457{
4458 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4459 struct request *rq;
4460 struct bfq_queue *in_serv_queue;
4461 bool waiting_rq, idle_timer_disabled;
4462
4463 spin_lock_irq(&bfqd->lock);
4464
4465 in_serv_queue = bfqd->in_service_queue;
4466 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4467
4468 rq = __bfq_dispatch_request(hctx);
4469
4470 idle_timer_disabled =
4471 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4472
4473 spin_unlock_irq(&bfqd->lock);
4474
4475 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
4476 idle_timer_disabled);
4477
Paolo Valenteaee69d72017-04-19 08:29:02 -06004478 return rq;
4479}
4480
4481/*
4482 * Task holds one reference to the queue, dropped when task exits. Each rq
4483 * in-flight on this queue also holds a reference, dropped when rq is freed.
4484 *
4485 * Scheduler lock must be held here. Recall not to use bfqq after calling
4486 * this function on it.
4487 */
Paolo Valenteea25da42017-04-19 08:48:24 -06004488void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004489{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004490#ifdef CONFIG_BFQ_GROUP_IOSCHED
4491 struct bfq_group *bfqg = bfqq_group(bfqq);
4492#endif
4493
Paolo Valenteaee69d72017-04-19 08:29:02 -06004494 if (bfqq->bfqd)
4495 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4496 bfqq, bfqq->ref);
4497
4498 bfqq->ref--;
4499 if (bfqq->ref)
4500 return;
4501
Paolo Valente99fead82017-10-09 13:11:23 +02004502 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004503 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02004504 /*
4505 * Decrement also burst size after the removal, if the
4506 * process associated with bfqq is exiting, and thus
4507 * does not contribute to the burst any longer. This
4508 * decrement helps filter out false positives of large
4509 * bursts, when some short-lived process (often due to
4510 * the execution of commands by some service) happens
4511 * to start and exit while a complex application is
4512 * starting, and thus spawning several processes that
4513 * do I/O (and that *must not* be treated as a large
4514 * burst, see comments on bfq_handle_burst).
4515 *
4516 * In particular, the decrement is performed only if:
4517 * 1) bfqq is not a merged queue, because, if it is,
4518 * then this free of bfqq is not triggered by the exit
4519 * of the process bfqq is associated with, but exactly
4520 * by the fact that bfqq has just been merged.
4521 * 2) burst_size is greater than 0, to handle
4522 * unbalanced decrements. Unbalanced decrements may
4523 * happen in te following case: bfqq is inserted into
4524 * the current burst list--without incrementing
4525 * bust_size--because of a split, but the current
4526 * burst list is not the burst list bfqq belonged to
4527 * (see comments on the case of a split in
4528 * bfq_set_request).
4529 */
4530 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4531 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02004532 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004533
Paolo Valenteaee69d72017-04-19 08:29:02 -06004534 kmem_cache_free(bfq_pool, bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004535#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente8f9bebc2017-06-05 10:11:15 +02004536 bfqg_and_blkg_put(bfqg);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004537#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06004538}
4539
Arianna Avanzini36eca892017-04-12 18:23:16 +02004540static void bfq_put_cooperator(struct bfq_queue *bfqq)
4541{
4542 struct bfq_queue *__bfqq, *next;
4543
4544 /*
4545 * If this queue was scheduled to merge with another queue, be
4546 * sure to drop the reference taken on that queue (and others in
4547 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4548 */
4549 __bfqq = bfqq->new_bfqq;
4550 while (__bfqq) {
4551 if (__bfqq == bfqq)
4552 break;
4553 next = __bfqq->new_bfqq;
4554 bfq_put_queue(__bfqq);
4555 __bfqq = next;
4556 }
4557}
4558
Paolo Valenteaee69d72017-04-19 08:29:02 -06004559static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4560{
4561 if (bfqq == bfqd->in_service_queue) {
4562 __bfq_bfqq_expire(bfqd, bfqq);
4563 bfq_schedule_dispatch(bfqd);
4564 }
4565
4566 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4567
Arianna Avanzini36eca892017-04-12 18:23:16 +02004568 bfq_put_cooperator(bfqq);
4569
Paolo Valenteaee69d72017-04-19 08:29:02 -06004570 bfq_put_queue(bfqq); /* release process reference */
4571}
4572
4573static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4574{
4575 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4576 struct bfq_data *bfqd;
4577
4578 if (bfqq)
4579 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4580
4581 if (bfqq && bfqd) {
4582 unsigned long flags;
4583
4584 spin_lock_irqsave(&bfqd->lock, flags);
4585 bfq_exit_bfqq(bfqd, bfqq);
4586 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004587 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004588 }
4589}
4590
4591static void bfq_exit_icq(struct io_cq *icq)
4592{
4593 struct bfq_io_cq *bic = icq_to_bic(icq);
4594
4595 bfq_exit_icq_bfqq(bic, true);
4596 bfq_exit_icq_bfqq(bic, false);
4597}
4598
4599/*
4600 * Update the entity prio values; note that the new values will not
4601 * be used until the next (re)activation.
4602 */
4603static void
4604bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4605{
4606 struct task_struct *tsk = current;
4607 int ioprio_class;
4608 struct bfq_data *bfqd = bfqq->bfqd;
4609
4610 if (!bfqd)
4611 return;
4612
4613 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4614 switch (ioprio_class) {
4615 default:
4616 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4617 "bfq: bad prio class %d\n", ioprio_class);
Bart Van Asschefa393d12017-08-30 11:42:07 -07004618 /* fall through */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004619 case IOPRIO_CLASS_NONE:
4620 /*
4621 * No prio set, inherit CPU scheduling settings.
4622 */
4623 bfqq->new_ioprio = task_nice_ioprio(tsk);
4624 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4625 break;
4626 case IOPRIO_CLASS_RT:
4627 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4628 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4629 break;
4630 case IOPRIO_CLASS_BE:
4631 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4632 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4633 break;
4634 case IOPRIO_CLASS_IDLE:
4635 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4636 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004637 break;
4638 }
4639
4640 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4641 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4642 bfqq->new_ioprio);
4643 bfqq->new_ioprio = IOPRIO_BE_NR;
4644 }
4645
4646 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4647 bfqq->entity.prio_changed = 1;
4648}
4649
Paolo Valenteea25da42017-04-19 08:48:24 -06004650static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4651 struct bio *bio, bool is_sync,
4652 struct bfq_io_cq *bic);
4653
Paolo Valenteaee69d72017-04-19 08:29:02 -06004654static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4655{
4656 struct bfq_data *bfqd = bic_to_bfqd(bic);
4657 struct bfq_queue *bfqq;
4658 int ioprio = bic->icq.ioc->ioprio;
4659
4660 /*
4661 * This condition may trigger on a newly created bic, be sure to
4662 * drop the lock before returning.
4663 */
4664 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4665 return;
4666
4667 bic->ioprio = ioprio;
4668
4669 bfqq = bic_to_bfqq(bic, false);
4670 if (bfqq) {
4671 /* release process reference on this queue */
4672 bfq_put_queue(bfqq);
4673 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4674 bic_set_bfqq(bic, bfqq, false);
4675 }
4676
4677 bfqq = bic_to_bfqq(bic, true);
4678 if (bfqq)
4679 bfq_set_next_ioprio_data(bfqq, bic);
4680}
4681
4682static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4683 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4684{
4685 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4686 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004687 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004688
4689 bfqq->ref = 0;
4690 bfqq->bfqd = bfqd;
4691
4692 if (bic)
4693 bfq_set_next_ioprio_data(bfqq, bic);
4694
4695 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02004696 /*
4697 * No need to mark as has_short_ttime if in
4698 * idle_class, because no device idling is performed
4699 * for queues in idle class
4700 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004701 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02004702 /* tentatively mark as has_short_ttime */
4703 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004704 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004705 bfq_mark_bfqq_just_created(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004706 } else
4707 bfq_clear_bfqq_sync(bfqq);
4708
4709 /* set end request to minus infinity from now */
4710 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4711
4712 bfq_mark_bfqq_IO_bound(bfqq);
4713
4714 bfqq->pid = pid;
4715
4716 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02004717 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004718 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06004719
Paolo Valente44e44a12017-04-12 18:23:12 +02004720 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004721 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02004722 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02004723 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02004724
4725 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01004726 * To not forget the possibly high bandwidth consumed by a
4727 * process/queue in the recent past,
4728 * bfq_bfqq_softrt_next_start() returns a value at least equal
4729 * to the current value of bfqq->soft_rt_next_start (see
4730 * comments on bfq_bfqq_softrt_next_start). Set
4731 * soft_rt_next_start to now, to mean that bfqq has consumed
4732 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004733 */
Paolo Valentea34b0242017-12-15 07:23:12 +01004734 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02004735
Paolo Valenteaee69d72017-04-19 08:29:02 -06004736 /* first request is almost certainly seeky */
4737 bfqq->seek_history = 1;
4738}
4739
4740static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004741 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004742 int ioprio_class, int ioprio)
4743{
4744 switch (ioprio_class) {
4745 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004746 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004747 case IOPRIO_CLASS_NONE:
4748 ioprio = IOPRIO_NORM;
4749 /* fall through */
4750 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004751 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004752 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004753 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004754 default:
4755 return NULL;
4756 }
4757}
4758
4759static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4760 struct bio *bio, bool is_sync,
4761 struct bfq_io_cq *bic)
4762{
4763 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4764 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4765 struct bfq_queue **async_bfqq = NULL;
4766 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004767 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004768
4769 rcu_read_lock();
4770
Dennis Zhou0fe061b2018-12-05 12:10:26 -05004771 bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004772 if (!bfqg) {
4773 bfqq = &bfqd->oom_bfqq;
4774 goto out;
4775 }
4776
Paolo Valenteaee69d72017-04-19 08:29:02 -06004777 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004778 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004779 ioprio);
4780 bfqq = *async_bfqq;
4781 if (bfqq)
4782 goto out;
4783 }
4784
4785 bfqq = kmem_cache_alloc_node(bfq_pool,
4786 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4787 bfqd->queue->node);
4788
4789 if (bfqq) {
4790 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4791 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004792 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004793 bfq_log_bfqq(bfqd, bfqq, "allocated");
4794 } else {
4795 bfqq = &bfqd->oom_bfqq;
4796 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4797 goto out;
4798 }
4799
4800 /*
4801 * Pin the queue now that it's allocated, scheduler exit will
4802 * prune it.
4803 */
4804 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004805 bfqq->ref++; /*
4806 * Extra group reference, w.r.t. sync
4807 * queue. This extra reference is removed
4808 * only if bfqq->bfqg disappears, to
4809 * guarantee that this queue is not freed
4810 * until its group goes away.
4811 */
4812 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06004813 bfqq, bfqq->ref);
4814 *async_bfqq = bfqq;
4815 }
4816
4817out:
4818 bfqq->ref++; /* get a process reference to this queue */
4819 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4820 rcu_read_unlock();
4821 return bfqq;
4822}
4823
4824static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4825 struct bfq_queue *bfqq)
4826{
4827 struct bfq_ttime *ttime = &bfqq->ttime;
4828 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4829
4830 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4831
4832 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4833 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4834 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4835 ttime->ttime_samples);
4836}
4837
4838static void
4839bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4840 struct request *rq)
4841{
Paolo Valenteaee69d72017-04-19 08:29:02 -06004842 bfqq->seek_history <<= 1;
Paolo Valented87447d2019-01-29 12:06:33 +01004843 bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
Paolo Valente7074f072019-03-12 09:59:31 +01004844
4845 if (bfqq->wr_coeff > 1 &&
4846 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
4847 BFQQ_TOTALLY_SEEKY(bfqq))
4848 bfq_bfqq_end_wr(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004849}
4850
Paolo Valented5be3fe2017-08-04 07:35:10 +02004851static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4852 struct bfq_queue *bfqq,
4853 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004854{
Paolo Valented5be3fe2017-08-04 07:35:10 +02004855 bool has_short_ttime = true;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004856
Paolo Valented5be3fe2017-08-04 07:35:10 +02004857 /*
4858 * No need to update has_short_ttime if bfqq is async or in
4859 * idle io prio class, or if bfq_slice_idle is zero, because
4860 * no device idling is performed for bfqq in this case.
4861 */
4862 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4863 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004864 return;
4865
Arianna Avanzini36eca892017-04-12 18:23:16 +02004866 /* Idle window just restored, statistics are meaningless. */
4867 if (time_is_after_eq_jiffies(bfqq->split_time +
4868 bfqd->bfq_wr_min_idle_time))
4869 return;
4870
Paolo Valented5be3fe2017-08-04 07:35:10 +02004871 /* Think time is infinite if no process is linked to
4872 * bfqq. Otherwise check average think time to
4873 * decide whether to mark as has_short_ttime
4874 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004875 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02004876 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4877 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4878 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004879
Paolo Valented5be3fe2017-08-04 07:35:10 +02004880 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4881 has_short_ttime);
4882
4883 if (has_short_ttime)
4884 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004885 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02004886 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004887}
4888
4889/*
4890 * Called when a new fs request (rq) is added to bfqq. Check if there's
4891 * something we should do about it.
4892 */
4893static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4894 struct request *rq)
4895{
4896 struct bfq_io_cq *bic = RQ_BIC(rq);
4897
4898 if (rq->cmd_flags & REQ_META)
4899 bfqq->meta_pending++;
4900
4901 bfq_update_io_thinktime(bfqd, bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02004902 bfq_update_has_short_ttime(bfqd, bfqq, bic);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004903 bfq_update_io_seektime(bfqd, bfqq, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004904
4905 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02004906 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4907 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004908
4909 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4910
4911 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4912 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4913 blk_rq_sectors(rq) < 32;
4914 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4915
4916 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004917 * There is just this request queued: if
4918 * - the request is small, and
4919 * - we are idling to boost throughput, and
4920 * - the queue is not to be expired,
4921 * then just exit.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004922 *
4923 * In this way, if the device is being idled to wait
4924 * for a new request from the in-service queue, we
4925 * avoid unplugging the device and committing the
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004926 * device to serve just a small request. In contrast
4927 * we wait for the block layer to decide when to
4928 * unplug the device: hopefully, new requests will be
4929 * merged to this one quickly, then the device will be
4930 * unplugged and larger requests will be dispatched.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004931 */
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004932 if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
4933 !budget_timeout)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004934 return;
4935
4936 /*
Paolo Valenteac8b0cb2019-01-29 12:06:31 +01004937 * A large enough request arrived, or idling is being
4938 * performed to preserve service guarantees, or
4939 * finally the queue is to be expired: in all these
4940 * cases disk idling is to be stopped, so clear
4941 * wait_request flag and reset timer.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004942 */
4943 bfq_clear_bfqq_wait_request(bfqq);
4944 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4945
4946 /*
4947 * The queue is not empty, because a new request just
4948 * arrived. Hence we can safely expire the queue, in
4949 * case of budget timeout, without risking that the
4950 * timestamps of the queue are not updated correctly.
4951 * See [1] for more details.
4952 */
4953 if (budget_timeout)
4954 bfq_bfqq_expire(bfqd, bfqq, false,
4955 BFQQE_BUDGET_TIMEOUT);
4956 }
4957}
4958
Paolo Valente24bfd192017-11-13 07:34:09 +01004959/* returns true if it causes the idle timer to be disabled */
4960static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004961{
Arianna Avanzini36eca892017-04-12 18:23:16 +02004962 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4963 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
Paolo Valente24bfd192017-11-13 07:34:09 +01004964 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004965
4966 if (new_bfqq) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02004967 /*
4968 * Release the request's reference to the old bfqq
4969 * and make sure one is taken to the shared queue.
4970 */
4971 new_bfqq->allocated++;
4972 bfqq->allocated--;
4973 new_bfqq->ref++;
4974 /*
4975 * If the bic associated with the process
4976 * issuing this request still points to bfqq
4977 * (and thus has not been already redirected
4978 * to new_bfqq or even some other bfq_queue),
4979 * then complete the merge and redirect it to
4980 * new_bfqq.
4981 */
4982 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4983 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4984 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02004985
4986 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02004987 /*
4988 * rq is about to be enqueued into new_bfqq,
4989 * release rq reference on bfqq
4990 */
4991 bfq_put_queue(bfqq);
4992 rq->elv.priv[1] = new_bfqq;
4993 bfqq = new_bfqq;
4994 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06004995
Paolo Valente24bfd192017-11-13 07:34:09 +01004996 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004997 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004998 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004999
5000 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5001 list_add_tail(&rq->queuelist, &bfqq->fifo);
5002
5003 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01005004
5005 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005006}
5007
Paolo Valente9b25bd02017-12-04 11:42:05 +01005008#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
5009static void bfq_update_insert_stats(struct request_queue *q,
5010 struct bfq_queue *bfqq,
5011 bool idle_timer_disabled,
5012 unsigned int cmd_flags)
5013{
5014 if (!bfqq)
5015 return;
5016
5017 /*
5018 * bfqq still exists, because it can disappear only after
5019 * either it is merged with another queue, or the process it
5020 * is associated with exits. But both actions must be taken by
5021 * the same process currently executing this flow of
5022 * instructions.
5023 *
5024 * In addition, the following queue lock guarantees that
5025 * bfqq_group(bfqq) exists as well.
5026 */
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005027 spin_lock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01005028 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5029 if (idle_timer_disabled)
5030 bfqg_stats_update_idle_time(bfqq_group(bfqq));
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005031 spin_unlock_irq(&q->queue_lock);
Paolo Valente9b25bd02017-12-04 11:42:05 +01005032}
5033#else
5034static inline void bfq_update_insert_stats(struct request_queue *q,
5035 struct bfq_queue *bfqq,
5036 bool idle_timer_disabled,
5037 unsigned int cmd_flags) {}
5038#endif
5039
Paolo Valenteaee69d72017-04-19 08:29:02 -06005040static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5041 bool at_head)
5042{
5043 struct request_queue *q = hctx->queue;
5044 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02005045 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01005046 bool idle_timer_disabled = false;
5047 unsigned int cmd_flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005048
5049 spin_lock_irq(&bfqd->lock);
5050 if (blk_mq_sched_try_insert_merge(q, rq)) {
5051 spin_unlock_irq(&bfqd->lock);
5052 return;
5053 }
5054
5055 spin_unlock_irq(&bfqd->lock);
5056
5057 blk_mq_sched_request_inserted(rq);
5058
5059 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02005060 bfqq = bfq_init_rq(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005061 if (at_head || blk_rq_is_passthrough(rq)) {
5062 if (at_head)
5063 list_add(&rq->queuelist, &bfqd->dispatch);
5064 else
5065 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valente18e5a572018-05-04 19:17:01 +02005066 } else { /* bfqq is assumed to be non null here */
Paolo Valente24bfd192017-11-13 07:34:09 +01005067 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01005068 /*
5069 * Update bfqq, because, if a queue merge has occurred
5070 * in __bfq_insert_request, then rq has been
5071 * redirected into a new queue.
5072 */
5073 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005074
5075 if (rq_mergeable(rq)) {
5076 elv_rqhash_add(q, rq);
5077 if (!q->last_merge)
5078 q->last_merge = rq;
5079 }
5080 }
5081
Paolo Valente24bfd192017-11-13 07:34:09 +01005082 /*
5083 * Cache cmd_flags before releasing scheduler lock, because rq
5084 * may disappear afterwards (for example, because of a request
5085 * merge).
5086 */
5087 cmd_flags = rq->cmd_flags;
Paolo Valente9b25bd02017-12-04 11:42:05 +01005088
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005089 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01005090
Paolo Valente9b25bd02017-12-04 11:42:05 +01005091 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5092 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005093}
5094
5095static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5096 struct list_head *list, bool at_head)
5097{
5098 while (!list_empty(list)) {
5099 struct request *rq;
5100
5101 rq = list_first_entry(list, struct request, queuelist);
5102 list_del_init(&rq->queuelist);
5103 bfq_insert_request(hctx, rq, at_head);
5104 }
5105}
5106
5107static void bfq_update_hw_tag(struct bfq_data *bfqd)
5108{
Paolo Valenteb3c34982019-01-29 12:06:36 +01005109 struct bfq_queue *bfqq = bfqd->in_service_queue;
5110
Paolo Valenteaee69d72017-04-19 08:29:02 -06005111 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5112 bfqd->rq_in_driver);
5113
5114 if (bfqd->hw_tag == 1)
5115 return;
5116
5117 /*
5118 * This sample is valid if the number of outstanding requests
5119 * is large enough to allow a queueing behavior. Note that the
5120 * sum is not exact, as it's not taking into account deactivated
5121 * requests.
5122 */
Paolo Valentea3c92562019-01-29 12:06:35 +01005123 if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005124 return;
5125
Paolo Valenteb3c34982019-01-29 12:06:36 +01005126 /*
5127 * If active queue hasn't enough requests and can idle, bfq might not
5128 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5129 * case
5130 */
5131 if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5132 bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5133 BFQ_HW_QUEUE_THRESHOLD &&
5134 bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5135 return;
5136
Paolo Valenteaee69d72017-04-19 08:29:02 -06005137 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5138 return;
5139
5140 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5141 bfqd->max_rq_in_driver = 0;
5142 bfqd->hw_tag_samples = 0;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01005143
5144 bfqd->nonrot_with_queueing =
5145 blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005146}
5147
5148static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5149{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005150 u64 now_ns;
5151 u32 delta_us;
5152
Paolo Valenteaee69d72017-04-19 08:29:02 -06005153 bfq_update_hw_tag(bfqd);
5154
5155 bfqd->rq_in_driver--;
5156 bfqq->dispatched--;
5157
Paolo Valente44e44a12017-04-12 18:23:12 +02005158 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5159 /*
5160 * Set budget_timeout (which we overload to store the
5161 * time at which the queue remains with no backlog and
5162 * no outstanding request; used by the weight-raising
5163 * mechanism).
5164 */
5165 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005166
Paolo Valente04715592018-06-25 21:55:34 +02005167 bfq_weights_tree_remove(bfqd, bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02005168 }
5169
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005170 now_ns = ktime_get_ns();
5171
5172 bfqq->ttime.last_end_request = now_ns;
5173
5174 /*
5175 * Using us instead of ns, to get a reasonable precision in
5176 * computing rate in next check.
5177 */
5178 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5179
5180 /*
5181 * If the request took rather long to complete, and, according
5182 * to the maximum request size recorded, this completion latency
5183 * implies that the request was certainly served at a very low
5184 * rate (less than 1M sectors/sec), then the whole observation
5185 * interval that lasts up to this time instant cannot be a
5186 * valid time interval for computing a new peak rate. Invoke
5187 * bfq_update_rate_reset to have the following three steps
5188 * taken:
5189 * - close the observation interval at the last (previous)
5190 * request dispatch or completion
5191 * - compute rate, if possible, for that observation interval
5192 * - reset to zero samples, which will trigger a proper
5193 * re-initialization of the observation interval on next
5194 * dispatch
5195 */
5196 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5197 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5198 1UL<<(BFQ_RATE_SHIFT - 10))
5199 bfq_update_rate_reset(bfqd, NULL);
5200 bfqd->last_completion = now_ns;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005201
5202 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02005203 * If we are waiting to discover whether the request pattern
5204 * of the task associated with the queue is actually
5205 * isochronous, and both requisites for this condition to hold
5206 * are now satisfied, then compute soft_rt_next_start (see the
5207 * comments on the function bfq_bfqq_softrt_next_start()). We
Paolo Valente20cd3242019-01-29 12:06:25 +01005208 * do not compute soft_rt_next_start if bfqq is in interactive
5209 * weight raising (see the comments in bfq_bfqq_expire() for
5210 * an explanation). We schedule this delayed update when bfqq
5211 * expires, if it still has in-flight requests.
Paolo Valente77b7dce2017-04-12 18:23:13 +02005212 */
5213 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
Paolo Valente20cd3242019-01-29 12:06:25 +01005214 RB_EMPTY_ROOT(&bfqq->sort_list) &&
5215 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
Paolo Valente77b7dce2017-04-12 18:23:13 +02005216 bfqq->soft_rt_next_start =
5217 bfq_bfqq_softrt_next_start(bfqd, bfqq);
5218
5219 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06005220 * If this is the in-service queue, check if it needs to be expired,
5221 * or if we want to idle in case it has no pending requests.
5222 */
5223 if (bfqd->in_service_queue == bfqq) {
Paolo Valente4420b092018-06-25 21:55:35 +02005224 if (bfq_bfqq_must_idle(bfqq)) {
5225 if (bfqq->dispatched == 0)
5226 bfq_arm_slice_timer(bfqd);
5227 /*
5228 * If we get here, we do not expire bfqq, even
5229 * if bfqq was in budget timeout or had no
5230 * more requests (as controlled in the next
5231 * conditional instructions). The reason for
5232 * not expiring bfqq is as follows.
5233 *
5234 * Here bfqq->dispatched > 0 holds, but
5235 * bfq_bfqq_must_idle() returned true. This
5236 * implies that, even if no request arrives
5237 * for bfqq before bfqq->dispatched reaches 0,
5238 * bfqq will, however, not be expired on the
5239 * completion event that causes bfqq->dispatch
5240 * to reach zero. In contrast, on this event,
5241 * bfqq will start enjoying device idling
5242 * (I/O-dispatch plugging).
5243 *
5244 * But, if we expired bfqq here, bfqq would
5245 * not have the chance to enjoy device idling
5246 * when bfqq->dispatched finally reaches
5247 * zero. This would expose bfqq to violation
5248 * of its reserved service guarantees.
5249 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005250 return;
5251 } else if (bfq_may_expire_for_budg_timeout(bfqq))
5252 bfq_bfqq_expire(bfqd, bfqq, false,
5253 BFQQE_BUDGET_TIMEOUT);
5254 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5255 (bfqq->dispatched == 0 ||
Paolo Valente277a4a92018-06-25 21:55:37 +02005256 !bfq_better_to_idle(bfqq)))
Paolo Valenteaee69d72017-04-19 08:29:02 -06005257 bfq_bfqq_expire(bfqd, bfqq, false,
5258 BFQQE_NO_MORE_REQUESTS);
5259 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08005260
5261 if (!bfqd->rq_in_driver)
5262 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005263}
5264
Paolo Valentea7877392018-02-07 22:19:20 +01005265static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005266{
5267 bfqq->allocated--;
5268
5269 bfq_put_queue(bfqq);
5270}
5271
Paolo Valentea7877392018-02-07 22:19:20 +01005272/*
Paolo Valente2341d6622019-03-12 09:59:29 +01005273 * The processes associated with bfqq may happen to generate their
5274 * cumulative I/O at a lower rate than the rate at which the device
5275 * could serve the same I/O. This is rather probable, e.g., if only
5276 * one process is associated with bfqq and the device is an SSD. It
5277 * results in bfqq becoming often empty while in service. In this
5278 * respect, if BFQ is allowed to switch to another queue when bfqq
5279 * remains empty, then the device goes on being fed with I/O requests,
5280 * and the throughput is not affected. In contrast, if BFQ is not
5281 * allowed to switch to another queue---because bfqq is sync and
5282 * I/O-dispatch needs to be plugged while bfqq is temporarily
5283 * empty---then, during the service of bfqq, there will be frequent
5284 * "service holes", i.e., time intervals during which bfqq gets empty
5285 * and the device can only consume the I/O already queued in its
5286 * hardware queues. During service holes, the device may even get to
5287 * remaining idle. In the end, during the service of bfqq, the device
5288 * is driven at a lower speed than the one it can reach with the kind
5289 * of I/O flowing through bfqq.
5290 *
5291 * To counter this loss of throughput, BFQ implements a "request
5292 * injection mechanism", which tries to fill the above service holes
5293 * with I/O requests taken from other queues. The hard part in this
5294 * mechanism is finding the right amount of I/O to inject, so as to
5295 * both boost throughput and not break bfqq's bandwidth and latency
5296 * guarantees. In this respect, the mechanism maintains a per-queue
5297 * inject limit, computed as below. While bfqq is empty, the injection
5298 * mechanism dispatches extra I/O requests only until the total number
5299 * of I/O requests in flight---i.e., already dispatched but not yet
5300 * completed---remains lower than this limit.
5301 *
5302 * A first definition comes in handy to introduce the algorithm by
5303 * which the inject limit is computed. We define as first request for
5304 * bfqq, an I/O request for bfqq that arrives while bfqq is in
5305 * service, and causes bfqq to switch from empty to non-empty. The
5306 * algorithm updates the limit as a function of the effect of
5307 * injection on the service times of only the first requests of
5308 * bfqq. The reason for this restriction is that these are the
5309 * requests whose service time is affected most, because they are the
5310 * first to arrive after injection possibly occurred.
5311 *
5312 * To evaluate the effect of injection, the algorithm measures the
5313 * "total service time" of first requests. We define as total service
5314 * time of an I/O request, the time that elapses since when the
5315 * request is enqueued into bfqq, to when it is completed. This
5316 * quantity allows the whole effect of injection to be measured. It is
5317 * easy to see why. Suppose that some requests of other queues are
5318 * actually injected while bfqq is empty, and that a new request R
5319 * then arrives for bfqq. If the device does start to serve all or
5320 * part of the injected requests during the service hole, then,
5321 * because of this extra service, it may delay the next invocation of
5322 * the dispatch hook of BFQ. Then, even after R gets eventually
5323 * dispatched, the device may delay the actual service of R if it is
5324 * still busy serving the extra requests, or if it decides to serve,
5325 * before R, some extra request still present in its queues. As a
5326 * conclusion, the cumulative extra delay caused by injection can be
5327 * easily evaluated by just comparing the total service time of first
5328 * requests with and without injection.
5329 *
5330 * The limit-update algorithm works as follows. On the arrival of a
5331 * first request of bfqq, the algorithm measures the total time of the
5332 * request only if one of the three cases below holds, and, for each
5333 * case, it updates the limit as described below:
5334 *
5335 * (1) If there is no in-flight request. This gives a baseline for the
5336 * total service time of the requests of bfqq. If the baseline has
5337 * not been computed yet, then, after computing it, the limit is
5338 * set to 1, to start boosting throughput, and to prepare the
5339 * ground for the next case. If the baseline has already been
5340 * computed, then it is updated, in case it results to be lower
5341 * than the previous value.
5342 *
5343 * (2) If the limit is higher than 0 and there are in-flight
5344 * requests. By comparing the total service time in this case with
5345 * the above baseline, it is possible to know at which extent the
5346 * current value of the limit is inflating the total service
5347 * time. If the inflation is below a certain threshold, then bfqq
5348 * is assumed to be suffering from no perceivable loss of its
5349 * service guarantees, and the limit is even tentatively
5350 * increased. If the inflation is above the threshold, then the
5351 * limit is decreased. Due to the lack of any hysteresis, this
5352 * logic makes the limit oscillate even in steady workload
5353 * conditions. Yet we opted for it, because it is fast in reaching
5354 * the best value for the limit, as a function of the current I/O
5355 * workload. To reduce oscillations, this step is disabled for a
5356 * short time interval after the limit happens to be decreased.
5357 *
5358 * (3) Periodically, after resetting the limit, to make sure that the
5359 * limit eventually drops in case the workload changes. This is
5360 * needed because, after the limit has gone safely up for a
5361 * certain workload, it is impossible to guess whether the
5362 * baseline total service time may have changed, without measuring
5363 * it again without injection. A more effective version of this
5364 * step might be to just sample the baseline, by interrupting
5365 * injection only once, and then to reset/lower the limit only if
5366 * the total service time with the current limit does happen to be
5367 * too large.
5368 *
5369 * More details on each step are provided in the comments on the
5370 * pieces of code that implement these steps: the branch handling the
5371 * transition from empty to non empty in bfq_add_request(), the branch
5372 * handling injection in bfq_select_queue(), and the function
5373 * bfq_choose_bfqq_for_injection(). These comments also explain some
5374 * exceptions, made by the injection mechanism in some special cases.
5375 */
5376static void bfq_update_inject_limit(struct bfq_data *bfqd,
5377 struct bfq_queue *bfqq)
5378{
5379 u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5380 unsigned int old_limit = bfqq->inject_limit;
5381
5382 if (bfqq->last_serv_time_ns > 0) {
5383 u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5384
5385 if (tot_time_ns >= threshold && old_limit > 0) {
5386 bfqq->inject_limit--;
5387 bfqq->decrease_time_jif = jiffies;
5388 } else if (tot_time_ns < threshold &&
5389 old_limit < bfqd->max_rq_in_driver<<1)
5390 bfqq->inject_limit++;
5391 }
5392
5393 /*
5394 * Either we still have to compute the base value for the
5395 * total service time, and there seem to be the right
5396 * conditions to do it, or we can lower the last base value
5397 * computed.
5398 */
5399 if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 0) ||
5400 tot_time_ns < bfqq->last_serv_time_ns) {
5401 bfqq->last_serv_time_ns = tot_time_ns;
5402 /*
5403 * Now we certainly have a base value: make sure we
5404 * start trying injection.
5405 */
5406 bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5407 }
5408
5409 /* update complete, not waiting for any request completion any longer */
5410 bfqd->waited_rq = NULL;
5411}
5412
5413/*
Paolo Valentea7877392018-02-07 22:19:20 +01005414 * Handle either a requeue or a finish for rq. The things to do are
5415 * the same in both cases: all references to rq are to be dropped. In
5416 * particular, rq is considered completed from the point of view of
5417 * the scheduler.
5418 */
5419static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005420{
Paolo Valentea7877392018-02-07 22:19:20 +01005421 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005422 struct bfq_data *bfqd;
5423
Paolo Valentea7877392018-02-07 22:19:20 +01005424 /*
5425 * Requeue and finish hooks are invoked in blk-mq without
5426 * checking whether the involved request is actually still
5427 * referenced in the scheduler. To handle this fact, the
5428 * following two checks make this function exit in case of
5429 * spurious invocations, for which there is nothing to do.
5430 *
5431 * First, check whether rq has nothing to do with an elevator.
5432 */
5433 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005434 return;
5435
Paolo Valentea7877392018-02-07 22:19:20 +01005436 /*
5437 * rq either is not associated with any icq, or is an already
5438 * requeued request that has not (yet) been re-inserted into
5439 * a bfq_queue.
5440 */
5441 if (!rq->elv.icq || !bfqq)
5442 return;
5443
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005444 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005445
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005446 if (rq->rq_flags & RQF_STARTED)
5447 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07005448 rq->start_time_ns,
5449 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005450 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005451
5452 if (likely(rq->rq_flags & RQF_STARTED)) {
5453 unsigned long flags;
5454
5455 spin_lock_irqsave(&bfqd->lock, flags);
5456
Paolo Valente2341d6622019-03-12 09:59:29 +01005457 if (rq == bfqd->waited_rq)
5458 bfq_update_inject_limit(bfqd, bfqq);
5459
Paolo Valenteaee69d72017-04-19 08:29:02 -06005460 bfq_completed_request(bfqq, bfqd);
Paolo Valentea7877392018-02-07 22:19:20 +01005461 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005462
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005463 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005464 } else {
5465 /*
5466 * Request rq may be still/already in the scheduler,
Paolo Valentea7877392018-02-07 22:19:20 +01005467 * in which case we need to remove it (this should
5468 * never happen in case of requeue). And we cannot
Paolo Valenteaee69d72017-04-19 08:29:02 -06005469 * defer such a check and removal, to avoid
5470 * inconsistencies in the time interval from the end
5471 * of this function to the start of the deferred work.
5472 * This situation seems to occur only in process
5473 * context, as a consequence of a merge. In the
5474 * current version of the code, this implies that the
5475 * lock is held.
5476 */
5477
Luca Miccio614822f2017-11-13 07:34:08 +01005478 if (!RB_EMPTY_NODE(&rq->rb_node)) {
Christoph Hellwig7b9e9362017-06-16 18:15:21 +02005479 bfq_remove_request(rq->q, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01005480 bfqg_stats_update_io_remove(bfqq_group(bfqq),
5481 rq->cmd_flags);
5482 }
Paolo Valentea7877392018-02-07 22:19:20 +01005483 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005484 }
5485
Paolo Valentea7877392018-02-07 22:19:20 +01005486 /*
5487 * Reset private fields. In case of a requeue, this allows
5488 * this function to correctly do nothing if it is spuriously
5489 * invoked again on this same request (see the check at the
5490 * beginning of the function). Probably, a better general
5491 * design would be to prevent blk-mq from invoking the requeue
5492 * or finish hooks of an elevator, for a request that is not
5493 * referred by that elevator.
5494 *
5495 * Resetting the following fields would break the
5496 * request-insertion logic if rq is re-inserted into a bfq
5497 * internal queue, without a re-preparation. Here we assume
5498 * that re-insertions of requeued requests, without
5499 * re-preparation, can happen only for pass_through or at_head
5500 * requests (which are not re-inserted into bfq internal
5501 * queues).
5502 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06005503 rq->elv.priv[0] = NULL;
5504 rq->elv.priv[1] = NULL;
5505}
5506
5507/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02005508 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5509 * was the last process referring to that bfqq.
5510 */
5511static struct bfq_queue *
5512bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5513{
5514 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5515
5516 if (bfqq_process_refs(bfqq) == 1) {
5517 bfqq->pid = current->pid;
5518 bfq_clear_bfqq_coop(bfqq);
5519 bfq_clear_bfqq_split_coop(bfqq);
5520 return bfqq;
5521 }
5522
5523 bic_set_bfqq(bic, NULL, 1);
5524
5525 bfq_put_cooperator(bfqq);
5526
5527 bfq_put_queue(bfqq);
5528 return NULL;
5529}
5530
5531static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
5532 struct bfq_io_cq *bic,
5533 struct bio *bio,
5534 bool split, bool is_sync,
5535 bool *new_queue)
5536{
5537 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5538
5539 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
5540 return bfqq;
5541
5542 if (new_queue)
5543 *new_queue = true;
5544
5545 if (bfqq)
5546 bfq_put_queue(bfqq);
5547 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
5548
5549 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005550 if (split && is_sync) {
5551 if ((bic->was_in_burst_list && bfqd->large_burst) ||
5552 bic->saved_in_large_burst)
5553 bfq_mark_bfqq_in_large_burst(bfqq);
5554 else {
5555 bfq_clear_bfqq_in_large_burst(bfqq);
5556 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02005557 /*
5558 * If bfqq was in the current
5559 * burst list before being
5560 * merged, then we have to add
5561 * it back. And we do not need
5562 * to increase burst_size, as
5563 * we did not decrement
5564 * burst_size when we removed
5565 * bfqq from the burst list as
5566 * a consequence of a merge
5567 * (see comments in
5568 * bfq_put_queue). In this
5569 * respect, it would be rather
5570 * costly to know whether the
5571 * current burst list is still
5572 * the same burst list from
5573 * which bfqq was removed on
5574 * the merge. To avoid this
5575 * cost, if bfqq was in a
5576 * burst list, then we add
5577 * bfqq to the current burst
5578 * list without any further
5579 * check. This can cause
5580 * inappropriate insertions,
5581 * but rarely enough to not
5582 * harm the detection of large
5583 * bursts significantly.
5584 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005585 hlist_add_head(&bfqq->burst_list_node,
5586 &bfqd->burst_list);
5587 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02005588 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005589 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02005590
5591 return bfqq;
5592}
5593
5594/*
Paolo Valente18e5a572018-05-04 19:17:01 +02005595 * Only reset private fields. The actual request preparation will be
5596 * performed by bfq_init_rq, when rq is either inserted or merged. See
5597 * comments on bfq_init_rq for the reason behind this delayed
5598 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06005599 */
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005600static void bfq_prepare_request(struct request *rq, struct bio *bio)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005601{
Paolo Valente18e5a572018-05-04 19:17:01 +02005602 /*
5603 * Regardless of whether we have an icq attached, we have to
5604 * clear the scheduler pointers, as they might point to
5605 * previously allocated bic/bfqq structs.
5606 */
5607 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
5608}
5609
5610/*
5611 * If needed, init rq, allocate bfq data structures associated with
5612 * rq, and increment reference counters in the destination bfq_queue
5613 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
5614 * not associated with any bfq_queue.
5615 *
5616 * This function is invoked by the functions that perform rq insertion
5617 * or merging. One may have expected the above preparation operations
5618 * to be performed in bfq_prepare_request, and not delayed to when rq
5619 * is inserted or merged. The rationale behind this delayed
5620 * preparation is that, after the prepare_request hook is invoked for
5621 * rq, rq may still be transformed into a request with no icq, i.e., a
5622 * request not associated with any queue. No bfq hook is invoked to
5623 * signal this tranformation. As a consequence, should these
5624 * preparation operations be performed when the prepare_request hook
5625 * is invoked, and should rq be transformed one moment later, bfq
5626 * would end up in an inconsistent state, because it would have
5627 * incremented some queue counters for an rq destined to
5628 * transformation, without any chance to correctly lower these
5629 * counters back. In contrast, no transformation can still happen for
5630 * rq after rq has been inserted or merged. So, it is safe to execute
5631 * these preparation operations when rq is finally inserted or merged.
5632 */
5633static struct bfq_queue *bfq_init_rq(struct request *rq)
5634{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005635 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02005636 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005637 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02005638 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005639 const int is_sync = rq_is_sync(rq);
5640 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005641 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06005642 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005643
Paolo Valente18e5a572018-05-04 19:17:01 +02005644 if (unlikely(!rq->elv.icq))
5645 return NULL;
5646
Jens Axboe72961c42018-04-17 17:08:52 -06005647 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02005648 * Assuming that elv.priv[1] is set only if everything is set
5649 * for this rq. This holds true, because this function is
5650 * invoked only for insertion or merging, and, after such
5651 * events, a request cannot be manipulated any longer before
5652 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06005653 */
Paolo Valente18e5a572018-05-04 19:17:01 +02005654 if (rq->elv.priv[1])
5655 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06005656
Christoph Hellwig9f210732017-06-16 18:15:24 +02005657 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005658
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01005659 bfq_check_ioprio_change(bic, bio);
5660
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005661 bfq_bic_update_cgroup(bic, bio);
5662
Arianna Avanzini36eca892017-04-12 18:23:16 +02005663 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
5664 &new_queue);
5665
5666 if (likely(!new_queue)) {
5667 /* If the queue was seeky for too long, break it apart. */
5668 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
5669 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005670
5671 /* Update bic before losing reference to bfqq */
5672 if (bfq_bfqq_in_large_burst(bfqq))
5673 bic->saved_in_large_burst = true;
5674
Arianna Avanzini36eca892017-04-12 18:23:16 +02005675 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005676 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005677
5678 if (!bfqq)
5679 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
5680 true, is_sync,
5681 NULL);
Paolo Valente13c931b2017-06-27 12:30:47 -06005682 else
5683 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02005684 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06005685 }
5686
5687 bfqq->allocated++;
5688 bfqq->ref++;
5689 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
5690 rq, bfqq, bfqq->ref);
5691
5692 rq->elv.priv[0] = bic;
5693 rq->elv.priv[1] = bfqq;
5694
Arianna Avanzini36eca892017-04-12 18:23:16 +02005695 /*
5696 * If a bfq_queue has only one process reference, it is owned
5697 * by only this bic: we can then set bfqq->bic = bic. in
5698 * addition, if the queue has also just been split, we have to
5699 * resume its state.
5700 */
5701 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
5702 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005703 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02005704 /*
5705 * The queue has just been split from a shared
5706 * queue: restore the idle window and the
5707 * possible weight raising period.
5708 */
Paolo Valente13c931b2017-06-27 12:30:47 -06005709 bfq_bfqq_resume_state(bfqq, bfqd, bic,
5710 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02005711 }
5712 }
5713
Paolo Valente84a74682019-03-12 09:59:32 +01005714 /*
5715 * Consider bfqq as possibly belonging to a burst of newly
5716 * created queues only if:
5717 * 1) A burst is actually happening (bfqd->burst_size > 0)
5718 * or
5719 * 2) There is no other active queue. In fact, if, in
5720 * contrast, there are active queues not belonging to the
5721 * possible burst bfqq may belong to, then there is no gain
5722 * in considering bfqq as belonging to a burst, and
5723 * therefore in not weight-raising bfqq. See comments on
5724 * bfq_handle_burst().
5725 *
5726 * This filtering also helps eliminating false positives,
5727 * occurring when bfqq does not belong to an actual large
5728 * burst, but some background task (e.g., a service) happens
5729 * to trigger the creation of new queues very close to when
5730 * bfqq and its possible companion queues are created. See
5731 * comments on bfq_handle_burst() for further details also on
5732 * this issue.
5733 */
5734 if (unlikely(bfq_bfqq_just_created(bfqq) &&
5735 (bfqd->burst_size > 0 ||
5736 bfq_tot_busy_queues(bfqd) == 0)))
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005737 bfq_handle_burst(bfqd, bfqq);
5738
Paolo Valente18e5a572018-05-04 19:17:01 +02005739 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005740}
5741
5742static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
5743{
5744 struct bfq_data *bfqd = bfqq->bfqd;
5745 enum bfqq_expiration reason;
5746 unsigned long flags;
5747
5748 spin_lock_irqsave(&bfqd->lock, flags);
5749 bfq_clear_bfqq_wait_request(bfqq);
5750
5751 if (bfqq != bfqd->in_service_queue) {
5752 spin_unlock_irqrestore(&bfqd->lock, flags);
5753 return;
5754 }
5755
5756 if (bfq_bfqq_budget_timeout(bfqq))
5757 /*
5758 * Also here the queue can be safely expired
5759 * for budget timeout without wasting
5760 * guarantees
5761 */
5762 reason = BFQQE_BUDGET_TIMEOUT;
5763 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5764 /*
5765 * The queue may not be empty upon timer expiration,
5766 * because we may not disable the timer when the
5767 * first request of the in-service queue arrives
5768 * during disk idling.
5769 */
5770 reason = BFQQE_TOO_IDLE;
5771 else
5772 goto schedule_dispatch;
5773
5774 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5775
5776schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005777 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005778 bfq_schedule_dispatch(bfqd);
5779}
5780
5781/*
5782 * Handler of the expiration of the timer running if the in-service queue
5783 * is idling inside its time slice.
5784 */
5785static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5786{
5787 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5788 idle_slice_timer);
5789 struct bfq_queue *bfqq = bfqd->in_service_queue;
5790
5791 /*
5792 * Theoretical race here: the in-service queue can be NULL or
5793 * different from the queue that was idling if a new request
5794 * arrives for the current queue and there is a full dispatch
5795 * cycle that changes the in-service queue. This can hardly
5796 * happen, but in the worst case we just expire a queue too
5797 * early.
5798 */
5799 if (bfqq)
5800 bfq_idle_slice_timer_body(bfqq);
5801
5802 return HRTIMER_NORESTART;
5803}
5804
5805static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5806 struct bfq_queue **bfqq_ptr)
5807{
5808 struct bfq_queue *bfqq = *bfqq_ptr;
5809
5810 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5811 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005812 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5813
Paolo Valenteaee69d72017-04-19 08:29:02 -06005814 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5815 bfqq, bfqq->ref);
5816 bfq_put_queue(bfqq);
5817 *bfqq_ptr = NULL;
5818 }
5819}
5820
5821/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005822 * Release all the bfqg references to its async queues. If we are
5823 * deallocating the group these queues may still contain requests, so
5824 * we reparent them to the root cgroup (i.e., the only one that will
5825 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06005826 */
Paolo Valenteea25da42017-04-19 08:48:24 -06005827void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005828{
5829 int i, j;
5830
5831 for (i = 0; i < 2; i++)
5832 for (j = 0; j < IOPRIO_BE_NR; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005833 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005834
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005835 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005836}
5837
Jens Axboef0635b82018-05-09 13:27:21 -06005838/*
5839 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06005840 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06005841 */
Jens Axboe483b7bf2018-05-09 15:26:55 -06005842static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5843 struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06005844{
Jens Axboe483b7bf2018-05-09 15:26:55 -06005845 unsigned int i, j, min_shallow = UINT_MAX;
5846
Jens Axboef0635b82018-05-09 13:27:21 -06005847 /*
5848 * In-word depths if no bfq_queue is being weight-raised:
5849 * leaving 25% of tags only for sync reads.
5850 *
5851 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005852 * (1U<<bt->sb.shift), instead of computing directly
5853 * (1U<<(bt->sb.shift - something)), to be robust against
5854 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06005855 * limit 'something'.
5856 */
5857 /* no more than 50% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005858 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005859 /*
5860 * no more than 75% of tags for sync writes (25% extra tags
5861 * w.r.t. async I/O, to prevent async I/O from starving sync
5862 * writes)
5863 */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005864 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005865
5866 /*
5867 * In-word depths in case some bfq_queue is being weight-
5868 * raised: leaving ~63% of tags for sync reads. This is the
5869 * highest percentage for which, in our tests, application
5870 * start-up times didn't suffer from any regression due to tag
5871 * shortage.
5872 */
5873 /* no more than ~18% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005874 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005875 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005876 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
Jens Axboe483b7bf2018-05-09 15:26:55 -06005877
5878 for (i = 0; i < 2; i++)
5879 for (j = 0; j < 2; j++)
5880 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5881
5882 return min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005883}
5884
5885static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5886{
5887 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5888 struct blk_mq_tags *tags = hctx->sched_tags;
Jens Axboe483b7bf2018-05-09 15:26:55 -06005889 unsigned int min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005890
Jens Axboe483b7bf2018-05-09 15:26:55 -06005891 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5892 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
Jens Axboef0635b82018-05-09 13:27:21 -06005893 return 0;
5894}
5895
Paolo Valenteaee69d72017-04-19 08:29:02 -06005896static void bfq_exit_queue(struct elevator_queue *e)
5897{
5898 struct bfq_data *bfqd = e->elevator_data;
5899 struct bfq_queue *bfqq, *n;
5900
5901 hrtimer_cancel(&bfqd->idle_slice_timer);
5902
5903 spin_lock_irq(&bfqd->lock);
5904 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005905 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005906 spin_unlock_irq(&bfqd->lock);
5907
5908 hrtimer_cancel(&bfqd->idle_slice_timer);
5909
Jens Axboe8abef102018-01-09 12:20:51 -07005910#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente0d52af52018-01-09 10:27:59 +01005911 /* release oom-queue reference to root group */
5912 bfqg_and_blkg_put(bfqd->root_group);
5913
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005914 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5915#else
5916 spin_lock_irq(&bfqd->lock);
5917 bfq_put_async_queues(bfqd, bfqd->root_group);
5918 kfree(bfqd->root_group);
5919 spin_unlock_irq(&bfqd->lock);
5920#endif
5921
Paolo Valenteaee69d72017-04-19 08:29:02 -06005922 kfree(bfqd);
5923}
5924
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005925static void bfq_init_root_group(struct bfq_group *root_group,
5926 struct bfq_data *bfqd)
5927{
5928 int i;
5929
5930#ifdef CONFIG_BFQ_GROUP_IOSCHED
5931 root_group->entity.parent = NULL;
5932 root_group->my_entity = NULL;
5933 root_group->bfqd = bfqd;
5934#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02005935 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005936 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5937 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5938 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5939}
5940
Paolo Valenteaee69d72017-04-19 08:29:02 -06005941static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5942{
5943 struct bfq_data *bfqd;
5944 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005945
5946 eq = elevator_alloc(q, e);
5947 if (!eq)
5948 return -ENOMEM;
5949
5950 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5951 if (!bfqd) {
5952 kobject_put(&eq->kobj);
5953 return -ENOMEM;
5954 }
5955 eq->elevator_data = bfqd;
5956
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005957 spin_lock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005958 q->elevator = eq;
Christoph Hellwig0d945c12018-11-15 12:17:28 -07005959 spin_unlock_irq(&q->queue_lock);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005960
Paolo Valenteaee69d72017-04-19 08:29:02 -06005961 /*
5962 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5963 * Grab a permanent reference to it, so that the normal code flow
5964 * will not attempt to free it.
5965 */
5966 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5967 bfqd->oom_bfqq.ref++;
5968 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5969 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5970 bfqd->oom_bfqq.entity.new_weight =
5971 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005972
5973 /* oom_bfqq does not participate to bursts */
5974 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5975
Paolo Valenteaee69d72017-04-19 08:29:02 -06005976 /*
5977 * Trigger weight initialization, according to ioprio, at the
5978 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5979 * class won't be changed any more.
5980 */
5981 bfqd->oom_bfqq.entity.prio_changed = 1;
5982
5983 bfqd->queue = q;
5984
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005985 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005986
5987 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5988 HRTIMER_MODE_REL);
5989 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5990
Paolo Valentefb53ac62019-03-12 09:59:28 +01005991 bfqd->queue_weights_tree = RB_ROOT_CACHED;
Paolo Valenteba7aeae2018-12-06 19:18:18 +01005992 bfqd->num_groups_with_pending_reqs = 0;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005993
Paolo Valenteaee69d72017-04-19 08:29:02 -06005994 INIT_LIST_HEAD(&bfqd->active_list);
5995 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005996 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005997
5998 bfqd->hw_tag = -1;
Paolo Valente8cacc5a2019-03-12 09:59:30 +01005999 bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006000
6001 bfqd->bfq_max_budget = bfq_default_max_budget;
6002
6003 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6004 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6005 bfqd->bfq_back_max = bfq_back_max;
6006 bfqd->bfq_back_penalty = bfq_back_penalty;
6007 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006008 bfqd->bfq_timeout = bfq_timeout;
6009
6010 bfqd->bfq_requests_within_timer = 120;
6011
Arianna Avanzinie1b23242017-04-12 18:23:20 +02006012 bfqd->bfq_large_burst_thresh = 8;
6013 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6014
Paolo Valente44e44a12017-04-12 18:23:12 +02006015 bfqd->low_latency = true;
6016
6017 /*
6018 * Trade-off between responsiveness and fairness.
6019 */
6020 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02006021 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02006022 bfqd->bfq_wr_max_time = 0;
6023 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6024 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02006025 bfqd->bfq_wr_max_softrt_rate = 7000; /*
6026 * Approximate rate required
6027 * to playback or record a
6028 * high-definition compressed
6029 * video.
6030 */
Paolo Valentecfd69712017-04-12 18:23:15 +02006031 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02006032
6033 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02006034 * Begin by assuming, optimistically, that the device peak
6035 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02006036 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02006037 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6038 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6039 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02006040
Paolo Valenteaee69d72017-04-19 08:29:02 -06006041 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006042
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006043 /*
6044 * The invocation of the next bfq_create_group_hierarchy
6045 * function is the head of a chain of function calls
6046 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6047 * blk_mq_freeze_queue) that may lead to the invocation of the
6048 * has_work hook function. For this reason,
6049 * bfq_create_group_hierarchy is invoked only after all
6050 * scheduler data has been initialized, apart from the fields
6051 * that can be initialized only after invoking
6052 * bfq_create_group_hierarchy. This, in particular, enables
6053 * has_work to correctly return false. Of course, to avoid
6054 * other inconsistencies, the blk-mq stack must then refrain
6055 * from invoking further scheduler hooks before this init
6056 * function is finished.
6057 */
6058 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6059 if (!bfqd->root_group)
6060 goto out_free;
6061 bfq_init_root_group(bfqd->root_group, bfqd);
6062 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6063
Luca Micciob5dc5d42017-10-09 16:27:21 +02006064 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006065 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006066
6067out_free:
6068 kfree(bfqd);
6069 kobject_put(&eq->kobj);
6070 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006071}
6072
6073static void bfq_slab_kill(void)
6074{
6075 kmem_cache_destroy(bfq_pool);
6076}
6077
6078static int __init bfq_slab_setup(void)
6079{
6080 bfq_pool = KMEM_CACHE(bfq_queue, 0);
6081 if (!bfq_pool)
6082 return -ENOMEM;
6083 return 0;
6084}
6085
6086static ssize_t bfq_var_show(unsigned int var, char *page)
6087{
6088 return sprintf(page, "%u\n", var);
6089}
6090
Bart Van Assche2f791362017-08-30 11:42:09 -07006091static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06006092{
6093 unsigned long new_val;
6094 int ret = kstrtoul(page, 10, &new_val);
6095
Bart Van Assche2f791362017-08-30 11:42:09 -07006096 if (ret)
6097 return ret;
6098 *var = new_val;
6099 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006100}
6101
6102#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
6103static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6104{ \
6105 struct bfq_data *bfqd = e->elevator_data; \
6106 u64 __data = __VAR; \
6107 if (__CONV == 1) \
6108 __data = jiffies_to_msecs(__data); \
6109 else if (__CONV == 2) \
6110 __data = div_u64(__data, NSEC_PER_MSEC); \
6111 return bfq_var_show(__data, (page)); \
6112}
6113SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6114SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6115SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6116SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6117SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6118SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6119SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6120SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02006121SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006122#undef SHOW_FUNCTION
6123
6124#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
6125static ssize_t __FUNC(struct elevator_queue *e, char *page) \
6126{ \
6127 struct bfq_data *bfqd = e->elevator_data; \
6128 u64 __data = __VAR; \
6129 __data = div_u64(__data, NSEC_PER_USEC); \
6130 return bfq_var_show(__data, (page)); \
6131}
6132USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6133#undef USEC_SHOW_FUNCTION
6134
6135#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
6136static ssize_t \
6137__FUNC(struct elevator_queue *e, const char *page, size_t count) \
6138{ \
6139 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006140 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07006141 int ret; \
6142 \
6143 ret = bfq_var_store(&__data, (page)); \
6144 if (ret) \
6145 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006146 if (__data < __min) \
6147 __data = __min; \
6148 else if (__data > __max) \
6149 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006150 if (__CONV == 1) \
6151 *(__PTR) = msecs_to_jiffies(__data); \
6152 else if (__CONV == 2) \
6153 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
6154 else \
6155 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08006156 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006157}
6158STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6159 INT_MAX, 2);
6160STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6161 INT_MAX, 2);
6162STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6163STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6164 INT_MAX, 0);
6165STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6166#undef STORE_FUNCTION
6167
6168#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
6169static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6170{ \
6171 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006172 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07006173 int ret; \
6174 \
6175 ret = bfq_var_store(&__data, (page)); \
6176 if (ret) \
6177 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07006178 if (__data < __min) \
6179 __data = __min; \
6180 else if (__data > __max) \
6181 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006182 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08006183 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06006184}
6185USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6186 UINT_MAX);
6187#undef USEC_STORE_FUNCTION
6188
Paolo Valenteaee69d72017-04-19 08:29:02 -06006189static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6190 const char *page, size_t count)
6191{
6192 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006193 unsigned long __data;
6194 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006195
Bart Van Assche2f791362017-08-30 11:42:09 -07006196 ret = bfq_var_store(&__data, (page));
6197 if (ret)
6198 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006199
6200 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006201 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006202 else {
6203 if (__data > INT_MAX)
6204 __data = INT_MAX;
6205 bfqd->bfq_max_budget = __data;
6206 }
6207
6208 bfqd->bfq_user_max_budget = __data;
6209
weiping zhang235f8da2017-08-25 01:11:33 +08006210 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006211}
6212
6213/*
6214 * Leaving this name to preserve name compatibility with cfq
6215 * parameters, but this timeout is used for both sync and async.
6216 */
6217static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6218 const char *page, size_t count)
6219{
6220 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006221 unsigned long __data;
6222 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006223
Bart Van Assche2f791362017-08-30 11:42:09 -07006224 ret = bfq_var_store(&__data, (page));
6225 if (ret)
6226 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006227
6228 if (__data < 1)
6229 __data = 1;
6230 else if (__data > INT_MAX)
6231 __data = INT_MAX;
6232
6233 bfqd->bfq_timeout = msecs_to_jiffies(__data);
6234 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02006235 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06006236
weiping zhang235f8da2017-08-25 01:11:33 +08006237 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006238}
6239
6240static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6241 const char *page, size_t count)
6242{
6243 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006244 unsigned long __data;
6245 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006246
Bart Van Assche2f791362017-08-30 11:42:09 -07006247 ret = bfq_var_store(&__data, (page));
6248 if (ret)
6249 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006250
6251 if (__data > 1)
6252 __data = 1;
6253 if (!bfqd->strict_guarantees && __data == 1
6254 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6255 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6256
6257 bfqd->strict_guarantees = __data;
6258
weiping zhang235f8da2017-08-25 01:11:33 +08006259 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006260}
6261
Paolo Valente44e44a12017-04-12 18:23:12 +02006262static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6263 const char *page, size_t count)
6264{
6265 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07006266 unsigned long __data;
6267 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08006268
Bart Van Assche2f791362017-08-30 11:42:09 -07006269 ret = bfq_var_store(&__data, (page));
6270 if (ret)
6271 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02006272
6273 if (__data > 1)
6274 __data = 1;
6275 if (__data == 0 && bfqd->low_latency != 0)
6276 bfq_end_wr(bfqd);
6277 bfqd->low_latency = __data;
6278
weiping zhang235f8da2017-08-25 01:11:33 +08006279 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02006280}
6281
Paolo Valenteaee69d72017-04-19 08:29:02 -06006282#define BFQ_ATTR(name) \
6283 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6284
6285static struct elv_fs_entry bfq_attrs[] = {
6286 BFQ_ATTR(fifo_expire_sync),
6287 BFQ_ATTR(fifo_expire_async),
6288 BFQ_ATTR(back_seek_max),
6289 BFQ_ATTR(back_seek_penalty),
6290 BFQ_ATTR(slice_idle),
6291 BFQ_ATTR(slice_idle_us),
6292 BFQ_ATTR(max_budget),
6293 BFQ_ATTR(timeout_sync),
6294 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02006295 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06006296 __ATTR_NULL
6297};
6298
6299static struct elevator_type iosched_bfq_mq = {
Jens Axboef9cd4bf2018-11-01 16:41:41 -06006300 .ops = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01006301 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02006302 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01006303 .requeue_request = bfq_finish_requeue_request,
6304 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06006305 .exit_icq = bfq_exit_icq,
6306 .insert_requests = bfq_insert_requests,
6307 .dispatch_request = bfq_dispatch_request,
6308 .next_request = elv_rb_latter_request,
6309 .former_request = elv_rb_former_request,
6310 .allow_merge = bfq_allow_bio_merge,
6311 .bio_merge = bfq_bio_merge,
6312 .request_merge = bfq_request_merge,
6313 .requests_merged = bfq_requests_merged,
6314 .request_merged = bfq_request_merged,
6315 .has_work = bfq_has_work,
Jens Axboef0635b82018-05-09 13:27:21 -06006316 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06006317 .init_sched = bfq_init_queue,
6318 .exit_sched = bfq_exit_queue,
6319 },
6320
Paolo Valenteaee69d72017-04-19 08:29:02 -06006321 .icq_size = sizeof(struct bfq_io_cq),
6322 .icq_align = __alignof__(struct bfq_io_cq),
6323 .elevator_attrs = bfq_attrs,
6324 .elevator_name = "bfq",
6325 .elevator_owner = THIS_MODULE,
6326};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01006327MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06006328
6329static int __init bfq_init(void)
6330{
6331 int ret;
6332
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006333#ifdef CONFIG_BFQ_GROUP_IOSCHED
6334 ret = blkcg_policy_register(&blkcg_policy_bfq);
6335 if (ret)
6336 return ret;
6337#endif
6338
Paolo Valenteaee69d72017-04-19 08:29:02 -06006339 ret = -ENOMEM;
6340 if (bfq_slab_setup())
6341 goto err_pol_unreg;
6342
Paolo Valente44e44a12017-04-12 18:23:12 +02006343 /*
6344 * Times to load large popular applications for the typical
6345 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02006346 * comments before the definition of the next
6347 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02006348 * estimated peak rate tends to be smaller than the actual
6349 * peak rate. The reason for this last fact is that estimates
6350 * are computed over much shorter time intervals than the long
6351 * intervals typically used for benchmarking. Why? First, to
6352 * adapt more quickly to variations. Second, because an I/O
6353 * scheduler cannot rely on a peak-rate-evaluation workload to
6354 * be run for a long time.
6355 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02006356 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6357 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02006358
Paolo Valenteaee69d72017-04-19 08:29:02 -06006359 ret = elv_register(&iosched_bfq_mq);
6360 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08006361 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06006362
6363 return 0;
6364
weiping zhang37dcd652017-08-19 00:37:20 +08006365slab_kill:
6366 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06006367err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006368#ifdef CONFIG_BFQ_GROUP_IOSCHED
6369 blkcg_policy_unregister(&blkcg_policy_bfq);
6370#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006371 return ret;
6372}
6373
6374static void __exit bfq_exit(void)
6375{
6376 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02006377#ifdef CONFIG_BFQ_GROUP_IOSCHED
6378 blkcg_policy_unregister(&blkcg_policy_bfq);
6379#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06006380 bfq_slab_kill();
6381}
6382
6383module_init(bfq_init);
6384module_exit(bfq_exit);
6385
6386MODULE_AUTHOR("Paolo Valente");
6387MODULE_LICENSE("GPL");
6388MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");