blob: 21011019f5df590eb117a25eead070b568706b2e [file] [log] [blame]
Paolo Valenteaee69d72017-04-19 08:29:02 -06001/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
Paolo Valente4029eef2018-05-31 16:45:05 +020052 * applications: interactive and soft real-time. In more detail, BFQ
53 * behaves this way if the low_latency parameter is set (default
54 * configuration). This feature enables BFQ to provide applications in
55 * these classes with a very low latency.
56 *
57 * To implement this feature, BFQ constantly tries to detect whether
58 * the I/O requests in a bfq_queue come from an interactive or a soft
59 * real-time application. For brevity, in these cases, the queue is
60 * said to be interactive or soft real-time. In both cases, BFQ
61 * privileges the service of the queue, over that of non-interactive
62 * and non-soft-real-time queues. This privileging is performed,
63 * mainly, by raising the weight of the queue. So, for brevity, we
64 * call just weight-raising periods the time periods during which a
65 * queue is privileged, because deemed interactive or soft real-time.
66 *
67 * The detection of soft real-time queues/applications is described in
68 * detail in the comments on the function
69 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
70 * interactive queue works as follows: a queue is deemed interactive
71 * if it is constantly non empty only for a limited time interval,
72 * after which it does become empty. The queue may be deemed
73 * interactive again (for a limited time), if it restarts being
74 * constantly non empty, provided that this happens only after the
75 * queue has remained empty for a given minimum idle time.
76 *
77 * By default, BFQ computes automatically the above maximum time
78 * interval, i.e., the time interval after which a constantly
79 * non-empty queue stops being deemed interactive. Since a queue is
80 * weight-raised while it is deemed interactive, this maximum time
81 * interval happens to coincide with the (maximum) duration of the
82 * weight-raising for interactive queues.
83 *
84 * Finally, BFQ also features additional heuristics for
Paolo Valenteaee69d72017-04-19 08:29:02 -060085 * preserving both a low latency and a high throughput on NCQ-capable,
86 * rotational or flash-based devices, and to get the job done quickly
87 * for applications consisting in many I/O-bound processes.
88 *
Paolo Valente43c1b3d2017-05-09 12:54:23 +020089 * NOTE: if the main or only goal, with a given device, is to achieve
90 * the maximum-possible throughput at all times, then do switch off
91 * all low-latency heuristics for that device, by setting low_latency
92 * to 0.
93 *
Paolo Valente4029eef2018-05-31 16:45:05 +020094 * BFQ is described in [1], where also a reference to the initial,
95 * more theoretical paper on BFQ can be found. The interested reader
96 * can find in the latter paper full details on the main algorithm, as
97 * well as formulas of the guarantees and formal proofs of all the
98 * properties. With respect to the version of BFQ presented in these
99 * papers, this implementation adds a few more heuristics, such as the
100 * ones that guarantee a low latency to interactive and soft real-time
101 * applications, and a hierarchical extension based on H-WF2Q+.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600102 *
103 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
104 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
105 * with O(log N) complexity derives from the one introduced with EEVDF
106 * in [3].
107 *
108 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
109 * Scheduler", Proceedings of the First Workshop on Mobile System
110 * Technologies (MST-2015), May 2015.
111 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
112 *
113 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
114 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
115 * Oct 1997.
116 *
117 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
118 *
119 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
120 * First: A Flexible and Accurate Mechanism for Proportional Share
121 * Resource Allocation", technical report.
122 *
123 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
124 */
125#include <linux/module.h>
126#include <linux/slab.h>
127#include <linux/blkdev.h>
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200128#include <linux/cgroup.h>
Paolo Valenteaee69d72017-04-19 08:29:02 -0600129#include <linux/elevator.h>
130#include <linux/ktime.h>
131#include <linux/rbtree.h>
132#include <linux/ioprio.h>
133#include <linux/sbitmap.h>
134#include <linux/delay.h>
135
136#include "blk.h"
137#include "blk-mq.h"
138#include "blk-mq-tag.h"
139#include "blk-mq-sched.h"
Paolo Valenteea25da42017-04-19 08:48:24 -0600140#include "bfq-iosched.h"
Luca Micciob5dc5d42017-10-09 16:27:21 +0200141#include "blk-wbt.h"
Paolo Valenteaee69d72017-04-19 08:29:02 -0600142
143#define BFQ_BFQQ_FNS(name) \
Paolo Valenteea25da42017-04-19 08:48:24 -0600144void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600145{ \
146 __set_bit(BFQQF_##name, &(bfqq)->flags); \
147} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600148void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600149{ \
150 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
151} \
Paolo Valenteea25da42017-04-19 08:48:24 -0600152int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600153{ \
154 return test_bit(BFQQF_##name, &(bfqq)->flags); \
155}
156
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200157BFQ_BFQQ_FNS(just_created);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600158BFQ_BFQQ_FNS(busy);
159BFQ_BFQQ_FNS(wait_request);
160BFQ_BFQQ_FNS(non_blocking_wait_rq);
161BFQ_BFQQ_FNS(fifo_expire);
Paolo Valented5be3fe2017-08-04 07:35:10 +0200162BFQ_BFQQ_FNS(has_short_ttime);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600163BFQ_BFQQ_FNS(sync);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600164BFQ_BFQQ_FNS(IO_bound);
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200165BFQ_BFQQ_FNS(in_large_burst);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200166BFQ_BFQQ_FNS(coop);
167BFQ_BFQQ_FNS(split_coop);
Paolo Valente77b7dce2017-04-12 18:23:13 +0200168BFQ_BFQQ_FNS(softrt_update);
Paolo Valenteea25da42017-04-19 08:48:24 -0600169#undef BFQ_BFQQ_FNS \
Paolo Valenteaee69d72017-04-19 08:29:02 -0600170
Paolo Valenteaee69d72017-04-19 08:29:02 -0600171/* Expiration time of sync (0) and async (1) requests, in ns. */
172static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
173
174/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
175static const int bfq_back_max = 16 * 1024;
176
177/* Penalty of a backwards seek, in number of sectors. */
178static const int bfq_back_penalty = 2;
179
180/* Idling period duration, in ns. */
181static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
182
183/* Minimum number of assigned budgets for which stats are safe to compute. */
184static const int bfq_stats_min_budgets = 194;
185
186/* Default maximum budget values, in sectors and number of requests. */
187static const int bfq_default_max_budget = 16 * 1024;
188
Paolo Valentec074170e2017-04-12 18:23:11 +0200189/*
190 * Async to sync throughput distribution is controlled as follows:
191 * when an async request is served, the entity is charged the number
192 * of sectors of the request, multiplied by the factor below
193 */
194static const int bfq_async_charge_factor = 10;
195
Paolo Valenteaee69d72017-04-19 08:29:02 -0600196/* Default timeout values, in jiffies, approximating CFQ defaults. */
Paolo Valenteea25da42017-04-19 08:48:24 -0600197const int bfq_timeout = HZ / 8;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600198
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100199/*
200 * Time limit for merging (see comments in bfq_setup_cooperator). Set
201 * to the slowest value that, in our tests, proved to be effective in
202 * removing false positives, while not causing true positives to miss
203 * queue merging.
204 *
205 * As can be deduced from the low time limit below, queue merging, if
206 * successful, happens at the very beggining of the I/O of the involved
207 * cooperating processes, as a consequence of the arrival of the very
208 * first requests from each cooperator. After that, there is very
209 * little chance to find cooperators.
210 */
211static const unsigned long bfq_merge_time_limit = HZ/10;
212
Paolo Valenteaee69d72017-04-19 08:29:02 -0600213static struct kmem_cache *bfq_pool;
214
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200215/* Below this threshold (in ns), we consider thinktime immediate. */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600216#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
217
218/* hw_tag detection: parallel requests threshold and min samples needed. */
219#define BFQ_HW_QUEUE_THRESHOLD 4
220#define BFQ_HW_QUEUE_SAMPLES 32
221
222#define BFQQ_SEEK_THR (sector_t)(8 * 100)
223#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
224#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
Paolo Valentef0ba5ea2017-12-20 17:27:36 +0100225#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600226
Paolo Valenteab0e43e2017-04-12 18:23:10 +0200227/* Min number of samples required to perform peak-rate update */
228#define BFQ_RATE_MIN_SAMPLES 32
229/* Min observation time interval required to perform a peak-rate update (ns) */
230#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
231/* Target observation time interval for a peak-rate update (ns) */
232#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
Paolo Valenteaee69d72017-04-19 08:29:02 -0600233
Paolo Valentebc56e2c2018-03-26 16:06:24 +0200234/*
235 * Shift used for peak-rate fixed precision calculations.
236 * With
237 * - the current shift: 16 positions
238 * - the current type used to store rate: u32
239 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
240 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
241 * the range of rates that can be stored is
242 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
243 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
244 * [15, 65G] sectors/sec
245 * Which, assuming a sector size of 512B, corresponds to a range of
246 * [7.5K, 33T] B/sec
247 */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600248#define BFQ_RATE_SHIFT 16
249
Paolo Valente44e44a12017-04-12 18:23:12 +0200250/*
Paolo Valente4029eef2018-05-31 16:45:05 +0200251 * When configured for computing the duration of the weight-raising
252 * for interactive queues automatically (see the comments at the
253 * beginning of this file), BFQ does it using the following formula:
Paolo Valentee24f1c22018-05-31 16:45:06 +0200254 * duration = (ref_rate / r) * ref_wr_duration,
255 * where r is the peak rate of the device, and ref_rate and
256 * ref_wr_duration are two reference parameters. In particular,
257 * ref_rate is the peak rate of the reference storage device (see
258 * below), and ref_wr_duration is about the maximum time needed, with
259 * BFQ and while reading two files in parallel, to load typical large
260 * applications on the reference device (see the comments on
261 * max_service_from_wr below, for more details on how ref_wr_duration
262 * is obtained). In practice, the slower/faster the device at hand
263 * is, the more/less it takes to load applications with respect to the
Paolo Valente4029eef2018-05-31 16:45:05 +0200264 * reference device. Accordingly, the longer/shorter BFQ grants
265 * weight raising to interactive applications.
Paolo Valente44e44a12017-04-12 18:23:12 +0200266 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200267 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
268 * depending on whether the device is rotational or non-rotational.
Paolo Valente44e44a12017-04-12 18:23:12 +0200269 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200270 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
271 * are the reference values for a rotational device, whereas
272 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
273 * non-rotational device. The reference rates are not the actual peak
274 * rates of the devices used as a reference, but slightly lower
275 * values. The reason for using slightly lower values is that the
276 * peak-rate estimator tends to yield slightly lower values than the
277 * actual peak rate (it can yield the actual peak rate only if there
278 * is only one process doing I/O, and the process does sequential
279 * I/O).
Paolo Valente44e44a12017-04-12 18:23:12 +0200280 *
Paolo Valentee24f1c22018-05-31 16:45:06 +0200281 * The reference peak rates are measured in sectors/usec, left-shifted
282 * by BFQ_RATE_SHIFT.
Paolo Valente44e44a12017-04-12 18:23:12 +0200283 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200284static int ref_rate[2] = {14000, 33000};
Paolo Valente44e44a12017-04-12 18:23:12 +0200285/*
Paolo Valentee24f1c22018-05-31 16:45:06 +0200286 * To improve readability, a conversion function is used to initialize
287 * the following array, which entails that the array can be
288 * initialized only in a function.
Paolo Valente44e44a12017-04-12 18:23:12 +0200289 */
Paolo Valentee24f1c22018-05-31 16:45:06 +0200290static int ref_wr_duration[2];
Paolo Valente44e44a12017-04-12 18:23:12 +0200291
Paolo Valente8a8747d2018-01-13 12:05:18 +0100292/*
293 * BFQ uses the above-detailed, time-based weight-raising mechanism to
294 * privilege interactive tasks. This mechanism is vulnerable to the
295 * following false positives: I/O-bound applications that will go on
296 * doing I/O for much longer than the duration of weight
297 * raising. These applications have basically no benefit from being
298 * weight-raised at the beginning of their I/O. On the opposite end,
299 * while being weight-raised, these applications
300 * a) unjustly steal throughput to applications that may actually need
301 * low latency;
302 * b) make BFQ uselessly perform device idling; device idling results
303 * in loss of device throughput with most flash-based storage, and may
304 * increase latencies when used purposelessly.
305 *
306 * BFQ tries to reduce these problems, by adopting the following
307 * countermeasure. To introduce this countermeasure, we need first to
308 * finish explaining how the duration of weight-raising for
309 * interactive tasks is computed.
310 *
311 * For a bfq_queue deemed as interactive, the duration of weight
312 * raising is dynamically adjusted, as a function of the estimated
313 * peak rate of the device, so as to be equal to the time needed to
314 * execute the 'largest' interactive task we benchmarked so far. By
315 * largest task, we mean the task for which each involved process has
316 * to do more I/O than for any of the other tasks we benchmarked. This
317 * reference interactive task is the start-up of LibreOffice Writer,
318 * and in this task each process/bfq_queue needs to have at most ~110K
319 * sectors transferred.
320 *
321 * This last piece of information enables BFQ to reduce the actual
322 * duration of weight-raising for at least one class of I/O-bound
323 * applications: those doing sequential or quasi-sequential I/O. An
324 * example is file copy. In fact, once started, the main I/O-bound
325 * processes of these applications usually consume the above 110K
326 * sectors in much less time than the processes of an application that
327 * is starting, because these I/O-bound processes will greedily devote
328 * almost all their CPU cycles only to their target,
329 * throughput-friendly I/O operations. This is even more true if BFQ
330 * happens to be underestimating the device peak rate, and thus
331 * overestimating the duration of weight raising. But, according to
332 * our measurements, once transferred 110K sectors, these processes
333 * have no right to be weight-raised any longer.
334 *
335 * Basing on the last consideration, BFQ ends weight-raising for a
336 * bfq_queue if the latter happens to have received an amount of
337 * service at least equal to the following constant. The constant is
338 * set to slightly more than 110K, to have a minimum safety margin.
339 *
340 * This early ending of weight-raising reduces the amount of time
341 * during which interactive false positives cause the two problems
342 * described at the beginning of these comments.
343 */
344static const unsigned long max_service_from_wr = 120000;
345
Bart Van Assche12cd3a22017-08-30 11:42:11 -0700346#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
Paolo Valenteaee69d72017-04-19 08:29:02 -0600347#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
348
Paolo Valenteea25da42017-04-19 08:48:24 -0600349struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
350{
351 return bic->bfqq[is_sync];
352}
353
354void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
355{
356 bic->bfqq[is_sync] = bfqq;
357}
358
359struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
360{
361 return bic->icq.q->elevator->elevator_data;
362}
363
Paolo Valenteaee69d72017-04-19 08:29:02 -0600364/**
365 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
366 * @icq: the iocontext queue.
367 */
368static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
369{
370 /* bic->icq is the first member, %NULL will convert to %NULL */
371 return container_of(icq, struct bfq_io_cq, icq);
372}
373
374/**
375 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
376 * @bfqd: the lookup key.
377 * @ioc: the io_context of the process doing I/O.
378 * @q: the request queue.
379 */
380static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
381 struct io_context *ioc,
382 struct request_queue *q)
383{
384 if (ioc) {
385 unsigned long flags;
386 struct bfq_io_cq *icq;
387
388 spin_lock_irqsave(q->queue_lock, flags);
389 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
390 spin_unlock_irqrestore(q->queue_lock, flags);
391
392 return icq;
393 }
394
395 return NULL;
396}
397
398/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200399 * Scheduler run of queue, if there are requests pending and no one in the
400 * driver that will restart queueing.
Paolo Valenteaee69d72017-04-19 08:29:02 -0600401 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600402void bfq_schedule_dispatch(struct bfq_data *bfqd)
Paolo Valenteaee69d72017-04-19 08:29:02 -0600403{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +0200404 if (bfqd->queued != 0) {
405 bfq_log(bfqd, "schedule dispatch");
406 blk_mq_run_hw_queues(bfqd->queue, true);
407 }
Paolo Valenteaee69d72017-04-19 08:29:02 -0600408}
409
Paolo Valenteaee69d72017-04-19 08:29:02 -0600410#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
411#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
412
413#define bfq_sample_valid(samples) ((samples) > 80)
414
415/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600416 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
417 * We choose the request that is closesr to the head right now. Distance
418 * behind the head is penalized and only allowed to a certain extent.
419 */
420static struct request *bfq_choose_req(struct bfq_data *bfqd,
421 struct request *rq1,
422 struct request *rq2,
423 sector_t last)
424{
425 sector_t s1, s2, d1 = 0, d2 = 0;
426 unsigned long back_max;
427#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
428#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
429 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
430
431 if (!rq1 || rq1 == rq2)
432 return rq2;
433 if (!rq2)
434 return rq1;
435
436 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
437 return rq1;
438 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
439 return rq2;
440 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
441 return rq1;
442 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
443 return rq2;
444
445 s1 = blk_rq_pos(rq1);
446 s2 = blk_rq_pos(rq2);
447
448 /*
449 * By definition, 1KiB is 2 sectors.
450 */
451 back_max = bfqd->bfq_back_max * 2;
452
453 /*
454 * Strict one way elevator _except_ in the case where we allow
455 * short backward seeks which are biased as twice the cost of a
456 * similar forward seek.
457 */
458 if (s1 >= last)
459 d1 = s1 - last;
460 else if (s1 + back_max >= last)
461 d1 = (last - s1) * bfqd->bfq_back_penalty;
462 else
463 wrap |= BFQ_RQ1_WRAP;
464
465 if (s2 >= last)
466 d2 = s2 - last;
467 else if (s2 + back_max >= last)
468 d2 = (last - s2) * bfqd->bfq_back_penalty;
469 else
470 wrap |= BFQ_RQ2_WRAP;
471
472 /* Found required data */
473
474 /*
475 * By doing switch() on the bit mask "wrap" we avoid having to
476 * check two variables for all permutations: --> faster!
477 */
478 switch (wrap) {
479 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
480 if (d1 < d2)
481 return rq1;
482 else if (d2 < d1)
483 return rq2;
484
485 if (s1 >= s2)
486 return rq1;
487 else
488 return rq2;
489
490 case BFQ_RQ2_WRAP:
491 return rq1;
492 case BFQ_RQ1_WRAP:
493 return rq2;
494 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
495 default:
496 /*
497 * Since both rqs are wrapped,
498 * start with the one that's further behind head
499 * (--> only *one* back seek required),
500 * since back seek takes more time than forward.
501 */
502 if (s1 <= s2)
503 return rq1;
504 else
505 return rq2;
506 }
507}
508
Paolo Valentea52a69e2018-01-13 12:05:17 +0100509/*
Paolo Valentea52a69e2018-01-13 12:05:17 +0100510 * Async I/O can easily starve sync I/O (both sync reads and sync
511 * writes), by consuming all tags. Similarly, storms of sync writes,
512 * such as those that sync(2) may trigger, can starve sync reads.
513 * Limit depths of async I/O and sync writes so as to counter both
514 * problems.
515 */
516static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
517{
Paolo Valentea52a69e2018-01-13 12:05:17 +0100518 struct bfq_data *bfqd = data->q->elevator->elevator_data;
Paolo Valentea52a69e2018-01-13 12:05:17 +0100519
520 if (op_is_sync(op) && !op_is_write(op))
521 return;
522
Paolo Valentea52a69e2018-01-13 12:05:17 +0100523 data->shallow_depth =
524 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
525
526 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
527 __func__, bfqd->wr_busy_queues, op_is_sync(op),
528 data->shallow_depth);
529}
530
Arianna Avanzini36eca892017-04-12 18:23:16 +0200531static struct bfq_queue *
532bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
533 sector_t sector, struct rb_node **ret_parent,
534 struct rb_node ***rb_link)
535{
536 struct rb_node **p, *parent;
537 struct bfq_queue *bfqq = NULL;
538
539 parent = NULL;
540 p = &root->rb_node;
541 while (*p) {
542 struct rb_node **n;
543
544 parent = *p;
545 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
546
547 /*
548 * Sort strictly based on sector. Smallest to the left,
549 * largest to the right.
550 */
551 if (sector > blk_rq_pos(bfqq->next_rq))
552 n = &(*p)->rb_right;
553 else if (sector < blk_rq_pos(bfqq->next_rq))
554 n = &(*p)->rb_left;
555 else
556 break;
557 p = n;
558 bfqq = NULL;
559 }
560
561 *ret_parent = parent;
562 if (rb_link)
563 *rb_link = p;
564
565 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
566 (unsigned long long)sector,
567 bfqq ? bfqq->pid : 0);
568
569 return bfqq;
570}
571
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100572static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
573{
574 return bfqq->service_from_backlogged > 0 &&
575 time_is_before_jiffies(bfqq->first_IO_time +
576 bfq_merge_time_limit);
577}
578
Paolo Valenteea25da42017-04-19 08:48:24 -0600579void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200580{
581 struct rb_node **p, *parent;
582 struct bfq_queue *__bfqq;
583
584 if (bfqq->pos_root) {
585 rb_erase(&bfqq->pos_node, bfqq->pos_root);
586 bfqq->pos_root = NULL;
587 }
588
Paolo Valente7b8fa3b2017-12-20 12:38:33 +0100589 /*
590 * bfqq cannot be merged any longer (see comments in
591 * bfq_setup_cooperator): no point in adding bfqq into the
592 * position tree.
593 */
594 if (bfq_too_late_for_merging(bfqq))
595 return;
596
Arianna Avanzini36eca892017-04-12 18:23:16 +0200597 if (bfq_class_idle(bfqq))
598 return;
599 if (!bfqq->next_rq)
600 return;
601
602 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
603 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
604 blk_rq_pos(bfqq->next_rq), &parent, &p);
605 if (!__bfqq) {
606 rb_link_node(&bfqq->pos_node, parent, p);
607 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
608 } else
609 bfqq->pos_root = NULL;
610}
611
Paolo Valenteaee69d72017-04-19 08:29:02 -0600612/*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200613 * Tell whether there are active queues or groups with differentiated weights.
614 */
615static bool bfq_differentiated_weights(struct bfq_data *bfqd)
616{
617 /*
618 * For weights to differ, at least one of the trees must contain
619 * at least two nodes.
620 */
621 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
622 (bfqd->queue_weights_tree.rb_node->rb_left ||
623 bfqd->queue_weights_tree.rb_node->rb_right)
624#ifdef CONFIG_BFQ_GROUP_IOSCHED
625 ) ||
626 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
627 (bfqd->group_weights_tree.rb_node->rb_left ||
628 bfqd->group_weights_tree.rb_node->rb_right)
629#endif
630 );
631}
632
633/*
634 * The following function returns true if every queue must receive the
635 * same share of the throughput (this condition is used when deciding
636 * whether idling may be disabled, see the comments in the function
637 * bfq_bfqq_may_idle()).
638 *
639 * Such a scenario occurs when:
640 * 1) all active queues have the same weight,
641 * 2) all active groups at the same level in the groups tree have the same
642 * weight,
643 * 3) all active groups at the same level in the groups tree have the same
644 * number of children.
645 *
646 * Unfortunately, keeping the necessary state for evaluating exactly the
647 * above symmetry conditions would be quite complex and time-consuming.
648 * Therefore this function evaluates, instead, the following stronger
649 * sub-conditions, for which it is much easier to maintain the needed
650 * state:
651 * 1) all active queues have the same weight,
652 * 2) all active groups have the same weight,
653 * 3) all active groups have at most one active child each.
654 * In particular, the last two conditions are always true if hierarchical
655 * support and the cgroups interface are not enabled, thus no state needs
656 * to be maintained in this case.
657 */
658static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
659{
660 return !bfq_differentiated_weights(bfqd);
661}
662
663/*
664 * If the weight-counter tree passed as input contains no counter for
665 * the weight of the input entity, then add that counter; otherwise just
666 * increment the existing counter.
667 *
668 * Note that weight-counter trees contain few nodes in mostly symmetric
669 * scenarios. For example, if all queues have the same weight, then the
670 * weight-counter tree for the queues may contain at most one node.
671 * This holds even if low_latency is on, because weight-raised queues
672 * are not inserted in the tree.
673 * In most scenarios, the rate at which nodes are created/destroyed
674 * should be low too.
675 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600676void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
677 struct rb_root *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200678{
679 struct rb_node **new = &(root->rb_node), *parent = NULL;
680
681 /*
682 * Do not insert if the entity is already associated with a
683 * counter, which happens if:
684 * 1) the entity is associated with a queue,
685 * 2) a request arrival has caused the queue to become both
686 * non-weight-raised, and hence change its weight, and
687 * backlogged; in this respect, each of the two events
688 * causes an invocation of this function,
689 * 3) this is the invocation of this function caused by the
690 * second event. This second invocation is actually useless,
691 * and we handle this fact by exiting immediately. More
692 * efficient or clearer solutions might possibly be adopted.
693 */
694 if (entity->weight_counter)
695 return;
696
697 while (*new) {
698 struct bfq_weight_counter *__counter = container_of(*new,
699 struct bfq_weight_counter,
700 weights_node);
701 parent = *new;
702
703 if (entity->weight == __counter->weight) {
704 entity->weight_counter = __counter;
705 goto inc_counter;
706 }
707 if (entity->weight < __counter->weight)
708 new = &((*new)->rb_left);
709 else
710 new = &((*new)->rb_right);
711 }
712
713 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
714 GFP_ATOMIC);
715
716 /*
717 * In the unlucky event of an allocation failure, we just
718 * exit. This will cause the weight of entity to not be
719 * considered in bfq_differentiated_weights, which, in its
720 * turn, causes the scenario to be deemed wrongly symmetric in
721 * case entity's weight would have been the only weight making
722 * the scenario asymmetric. On the bright side, no unbalance
723 * will however occur when entity becomes inactive again (the
724 * invocation of this function is triggered by an activation
725 * of entity). In fact, bfq_weights_tree_remove does nothing
726 * if !entity->weight_counter.
727 */
728 if (unlikely(!entity->weight_counter))
729 return;
730
731 entity->weight_counter->weight = entity->weight;
732 rb_link_node(&entity->weight_counter->weights_node, parent, new);
733 rb_insert_color(&entity->weight_counter->weights_node, root);
734
735inc_counter:
736 entity->weight_counter->num_active++;
737}
738
739/*
740 * Decrement the weight counter associated with the entity, and, if the
741 * counter reaches 0, remove the counter from the tree.
742 * See the comments to the function bfq_weights_tree_add() for considerations
743 * about overhead.
744 */
Paolo Valenteea25da42017-04-19 08:48:24 -0600745void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
746 struct rb_root *root)
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +0200747{
748 if (!entity->weight_counter)
749 return;
750
751 entity->weight_counter->num_active--;
752 if (entity->weight_counter->num_active > 0)
753 goto reset_entity_pointer;
754
755 rb_erase(&entity->weight_counter->weights_node, root);
756 kfree(entity->weight_counter);
757
758reset_entity_pointer:
759 entity->weight_counter = NULL;
760}
761
762/*
Paolo Valenteaee69d72017-04-19 08:29:02 -0600763 * Return expired entry, or NULL to just start from scratch in rbtree.
764 */
765static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
766 struct request *last)
767{
768 struct request *rq;
769
770 if (bfq_bfqq_fifo_expire(bfqq))
771 return NULL;
772
773 bfq_mark_bfqq_fifo_expire(bfqq);
774
775 rq = rq_entry_fifo(bfqq->fifo.next);
776
777 if (rq == last || ktime_get_ns() < rq->fifo_time)
778 return NULL;
779
780 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
781 return rq;
782}
783
784static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
785 struct bfq_queue *bfqq,
786 struct request *last)
787{
788 struct rb_node *rbnext = rb_next(&last->rb_node);
789 struct rb_node *rbprev = rb_prev(&last->rb_node);
790 struct request *next, *prev = NULL;
791
792 /* Follow expired path, else get first next available. */
793 next = bfq_check_fifo(bfqq, last);
794 if (next)
795 return next;
796
797 if (rbprev)
798 prev = rb_entry_rq(rbprev);
799
800 if (rbnext)
801 next = rb_entry_rq(rbnext);
802 else {
803 rbnext = rb_first(&bfqq->sort_list);
804 if (rbnext && rbnext != &last->rb_node)
805 next = rb_entry_rq(rbnext);
806 }
807
808 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
809}
810
Paolo Valentec074170e2017-04-12 18:23:11 +0200811/* see the definition of bfq_async_charge_factor for details */
Paolo Valenteaee69d72017-04-19 08:29:02 -0600812static unsigned long bfq_serv_to_charge(struct request *rq,
813 struct bfq_queue *bfqq)
814{
Paolo Valente44e44a12017-04-12 18:23:12 +0200815 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
Paolo Valentec074170e2017-04-12 18:23:11 +0200816 return blk_rq_sectors(rq);
817
Paolo Valentecfd69712017-04-12 18:23:15 +0200818 /*
819 * If there are no weight-raised queues, then amplify service
820 * by just the async charge factor; otherwise amplify service
821 * by twice the async charge factor, to further reduce latency
822 * for weight-raised queues.
823 */
824 if (bfqq->bfqd->wr_busy_queues == 0)
825 return blk_rq_sectors(rq) * bfq_async_charge_factor;
826
827 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
Paolo Valenteaee69d72017-04-19 08:29:02 -0600828}
829
830/**
831 * bfq_updated_next_req - update the queue after a new next_rq selection.
832 * @bfqd: the device data the queue belongs to.
833 * @bfqq: the queue to update.
834 *
835 * If the first request of a queue changes we make sure that the queue
836 * has enough budget to serve at least its first request (if the
837 * request has grown). We do this because if the queue has not enough
838 * budget for its first request, it has to go through two dispatch
839 * rounds to actually get it dispatched.
840 */
841static void bfq_updated_next_req(struct bfq_data *bfqd,
842 struct bfq_queue *bfqq)
843{
844 struct bfq_entity *entity = &bfqq->entity;
845 struct request *next_rq = bfqq->next_rq;
846 unsigned long new_budget;
847
848 if (!next_rq)
849 return;
850
851 if (bfqq == bfqd->in_service_queue)
852 /*
853 * In order not to break guarantees, budgets cannot be
854 * changed after an entity has been selected.
855 */
856 return;
857
858 new_budget = max_t(unsigned long, bfqq->max_budget,
859 bfq_serv_to_charge(next_rq, bfqq));
860 if (entity->budget != new_budget) {
861 entity->budget = new_budget;
862 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
863 new_budget);
Paolo Valente80294c32017-08-31 08:46:29 +0200864 bfq_requeue_bfqq(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -0600865 }
866}
867
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200868static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
869{
870 u64 dur;
871
872 if (bfqd->bfq_wr_max_time > 0)
873 return bfqd->bfq_wr_max_time;
874
Paolo Valentee24f1c22018-05-31 16:45:06 +0200875 dur = bfqd->rate_dur_prod;
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200876 do_div(dur, bfqd->peak_rate);
877
878 /*
879 * Limit duration between 3 and 13 seconds. Tests show that
880 * higher values than 13 seconds often yield the opposite of
881 * the desired result, i.e., worsen responsiveness by letting
882 * non-interactive and non-soft-real-time applications
883 * preserve weight raising for a too long time interval.
884 *
885 * On the other end, lower values than 3 seconds make it
886 * difficult for most interactive tasks to complete their jobs
887 * before weight-raising finishes.
888 */
889 if (dur > msecs_to_jiffies(13000))
890 dur = msecs_to_jiffies(13000);
891 else if (dur < msecs_to_jiffies(3000))
892 dur = msecs_to_jiffies(3000);
893
894 return dur;
895}
896
897/* switch back from soft real-time to interactive weight raising */
898static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
899 struct bfq_data *bfqd)
900{
901 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
902 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
903 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
904}
905
Arianna Avanzini36eca892017-04-12 18:23:16 +0200906static void
Paolo Valente13c931b2017-06-27 12:30:47 -0600907bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
908 struct bfq_io_cq *bic, bool bfq_already_existing)
Arianna Avanzini36eca892017-04-12 18:23:16 +0200909{
Paolo Valente13c931b2017-06-27 12:30:47 -0600910 unsigned int old_wr_coeff = bfqq->wr_coeff;
911 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
912
Paolo Valented5be3fe2017-08-04 07:35:10 +0200913 if (bic->saved_has_short_ttime)
914 bfq_mark_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200915 else
Paolo Valented5be3fe2017-08-04 07:35:10 +0200916 bfq_clear_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +0200917
918 if (bic->saved_IO_bound)
919 bfq_mark_bfqq_IO_bound(bfqq);
920 else
921 bfq_clear_bfqq_IO_bound(bfqq);
922
923 bfqq->ttime = bic->saved_ttime;
924 bfqq->wr_coeff = bic->saved_wr_coeff;
925 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
926 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
927 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
928
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200929 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
Arianna Avanzini36eca892017-04-12 18:23:16 +0200930 time_is_before_jiffies(bfqq->last_wr_start_finish +
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200931 bfqq->wr_cur_max_time))) {
Paolo Valente3e2bdd62017-09-21 11:04:01 +0200932 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
933 !bfq_bfqq_in_large_burst(bfqq) &&
934 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
935 bfq_wr_duration(bfqd))) {
936 switch_back_to_interactive_wr(bfqq, bfqd);
937 } else {
938 bfqq->wr_coeff = 1;
939 bfq_log_bfqq(bfqq->bfqd, bfqq,
940 "resume state: switching off wr");
941 }
Arianna Avanzini36eca892017-04-12 18:23:16 +0200942 }
943
944 /* make sure weight will be updated, however we got here */
945 bfqq->entity.prio_changed = 1;
Paolo Valente13c931b2017-06-27 12:30:47 -0600946
947 if (likely(!busy))
948 return;
949
950 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
951 bfqd->wr_busy_queues++;
952 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
953 bfqd->wr_busy_queues--;
Arianna Avanzini36eca892017-04-12 18:23:16 +0200954}
955
956static int bfqq_process_refs(struct bfq_queue *bfqq)
957{
958 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
959}
960
Arianna Avanzinie1b23242017-04-12 18:23:20 +0200961/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
962static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
963{
964 struct bfq_queue *item;
965 struct hlist_node *n;
966
967 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
968 hlist_del_init(&item->burst_list_node);
969 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
970 bfqd->burst_size = 1;
971 bfqd->burst_parent_entity = bfqq->entity.parent;
972}
973
974/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
975static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
976{
977 /* Increment burst size to take into account also bfqq */
978 bfqd->burst_size++;
979
980 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
981 struct bfq_queue *pos, *bfqq_item;
982 struct hlist_node *n;
983
984 /*
985 * Enough queues have been activated shortly after each
986 * other to consider this burst as large.
987 */
988 bfqd->large_burst = true;
989
990 /*
991 * We can now mark all queues in the burst list as
992 * belonging to a large burst.
993 */
994 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
995 burst_list_node)
996 bfq_mark_bfqq_in_large_burst(bfqq_item);
997 bfq_mark_bfqq_in_large_burst(bfqq);
998
999 /*
1000 * From now on, and until the current burst finishes, any
1001 * new queue being activated shortly after the last queue
1002 * was inserted in the burst can be immediately marked as
1003 * belonging to a large burst. So the burst list is not
1004 * needed any more. Remove it.
1005 */
1006 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1007 burst_list_node)
1008 hlist_del_init(&pos->burst_list_node);
1009 } else /*
1010 * Burst not yet large: add bfqq to the burst list. Do
1011 * not increment the ref counter for bfqq, because bfqq
1012 * is removed from the burst list before freeing bfqq
1013 * in put_queue.
1014 */
1015 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1016}
1017
1018/*
1019 * If many queues belonging to the same group happen to be created
1020 * shortly after each other, then the processes associated with these
1021 * queues have typically a common goal. In particular, bursts of queue
1022 * creations are usually caused by services or applications that spawn
1023 * many parallel threads/processes. Examples are systemd during boot,
1024 * or git grep. To help these processes get their job done as soon as
1025 * possible, it is usually better to not grant either weight-raising
1026 * or device idling to their queues.
1027 *
1028 * In this comment we describe, firstly, the reasons why this fact
1029 * holds, and, secondly, the next function, which implements the main
1030 * steps needed to properly mark these queues so that they can then be
1031 * treated in a different way.
1032 *
1033 * The above services or applications benefit mostly from a high
1034 * throughput: the quicker the requests of the activated queues are
1035 * cumulatively served, the sooner the target job of these queues gets
1036 * completed. As a consequence, weight-raising any of these queues,
1037 * which also implies idling the device for it, is almost always
1038 * counterproductive. In most cases it just lowers throughput.
1039 *
1040 * On the other hand, a burst of queue creations may be caused also by
1041 * the start of an application that does not consist of a lot of
1042 * parallel I/O-bound threads. In fact, with a complex application,
1043 * several short processes may need to be executed to start-up the
1044 * application. In this respect, to start an application as quickly as
1045 * possible, the best thing to do is in any case to privilege the I/O
1046 * related to the application with respect to all other
1047 * I/O. Therefore, the best strategy to start as quickly as possible
1048 * an application that causes a burst of queue creations is to
1049 * weight-raise all the queues created during the burst. This is the
1050 * exact opposite of the best strategy for the other type of bursts.
1051 *
1052 * In the end, to take the best action for each of the two cases, the
1053 * two types of bursts need to be distinguished. Fortunately, this
1054 * seems relatively easy, by looking at the sizes of the bursts. In
1055 * particular, we found a threshold such that only bursts with a
1056 * larger size than that threshold are apparently caused by
1057 * services or commands such as systemd or git grep. For brevity,
1058 * hereafter we call just 'large' these bursts. BFQ *does not*
1059 * weight-raise queues whose creation occurs in a large burst. In
1060 * addition, for each of these queues BFQ performs or does not perform
1061 * idling depending on which choice boosts the throughput more. The
1062 * exact choice depends on the device and request pattern at
1063 * hand.
1064 *
1065 * Unfortunately, false positives may occur while an interactive task
1066 * is starting (e.g., an application is being started). The
1067 * consequence is that the queues associated with the task do not
1068 * enjoy weight raising as expected. Fortunately these false positives
1069 * are very rare. They typically occur if some service happens to
1070 * start doing I/O exactly when the interactive task starts.
1071 *
1072 * Turning back to the next function, it implements all the steps
1073 * needed to detect the occurrence of a large burst and to properly
1074 * mark all the queues belonging to it (so that they can then be
1075 * treated in a different way). This goal is achieved by maintaining a
1076 * "burst list" that holds, temporarily, the queues that belong to the
1077 * burst in progress. The list is then used to mark these queues as
1078 * belonging to a large burst if the burst does become large. The main
1079 * steps are the following.
1080 *
1081 * . when the very first queue is created, the queue is inserted into the
1082 * list (as it could be the first queue in a possible burst)
1083 *
1084 * . if the current burst has not yet become large, and a queue Q that does
1085 * not yet belong to the burst is activated shortly after the last time
1086 * at which a new queue entered the burst list, then the function appends
1087 * Q to the burst list
1088 *
1089 * . if, as a consequence of the previous step, the burst size reaches
1090 * the large-burst threshold, then
1091 *
1092 * . all the queues in the burst list are marked as belonging to a
1093 * large burst
1094 *
1095 * . the burst list is deleted; in fact, the burst list already served
1096 * its purpose (keeping temporarily track of the queues in a burst,
1097 * so as to be able to mark them as belonging to a large burst in the
1098 * previous sub-step), and now is not needed any more
1099 *
1100 * . the device enters a large-burst mode
1101 *
1102 * . if a queue Q that does not belong to the burst is created while
1103 * the device is in large-burst mode and shortly after the last time
1104 * at which a queue either entered the burst list or was marked as
1105 * belonging to the current large burst, then Q is immediately marked
1106 * as belonging to a large burst.
1107 *
1108 * . if a queue Q that does not belong to the burst is created a while
1109 * later, i.e., not shortly after, than the last time at which a queue
1110 * either entered the burst list or was marked as belonging to the
1111 * current large burst, then the current burst is deemed as finished and:
1112 *
1113 * . the large-burst mode is reset if set
1114 *
1115 * . the burst list is emptied
1116 *
1117 * . Q is inserted in the burst list, as Q may be the first queue
1118 * in a possible new burst (then the burst list contains just Q
1119 * after this step).
1120 */
1121static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1122{
1123 /*
1124 * If bfqq is already in the burst list or is part of a large
1125 * burst, or finally has just been split, then there is
1126 * nothing else to do.
1127 */
1128 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1129 bfq_bfqq_in_large_burst(bfqq) ||
1130 time_is_after_eq_jiffies(bfqq->split_time +
1131 msecs_to_jiffies(10)))
1132 return;
1133
1134 /*
1135 * If bfqq's creation happens late enough, or bfqq belongs to
1136 * a different group than the burst group, then the current
1137 * burst is finished, and related data structures must be
1138 * reset.
1139 *
1140 * In this respect, consider the special case where bfqq is
1141 * the very first queue created after BFQ is selected for this
1142 * device. In this case, last_ins_in_burst and
1143 * burst_parent_entity are not yet significant when we get
1144 * here. But it is easy to verify that, whether or not the
1145 * following condition is true, bfqq will end up being
1146 * inserted into the burst list. In particular the list will
1147 * happen to contain only bfqq. And this is exactly what has
1148 * to happen, as bfqq may be the first queue of the first
1149 * burst.
1150 */
1151 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1152 bfqd->bfq_burst_interval) ||
1153 bfqq->entity.parent != bfqd->burst_parent_entity) {
1154 bfqd->large_burst = false;
1155 bfq_reset_burst_list(bfqd, bfqq);
1156 goto end;
1157 }
1158
1159 /*
1160 * If we get here, then bfqq is being activated shortly after the
1161 * last queue. So, if the current burst is also large, we can mark
1162 * bfqq as belonging to this large burst immediately.
1163 */
1164 if (bfqd->large_burst) {
1165 bfq_mark_bfqq_in_large_burst(bfqq);
1166 goto end;
1167 }
1168
1169 /*
1170 * If we get here, then a large-burst state has not yet been
1171 * reached, but bfqq is being activated shortly after the last
1172 * queue. Then we add bfqq to the burst.
1173 */
1174 bfq_add_to_burst(bfqd, bfqq);
1175end:
1176 /*
1177 * At this point, bfqq either has been added to the current
1178 * burst or has caused the current burst to terminate and a
1179 * possible new burst to start. In particular, in the second
1180 * case, bfqq has become the first queue in the possible new
1181 * burst. In both cases last_ins_in_burst needs to be moved
1182 * forward.
1183 */
1184 bfqd->last_ins_in_burst = jiffies;
1185}
1186
Paolo Valenteaee69d72017-04-19 08:29:02 -06001187static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1188{
1189 struct bfq_entity *entity = &bfqq->entity;
1190
1191 return entity->budget - entity->service;
1192}
1193
1194/*
1195 * If enough samples have been computed, return the current max budget
1196 * stored in bfqd, which is dynamically updated according to the
1197 * estimated disk peak rate; otherwise return the default max budget
1198 */
1199static int bfq_max_budget(struct bfq_data *bfqd)
1200{
1201 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1202 return bfq_default_max_budget;
1203 else
1204 return bfqd->bfq_max_budget;
1205}
1206
1207/*
1208 * Return min budget, which is a fraction of the current or default
1209 * max budget (trying with 1/32)
1210 */
1211static int bfq_min_budget(struct bfq_data *bfqd)
1212{
1213 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1214 return bfq_default_max_budget / 32;
1215 else
1216 return bfqd->bfq_max_budget / 32;
1217}
1218
Paolo Valenteaee69d72017-04-19 08:29:02 -06001219/*
1220 * The next function, invoked after the input queue bfqq switches from
1221 * idle to busy, updates the budget of bfqq. The function also tells
1222 * whether the in-service queue should be expired, by returning
1223 * true. The purpose of expiring the in-service queue is to give bfqq
1224 * the chance to possibly preempt the in-service queue, and the reason
Paolo Valente44e44a12017-04-12 18:23:12 +02001225 * for preempting the in-service queue is to achieve one of the two
1226 * goals below.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001227 *
Paolo Valente44e44a12017-04-12 18:23:12 +02001228 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1229 * expired because it has remained idle. In particular, bfqq may have
1230 * expired for one of the following two reasons:
Paolo Valenteaee69d72017-04-19 08:29:02 -06001231 *
1232 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1233 * and did not make it to issue a new request before its last
1234 * request was served;
1235 *
1236 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1237 * a new request before the expiration of the idling-time.
1238 *
1239 * Even if bfqq has expired for one of the above reasons, the process
1240 * associated with the queue may be however issuing requests greedily,
1241 * and thus be sensitive to the bandwidth it receives (bfqq may have
1242 * remained idle for other reasons: CPU high load, bfqq not enjoying
1243 * idling, I/O throttling somewhere in the path from the process to
1244 * the I/O scheduler, ...). But if, after every expiration for one of
1245 * the above two reasons, bfqq has to wait for the service of at least
1246 * one full budget of another queue before being served again, then
1247 * bfqq is likely to get a much lower bandwidth or resource time than
1248 * its reserved ones. To address this issue, two countermeasures need
1249 * to be taken.
1250 *
1251 * First, the budget and the timestamps of bfqq need to be updated in
1252 * a special way on bfqq reactivation: they need to be updated as if
1253 * bfqq did not remain idle and did not expire. In fact, if they are
1254 * computed as if bfqq expired and remained idle until reactivation,
1255 * then the process associated with bfqq is treated as if, instead of
1256 * being greedy, it stopped issuing requests when bfqq remained idle,
1257 * and restarts issuing requests only on this reactivation. In other
1258 * words, the scheduler does not help the process recover the "service
1259 * hole" between bfqq expiration and reactivation. As a consequence,
1260 * the process receives a lower bandwidth than its reserved one. In
1261 * contrast, to recover this hole, the budget must be updated as if
1262 * bfqq was not expired at all before this reactivation, i.e., it must
1263 * be set to the value of the remaining budget when bfqq was
1264 * expired. Along the same line, timestamps need to be assigned the
1265 * value they had the last time bfqq was selected for service, i.e.,
1266 * before last expiration. Thus timestamps need to be back-shifted
1267 * with respect to their normal computation (see [1] for more details
1268 * on this tricky aspect).
1269 *
1270 * Secondly, to allow the process to recover the hole, the in-service
1271 * queue must be expired too, to give bfqq the chance to preempt it
1272 * immediately. In fact, if bfqq has to wait for a full budget of the
1273 * in-service queue to be completed, then it may become impossible to
1274 * let the process recover the hole, even if the back-shifted
1275 * timestamps of bfqq are lower than those of the in-service queue. If
1276 * this happens for most or all of the holes, then the process may not
1277 * receive its reserved bandwidth. In this respect, it is worth noting
1278 * that, being the service of outstanding requests unpreemptible, a
1279 * little fraction of the holes may however be unrecoverable, thereby
1280 * causing a little loss of bandwidth.
1281 *
1282 * The last important point is detecting whether bfqq does need this
1283 * bandwidth recovery. In this respect, the next function deems the
1284 * process associated with bfqq greedy, and thus allows it to recover
1285 * the hole, if: 1) the process is waiting for the arrival of a new
1286 * request (which implies that bfqq expired for one of the above two
1287 * reasons), and 2) such a request has arrived soon. The first
1288 * condition is controlled through the flag non_blocking_wait_rq,
1289 * while the second through the flag arrived_in_time. If both
1290 * conditions hold, then the function computes the budget in the
1291 * above-described special way, and signals that the in-service queue
1292 * should be expired. Timestamp back-shifting is done later in
1293 * __bfq_activate_entity.
Paolo Valente44e44a12017-04-12 18:23:12 +02001294 *
1295 * 2. Reduce latency. Even if timestamps are not backshifted to let
1296 * the process associated with bfqq recover a service hole, bfqq may
1297 * however happen to have, after being (re)activated, a lower finish
1298 * timestamp than the in-service queue. That is, the next budget of
1299 * bfqq may have to be completed before the one of the in-service
1300 * queue. If this is the case, then preempting the in-service queue
1301 * allows this goal to be achieved, apart from the unpreemptible,
1302 * outstanding requests mentioned above.
1303 *
1304 * Unfortunately, regardless of which of the above two goals one wants
1305 * to achieve, service trees need first to be updated to know whether
1306 * the in-service queue must be preempted. To have service trees
1307 * correctly updated, the in-service queue must be expired and
1308 * rescheduled, and bfqq must be scheduled too. This is one of the
1309 * most costly operations (in future versions, the scheduling
1310 * mechanism may be re-designed in such a way to make it possible to
1311 * know whether preemption is needed without needing to update service
1312 * trees). In addition, queue preemptions almost always cause random
1313 * I/O, and thus loss of throughput. Because of these facts, the next
1314 * function adopts the following simple scheme to avoid both costly
1315 * operations and too frequent preemptions: it requests the expiration
1316 * of the in-service queue (unconditionally) only for queues that need
1317 * to recover a hole, or that either are weight-raised or deserve to
1318 * be weight-raised.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001319 */
1320static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1321 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001322 bool arrived_in_time,
1323 bool wr_or_deserves_wr)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001324{
1325 struct bfq_entity *entity = &bfqq->entity;
1326
1327 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1328 /*
1329 * We do not clear the flag non_blocking_wait_rq here, as
1330 * the latter is used in bfq_activate_bfqq to signal
1331 * that timestamps need to be back-shifted (and is
1332 * cleared right after).
1333 */
1334
1335 /*
1336 * In next assignment we rely on that either
1337 * entity->service or entity->budget are not updated
1338 * on expiration if bfqq is empty (see
1339 * __bfq_bfqq_recalc_budget). Thus both quantities
1340 * remain unchanged after such an expiration, and the
1341 * following statement therefore assigns to
1342 * entity->budget the remaining budget on such an
1343 * expiration. For clarity, entity->service is not
1344 * updated on expiration in any case, and, in normal
1345 * operation, is reset only when bfqq is selected for
1346 * service (see bfq_get_next_queue).
1347 */
1348 entity->budget = min_t(unsigned long,
1349 bfq_bfqq_budget_left(bfqq),
1350 bfqq->max_budget);
1351
1352 return true;
1353 }
1354
1355 entity->budget = max_t(unsigned long, bfqq->max_budget,
1356 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1357 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
Paolo Valente44e44a12017-04-12 18:23:12 +02001358 return wr_or_deserves_wr;
1359}
1360
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001361/*
1362 * Return the farthest future time instant according to jiffies
1363 * macros.
1364 */
1365static unsigned long bfq_greatest_from_now(void)
1366{
1367 return jiffies + MAX_JIFFY_OFFSET;
1368}
1369
1370/*
1371 * Return the farthest past time instant according to jiffies
1372 * macros.
1373 */
1374static unsigned long bfq_smallest_from_now(void)
1375{
1376 return jiffies - MAX_JIFFY_OFFSET;
1377}
1378
Paolo Valente44e44a12017-04-12 18:23:12 +02001379static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1380 struct bfq_queue *bfqq,
1381 unsigned int old_wr_coeff,
1382 bool wr_or_deserves_wr,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001383 bool interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001384 bool in_burst,
Paolo Valente77b7dce2017-04-12 18:23:13 +02001385 bool soft_rt)
Paolo Valente44e44a12017-04-12 18:23:12 +02001386{
1387 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1388 /* start a weight-raising period */
Paolo Valente77b7dce2017-04-12 18:23:13 +02001389 if (interactive) {
Paolo Valente8a8747d2018-01-13 12:05:18 +01001390 bfqq->service_from_wr = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001391 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1392 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1393 } else {
Paolo Valente4baa8bb2017-09-21 11:04:00 +02001394 /*
1395 * No interactive weight raising in progress
1396 * here: assign minus infinity to
1397 * wr_start_at_switch_to_srt, to make sure
1398 * that, at the end of the soft-real-time
1399 * weight raising periods that is starting
1400 * now, no interactive weight-raising period
1401 * may be wrongly considered as still in
1402 * progress (and thus actually started by
1403 * mistake).
1404 */
1405 bfqq->wr_start_at_switch_to_srt =
1406 bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02001407 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1408 BFQ_SOFTRT_WEIGHT_FACTOR;
1409 bfqq->wr_cur_max_time =
1410 bfqd->bfq_wr_rt_max_time;
1411 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001412
1413 /*
1414 * If needed, further reduce budget to make sure it is
1415 * close to bfqq's backlog, so as to reduce the
1416 * scheduling-error component due to a too large
1417 * budget. Do not care about throughput consequences,
1418 * but only about latency. Finally, do not assign a
1419 * too small budget either, to avoid increasing
1420 * latency by causing too frequent expirations.
1421 */
1422 bfqq->entity.budget = min_t(unsigned long,
1423 bfqq->entity.budget,
1424 2 * bfq_min_budget(bfqd));
1425 } else if (old_wr_coeff > 1) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001426 if (interactive) { /* update wr coeff and duration */
1427 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1428 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001429 } else if (in_burst)
1430 bfqq->wr_coeff = 1;
1431 else if (soft_rt) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02001432 /*
1433 * The application is now or still meeting the
1434 * requirements for being deemed soft rt. We
1435 * can then correctly and safely (re)charge
1436 * the weight-raising duration for the
1437 * application with the weight-raising
1438 * duration for soft rt applications.
1439 *
1440 * In particular, doing this recharge now, i.e.,
1441 * before the weight-raising period for the
1442 * application finishes, reduces the probability
1443 * of the following negative scenario:
1444 * 1) the weight of a soft rt application is
1445 * raised at startup (as for any newly
1446 * created application),
1447 * 2) since the application is not interactive,
1448 * at a certain time weight-raising is
1449 * stopped for the application,
1450 * 3) at that time the application happens to
1451 * still have pending requests, and hence
1452 * is destined to not have a chance to be
1453 * deemed soft rt before these requests are
1454 * completed (see the comments to the
1455 * function bfq_bfqq_softrt_next_start()
1456 * for details on soft rt detection),
1457 * 4) these pending requests experience a high
1458 * latency because the application is not
1459 * weight-raised while they are pending.
1460 */
1461 if (bfqq->wr_cur_max_time !=
1462 bfqd->bfq_wr_rt_max_time) {
1463 bfqq->wr_start_at_switch_to_srt =
1464 bfqq->last_wr_start_finish;
1465
1466 bfqq->wr_cur_max_time =
1467 bfqd->bfq_wr_rt_max_time;
1468 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1469 BFQ_SOFTRT_WEIGHT_FACTOR;
1470 }
1471 bfqq->last_wr_start_finish = jiffies;
1472 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001473 }
1474}
1475
1476static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1477 struct bfq_queue *bfqq)
1478{
1479 return bfqq->dispatched == 0 &&
1480 time_is_before_jiffies(
1481 bfqq->budget_timeout +
1482 bfqd->bfq_wr_min_idle_time);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001483}
1484
1485static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1486 struct bfq_queue *bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001487 int old_wr_coeff,
1488 struct request *rq,
1489 bool *interactive)
Paolo Valenteaee69d72017-04-19 08:29:02 -06001490{
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001491 bool soft_rt, in_burst, wr_or_deserves_wr,
1492 bfqq_wants_to_preempt,
Paolo Valente44e44a12017-04-12 18:23:12 +02001493 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
Paolo Valenteaee69d72017-04-19 08:29:02 -06001494 /*
1495 * See the comments on
1496 * bfq_bfqq_update_budg_for_activation for
1497 * details on the usage of the next variable.
1498 */
1499 arrived_in_time = ktime_get_ns() <=
1500 bfqq->ttime.last_end_request +
1501 bfqd->bfq_slice_idle * 3;
1502
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001503
Paolo Valenteaee69d72017-04-19 08:29:02 -06001504 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02001505 * bfqq deserves to be weight-raised if:
1506 * - it is sync,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001507 * - it does not belong to a large burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001508 * - it has been idle for enough time or is soft real-time,
1509 * - is linked to a bfq_io_cq (it is not shared in any sense).
Paolo Valente44e44a12017-04-12 18:23:12 +02001510 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001511 in_burst = bfq_bfqq_in_large_burst(bfqq);
Paolo Valente77b7dce2017-04-12 18:23:13 +02001512 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001513 !in_burst &&
Paolo Valente77b7dce2017-04-12 18:23:13 +02001514 time_is_before_jiffies(bfqq->soft_rt_next_start);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001515 *interactive = !in_burst && idle_for_long_time;
Paolo Valente44e44a12017-04-12 18:23:12 +02001516 wr_or_deserves_wr = bfqd->low_latency &&
1517 (bfqq->wr_coeff > 1 ||
Arianna Avanzini36eca892017-04-12 18:23:16 +02001518 (bfq_bfqq_sync(bfqq) &&
1519 bfqq->bic && (*interactive || soft_rt)));
Paolo Valente44e44a12017-04-12 18:23:12 +02001520
1521 /*
1522 * Using the last flag, update budget and check whether bfqq
1523 * may want to preempt the in-service queue.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001524 */
1525 bfqq_wants_to_preempt =
1526 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
Paolo Valente44e44a12017-04-12 18:23:12 +02001527 arrived_in_time,
1528 wr_or_deserves_wr);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001529
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001530 /*
1531 * If bfqq happened to be activated in a burst, but has been
1532 * idle for much more than an interactive queue, then we
1533 * assume that, in the overall I/O initiated in the burst, the
1534 * I/O associated with bfqq is finished. So bfqq does not need
1535 * to be treated as a queue belonging to a burst
1536 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1537 * if set, and remove bfqq from the burst list if it's
1538 * there. We do not decrement burst_size, because the fact
1539 * that bfqq does not need to belong to the burst list any
1540 * more does not invalidate the fact that bfqq was created in
1541 * a burst.
1542 */
1543 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1544 idle_for_long_time &&
1545 time_is_before_jiffies(
1546 bfqq->budget_timeout +
1547 msecs_to_jiffies(10000))) {
1548 hlist_del_init(&bfqq->burst_list_node);
1549 bfq_clear_bfqq_in_large_burst(bfqq);
1550 }
1551
1552 bfq_clear_bfqq_just_created(bfqq);
1553
1554
Paolo Valenteaee69d72017-04-19 08:29:02 -06001555 if (!bfq_bfqq_IO_bound(bfqq)) {
1556 if (arrived_in_time) {
1557 bfqq->requests_within_timer++;
1558 if (bfqq->requests_within_timer >=
1559 bfqd->bfq_requests_within_timer)
1560 bfq_mark_bfqq_IO_bound(bfqq);
1561 } else
1562 bfqq->requests_within_timer = 0;
1563 }
1564
Paolo Valente44e44a12017-04-12 18:23:12 +02001565 if (bfqd->low_latency) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02001566 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1567 /* wraparound */
1568 bfqq->split_time =
1569 jiffies - bfqd->bfq_wr_min_idle_time - 1;
Paolo Valente44e44a12017-04-12 18:23:12 +02001570
Arianna Avanzini36eca892017-04-12 18:23:16 +02001571 if (time_is_before_jiffies(bfqq->split_time +
1572 bfqd->bfq_wr_min_idle_time)) {
1573 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1574 old_wr_coeff,
1575 wr_or_deserves_wr,
1576 *interactive,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02001577 in_burst,
Arianna Avanzini36eca892017-04-12 18:23:16 +02001578 soft_rt);
1579
1580 if (old_wr_coeff != bfqq->wr_coeff)
1581 bfqq->entity.prio_changed = 1;
1582 }
Paolo Valente44e44a12017-04-12 18:23:12 +02001583 }
1584
Paolo Valente77b7dce2017-04-12 18:23:13 +02001585 bfqq->last_idle_bklogged = jiffies;
1586 bfqq->service_from_backlogged = 0;
1587 bfq_clear_bfqq_softrt_update(bfqq);
1588
Paolo Valenteaee69d72017-04-19 08:29:02 -06001589 bfq_add_bfqq_busy(bfqd, bfqq);
1590
1591 /*
1592 * Expire in-service queue only if preemption may be needed
1593 * for guarantees. In this respect, the function
1594 * next_queue_may_preempt just checks a simple, necessary
1595 * condition, and not a sufficient condition based on
1596 * timestamps. In fact, for the latter condition to be
1597 * evaluated, timestamps would need first to be updated, and
1598 * this operation is quite costly (see the comments on the
1599 * function bfq_bfqq_update_budg_for_activation).
1600 */
1601 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
Paolo Valente77b7dce2017-04-12 18:23:13 +02001602 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06001603 next_queue_may_preempt(bfqd))
1604 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1605 false, BFQQE_PREEMPTED);
1606}
1607
1608static void bfq_add_request(struct request *rq)
1609{
1610 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1611 struct bfq_data *bfqd = bfqq->bfqd;
1612 struct request *next_rq, *prev;
Paolo Valente44e44a12017-04-12 18:23:12 +02001613 unsigned int old_wr_coeff = bfqq->wr_coeff;
1614 bool interactive = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001615
1616 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1617 bfqq->queued[rq_is_sync(rq)]++;
1618 bfqd->queued++;
1619
1620 elv_rb_add(&bfqq->sort_list, rq);
1621
1622 /*
1623 * Check if this request is a better next-serve candidate.
1624 */
1625 prev = bfqq->next_rq;
1626 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1627 bfqq->next_rq = next_rq;
1628
Arianna Avanzini36eca892017-04-12 18:23:16 +02001629 /*
1630 * Adjust priority tree position, if next_rq changes.
1631 */
1632 if (prev != bfqq->next_rq)
1633 bfq_pos_tree_add_move(bfqd, bfqq);
1634
Paolo Valenteaee69d72017-04-19 08:29:02 -06001635 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
Paolo Valente44e44a12017-04-12 18:23:12 +02001636 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1637 rq, &interactive);
1638 else {
1639 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1640 time_is_before_jiffies(
1641 bfqq->last_wr_start_finish +
1642 bfqd->bfq_wr_min_inter_arr_async)) {
1643 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1644 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1645
Paolo Valentecfd69712017-04-12 18:23:15 +02001646 bfqd->wr_busy_queues++;
Paolo Valente44e44a12017-04-12 18:23:12 +02001647 bfqq->entity.prio_changed = 1;
1648 }
1649 if (prev != bfqq->next_rq)
1650 bfq_updated_next_req(bfqd, bfqq);
1651 }
1652
1653 /*
1654 * Assign jiffies to last_wr_start_finish in the following
1655 * cases:
1656 *
1657 * . if bfqq is not going to be weight-raised, because, for
1658 * non weight-raised queues, last_wr_start_finish stores the
1659 * arrival time of the last request; as of now, this piece
1660 * of information is used only for deciding whether to
1661 * weight-raise async queues
1662 *
1663 * . if bfqq is not weight-raised, because, if bfqq is now
1664 * switching to weight-raised, then last_wr_start_finish
1665 * stores the time when weight-raising starts
1666 *
1667 * . if bfqq is interactive, because, regardless of whether
1668 * bfqq is currently weight-raised, the weight-raising
1669 * period must start or restart (this case is considered
1670 * separately because it is not detected by the above
1671 * conditions, if bfqq is already weight-raised)
Paolo Valente77b7dce2017-04-12 18:23:13 +02001672 *
1673 * last_wr_start_finish has to be updated also if bfqq is soft
1674 * real-time, because the weight-raising period is constantly
1675 * restarted on idle-to-busy transitions for these queues, but
1676 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1677 * needed.
Paolo Valente44e44a12017-04-12 18:23:12 +02001678 */
1679 if (bfqd->low_latency &&
1680 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1681 bfqq->last_wr_start_finish = jiffies;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001682}
1683
1684static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1685 struct bio *bio,
1686 struct request_queue *q)
1687{
1688 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1689
1690
1691 if (bfqq)
1692 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1693
1694 return NULL;
1695}
1696
Paolo Valenteab0e43e2017-04-12 18:23:10 +02001697static sector_t get_sdist(sector_t last_pos, struct request *rq)
1698{
1699 if (last_pos)
1700 return abs(blk_rq_pos(rq) - last_pos);
1701
1702 return 0;
1703}
1704
Paolo Valenteaee69d72017-04-19 08:29:02 -06001705#if 0 /* Still not clear if we can do without next two functions */
1706static void bfq_activate_request(struct request_queue *q, struct request *rq)
1707{
1708 struct bfq_data *bfqd = q->elevator->elevator_data;
1709
1710 bfqd->rq_in_driver++;
Paolo Valenteaee69d72017-04-19 08:29:02 -06001711}
1712
1713static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1714{
1715 struct bfq_data *bfqd = q->elevator->elevator_data;
1716
1717 bfqd->rq_in_driver--;
1718}
1719#endif
1720
1721static void bfq_remove_request(struct request_queue *q,
1722 struct request *rq)
1723{
1724 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1725 struct bfq_data *bfqd = bfqq->bfqd;
1726 const int sync = rq_is_sync(rq);
1727
1728 if (bfqq->next_rq == rq) {
1729 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1730 bfq_updated_next_req(bfqd, bfqq);
1731 }
1732
1733 if (rq->queuelist.prev != &rq->queuelist)
1734 list_del_init(&rq->queuelist);
1735 bfqq->queued[sync]--;
1736 bfqd->queued--;
1737 elv_rb_del(&bfqq->sort_list, rq);
1738
1739 elv_rqhash_del(q, rq);
1740 if (q->last_merge == rq)
1741 q->last_merge = NULL;
1742
1743 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1744 bfqq->next_rq = NULL;
1745
1746 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001747 bfq_del_bfqq_busy(bfqd, bfqq, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001748 /*
1749 * bfqq emptied. In normal operation, when
1750 * bfqq is empty, bfqq->entity.service and
1751 * bfqq->entity.budget must contain,
1752 * respectively, the service received and the
1753 * budget used last time bfqq emptied. These
1754 * facts do not hold in this case, as at least
1755 * this last removal occurred while bfqq is
1756 * not in service. To avoid inconsistencies,
1757 * reset both bfqq->entity.service and
1758 * bfqq->entity.budget, if bfqq has still a
1759 * process that may issue I/O requests to it.
1760 */
1761 bfqq->entity.budget = bfqq->entity.service = 0;
1762 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02001763
1764 /*
1765 * Remove queue from request-position tree as it is empty.
1766 */
1767 if (bfqq->pos_root) {
1768 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1769 bfqq->pos_root = NULL;
1770 }
Paolo Valente05e90282017-12-20 12:38:31 +01001771 } else {
1772 bfq_pos_tree_add_move(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001773 }
1774
1775 if (rq->cmd_flags & REQ_META)
1776 bfqq->meta_pending--;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001777
Paolo Valenteaee69d72017-04-19 08:29:02 -06001778}
1779
1780static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1781{
1782 struct request_queue *q = hctx->queue;
1783 struct bfq_data *bfqd = q->elevator->elevator_data;
1784 struct request *free = NULL;
1785 /*
1786 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1787 * store its return value for later use, to avoid nesting
1788 * queue_lock inside the bfqd->lock. We assume that the bic
1789 * returned by bfq_bic_lookup does not go away before
1790 * bfqd->lock is taken.
1791 */
1792 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1793 bool ret;
1794
1795 spin_lock_irq(&bfqd->lock);
1796
1797 if (bic)
1798 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1799 else
1800 bfqd->bio_bfqq = NULL;
1801 bfqd->bio_bic = bic;
1802
1803 ret = blk_mq_sched_try_merge(q, bio, &free);
1804
1805 if (free)
1806 blk_mq_free_request(free);
1807 spin_unlock_irq(&bfqd->lock);
1808
1809 return ret;
1810}
1811
1812static int bfq_request_merge(struct request_queue *q, struct request **req,
1813 struct bio *bio)
1814{
1815 struct bfq_data *bfqd = q->elevator->elevator_data;
1816 struct request *__rq;
1817
1818 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1819 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1820 *req = __rq;
1821 return ELEVATOR_FRONT_MERGE;
1822 }
1823
1824 return ELEVATOR_NO_MERGE;
1825}
1826
Paolo Valente18e5a572018-05-04 19:17:01 +02001827static struct bfq_queue *bfq_init_rq(struct request *rq);
1828
Paolo Valenteaee69d72017-04-19 08:29:02 -06001829static void bfq_request_merged(struct request_queue *q, struct request *req,
1830 enum elv_merge type)
1831{
1832 if (type == ELEVATOR_FRONT_MERGE &&
1833 rb_prev(&req->rb_node) &&
1834 blk_rq_pos(req) <
1835 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1836 struct request, rb_node))) {
Paolo Valente18e5a572018-05-04 19:17:01 +02001837 struct bfq_queue *bfqq = bfq_init_rq(req);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001838 struct bfq_data *bfqd = bfqq->bfqd;
1839 struct request *prev, *next_rq;
1840
1841 /* Reposition request in its sort_list */
1842 elv_rb_del(&bfqq->sort_list, req);
1843 elv_rb_add(&bfqq->sort_list, req);
1844
1845 /* Choose next request to be served for bfqq */
1846 prev = bfqq->next_rq;
1847 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1848 bfqd->last_position);
1849 bfqq->next_rq = next_rq;
1850 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02001851 * If next_rq changes, update both the queue's budget to
1852 * fit the new request and the queue's position in its
1853 * rq_pos_tree.
Paolo Valenteaee69d72017-04-19 08:29:02 -06001854 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02001855 if (prev != bfqq->next_rq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06001856 bfq_updated_next_req(bfqd, bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02001857 bfq_pos_tree_add_move(bfqd, bfqq);
1858 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06001859 }
1860}
1861
Paolo Valente8abfa4d2018-05-31 08:48:05 -06001862/*
1863 * This function is called to notify the scheduler that the requests
1864 * rq and 'next' have been merged, with 'next' going away. BFQ
1865 * exploits this hook to address the following issue: if 'next' has a
1866 * fifo_time lower that rq, then the fifo_time of rq must be set to
1867 * the value of 'next', to not forget the greater age of 'next'.
Paolo Valente8abfa4d2018-05-31 08:48:05 -06001868 *
1869 * NOTE: in this function we assume that rq is in a bfq_queue, basing
1870 * on that rq is picked from the hash table q->elevator->hash, which,
1871 * in its turn, is filled only with I/O requests present in
1872 * bfq_queues, while BFQ is in use for the request queue q. In fact,
1873 * the function that fills this hash table (elv_rqhash_add) is called
1874 * only by bfq_insert_request.
1875 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06001876static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1877 struct request *next)
1878{
Paolo Valente18e5a572018-05-04 19:17:01 +02001879 struct bfq_queue *bfqq = bfq_init_rq(rq),
1880 *next_bfqq = bfq_init_rq(next);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001881
Paolo Valenteaee69d72017-04-19 08:29:02 -06001882 /*
1883 * If next and rq belong to the same bfq_queue and next is older
1884 * than rq, then reposition rq in the fifo (by substituting next
1885 * with rq). Otherwise, if next and rq belong to different
1886 * bfq_queues, never reposition rq: in fact, we would have to
1887 * reposition it with respect to next's position in its own fifo,
1888 * which would most certainly be too expensive with respect to
1889 * the benefits.
1890 */
1891 if (bfqq == next_bfqq &&
1892 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1893 next->fifo_time < rq->fifo_time) {
1894 list_del_init(&rq->queuelist);
1895 list_replace_init(&next->queuelist, &rq->queuelist);
1896 rq->fifo_time = next->fifo_time;
1897 }
1898
1899 if (bfqq->next_rq == next)
1900 bfqq->next_rq = rq;
1901
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02001902 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06001903}
1904
Paolo Valente44e44a12017-04-12 18:23:12 +02001905/* Must be called with bfqq != NULL */
1906static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1907{
Paolo Valentecfd69712017-04-12 18:23:15 +02001908 if (bfq_bfqq_busy(bfqq))
1909 bfqq->bfqd->wr_busy_queues--;
Paolo Valente44e44a12017-04-12 18:23:12 +02001910 bfqq->wr_coeff = 1;
1911 bfqq->wr_cur_max_time = 0;
Paolo Valente77b7dce2017-04-12 18:23:13 +02001912 bfqq->last_wr_start_finish = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02001913 /*
1914 * Trigger a weight change on the next invocation of
1915 * __bfq_entity_update_weight_prio.
1916 */
1917 bfqq->entity.prio_changed = 1;
1918}
1919
Paolo Valenteea25da42017-04-19 08:48:24 -06001920void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1921 struct bfq_group *bfqg)
Paolo Valente44e44a12017-04-12 18:23:12 +02001922{
1923 int i, j;
1924
1925 for (i = 0; i < 2; i++)
1926 for (j = 0; j < IOPRIO_BE_NR; j++)
1927 if (bfqg->async_bfqq[i][j])
1928 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1929 if (bfqg->async_idle_bfqq)
1930 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1931}
1932
1933static void bfq_end_wr(struct bfq_data *bfqd)
1934{
1935 struct bfq_queue *bfqq;
1936
1937 spin_lock_irq(&bfqd->lock);
1938
1939 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1940 bfq_bfqq_end_wr(bfqq);
1941 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1942 bfq_bfqq_end_wr(bfqq);
1943 bfq_end_wr_async(bfqd);
1944
1945 spin_unlock_irq(&bfqd->lock);
1946}
1947
Arianna Avanzini36eca892017-04-12 18:23:16 +02001948static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1949{
1950 if (request)
1951 return blk_rq_pos(io_struct);
1952 else
1953 return ((struct bio *)io_struct)->bi_iter.bi_sector;
1954}
1955
1956static int bfq_rq_close_to_sector(void *io_struct, bool request,
1957 sector_t sector)
1958{
1959 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1960 BFQQ_CLOSE_THR;
1961}
1962
1963static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1964 struct bfq_queue *bfqq,
1965 sector_t sector)
1966{
1967 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1968 struct rb_node *parent, *node;
1969 struct bfq_queue *__bfqq;
1970
1971 if (RB_EMPTY_ROOT(root))
1972 return NULL;
1973
1974 /*
1975 * First, if we find a request starting at the end of the last
1976 * request, choose it.
1977 */
1978 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1979 if (__bfqq)
1980 return __bfqq;
1981
1982 /*
1983 * If the exact sector wasn't found, the parent of the NULL leaf
1984 * will contain the closest sector (rq_pos_tree sorted by
1985 * next_request position).
1986 */
1987 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1988 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1989 return __bfqq;
1990
1991 if (blk_rq_pos(__bfqq->next_rq) < sector)
1992 node = rb_next(&__bfqq->pos_node);
1993 else
1994 node = rb_prev(&__bfqq->pos_node);
1995 if (!node)
1996 return NULL;
1997
1998 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
1999 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2000 return __bfqq;
2001
2002 return NULL;
2003}
2004
2005static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2006 struct bfq_queue *cur_bfqq,
2007 sector_t sector)
2008{
2009 struct bfq_queue *bfqq;
2010
2011 /*
2012 * We shall notice if some of the queues are cooperating,
2013 * e.g., working closely on the same area of the device. In
2014 * that case, we can group them together and: 1) don't waste
2015 * time idling, and 2) serve the union of their requests in
2016 * the best possible order for throughput.
2017 */
2018 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2019 if (!bfqq || bfqq == cur_bfqq)
2020 return NULL;
2021
2022 return bfqq;
2023}
2024
2025static struct bfq_queue *
2026bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2027{
2028 int process_refs, new_process_refs;
2029 struct bfq_queue *__bfqq;
2030
2031 /*
2032 * If there are no process references on the new_bfqq, then it is
2033 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2034 * may have dropped their last reference (not just their last process
2035 * reference).
2036 */
2037 if (!bfqq_process_refs(new_bfqq))
2038 return NULL;
2039
2040 /* Avoid a circular list and skip interim queue merges. */
2041 while ((__bfqq = new_bfqq->new_bfqq)) {
2042 if (__bfqq == bfqq)
2043 return NULL;
2044 new_bfqq = __bfqq;
2045 }
2046
2047 process_refs = bfqq_process_refs(bfqq);
2048 new_process_refs = bfqq_process_refs(new_bfqq);
2049 /*
2050 * If the process for the bfqq has gone away, there is no
2051 * sense in merging the queues.
2052 */
2053 if (process_refs == 0 || new_process_refs == 0)
2054 return NULL;
2055
2056 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2057 new_bfqq->pid);
2058
2059 /*
2060 * Merging is just a redirection: the requests of the process
2061 * owning one of the two queues are redirected to the other queue.
2062 * The latter queue, in its turn, is set as shared if this is the
2063 * first time that the requests of some process are redirected to
2064 * it.
2065 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002066 * We redirect bfqq to new_bfqq and not the opposite, because
2067 * we are in the context of the process owning bfqq, thus we
2068 * have the io_cq of this process. So we can immediately
2069 * configure this io_cq to redirect the requests of the
2070 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2071 * not available any more (new_bfqq->bic == NULL).
Arianna Avanzini36eca892017-04-12 18:23:16 +02002072 *
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02002073 * Anyway, even in case new_bfqq coincides with the in-service
2074 * queue, redirecting requests the in-service queue is the
2075 * best option, as we feed the in-service queue with new
2076 * requests close to the last request served and, by doing so,
2077 * are likely to increase the throughput.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002078 */
2079 bfqq->new_bfqq = new_bfqq;
2080 new_bfqq->ref += process_refs;
2081 return new_bfqq;
2082}
2083
2084static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2085 struct bfq_queue *new_bfqq)
2086{
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002087 if (bfq_too_late_for_merging(new_bfqq))
2088 return false;
2089
Arianna Avanzini36eca892017-04-12 18:23:16 +02002090 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2091 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2092 return false;
2093
2094 /*
2095 * If either of the queues has already been detected as seeky,
2096 * then merging it with the other queue is unlikely to lead to
2097 * sequential I/O.
2098 */
2099 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2100 return false;
2101
2102 /*
2103 * Interleaved I/O is known to be done by (some) applications
2104 * only for reads, so it does not make sense to merge async
2105 * queues.
2106 */
2107 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2108 return false;
2109
2110 return true;
2111}
2112
2113/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002114 * Attempt to schedule a merge of bfqq with the currently in-service
2115 * queue or with a close queue among the scheduled queues. Return
2116 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2117 * structure otherwise.
2118 *
2119 * The OOM queue is not allowed to participate to cooperation: in fact, since
2120 * the requests temporarily redirected to the OOM queue could be redirected
2121 * again to dedicated queues at any time, the state needed to correctly
2122 * handle merging with the OOM queue would be quite complex and expensive
2123 * to maintain. Besides, in such a critical condition as an out of memory,
2124 * the benefits of queue merging may be little relevant, or even negligible.
2125 *
Arianna Avanzini36eca892017-04-12 18:23:16 +02002126 * WARNING: queue merging may impair fairness among non-weight raised
2127 * queues, for at least two reasons: 1) the original weight of a
2128 * merged queue may change during the merged state, 2) even being the
2129 * weight the same, a merged queue may be bloated with many more
2130 * requests than the ones produced by its originally-associated
2131 * process.
2132 */
2133static struct bfq_queue *
2134bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2135 void *io_struct, bool request)
2136{
2137 struct bfq_queue *in_service_bfqq, *new_bfqq;
2138
Paolo Valente7b8fa3b2017-12-20 12:38:33 +01002139 /*
2140 * Prevent bfqq from being merged if it has been created too
2141 * long ago. The idea is that true cooperating processes, and
2142 * thus their associated bfq_queues, are supposed to be
2143 * created shortly after each other. This is the case, e.g.,
2144 * for KVM/QEMU and dump I/O threads. Basing on this
2145 * assumption, the following filtering greatly reduces the
2146 * probability that two non-cooperating processes, which just
2147 * happen to do close I/O for some short time interval, have
2148 * their queues merged by mistake.
2149 */
2150 if (bfq_too_late_for_merging(bfqq))
2151 return NULL;
2152
Arianna Avanzini36eca892017-04-12 18:23:16 +02002153 if (bfqq->new_bfqq)
2154 return bfqq->new_bfqq;
2155
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002156 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
Arianna Avanzini36eca892017-04-12 18:23:16 +02002157 return NULL;
2158
2159 /* If there is only one backlogged queue, don't search. */
2160 if (bfqd->busy_queues == 1)
2161 return NULL;
2162
2163 in_service_bfqq = bfqd->in_service_queue;
2164
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002165 if (in_service_bfqq && in_service_bfqq != bfqq &&
2166 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2167 bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002168 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2169 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2170 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2171 if (new_bfqq)
2172 return new_bfqq;
2173 }
2174 /*
2175 * Check whether there is a cooperator among currently scheduled
2176 * queues. The only thing we need is that the bio/request is not
2177 * NULL, as we need it to establish whether a cooperator exists.
2178 */
Arianna Avanzini36eca892017-04-12 18:23:16 +02002179 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2180 bfq_io_struct_pos(io_struct, request));
2181
Angelo Ruocco4403e4e2017-12-20 12:38:34 +01002182 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
Arianna Avanzini36eca892017-04-12 18:23:16 +02002183 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2184 return bfq_setup_merge(bfqq, new_bfqq);
2185
2186 return NULL;
2187}
2188
2189static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2190{
2191 struct bfq_io_cq *bic = bfqq->bic;
2192
2193 /*
2194 * If !bfqq->bic, the queue is already shared or its requests
2195 * have already been redirected to a shared queue; both idle window
2196 * and weight raising state have already been saved. Do nothing.
2197 */
2198 if (!bic)
2199 return;
2200
2201 bic->saved_ttime = bfqq->ttime;
Paolo Valented5be3fe2017-08-04 07:35:10 +02002202 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002203 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002204 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2205 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
Paolo Valente894df932017-09-21 11:04:02 +02002206 if (unlikely(bfq_bfqq_just_created(bfqq) &&
Angelo Ruocco1be6e8a2017-12-20 12:38:32 +01002207 !bfq_bfqq_in_large_burst(bfqq) &&
2208 bfqq->bfqd->low_latency)) {
Paolo Valente894df932017-09-21 11:04:02 +02002209 /*
2210 * bfqq being merged right after being created: bfqq
2211 * would have deserved interactive weight raising, but
2212 * did not make it to be set in a weight-raised state,
2213 * because of this early merge. Store directly the
2214 * weight-raising state that would have been assigned
2215 * to bfqq, so that to avoid that bfqq unjustly fails
2216 * to enjoy weight raising if split soon.
2217 */
2218 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2219 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2220 bic->saved_last_wr_start_finish = jiffies;
2221 } else {
2222 bic->saved_wr_coeff = bfqq->wr_coeff;
2223 bic->saved_wr_start_at_switch_to_srt =
2224 bfqq->wr_start_at_switch_to_srt;
2225 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2226 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2227 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02002228}
2229
Arianna Avanzini36eca892017-04-12 18:23:16 +02002230static void
2231bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2232 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2233{
2234 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2235 (unsigned long)new_bfqq->pid);
2236 /* Save weight raising and idle window of the merged queues */
2237 bfq_bfqq_save_state(bfqq);
2238 bfq_bfqq_save_state(new_bfqq);
2239 if (bfq_bfqq_IO_bound(bfqq))
2240 bfq_mark_bfqq_IO_bound(new_bfqq);
2241 bfq_clear_bfqq_IO_bound(bfqq);
2242
2243 /*
2244 * If bfqq is weight-raised, then let new_bfqq inherit
2245 * weight-raising. To reduce false positives, neglect the case
2246 * where bfqq has just been created, but has not yet made it
2247 * to be weight-raised (which may happen because EQM may merge
2248 * bfqq even before bfq_add_request is executed for the first
Arianna Avanzinie1b23242017-04-12 18:23:20 +02002249 * time for bfqq). Handling this case would however be very
2250 * easy, thanks to the flag just_created.
Arianna Avanzini36eca892017-04-12 18:23:16 +02002251 */
2252 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2253 new_bfqq->wr_coeff = bfqq->wr_coeff;
2254 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2255 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2256 new_bfqq->wr_start_at_switch_to_srt =
2257 bfqq->wr_start_at_switch_to_srt;
2258 if (bfq_bfqq_busy(new_bfqq))
2259 bfqd->wr_busy_queues++;
2260 new_bfqq->entity.prio_changed = 1;
2261 }
2262
2263 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2264 bfqq->wr_coeff = 1;
2265 bfqq->entity.prio_changed = 1;
2266 if (bfq_bfqq_busy(bfqq))
2267 bfqd->wr_busy_queues--;
2268 }
2269
2270 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2271 bfqd->wr_busy_queues);
2272
2273 /*
Arianna Avanzini36eca892017-04-12 18:23:16 +02002274 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2275 */
2276 bic_set_bfqq(bic, new_bfqq, 1);
2277 bfq_mark_bfqq_coop(new_bfqq);
2278 /*
2279 * new_bfqq now belongs to at least two bics (it is a shared queue):
2280 * set new_bfqq->bic to NULL. bfqq either:
2281 * - does not belong to any bic any more, and hence bfqq->bic must
2282 * be set to NULL, or
2283 * - is a queue whose owning bics have already been redirected to a
2284 * different queue, hence the queue is destined to not belong to
2285 * any bic soon and bfqq->bic is already NULL (therefore the next
2286 * assignment causes no harm).
2287 */
2288 new_bfqq->bic = NULL;
2289 bfqq->bic = NULL;
2290 /* release process reference to bfqq */
2291 bfq_put_queue(bfqq);
2292}
2293
Paolo Valenteaee69d72017-04-19 08:29:02 -06002294static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2295 struct bio *bio)
2296{
2297 struct bfq_data *bfqd = q->elevator->elevator_data;
2298 bool is_sync = op_is_sync(bio->bi_opf);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002299 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002300
2301 /*
2302 * Disallow merge of a sync bio into an async request.
2303 */
2304 if (is_sync && !rq_is_sync(rq))
2305 return false;
2306
2307 /*
2308 * Lookup the bfqq that this bio will be queued with. Allow
2309 * merge only if rq is queued there.
2310 */
2311 if (!bfqq)
2312 return false;
2313
Arianna Avanzini36eca892017-04-12 18:23:16 +02002314 /*
2315 * We take advantage of this function to perform an early merge
2316 * of the queues of possible cooperating processes.
2317 */
2318 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2319 if (new_bfqq) {
2320 /*
2321 * bic still points to bfqq, then it has not yet been
2322 * redirected to some other bfq_queue, and a queue
2323 * merge beween bfqq and new_bfqq can be safely
2324 * fulfillled, i.e., bic can be redirected to new_bfqq
2325 * and bfqq can be put.
2326 */
2327 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2328 new_bfqq);
2329 /*
2330 * If we get here, bio will be queued into new_queue,
2331 * so use new_bfqq to decide whether bio and rq can be
2332 * merged.
2333 */
2334 bfqq = new_bfqq;
2335
2336 /*
2337 * Change also bqfd->bio_bfqq, as
2338 * bfqd->bio_bic now points to new_bfqq, and
2339 * this function may be invoked again (and then may
2340 * use again bqfd->bio_bfqq).
2341 */
2342 bfqd->bio_bfqq = bfqq;
2343 }
2344
Paolo Valenteaee69d72017-04-19 08:29:02 -06002345 return bfqq == RQ_BFQQ(rq);
2346}
2347
Paolo Valente44e44a12017-04-12 18:23:12 +02002348/*
2349 * Set the maximum time for the in-service queue to consume its
2350 * budget. This prevents seeky processes from lowering the throughput.
2351 * In practice, a time-slice service scheme is used with seeky
2352 * processes.
2353 */
2354static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2355 struct bfq_queue *bfqq)
2356{
Paolo Valente77b7dce2017-04-12 18:23:13 +02002357 unsigned int timeout_coeff;
2358
2359 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2360 timeout_coeff = 1;
2361 else
2362 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2363
Paolo Valente44e44a12017-04-12 18:23:12 +02002364 bfqd->last_budget_start = ktime_get();
2365
2366 bfqq->budget_timeout = jiffies +
Paolo Valente77b7dce2017-04-12 18:23:13 +02002367 bfqd->bfq_timeout * timeout_coeff;
Paolo Valente44e44a12017-04-12 18:23:12 +02002368}
2369
Paolo Valenteaee69d72017-04-19 08:29:02 -06002370static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2371 struct bfq_queue *bfqq)
2372{
2373 if (bfqq) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002374 bfq_clear_bfqq_fifo_expire(bfqq);
2375
2376 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2377
Paolo Valente77b7dce2017-04-12 18:23:13 +02002378 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2379 bfqq->wr_coeff > 1 &&
2380 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2381 time_is_before_jiffies(bfqq->budget_timeout)) {
2382 /*
2383 * For soft real-time queues, move the start
2384 * of the weight-raising period forward by the
2385 * time the queue has not received any
2386 * service. Otherwise, a relatively long
2387 * service delay is likely to cause the
2388 * weight-raising period of the queue to end,
2389 * because of the short duration of the
2390 * weight-raising period of a soft real-time
2391 * queue. It is worth noting that this move
2392 * is not so dangerous for the other queues,
2393 * because soft real-time queues are not
2394 * greedy.
2395 *
2396 * To not add a further variable, we use the
2397 * overloaded field budget_timeout to
2398 * determine for how long the queue has not
2399 * received service, i.e., how much time has
2400 * elapsed since the queue expired. However,
2401 * this is a little imprecise, because
2402 * budget_timeout is set to jiffies if bfqq
2403 * not only expires, but also remains with no
2404 * request.
2405 */
2406 if (time_after(bfqq->budget_timeout,
2407 bfqq->last_wr_start_finish))
2408 bfqq->last_wr_start_finish +=
2409 jiffies - bfqq->budget_timeout;
2410 else
2411 bfqq->last_wr_start_finish = jiffies;
2412 }
2413
Paolo Valente44e44a12017-04-12 18:23:12 +02002414 bfq_set_budget_timeout(bfqd, bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002415 bfq_log_bfqq(bfqd, bfqq,
2416 "set_in_service_queue, cur-budget = %d",
2417 bfqq->entity.budget);
2418 }
2419
2420 bfqd->in_service_queue = bfqq;
2421}
2422
2423/*
2424 * Get and set a new queue for service.
2425 */
2426static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2427{
2428 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2429
2430 __bfq_set_in_service_queue(bfqd, bfqq);
2431 return bfqq;
2432}
2433
Paolo Valenteaee69d72017-04-19 08:29:02 -06002434static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2435{
2436 struct bfq_queue *bfqq = bfqd->in_service_queue;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002437 u32 sl;
2438
Paolo Valenteaee69d72017-04-19 08:29:02 -06002439 bfq_mark_bfqq_wait_request(bfqq);
2440
2441 /*
2442 * We don't want to idle for seeks, but we do want to allow
2443 * fair distribution of slice time for a process doing back-to-back
2444 * seeks. So allow a little bit of time for him to submit a new rq.
2445 */
2446 sl = bfqd->bfq_slice_idle;
2447 /*
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002448 * Unless the queue is being weight-raised or the scenario is
2449 * asymmetric, grant only minimum idle time if the queue
2450 * is seeky. A long idling is preserved for a weight-raised
2451 * queue, or, more in general, in an asymmetric scenario,
2452 * because a long idling is needed for guaranteeing to a queue
2453 * its reserved share of the throughput (in particular, it is
2454 * needed if the queue has a higher weight than some other
2455 * queue).
Paolo Valenteaee69d72017-04-19 08:29:02 -06002456 */
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02002457 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2458 bfq_symmetric_scenario(bfqd))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002459 sl = min_t(u64, sl, BFQ_MIN_TT);
2460
2461 bfqd->last_idling_start = ktime_get();
2462 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2463 HRTIMER_MODE_REL);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002464 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06002465}
2466
2467/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002468 * In autotuning mode, max_budget is dynamically recomputed as the
2469 * amount of sectors transferred in timeout at the estimated peak
2470 * rate. This enables BFQ to utilize a full timeslice with a full
2471 * budget, even if the in-service queue is served at peak rate. And
2472 * this maximises throughput with sequential workloads.
2473 */
2474static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2475{
2476 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2477 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2478}
2479
Paolo Valente44e44a12017-04-12 18:23:12 +02002480/*
2481 * Update parameters related to throughput and responsiveness, as a
2482 * function of the estimated peak rate. See comments on
Paolo Valentee24f1c22018-05-31 16:45:06 +02002483 * bfq_calc_max_budget(), and on the ref_wr_duration array.
Paolo Valente44e44a12017-04-12 18:23:12 +02002484 */
2485static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2486{
Paolo Valentee24f1c22018-05-31 16:45:06 +02002487 if (bfqd->bfq_user_max_budget == 0) {
Paolo Valente44e44a12017-04-12 18:23:12 +02002488 bfqd->bfq_max_budget =
2489 bfq_calc_max_budget(bfqd);
Paolo Valentee24f1c22018-05-31 16:45:06 +02002490 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
Paolo Valente44e44a12017-04-12 18:23:12 +02002491 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002492}
2493
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002494static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2495 struct request *rq)
2496{
2497 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2498 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2499 bfqd->peak_rate_samples = 1;
2500 bfqd->sequential_samples = 0;
2501 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2502 blk_rq_sectors(rq);
2503 } else /* no new rq dispatched, just reset the number of samples */
2504 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2505
2506 bfq_log(bfqd,
2507 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2508 bfqd->peak_rate_samples, bfqd->sequential_samples,
2509 bfqd->tot_sectors_dispatched);
2510}
2511
2512static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2513{
2514 u32 rate, weight, divisor;
2515
2516 /*
2517 * For the convergence property to hold (see comments on
2518 * bfq_update_peak_rate()) and for the assessment to be
2519 * reliable, a minimum number of samples must be present, and
2520 * a minimum amount of time must have elapsed. If not so, do
2521 * not compute new rate. Just reset parameters, to get ready
2522 * for a new evaluation attempt.
2523 */
2524 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2525 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2526 goto reset_computation;
2527
2528 /*
2529 * If a new request completion has occurred after last
2530 * dispatch, then, to approximate the rate at which requests
2531 * have been served by the device, it is more precise to
2532 * extend the observation interval to the last completion.
2533 */
2534 bfqd->delta_from_first =
2535 max_t(u64, bfqd->delta_from_first,
2536 bfqd->last_completion - bfqd->first_dispatch);
2537
2538 /*
2539 * Rate computed in sects/usec, and not sects/nsec, for
2540 * precision issues.
2541 */
2542 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2543 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2544
2545 /*
2546 * Peak rate not updated if:
2547 * - the percentage of sequential dispatches is below 3/4 of the
2548 * total, and rate is below the current estimated peak rate
2549 * - rate is unreasonably high (> 20M sectors/sec)
2550 */
2551 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2552 rate <= bfqd->peak_rate) ||
2553 rate > 20<<BFQ_RATE_SHIFT)
2554 goto reset_computation;
2555
2556 /*
2557 * We have to update the peak rate, at last! To this purpose,
2558 * we use a low-pass filter. We compute the smoothing constant
2559 * of the filter as a function of the 'weight' of the new
2560 * measured rate.
2561 *
2562 * As can be seen in next formulas, we define this weight as a
2563 * quantity proportional to how sequential the workload is,
2564 * and to how long the observation time interval is.
2565 *
2566 * The weight runs from 0 to 8. The maximum value of the
2567 * weight, 8, yields the minimum value for the smoothing
2568 * constant. At this minimum value for the smoothing constant,
2569 * the measured rate contributes for half of the next value of
2570 * the estimated peak rate.
2571 *
2572 * So, the first step is to compute the weight as a function
2573 * of how sequential the workload is. Note that the weight
2574 * cannot reach 9, because bfqd->sequential_samples cannot
2575 * become equal to bfqd->peak_rate_samples, which, in its
2576 * turn, holds true because bfqd->sequential_samples is not
2577 * incremented for the first sample.
2578 */
2579 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2580
2581 /*
2582 * Second step: further refine the weight as a function of the
2583 * duration of the observation interval.
2584 */
2585 weight = min_t(u32, 8,
2586 div_u64(weight * bfqd->delta_from_first,
2587 BFQ_RATE_REF_INTERVAL));
2588
2589 /*
2590 * Divisor ranging from 10, for minimum weight, to 2, for
2591 * maximum weight.
2592 */
2593 divisor = 10 - weight;
2594
2595 /*
2596 * Finally, update peak rate:
2597 *
2598 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2599 */
2600 bfqd->peak_rate *= divisor-1;
2601 bfqd->peak_rate /= divisor;
2602 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2603
2604 bfqd->peak_rate += rate;
Paolo Valentebc56e2c2018-03-26 16:06:24 +02002605
2606 /*
2607 * For a very slow device, bfqd->peak_rate can reach 0 (see
2608 * the minimum representable values reported in the comments
2609 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
2610 * divisions by zero where bfqd->peak_rate is used as a
2611 * divisor.
2612 */
2613 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
2614
Paolo Valente44e44a12017-04-12 18:23:12 +02002615 update_thr_responsiveness_params(bfqd);
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002616
2617reset_computation:
2618 bfq_reset_rate_computation(bfqd, rq);
2619}
2620
2621/*
2622 * Update the read/write peak rate (the main quantity used for
2623 * auto-tuning, see update_thr_responsiveness_params()).
2624 *
2625 * It is not trivial to estimate the peak rate (correctly): because of
2626 * the presence of sw and hw queues between the scheduler and the
2627 * device components that finally serve I/O requests, it is hard to
2628 * say exactly when a given dispatched request is served inside the
2629 * device, and for how long. As a consequence, it is hard to know
2630 * precisely at what rate a given set of requests is actually served
2631 * by the device.
2632 *
2633 * On the opposite end, the dispatch time of any request is trivially
2634 * available, and, from this piece of information, the "dispatch rate"
2635 * of requests can be immediately computed. So, the idea in the next
2636 * function is to use what is known, namely request dispatch times
2637 * (plus, when useful, request completion times), to estimate what is
2638 * unknown, namely in-device request service rate.
2639 *
2640 * The main issue is that, because of the above facts, the rate at
2641 * which a certain set of requests is dispatched over a certain time
2642 * interval can vary greatly with respect to the rate at which the
2643 * same requests are then served. But, since the size of any
2644 * intermediate queue is limited, and the service scheme is lossless
2645 * (no request is silently dropped), the following obvious convergence
2646 * property holds: the number of requests dispatched MUST become
2647 * closer and closer to the number of requests completed as the
2648 * observation interval grows. This is the key property used in
2649 * the next function to estimate the peak service rate as a function
2650 * of the observed dispatch rate. The function assumes to be invoked
2651 * on every request dispatch.
2652 */
2653static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2654{
2655 u64 now_ns = ktime_get_ns();
2656
2657 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2658 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2659 bfqd->peak_rate_samples);
2660 bfq_reset_rate_computation(bfqd, rq);
2661 goto update_last_values; /* will add one sample */
2662 }
2663
2664 /*
2665 * Device idle for very long: the observation interval lasting
2666 * up to this dispatch cannot be a valid observation interval
2667 * for computing a new peak rate (similarly to the late-
2668 * completion event in bfq_completed_request()). Go to
2669 * update_rate_and_reset to have the following three steps
2670 * taken:
2671 * - close the observation interval at the last (previous)
2672 * request dispatch or completion
2673 * - compute rate, if possible, for that observation interval
2674 * - start a new observation interval with this dispatch
2675 */
2676 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2677 bfqd->rq_in_driver == 0)
2678 goto update_rate_and_reset;
2679
2680 /* Update sampling information */
2681 bfqd->peak_rate_samples++;
2682
2683 if ((bfqd->rq_in_driver > 0 ||
2684 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2685 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2686 bfqd->sequential_samples++;
2687
2688 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2689
2690 /* Reset max observed rq size every 32 dispatches */
2691 if (likely(bfqd->peak_rate_samples % 32))
2692 bfqd->last_rq_max_size =
2693 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2694 else
2695 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2696
2697 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2698
2699 /* Target observation interval not yet reached, go on sampling */
2700 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2701 goto update_last_values;
2702
2703update_rate_and_reset:
2704 bfq_update_rate_reset(bfqd, rq);
2705update_last_values:
2706 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2707 bfqd->last_dispatch = now_ns;
2708}
2709
2710/*
Paolo Valenteaee69d72017-04-19 08:29:02 -06002711 * Remove request from internal lists.
2712 */
2713static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2714{
2715 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2716
2717 /*
2718 * For consistency, the next instruction should have been
2719 * executed after removing the request from the queue and
2720 * dispatching it. We execute instead this instruction before
2721 * bfq_remove_request() (and hence introduce a temporary
2722 * inconsistency), for efficiency. In fact, should this
2723 * dispatch occur for a non in-service bfqq, this anticipated
2724 * increment prevents two counters related to bfqq->dispatched
2725 * from risking to be, first, uselessly decremented, and then
2726 * incremented again when the (new) value of bfqq->dispatched
2727 * happens to be taken into account.
2728 */
2729 bfqq->dispatched++;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002730 bfq_update_peak_rate(q->elevator->elevator_data, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002731
2732 bfq_remove_request(q, rq);
2733}
2734
2735static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2736{
Arianna Avanzini36eca892017-04-12 18:23:16 +02002737 /*
2738 * If this bfqq is shared between multiple processes, check
2739 * to make sure that those processes are still issuing I/Os
2740 * within the mean seek distance. If not, it may be time to
2741 * break the queues apart again.
2742 */
2743 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2744 bfq_mark_bfqq_split_coop(bfqq);
2745
Paolo Valente44e44a12017-04-12 18:23:12 +02002746 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2747 if (bfqq->dispatched == 0)
2748 /*
2749 * Overloading budget_timeout field to store
2750 * the time at which the queue remains with no
2751 * backlog and no outstanding request; used by
2752 * the weight-raising mechanism.
2753 */
2754 bfqq->budget_timeout = jiffies;
2755
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002756 bfq_del_bfqq_busy(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002757 } else {
Paolo Valente80294c32017-08-31 08:46:29 +02002758 bfq_requeue_bfqq(bfqd, bfqq, true);
Arianna Avanzini36eca892017-04-12 18:23:16 +02002759 /*
2760 * Resort priority tree of potential close cooperators.
2761 */
2762 bfq_pos_tree_add_move(bfqd, bfqq);
2763 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02002764
2765 /*
2766 * All in-service entities must have been properly deactivated
2767 * or requeued before executing the next function, which
2768 * resets all in-service entites as no more in service.
2769 */
2770 __bfq_bfqd_reset_in_service(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002771}
2772
2773/**
2774 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2775 * @bfqd: device data.
2776 * @bfqq: queue to update.
2777 * @reason: reason for expiration.
2778 *
2779 * Handle the feedback on @bfqq budget at queue expiration.
2780 * See the body for detailed comments.
2781 */
2782static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2783 struct bfq_queue *bfqq,
2784 enum bfqq_expiration reason)
2785{
2786 struct request *next_rq;
2787 int budget, min_budget;
2788
Paolo Valenteaee69d72017-04-19 08:29:02 -06002789 min_budget = bfq_min_budget(bfqd);
2790
Paolo Valente44e44a12017-04-12 18:23:12 +02002791 if (bfqq->wr_coeff == 1)
2792 budget = bfqq->max_budget;
2793 else /*
2794 * Use a constant, low budget for weight-raised queues,
2795 * to help achieve a low latency. Keep it slightly higher
2796 * than the minimum possible budget, to cause a little
2797 * bit fewer expirations.
2798 */
2799 budget = 2 * min_budget;
2800
Paolo Valenteaee69d72017-04-19 08:29:02 -06002801 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2802 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2803 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2804 budget, bfq_min_budget(bfqd));
2805 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2806 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2807
Paolo Valente44e44a12017-04-12 18:23:12 +02002808 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002809 switch (reason) {
2810 /*
2811 * Caveat: in all the following cases we trade latency
2812 * for throughput.
2813 */
2814 case BFQQE_TOO_IDLE:
Paolo Valente54b60452017-04-12 18:23:09 +02002815 /*
2816 * This is the only case where we may reduce
2817 * the budget: if there is no request of the
2818 * process still waiting for completion, then
2819 * we assume (tentatively) that the timer has
2820 * expired because the batch of requests of
2821 * the process could have been served with a
2822 * smaller budget. Hence, betting that
2823 * process will behave in the same way when it
2824 * becomes backlogged again, we reduce its
2825 * next budget. As long as we guess right,
2826 * this budget cut reduces the latency
2827 * experienced by the process.
2828 *
2829 * However, if there are still outstanding
2830 * requests, then the process may have not yet
2831 * issued its next request just because it is
2832 * still waiting for the completion of some of
2833 * the still outstanding ones. So in this
2834 * subcase we do not reduce its budget, on the
2835 * contrary we increase it to possibly boost
2836 * the throughput, as discussed in the
2837 * comments to the BUDGET_TIMEOUT case.
2838 */
2839 if (bfqq->dispatched > 0) /* still outstanding reqs */
2840 budget = min(budget * 2, bfqd->bfq_max_budget);
2841 else {
2842 if (budget > 5 * min_budget)
2843 budget -= 4 * min_budget;
2844 else
2845 budget = min_budget;
2846 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06002847 break;
2848 case BFQQE_BUDGET_TIMEOUT:
Paolo Valente54b60452017-04-12 18:23:09 +02002849 /*
2850 * We double the budget here because it gives
2851 * the chance to boost the throughput if this
2852 * is not a seeky process (and has bumped into
2853 * this timeout because of, e.g., ZBR).
2854 */
2855 budget = min(budget * 2, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002856 break;
2857 case BFQQE_BUDGET_EXHAUSTED:
2858 /*
2859 * The process still has backlog, and did not
2860 * let either the budget timeout or the disk
2861 * idling timeout expire. Hence it is not
2862 * seeky, has a short thinktime and may be
2863 * happy with a higher budget too. So
2864 * definitely increase the budget of this good
2865 * candidate to boost the disk throughput.
2866 */
Paolo Valente54b60452017-04-12 18:23:09 +02002867 budget = min(budget * 4, bfqd->bfq_max_budget);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002868 break;
2869 case BFQQE_NO_MORE_REQUESTS:
2870 /*
2871 * For queues that expire for this reason, it
2872 * is particularly important to keep the
2873 * budget close to the actual service they
2874 * need. Doing so reduces the timestamp
2875 * misalignment problem described in the
2876 * comments in the body of
2877 * __bfq_activate_entity. In fact, suppose
2878 * that a queue systematically expires for
2879 * BFQQE_NO_MORE_REQUESTS and presents a
2880 * new request in time to enjoy timestamp
2881 * back-shifting. The larger the budget of the
2882 * queue is with respect to the service the
2883 * queue actually requests in each service
2884 * slot, the more times the queue can be
2885 * reactivated with the same virtual finish
2886 * time. It follows that, even if this finish
2887 * time is pushed to the system virtual time
2888 * to reduce the consequent timestamp
2889 * misalignment, the queue unjustly enjoys for
2890 * many re-activations a lower finish time
2891 * than all newly activated queues.
2892 *
2893 * The service needed by bfqq is measured
2894 * quite precisely by bfqq->entity.service.
2895 * Since bfqq does not enjoy device idling,
2896 * bfqq->entity.service is equal to the number
2897 * of sectors that the process associated with
2898 * bfqq requested to read/write before waiting
2899 * for request completions, or blocking for
2900 * other reasons.
2901 */
2902 budget = max_t(int, bfqq->entity.service, min_budget);
2903 break;
2904 default:
2905 return;
2906 }
Paolo Valente44e44a12017-04-12 18:23:12 +02002907 } else if (!bfq_bfqq_sync(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06002908 /*
2909 * Async queues get always the maximum possible
2910 * budget, as for them we do not care about latency
2911 * (in addition, their ability to dispatch is limited
2912 * by the charging factor).
2913 */
2914 budget = bfqd->bfq_max_budget;
2915 }
2916
2917 bfqq->max_budget = budget;
2918
2919 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2920 !bfqd->bfq_user_max_budget)
2921 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2922
2923 /*
2924 * If there is still backlog, then assign a new budget, making
2925 * sure that it is large enough for the next request. Since
2926 * the finish time of bfqq must be kept in sync with the
2927 * budget, be sure to call __bfq_bfqq_expire() *after* this
2928 * update.
2929 *
2930 * If there is no backlog, then no need to update the budget;
2931 * it will be updated on the arrival of a new request.
2932 */
2933 next_rq = bfqq->next_rq;
2934 if (next_rq)
2935 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2936 bfq_serv_to_charge(next_rq, bfqq));
2937
2938 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2939 next_rq ? blk_rq_sectors(next_rq) : 0,
2940 bfqq->entity.budget);
2941}
2942
Paolo Valenteaee69d72017-04-19 08:29:02 -06002943/*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002944 * Return true if the process associated with bfqq is "slow". The slow
2945 * flag is used, in addition to the budget timeout, to reduce the
2946 * amount of service provided to seeky processes, and thus reduce
2947 * their chances to lower the throughput. More details in the comments
2948 * on the function bfq_bfqq_expire().
2949 *
2950 * An important observation is in order: as discussed in the comments
2951 * on the function bfq_update_peak_rate(), with devices with internal
2952 * queues, it is hard if ever possible to know when and for how long
2953 * an I/O request is processed by the device (apart from the trivial
2954 * I/O pattern where a new request is dispatched only after the
2955 * previous one has been completed). This makes it hard to evaluate
2956 * the real rate at which the I/O requests of each bfq_queue are
2957 * served. In fact, for an I/O scheduler like BFQ, serving a
2958 * bfq_queue means just dispatching its requests during its service
2959 * slot (i.e., until the budget of the queue is exhausted, or the
2960 * queue remains idle, or, finally, a timeout fires). But, during the
2961 * service slot of a bfq_queue, around 100 ms at most, the device may
2962 * be even still processing requests of bfq_queues served in previous
2963 * service slots. On the opposite end, the requests of the in-service
2964 * bfq_queue may be completed after the service slot of the queue
2965 * finishes.
2966 *
2967 * Anyway, unless more sophisticated solutions are used
2968 * (where possible), the sum of the sizes of the requests dispatched
2969 * during the service slot of a bfq_queue is probably the only
2970 * approximation available for the service received by the bfq_queue
2971 * during its service slot. And this sum is the quantity used in this
2972 * function to evaluate the I/O speed of a process.
Paolo Valenteaee69d72017-04-19 08:29:02 -06002973 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002974static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2975 bool compensate, enum bfqq_expiration reason,
2976 unsigned long *delta_ms)
Paolo Valenteaee69d72017-04-19 08:29:02 -06002977{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002978 ktime_t delta_ktime;
2979 u32 delta_usecs;
2980 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
Paolo Valenteaee69d72017-04-19 08:29:02 -06002981
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002982 if (!bfq_bfqq_sync(bfqq))
Paolo Valenteaee69d72017-04-19 08:29:02 -06002983 return false;
2984
2985 if (compensate)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002986 delta_ktime = bfqd->last_idling_start;
Paolo Valenteaee69d72017-04-19 08:29:02 -06002987 else
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002988 delta_ktime = ktime_get();
2989 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2990 delta_usecs = ktime_to_us(delta_ktime);
Paolo Valenteaee69d72017-04-19 08:29:02 -06002991
2992 /* don't use too short time intervals */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02002993 if (delta_usecs < 1000) {
2994 if (blk_queue_nonrot(bfqd->queue))
2995 /*
2996 * give same worst-case guarantees as idling
2997 * for seeky
2998 */
2999 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3000 else /* charge at least one seek */
3001 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003002
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003003 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003004 }
3005
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003006 *delta_ms = delta_usecs / USEC_PER_MSEC;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003007
3008 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003009 * Use only long (> 20ms) intervals to filter out excessive
3010 * spikes in service rate estimation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003011 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003012 if (delta_usecs > 20000) {
3013 /*
3014 * Caveat for rotational devices: processes doing I/O
3015 * in the slower disk zones tend to be slow(er) even
3016 * if not seeky. In this respect, the estimated peak
3017 * rate is likely to be an average over the disk
3018 * surface. Accordingly, to not be too harsh with
3019 * unlucky processes, a process is deemed slow only if
3020 * its rate has been lower than half of the estimated
3021 * peak rate.
3022 */
3023 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3024 }
3025
3026 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3027
3028 return slow;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003029}
3030
3031/*
Paolo Valente77b7dce2017-04-12 18:23:13 +02003032 * To be deemed as soft real-time, an application must meet two
3033 * requirements. First, the application must not require an average
3034 * bandwidth higher than the approximate bandwidth required to playback or
3035 * record a compressed high-definition video.
3036 * The next function is invoked on the completion of the last request of a
3037 * batch, to compute the next-start time instant, soft_rt_next_start, such
3038 * that, if the next request of the application does not arrive before
3039 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3040 *
3041 * The second requirement is that the request pattern of the application is
3042 * isochronous, i.e., that, after issuing a request or a batch of requests,
3043 * the application stops issuing new requests until all its pending requests
3044 * have been completed. After that, the application may issue a new batch,
3045 * and so on.
3046 * For this reason the next function is invoked to compute
3047 * soft_rt_next_start only for applications that meet this requirement,
3048 * whereas soft_rt_next_start is set to infinity for applications that do
3049 * not.
3050 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003051 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3052 * happen to meet, occasionally or systematically, both the above
3053 * bandwidth and isochrony requirements. This may happen at least in
3054 * the following circumstances. First, if the CPU load is high. The
3055 * application may stop issuing requests while the CPUs are busy
3056 * serving other processes, then restart, then stop again for a while,
3057 * and so on. The other circumstances are related to the storage
3058 * device: the storage device is highly loaded or reaches a low-enough
3059 * throughput with the I/O of the application (e.g., because the I/O
3060 * is random and/or the device is slow). In all these cases, the
3061 * I/O of the application may be simply slowed down enough to meet
3062 * the bandwidth and isochrony requirements. To reduce the probability
3063 * that greedy applications are deemed as soft real-time in these
3064 * corner cases, a further rule is used in the computation of
3065 * soft_rt_next_start: the return value of this function is forced to
3066 * be higher than the maximum between the following two quantities.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003067 *
Paolo Valentea34b0242017-12-15 07:23:12 +01003068 * (a) Current time plus: (1) the maximum time for which the arrival
3069 * of a request is waited for when a sync queue becomes idle,
3070 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3071 * postpone for a moment the reason for adding a few extra
3072 * jiffies; we get back to it after next item (b). Lower-bounding
3073 * the return value of this function with the current time plus
3074 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3075 * because the latter issue their next request as soon as possible
3076 * after the last one has been completed. In contrast, a soft
3077 * real-time application spends some time processing data, after a
3078 * batch of its requests has been completed.
3079 *
3080 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3081 * above, greedy applications may happen to meet both the
3082 * bandwidth and isochrony requirements under heavy CPU or
3083 * storage-device load. In more detail, in these scenarios, these
3084 * applications happen, only for limited time periods, to do I/O
3085 * slowly enough to meet all the requirements described so far,
3086 * including the filtering in above item (a). These slow-speed
3087 * time intervals are usually interspersed between other time
3088 * intervals during which these applications do I/O at a very high
3089 * speed. Fortunately, exactly because of the high speed of the
3090 * I/O in the high-speed intervals, the values returned by this
3091 * function happen to be so high, near the end of any such
3092 * high-speed interval, to be likely to fall *after* the end of
3093 * the low-speed time interval that follows. These high values are
3094 * stored in bfqq->soft_rt_next_start after each invocation of
3095 * this function. As a consequence, if the last value of
3096 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3097 * next value that this function may return, then, from the very
3098 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3099 * likely to be constantly kept so high that any I/O request
3100 * issued during the low-speed interval is considered as arriving
3101 * to soon for the application to be deemed as soft
3102 * real-time. Then, in the high-speed interval that follows, the
3103 * application will not be deemed as soft real-time, just because
3104 * it will do I/O at a high speed. And so on.
3105 *
3106 * Getting back to the filtering in item (a), in the following two
3107 * cases this filtering might be easily passed by a greedy
3108 * application, if the reference quantity was just
3109 * bfqd->bfq_slice_idle:
3110 * 1) HZ is so low that the duration of a jiffy is comparable to or
3111 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3112 * devices with HZ=100. The time granularity may be so coarse
3113 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3114 * is rather lower than the exact value.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003115 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3116 * for a while, then suddenly 'jump' by several units to recover the lost
3117 * increments. This seems to happen, e.g., inside virtual machines.
Paolo Valentea34b0242017-12-15 07:23:12 +01003118 * To address this issue, in the filtering in (a) we do not use as a
3119 * reference time interval just bfqd->bfq_slice_idle, but
3120 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3121 * minimum number of jiffies for which the filter seems to be quite
3122 * precise also in embedded systems and KVM/QEMU virtual machines.
Paolo Valente77b7dce2017-04-12 18:23:13 +02003123 */
3124static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3125 struct bfq_queue *bfqq)
3126{
Paolo Valentea34b0242017-12-15 07:23:12 +01003127 return max3(bfqq->soft_rt_next_start,
3128 bfqq->last_idle_bklogged +
3129 HZ * bfqq->service_from_backlogged /
3130 bfqd->bfq_wr_max_softrt_rate,
3131 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003132}
3133
Paolo Valenteaee69d72017-04-19 08:29:02 -06003134/**
3135 * bfq_bfqq_expire - expire a queue.
3136 * @bfqd: device owning the queue.
3137 * @bfqq: the queue to expire.
3138 * @compensate: if true, compensate for the time spent idling.
3139 * @reason: the reason causing the expiration.
3140 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003141 * If the process associated with bfqq does slow I/O (e.g., because it
3142 * issues random requests), we charge bfqq with the time it has been
3143 * in service instead of the service it has received (see
3144 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3145 * a consequence, bfqq will typically get higher timestamps upon
3146 * reactivation, and hence it will be rescheduled as if it had
3147 * received more service than what it has actually received. In the
3148 * end, bfqq receives less service in proportion to how slowly its
3149 * associated process consumes its budgets (and hence how seriously it
3150 * tends to lower the throughput). In addition, this time-charging
3151 * strategy guarantees time fairness among slow processes. In
3152 * contrast, if the process associated with bfqq is not slow, we
3153 * charge bfqq exactly with the service it has received.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003154 *
Paolo Valentec074170e2017-04-12 18:23:11 +02003155 * Charging time to the first type of queues and the exact service to
3156 * the other has the effect of using the WF2Q+ policy to schedule the
3157 * former on a timeslice basis, without violating service domain
3158 * guarantees among the latter.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003159 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003160void bfq_bfqq_expire(struct bfq_data *bfqd,
3161 struct bfq_queue *bfqq,
3162 bool compensate,
3163 enum bfqq_expiration reason)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003164{
3165 bool slow;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003166 unsigned long delta = 0;
3167 struct bfq_entity *entity = &bfqq->entity;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003168 int ref;
3169
3170 /*
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003171 * Check whether the process is slow (see bfq_bfqq_is_slow).
Paolo Valenteaee69d72017-04-19 08:29:02 -06003172 */
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003173 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003174
3175 /*
Paolo Valentec074170e2017-04-12 18:23:11 +02003176 * As above explained, charge slow (typically seeky) and
3177 * timed-out queues with the time and not the service
3178 * received, to favor sequential workloads.
3179 *
3180 * Processes doing I/O in the slower disk zones will tend to
3181 * be slow(er) even if not seeky. Therefore, since the
3182 * estimated peak rate is actually an average over the disk
3183 * surface, these processes may timeout just for bad luck. To
3184 * avoid punishing them, do not charge time to processes that
3185 * succeeded in consuming at least 2/3 of their budget. This
3186 * allows BFQ to preserve enough elasticity to still perform
3187 * bandwidth, and not time, distribution with little unlucky
3188 * or quasi-sequential processes.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003189 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003190 if (bfqq->wr_coeff == 1 &&
3191 (slow ||
3192 (reason == BFQQE_BUDGET_TIMEOUT &&
3193 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
Paolo Valentec074170e2017-04-12 18:23:11 +02003194 bfq_bfqq_charge_time(bfqd, bfqq, delta);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003195
3196 if (reason == BFQQE_TOO_IDLE &&
Paolo Valenteab0e43e2017-04-12 18:23:10 +02003197 entity->service <= 2 * entity->budget / 10)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003198 bfq_clear_bfqq_IO_bound(bfqq);
3199
Paolo Valente44e44a12017-04-12 18:23:12 +02003200 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3201 bfqq->last_wr_start_finish = jiffies;
3202
Paolo Valente77b7dce2017-04-12 18:23:13 +02003203 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3204 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3205 /*
3206 * If we get here, and there are no outstanding
3207 * requests, then the request pattern is isochronous
3208 * (see the comments on the function
3209 * bfq_bfqq_softrt_next_start()). Thus we can compute
3210 * soft_rt_next_start. If, instead, the queue still
3211 * has outstanding requests, then we have to wait for
3212 * the completion of all the outstanding requests to
3213 * discover whether the request pattern is actually
3214 * isochronous.
3215 */
3216 if (bfqq->dispatched == 0)
3217 bfqq->soft_rt_next_start =
3218 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3219 else {
3220 /*
3221 * The application is still waiting for the
3222 * completion of one or more requests:
3223 * prevent it from possibly being incorrectly
3224 * deemed as soft real-time by setting its
3225 * soft_rt_next_start to infinity. In fact,
3226 * without this assignment, the application
3227 * would be incorrectly deemed as soft
3228 * real-time if:
3229 * 1) it issued a new request before the
3230 * completion of all its in-flight
3231 * requests, and
3232 * 2) at that time, its soft_rt_next_start
3233 * happened to be in the past.
3234 */
3235 bfqq->soft_rt_next_start =
3236 bfq_greatest_from_now();
3237 /*
3238 * Schedule an update of soft_rt_next_start to when
3239 * the task may be discovered to be isochronous.
3240 */
3241 bfq_mark_bfqq_softrt_update(bfqq);
3242 }
3243 }
3244
Paolo Valenteaee69d72017-04-19 08:29:02 -06003245 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02003246 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3247 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06003248
3249 /*
3250 * Increase, decrease or leave budget unchanged according to
3251 * reason.
3252 */
3253 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3254 ref = bfqq->ref;
3255 __bfq_bfqq_expire(bfqd, bfqq);
3256
3257 /* mark bfqq as waiting a request only if a bic still points to it */
3258 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3259 reason != BFQQE_BUDGET_TIMEOUT &&
3260 reason != BFQQE_BUDGET_EXHAUSTED)
3261 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3262}
3263
3264/*
3265 * Budget timeout is not implemented through a dedicated timer, but
3266 * just checked on request arrivals and completions, as well as on
3267 * idle timer expirations.
3268 */
3269static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3270{
Paolo Valente44e44a12017-04-12 18:23:12 +02003271 return time_is_before_eq_jiffies(bfqq->budget_timeout);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003272}
3273
3274/*
3275 * If we expire a queue that is actively waiting (i.e., with the
3276 * device idled) for the arrival of a new request, then we may incur
3277 * the timestamp misalignment problem described in the body of the
3278 * function __bfq_activate_entity. Hence we return true only if this
3279 * condition does not hold, or if the queue is slow enough to deserve
3280 * only to be kicked off for preserving a high throughput.
3281 */
3282static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3283{
3284 bfq_log_bfqq(bfqq->bfqd, bfqq,
3285 "may_budget_timeout: wait_request %d left %d timeout %d",
3286 bfq_bfqq_wait_request(bfqq),
3287 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3288 bfq_bfqq_budget_timeout(bfqq));
3289
3290 return (!bfq_bfqq_wait_request(bfqq) ||
3291 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3292 &&
3293 bfq_bfqq_budget_timeout(bfqq);
3294}
3295
3296/*
3297 * For a queue that becomes empty, device idling is allowed only if
Paolo Valente44e44a12017-04-12 18:23:12 +02003298 * this function returns true for the queue. As a consequence, since
3299 * device idling plays a critical role in both throughput boosting and
3300 * service guarantees, the return value of this function plays a
3301 * critical role in both these aspects as well.
3302 *
3303 * In a nutshell, this function returns true only if idling is
3304 * beneficial for throughput or, even if detrimental for throughput,
3305 * idling is however necessary to preserve service guarantees (low
3306 * latency, desired throughput distribution, ...). In particular, on
3307 * NCQ-capable devices, this function tries to return false, so as to
3308 * help keep the drives' internal queues full, whenever this helps the
3309 * device boost the throughput without causing any service-guarantee
3310 * issue.
3311 *
3312 * In more detail, the return value of this function is obtained by,
3313 * first, computing a number of boolean variables that take into
3314 * account throughput and service-guarantee issues, and, then,
3315 * combining these variables in a logical expression. Most of the
3316 * issues taken into account are not trivial. We discuss these issues
3317 * individually while introducing the variables.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003318 */
3319static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3320{
3321 struct bfq_data *bfqd = bfqq->bfqd;
Paolo Valenteedaf9422017-08-04 07:35:11 +02003322 bool rot_without_queueing =
3323 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3324 bfqq_sequential_and_IO_bound,
3325 idling_boosts_thr, idling_boosts_thr_without_issues,
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003326 idling_needed_for_service_guarantees,
Paolo Valentecfd69712017-04-12 18:23:15 +02003327 asymmetric_scenario;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003328
3329 if (bfqd->strict_guarantees)
3330 return true;
3331
3332 /*
Paolo Valented5be3fe2017-08-04 07:35:10 +02003333 * Idling is performed only if slice_idle > 0. In addition, we
3334 * do not idle if
3335 * (a) bfqq is async
3336 * (b) bfqq is in the idle io prio class: in this case we do
3337 * not idle because we want to minimize the bandwidth that
3338 * queues in this class can steal to higher-priority queues
3339 */
3340 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3341 bfq_class_idle(bfqq))
3342 return false;
3343
Paolo Valenteedaf9422017-08-04 07:35:11 +02003344 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3345 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3346
Paolo Valented5be3fe2017-08-04 07:35:10 +02003347 /*
Paolo Valente44e44a12017-04-12 18:23:12 +02003348 * The next variable takes into account the cases where idling
3349 * boosts the throughput.
3350 *
Paolo Valentee01eff02017-04-12 18:23:19 +02003351 * The value of the variable is computed considering, first, that
3352 * idling is virtually always beneficial for the throughput if:
Paolo Valenteedaf9422017-08-04 07:35:11 +02003353 * (a) the device is not NCQ-capable and rotational, or
3354 * (b) regardless of the presence of NCQ, the device is rotational and
3355 * the request pattern for bfqq is I/O-bound and sequential, or
3356 * (c) regardless of whether it is rotational, the device is
3357 * not NCQ-capable and the request pattern for bfqq is
3358 * I/O-bound and sequential.
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003359 *
3360 * Secondly, and in contrast to the above item (b), idling an
3361 * NCQ-capable flash-based device would not boost the
Paolo Valentee01eff02017-04-12 18:23:19 +02003362 * throughput even with sequential I/O; rather it would lower
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003363 * the throughput in proportion to how fast the device
3364 * is. Accordingly, the next variable is true if any of the
Paolo Valenteedaf9422017-08-04 07:35:11 +02003365 * above conditions (a), (b) or (c) is true, and, in
3366 * particular, happens to be false if bfqd is an NCQ-capable
3367 * flash-based device.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003368 */
Paolo Valenteedaf9422017-08-04 07:35:11 +02003369 idling_boosts_thr = rot_without_queueing ||
3370 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3371 bfqq_sequential_and_IO_bound);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003372
3373 /*
Paolo Valentecfd69712017-04-12 18:23:15 +02003374 * The value of the next variable,
3375 * idling_boosts_thr_without_issues, is equal to that of
3376 * idling_boosts_thr, unless a special case holds. In this
3377 * special case, described below, idling may cause problems to
3378 * weight-raised queues.
3379 *
3380 * When the request pool is saturated (e.g., in the presence
3381 * of write hogs), if the processes associated with
3382 * non-weight-raised queues ask for requests at a lower rate,
3383 * then processes associated with weight-raised queues have a
3384 * higher probability to get a request from the pool
3385 * immediately (or at least soon) when they need one. Thus
3386 * they have a higher probability to actually get a fraction
3387 * of the device throughput proportional to their high
3388 * weight. This is especially true with NCQ-capable drives,
3389 * which enqueue several requests in advance, and further
3390 * reorder internally-queued requests.
3391 *
3392 * For this reason, we force to false the value of
3393 * idling_boosts_thr_without_issues if there are weight-raised
3394 * busy queues. In this case, and if bfqq is not weight-raised,
3395 * this guarantees that the device is not idled for bfqq (if,
3396 * instead, bfqq is weight-raised, then idling will be
3397 * guaranteed by another variable, see below). Combined with
3398 * the timestamping rules of BFQ (see [1] for details), this
3399 * behavior causes bfqq, and hence any sync non-weight-raised
3400 * queue, to get a lower number of requests served, and thus
3401 * to ask for a lower number of requests from the request
3402 * pool, before the busy weight-raised queues get served
3403 * again. This often mitigates starvation problems in the
3404 * presence of heavy write workloads and NCQ, thereby
3405 * guaranteeing a higher application and system responsiveness
3406 * in these hostile scenarios.
3407 */
3408 idling_boosts_thr_without_issues = idling_boosts_thr &&
3409 bfqd->wr_busy_queues == 0;
3410
3411 /*
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003412 * There is then a case where idling must be performed not
3413 * for throughput concerns, but to preserve service
3414 * guarantees.
3415 *
3416 * To introduce this case, we can note that allowing the drive
3417 * to enqueue more than one request at a time, and hence
Paolo Valente44e44a12017-04-12 18:23:12 +02003418 * delegating de facto final scheduling decisions to the
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003419 * drive's internal scheduler, entails loss of control on the
Paolo Valente44e44a12017-04-12 18:23:12 +02003420 * actual request service order. In particular, the critical
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003421 * situation is when requests from different processes happen
Paolo Valente44e44a12017-04-12 18:23:12 +02003422 * to be present, at the same time, in the internal queue(s)
3423 * of the drive. In such a situation, the drive, by deciding
3424 * the service order of the internally-queued requests, does
3425 * determine also the actual throughput distribution among
3426 * these processes. But the drive typically has no notion or
3427 * concern about per-process throughput distribution, and
3428 * makes its decisions only on a per-request basis. Therefore,
3429 * the service distribution enforced by the drive's internal
3430 * scheduler is likely to coincide with the desired
3431 * device-throughput distribution only in a completely
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003432 * symmetric scenario where:
3433 * (i) each of these processes must get the same throughput as
3434 * the others;
3435 * (ii) all these processes have the same I/O pattern
3436 (either sequential or random).
3437 * In fact, in such a scenario, the drive will tend to treat
3438 * the requests of each of these processes in about the same
3439 * way as the requests of the others, and thus to provide
3440 * each of these processes with about the same throughput
3441 * (which is exactly the desired throughput distribution). In
3442 * contrast, in any asymmetric scenario, device idling is
3443 * certainly needed to guarantee that bfqq receives its
3444 * assigned fraction of the device throughput (see [1] for
3445 * details).
Paolo Valente44e44a12017-04-12 18:23:12 +02003446 *
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003447 * We address this issue by controlling, actually, only the
3448 * symmetry sub-condition (i), i.e., provided that
3449 * sub-condition (i) holds, idling is not performed,
3450 * regardless of whether sub-condition (ii) holds. In other
3451 * words, only if sub-condition (i) holds, then idling is
3452 * allowed, and the device tends to be prevented from queueing
3453 * many requests, possibly of several processes. The reason
3454 * for not controlling also sub-condition (ii) is that we
3455 * exploit preemption to preserve guarantees in case of
3456 * symmetric scenarios, even if (ii) does not hold, as
3457 * explained in the next two paragraphs.
Paolo Valente44e44a12017-04-12 18:23:12 +02003458 *
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003459 * Even if a queue, say Q, is expired when it remains idle, Q
3460 * can still preempt the new in-service queue if the next
3461 * request of Q arrives soon (see the comments on
3462 * bfq_bfqq_update_budg_for_activation). If all queues and
3463 * groups have the same weight, this form of preemption,
3464 * combined with the hole-recovery heuristic described in the
3465 * comments on function bfq_bfqq_update_budg_for_activation,
3466 * are enough to preserve a correct bandwidth distribution in
3467 * the mid term, even without idling. In fact, even if not
3468 * idling allows the internal queues of the device to contain
3469 * many requests, and thus to reorder requests, we can rather
3470 * safely assume that the internal scheduler still preserves a
3471 * minimum of mid-term fairness. The motivation for using
3472 * preemption instead of idling is that, by not idling,
3473 * service guarantees are preserved without minimally
3474 * sacrificing throughput. In other words, both a high
3475 * throughput and its desired distribution are obtained.
3476 *
3477 * More precisely, this preemption-based, idleless approach
3478 * provides fairness in terms of IOPS, and not sectors per
3479 * second. This can be seen with a simple example. Suppose
3480 * that there are two queues with the same weight, but that
3481 * the first queue receives requests of 8 sectors, while the
3482 * second queue receives requests of 1024 sectors. In
3483 * addition, suppose that each of the two queues contains at
3484 * most one request at a time, which implies that each queue
3485 * always remains idle after it is served. Finally, after
3486 * remaining idle, each queue receives very quickly a new
3487 * request. It follows that the two queues are served
3488 * alternatively, preempting each other if needed. This
3489 * implies that, although both queues have the same weight,
3490 * the queue with large requests receives a service that is
3491 * 1024/8 times as high as the service received by the other
3492 * queue.
3493 *
3494 * On the other hand, device idling is performed, and thus
3495 * pure sector-domain guarantees are provided, for the
3496 * following queues, which are likely to need stronger
3497 * throughput guarantees: weight-raised queues, and queues
3498 * with a higher weight than other queues. When such queues
3499 * are active, sub-condition (i) is false, which triggers
3500 * device idling.
3501 *
3502 * According to the above considerations, the next variable is
3503 * true (only) if sub-condition (i) holds. To compute the
3504 * value of this variable, we not only use the return value of
3505 * the function bfq_symmetric_scenario(), but also check
3506 * whether bfqq is being weight-raised, because
3507 * bfq_symmetric_scenario() does not take into account also
3508 * weight-raised queues (see comments on
3509 * bfq_weights_tree_add()).
Paolo Valente44e44a12017-04-12 18:23:12 +02003510 *
3511 * As a side note, it is worth considering that the above
3512 * device-idling countermeasures may however fail in the
3513 * following unlucky scenario: if idling is (correctly)
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003514 * disabled in a time period during which all symmetry
3515 * sub-conditions hold, and hence the device is allowed to
Paolo Valente44e44a12017-04-12 18:23:12 +02003516 * enqueue many requests, but at some later point in time some
3517 * sub-condition stops to hold, then it may become impossible
3518 * to let requests be served in the desired order until all
3519 * the requests already queued in the device have been served.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003520 */
Paolo Valentebf2b79e2017-04-12 18:23:18 +02003521 asymmetric_scenario = bfqq->wr_coeff > 1 ||
3522 !bfq_symmetric_scenario(bfqd);
Paolo Valente44e44a12017-04-12 18:23:12 +02003523
3524 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003525 * Finally, there is a case where maximizing throughput is the
3526 * best choice even if it may cause unfairness toward
3527 * bfqq. Such a case is when bfqq became active in a burst of
3528 * queue activations. Queues that became active during a large
3529 * burst benefit only from throughput, as discussed in the
3530 * comments on bfq_handle_burst. Thus, if bfqq became active
3531 * in a burst and not idling the device maximizes throughput,
3532 * then the device must no be idled, because not idling the
3533 * device provides bfqq and all other queues in the burst with
3534 * maximum benefit. Combining this and the above case, we can
3535 * now establish when idling is actually needed to preserve
3536 * service guarantees.
3537 */
3538 idling_needed_for_service_guarantees =
3539 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3540
3541 /*
Paolo Valented5be3fe2017-08-04 07:35:10 +02003542 * We have now all the components we need to compute the
3543 * return value of the function, which is true only if idling
3544 * either boosts the throughput (without issues), or is
3545 * necessary to preserve service guarantees.
Paolo Valente44e44a12017-04-12 18:23:12 +02003546 */
Paolo Valented5be3fe2017-08-04 07:35:10 +02003547 return idling_boosts_thr_without_issues ||
3548 idling_needed_for_service_guarantees;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003549}
3550
3551/*
3552 * If the in-service queue is empty but the function bfq_bfqq_may_idle
3553 * returns true, then:
3554 * 1) the queue must remain in service and cannot be expired, and
3555 * 2) the device must be idled to wait for the possible arrival of a new
3556 * request for the queue.
3557 * See the comments on the function bfq_bfqq_may_idle for the reasons
3558 * why performing device idling is the best choice to boost the throughput
3559 * and preserve service guarantees when bfq_bfqq_may_idle itself
3560 * returns true.
3561 */
3562static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3563{
Paolo Valented5be3fe2017-08-04 07:35:10 +02003564 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06003565}
3566
3567/*
3568 * Select a queue for service. If we have a current queue in service,
3569 * check whether to continue servicing it, or retrieve and set a new one.
3570 */
3571static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3572{
3573 struct bfq_queue *bfqq;
3574 struct request *next_rq;
3575 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3576
3577 bfqq = bfqd->in_service_queue;
3578 if (!bfqq)
3579 goto new_queue;
3580
3581 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3582
3583 if (bfq_may_expire_for_budg_timeout(bfqq) &&
3584 !bfq_bfqq_wait_request(bfqq) &&
3585 !bfq_bfqq_must_idle(bfqq))
3586 goto expire;
3587
3588check_queue:
3589 /*
3590 * This loop is rarely executed more than once. Even when it
3591 * happens, it is much more convenient to re-execute this loop
3592 * than to return NULL and trigger a new dispatch to get a
3593 * request served.
3594 */
3595 next_rq = bfqq->next_rq;
3596 /*
3597 * If bfqq has requests queued and it has enough budget left to
3598 * serve them, keep the queue, otherwise expire it.
3599 */
3600 if (next_rq) {
3601 if (bfq_serv_to_charge(next_rq, bfqq) >
3602 bfq_bfqq_budget_left(bfqq)) {
3603 /*
3604 * Expire the queue for budget exhaustion,
3605 * which makes sure that the next budget is
3606 * enough to serve the next request, even if
3607 * it comes from the fifo expired path.
3608 */
3609 reason = BFQQE_BUDGET_EXHAUSTED;
3610 goto expire;
3611 } else {
3612 /*
3613 * The idle timer may be pending because we may
3614 * not disable disk idling even when a new request
3615 * arrives.
3616 */
3617 if (bfq_bfqq_wait_request(bfqq)) {
3618 /*
3619 * If we get here: 1) at least a new request
3620 * has arrived but we have not disabled the
3621 * timer because the request was too small,
3622 * 2) then the block layer has unplugged
3623 * the device, causing the dispatch to be
3624 * invoked.
3625 *
3626 * Since the device is unplugged, now the
3627 * requests are probably large enough to
3628 * provide a reasonable throughput.
3629 * So we disable idling.
3630 */
3631 bfq_clear_bfqq_wait_request(bfqq);
3632 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3633 }
3634 goto keep_queue;
3635 }
3636 }
3637
3638 /*
3639 * No requests pending. However, if the in-service queue is idling
3640 * for a new request, or has requests waiting for a completion and
3641 * may idle after their completion, then keep it anyway.
3642 */
3643 if (bfq_bfqq_wait_request(bfqq) ||
3644 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3645 bfqq = NULL;
3646 goto keep_queue;
3647 }
3648
3649 reason = BFQQE_NO_MORE_REQUESTS;
3650expire:
3651 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3652new_queue:
3653 bfqq = bfq_set_in_service_queue(bfqd);
3654 if (bfqq) {
3655 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3656 goto check_queue;
3657 }
3658keep_queue:
3659 if (bfqq)
3660 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3661 else
3662 bfq_log(bfqd, "select_queue: no queue returned");
3663
3664 return bfqq;
3665}
3666
Paolo Valente44e44a12017-04-12 18:23:12 +02003667static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3668{
3669 struct bfq_entity *entity = &bfqq->entity;
3670
3671 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3672 bfq_log_bfqq(bfqd, bfqq,
3673 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3674 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3675 jiffies_to_msecs(bfqq->wr_cur_max_time),
3676 bfqq->wr_coeff,
3677 bfqq->entity.weight, bfqq->entity.orig_weight);
3678
3679 if (entity->prio_changed)
3680 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3681
3682 /*
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003683 * If the queue was activated in a burst, or too much
3684 * time has elapsed from the beginning of this
3685 * weight-raising period, then end weight raising.
Paolo Valente44e44a12017-04-12 18:23:12 +02003686 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003687 if (bfq_bfqq_in_large_burst(bfqq))
3688 bfq_bfqq_end_wr(bfqq);
3689 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3690 bfqq->wr_cur_max_time)) {
Paolo Valente77b7dce2017-04-12 18:23:13 +02003691 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3692 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003693 bfq_wr_duration(bfqd)))
Paolo Valente77b7dce2017-04-12 18:23:13 +02003694 bfq_bfqq_end_wr(bfqq);
3695 else {
Paolo Valente3e2bdd62017-09-21 11:04:01 +02003696 switch_back_to_interactive_wr(bfqq, bfqd);
Paolo Valente77b7dce2017-04-12 18:23:13 +02003697 bfqq->entity.prio_changed = 1;
3698 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003699 }
Paolo Valente8a8747d2018-01-13 12:05:18 +01003700 if (bfqq->wr_coeff > 1 &&
3701 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
3702 bfqq->service_from_wr > max_service_from_wr) {
3703 /* see comments on max_service_from_wr */
3704 bfq_bfqq_end_wr(bfqq);
3705 }
Paolo Valente44e44a12017-04-12 18:23:12 +02003706 }
Paolo Valente431b17f2017-07-03 10:00:10 +02003707 /*
3708 * To improve latency (for this or other queues), immediately
3709 * update weight both if it must be raised and if it must be
3710 * lowered. Since, entity may be on some active tree here, and
3711 * might have a pending change of its ioprio class, invoke
3712 * next function with the last parameter unset (see the
3713 * comments on the function).
3714 */
Paolo Valente44e44a12017-04-12 18:23:12 +02003715 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
Paolo Valente431b17f2017-07-03 10:00:10 +02003716 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3717 entity, false);
Paolo Valente44e44a12017-04-12 18:23:12 +02003718}
3719
Paolo Valenteaee69d72017-04-19 08:29:02 -06003720/*
3721 * Dispatch next request from bfqq.
3722 */
3723static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3724 struct bfq_queue *bfqq)
3725{
3726 struct request *rq = bfqq->next_rq;
3727 unsigned long service_to_charge;
3728
3729 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3730
3731 bfq_bfqq_served(bfqq, service_to_charge);
3732
3733 bfq_dispatch_remove(bfqd->queue, rq);
3734
Paolo Valente44e44a12017-04-12 18:23:12 +02003735 /*
3736 * If weight raising has to terminate for bfqq, then next
3737 * function causes an immediate update of bfqq's weight,
3738 * without waiting for next activation. As a consequence, on
3739 * expiration, bfqq will be timestamped as if has never been
3740 * weight-raised during this service slot, even if it has
3741 * received part or even most of the service as a
3742 * weight-raised queue. This inflates bfqq's timestamps, which
3743 * is beneficial, as bfqq is then more willing to leave the
3744 * device immediately to possible other weight-raised queues.
3745 */
3746 bfq_update_wr_data(bfqd, bfqq);
3747
Paolo Valenteaee69d72017-04-19 08:29:02 -06003748 /*
3749 * Expire bfqq, pretending that its budget expired, if bfqq
3750 * belongs to CLASS_IDLE and other queues are waiting for
3751 * service.
3752 */
3753 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3754 goto expire;
3755
3756 return rq;
3757
3758expire:
3759 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3760 return rq;
3761}
3762
3763static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3764{
3765 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3766
3767 /*
3768 * Avoiding lock: a race on bfqd->busy_queues should cause at
3769 * most a call to dispatch for nothing
3770 */
3771 return !list_empty_careful(&bfqd->dispatch) ||
3772 bfqd->busy_queues > 0;
3773}
3774
3775static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3776{
3777 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3778 struct request *rq = NULL;
3779 struct bfq_queue *bfqq = NULL;
3780
3781 if (!list_empty(&bfqd->dispatch)) {
3782 rq = list_first_entry(&bfqd->dispatch, struct request,
3783 queuelist);
3784 list_del_init(&rq->queuelist);
3785
3786 bfqq = RQ_BFQQ(rq);
3787
3788 if (bfqq) {
3789 /*
3790 * Increment counters here, because this
3791 * dispatch does not follow the standard
3792 * dispatch flow (where counters are
3793 * incremented)
3794 */
3795 bfqq->dispatched++;
3796
3797 goto inc_in_driver_start_rq;
3798 }
3799
3800 /*
Paolo Valentea7877392018-02-07 22:19:20 +01003801 * We exploit the bfq_finish_requeue_request hook to
3802 * decrement rq_in_driver, but
3803 * bfq_finish_requeue_request will not be invoked on
3804 * this request. So, to avoid unbalance, just start
3805 * this request, without incrementing rq_in_driver. As
3806 * a negative consequence, rq_in_driver is deceptively
3807 * lower than it should be while this request is in
3808 * service. This may cause bfq_schedule_dispatch to be
3809 * invoked uselessly.
Paolo Valenteaee69d72017-04-19 08:29:02 -06003810 *
3811 * As for implementing an exact solution, the
Paolo Valentea7877392018-02-07 22:19:20 +01003812 * bfq_finish_requeue_request hook, if defined, is
3813 * probably invoked also on this request. So, by
3814 * exploiting this hook, we could 1) increment
3815 * rq_in_driver here, and 2) decrement it in
3816 * bfq_finish_requeue_request. Such a solution would
3817 * let the value of the counter be always accurate,
3818 * but it would entail using an extra interface
3819 * function. This cost seems higher than the benefit,
3820 * being the frequency of non-elevator-private
Paolo Valenteaee69d72017-04-19 08:29:02 -06003821 * requests very low.
3822 */
3823 goto start_rq;
3824 }
3825
3826 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3827
3828 if (bfqd->busy_queues == 0)
3829 goto exit;
3830
3831 /*
3832 * Force device to serve one request at a time if
3833 * strict_guarantees is true. Forcing this service scheme is
3834 * currently the ONLY way to guarantee that the request
3835 * service order enforced by the scheduler is respected by a
3836 * queueing device. Otherwise the device is free even to make
3837 * some unlucky request wait for as long as the device
3838 * wishes.
3839 *
3840 * Of course, serving one request at at time may cause loss of
3841 * throughput.
3842 */
3843 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3844 goto exit;
3845
3846 bfqq = bfq_select_queue(bfqd);
3847 if (!bfqq)
3848 goto exit;
3849
3850 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3851
3852 if (rq) {
3853inc_in_driver_start_rq:
3854 bfqd->rq_in_driver++;
3855start_rq:
3856 rq->rq_flags |= RQF_STARTED;
3857 }
3858exit:
3859 return rq;
3860}
3861
Paolo Valente9b25bd02017-12-04 11:42:05 +01003862#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
3863static void bfq_update_dispatch_stats(struct request_queue *q,
3864 struct request *rq,
3865 struct bfq_queue *in_serv_queue,
3866 bool idle_timer_disabled)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003867{
Paolo Valente9b25bd02017-12-04 11:42:05 +01003868 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
Paolo Valenteaee69d72017-04-19 08:29:02 -06003869
Paolo Valente24bfd192017-11-13 07:34:09 +01003870 if (!idle_timer_disabled && !bfqq)
Paolo Valente9b25bd02017-12-04 11:42:05 +01003871 return;
Paolo Valente24bfd192017-11-13 07:34:09 +01003872
3873 /*
3874 * rq and bfqq are guaranteed to exist until this function
3875 * ends, for the following reasons. First, rq can be
3876 * dispatched to the device, and then can be completed and
3877 * freed, only after this function ends. Second, rq cannot be
3878 * merged (and thus freed because of a merge) any longer,
3879 * because it has already started. Thus rq cannot be freed
3880 * before this function ends, and, since rq has a reference to
3881 * bfqq, the same guarantee holds for bfqq too.
3882 *
3883 * In addition, the following queue lock guarantees that
3884 * bfqq_group(bfqq) exists as well.
3885 */
Paolo Valente9b25bd02017-12-04 11:42:05 +01003886 spin_lock_irq(q->queue_lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01003887 if (idle_timer_disabled)
3888 /*
3889 * Since the idle timer has been disabled,
3890 * in_serv_queue contained some request when
3891 * __bfq_dispatch_request was invoked above, which
3892 * implies that rq was picked exactly from
3893 * in_serv_queue. Thus in_serv_queue == bfqq, and is
3894 * therefore guaranteed to exist because of the above
3895 * arguments.
3896 */
3897 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
3898 if (bfqq) {
3899 struct bfq_group *bfqg = bfqq_group(bfqq);
3900
3901 bfqg_stats_update_avg_queue_size(bfqg);
3902 bfqg_stats_set_start_empty_time(bfqg);
3903 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
3904 }
Paolo Valente9b25bd02017-12-04 11:42:05 +01003905 spin_unlock_irq(q->queue_lock);
3906}
3907#else
3908static inline void bfq_update_dispatch_stats(struct request_queue *q,
3909 struct request *rq,
3910 struct bfq_queue *in_serv_queue,
3911 bool idle_timer_disabled) {}
Paolo Valente24bfd192017-11-13 07:34:09 +01003912#endif
3913
Paolo Valente9b25bd02017-12-04 11:42:05 +01003914static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3915{
3916 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3917 struct request *rq;
3918 struct bfq_queue *in_serv_queue;
3919 bool waiting_rq, idle_timer_disabled;
3920
3921 spin_lock_irq(&bfqd->lock);
3922
3923 in_serv_queue = bfqd->in_service_queue;
3924 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
3925
3926 rq = __bfq_dispatch_request(hctx);
3927
3928 idle_timer_disabled =
3929 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
3930
3931 spin_unlock_irq(&bfqd->lock);
3932
3933 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
3934 idle_timer_disabled);
3935
Paolo Valenteaee69d72017-04-19 08:29:02 -06003936 return rq;
3937}
3938
3939/*
3940 * Task holds one reference to the queue, dropped when task exits. Each rq
3941 * in-flight on this queue also holds a reference, dropped when rq is freed.
3942 *
3943 * Scheduler lock must be held here. Recall not to use bfqq after calling
3944 * this function on it.
3945 */
Paolo Valenteea25da42017-04-19 08:48:24 -06003946void bfq_put_queue(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06003947{
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003948#ifdef CONFIG_BFQ_GROUP_IOSCHED
3949 struct bfq_group *bfqg = bfqq_group(bfqq);
3950#endif
3951
Paolo Valenteaee69d72017-04-19 08:29:02 -06003952 if (bfqq->bfqd)
3953 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3954 bfqq, bfqq->ref);
3955
3956 bfqq->ref--;
3957 if (bfqq->ref)
3958 return;
3959
Paolo Valente99fead82017-10-09 13:11:23 +02003960 if (!hlist_unhashed(&bfqq->burst_list_node)) {
Arianna Avanzinie1b23242017-04-12 18:23:20 +02003961 hlist_del_init(&bfqq->burst_list_node);
Paolo Valente99fead82017-10-09 13:11:23 +02003962 /*
3963 * Decrement also burst size after the removal, if the
3964 * process associated with bfqq is exiting, and thus
3965 * does not contribute to the burst any longer. This
3966 * decrement helps filter out false positives of large
3967 * bursts, when some short-lived process (often due to
3968 * the execution of commands by some service) happens
3969 * to start and exit while a complex application is
3970 * starting, and thus spawning several processes that
3971 * do I/O (and that *must not* be treated as a large
3972 * burst, see comments on bfq_handle_burst).
3973 *
3974 * In particular, the decrement is performed only if:
3975 * 1) bfqq is not a merged queue, because, if it is,
3976 * then this free of bfqq is not triggered by the exit
3977 * of the process bfqq is associated with, but exactly
3978 * by the fact that bfqq has just been merged.
3979 * 2) burst_size is greater than 0, to handle
3980 * unbalanced decrements. Unbalanced decrements may
3981 * happen in te following case: bfqq is inserted into
3982 * the current burst list--without incrementing
3983 * bust_size--because of a split, but the current
3984 * burst list is not the burst list bfqq belonged to
3985 * (see comments on the case of a split in
3986 * bfq_set_request).
3987 */
3988 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
3989 bfqq->bfqd->burst_size--;
Paolo Valente7cb04002017-09-21 11:04:03 +02003990 }
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003991
Paolo Valenteaee69d72017-04-19 08:29:02 -06003992 kmem_cache_free(bfq_pool, bfqq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003993#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente8f9bebc2017-06-05 10:11:15 +02003994 bfqg_and_blkg_put(bfqg);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02003995#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06003996}
3997
Arianna Avanzini36eca892017-04-12 18:23:16 +02003998static void bfq_put_cooperator(struct bfq_queue *bfqq)
3999{
4000 struct bfq_queue *__bfqq, *next;
4001
4002 /*
4003 * If this queue was scheduled to merge with another queue, be
4004 * sure to drop the reference taken on that queue (and others in
4005 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4006 */
4007 __bfqq = bfqq->new_bfqq;
4008 while (__bfqq) {
4009 if (__bfqq == bfqq)
4010 break;
4011 next = __bfqq->new_bfqq;
4012 bfq_put_queue(__bfqq);
4013 __bfqq = next;
4014 }
4015}
4016
Paolo Valenteaee69d72017-04-19 08:29:02 -06004017static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4018{
4019 if (bfqq == bfqd->in_service_queue) {
4020 __bfq_bfqq_expire(bfqd, bfqq);
4021 bfq_schedule_dispatch(bfqd);
4022 }
4023
4024 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4025
Arianna Avanzini36eca892017-04-12 18:23:16 +02004026 bfq_put_cooperator(bfqq);
4027
Paolo Valenteaee69d72017-04-19 08:29:02 -06004028 bfq_put_queue(bfqq); /* release process reference */
4029}
4030
4031static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4032{
4033 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4034 struct bfq_data *bfqd;
4035
4036 if (bfqq)
4037 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4038
4039 if (bfqq && bfqd) {
4040 unsigned long flags;
4041
4042 spin_lock_irqsave(&bfqd->lock, flags);
4043 bfq_exit_bfqq(bfqd, bfqq);
4044 bic_set_bfqq(bic, NULL, is_sync);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004045 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004046 }
4047}
4048
4049static void bfq_exit_icq(struct io_cq *icq)
4050{
4051 struct bfq_io_cq *bic = icq_to_bic(icq);
4052
4053 bfq_exit_icq_bfqq(bic, true);
4054 bfq_exit_icq_bfqq(bic, false);
4055}
4056
4057/*
4058 * Update the entity prio values; note that the new values will not
4059 * be used until the next (re)activation.
4060 */
4061static void
4062bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4063{
4064 struct task_struct *tsk = current;
4065 int ioprio_class;
4066 struct bfq_data *bfqd = bfqq->bfqd;
4067
4068 if (!bfqd)
4069 return;
4070
4071 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4072 switch (ioprio_class) {
4073 default:
4074 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4075 "bfq: bad prio class %d\n", ioprio_class);
Bart Van Asschefa393d12017-08-30 11:42:07 -07004076 /* fall through */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004077 case IOPRIO_CLASS_NONE:
4078 /*
4079 * No prio set, inherit CPU scheduling settings.
4080 */
4081 bfqq->new_ioprio = task_nice_ioprio(tsk);
4082 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4083 break;
4084 case IOPRIO_CLASS_RT:
4085 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4086 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4087 break;
4088 case IOPRIO_CLASS_BE:
4089 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4090 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4091 break;
4092 case IOPRIO_CLASS_IDLE:
4093 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4094 bfqq->new_ioprio = 7;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004095 break;
4096 }
4097
4098 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4099 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4100 bfqq->new_ioprio);
4101 bfqq->new_ioprio = IOPRIO_BE_NR;
4102 }
4103
4104 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4105 bfqq->entity.prio_changed = 1;
4106}
4107
Paolo Valenteea25da42017-04-19 08:48:24 -06004108static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4109 struct bio *bio, bool is_sync,
4110 struct bfq_io_cq *bic);
4111
Paolo Valenteaee69d72017-04-19 08:29:02 -06004112static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4113{
4114 struct bfq_data *bfqd = bic_to_bfqd(bic);
4115 struct bfq_queue *bfqq;
4116 int ioprio = bic->icq.ioc->ioprio;
4117
4118 /*
4119 * This condition may trigger on a newly created bic, be sure to
4120 * drop the lock before returning.
4121 */
4122 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4123 return;
4124
4125 bic->ioprio = ioprio;
4126
4127 bfqq = bic_to_bfqq(bic, false);
4128 if (bfqq) {
4129 /* release process reference on this queue */
4130 bfq_put_queue(bfqq);
4131 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4132 bic_set_bfqq(bic, bfqq, false);
4133 }
4134
4135 bfqq = bic_to_bfqq(bic, true);
4136 if (bfqq)
4137 bfq_set_next_ioprio_data(bfqq, bic);
4138}
4139
4140static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4141 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4142{
4143 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4144 INIT_LIST_HEAD(&bfqq->fifo);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004145 INIT_HLIST_NODE(&bfqq->burst_list_node);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004146
4147 bfqq->ref = 0;
4148 bfqq->bfqd = bfqd;
4149
4150 if (bic)
4151 bfq_set_next_ioprio_data(bfqq, bic);
4152
4153 if (is_sync) {
Paolo Valented5be3fe2017-08-04 07:35:10 +02004154 /*
4155 * No need to mark as has_short_ttime if in
4156 * idle_class, because no device idling is performed
4157 * for queues in idle class
4158 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004159 if (!bfq_class_idle(bfqq))
Paolo Valented5be3fe2017-08-04 07:35:10 +02004160 /* tentatively mark as has_short_ttime */
4161 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004162 bfq_mark_bfqq_sync(bfqq);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004163 bfq_mark_bfqq_just_created(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004164 } else
4165 bfq_clear_bfqq_sync(bfqq);
4166
4167 /* set end request to minus infinity from now */
4168 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4169
4170 bfq_mark_bfqq_IO_bound(bfqq);
4171
4172 bfqq->pid = pid;
4173
4174 /* Tentative initial value to trade off between thr and lat */
Paolo Valente54b60452017-04-12 18:23:09 +02004175 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004176 bfqq->budget_timeout = bfq_smallest_from_now();
Paolo Valenteaee69d72017-04-19 08:29:02 -06004177
Paolo Valente44e44a12017-04-12 18:23:12 +02004178 bfqq->wr_coeff = 1;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004179 bfqq->last_wr_start_finish = jiffies;
Paolo Valente77b7dce2017-04-12 18:23:13 +02004180 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
Arianna Avanzini36eca892017-04-12 18:23:16 +02004181 bfqq->split_time = bfq_smallest_from_now();
Paolo Valente77b7dce2017-04-12 18:23:13 +02004182
4183 /*
Paolo Valentea34b0242017-12-15 07:23:12 +01004184 * To not forget the possibly high bandwidth consumed by a
4185 * process/queue in the recent past,
4186 * bfq_bfqq_softrt_next_start() returns a value at least equal
4187 * to the current value of bfqq->soft_rt_next_start (see
4188 * comments on bfq_bfqq_softrt_next_start). Set
4189 * soft_rt_next_start to now, to mean that bfqq has consumed
4190 * no bandwidth so far.
Paolo Valente77b7dce2017-04-12 18:23:13 +02004191 */
Paolo Valentea34b0242017-12-15 07:23:12 +01004192 bfqq->soft_rt_next_start = jiffies;
Paolo Valente44e44a12017-04-12 18:23:12 +02004193
Paolo Valenteaee69d72017-04-19 08:29:02 -06004194 /* first request is almost certainly seeky */
4195 bfqq->seek_history = 1;
4196}
4197
4198static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004199 struct bfq_group *bfqg,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004200 int ioprio_class, int ioprio)
4201{
4202 switch (ioprio_class) {
4203 case IOPRIO_CLASS_RT:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004204 return &bfqg->async_bfqq[0][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004205 case IOPRIO_CLASS_NONE:
4206 ioprio = IOPRIO_NORM;
4207 /* fall through */
4208 case IOPRIO_CLASS_BE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004209 return &bfqg->async_bfqq[1][ioprio];
Paolo Valenteaee69d72017-04-19 08:29:02 -06004210 case IOPRIO_CLASS_IDLE:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004211 return &bfqg->async_idle_bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004212 default:
4213 return NULL;
4214 }
4215}
4216
4217static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4218 struct bio *bio, bool is_sync,
4219 struct bfq_io_cq *bic)
4220{
4221 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4222 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4223 struct bfq_queue **async_bfqq = NULL;
4224 struct bfq_queue *bfqq;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004225 struct bfq_group *bfqg;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004226
4227 rcu_read_lock();
4228
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004229 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4230 if (!bfqg) {
4231 bfqq = &bfqd->oom_bfqq;
4232 goto out;
4233 }
4234
Paolo Valenteaee69d72017-04-19 08:29:02 -06004235 if (!is_sync) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004236 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
Paolo Valenteaee69d72017-04-19 08:29:02 -06004237 ioprio);
4238 bfqq = *async_bfqq;
4239 if (bfqq)
4240 goto out;
4241 }
4242
4243 bfqq = kmem_cache_alloc_node(bfq_pool,
4244 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4245 bfqd->queue->node);
4246
4247 if (bfqq) {
4248 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4249 is_sync);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004250 bfq_init_entity(&bfqq->entity, bfqg);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004251 bfq_log_bfqq(bfqd, bfqq, "allocated");
4252 } else {
4253 bfqq = &bfqd->oom_bfqq;
4254 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4255 goto out;
4256 }
4257
4258 /*
4259 * Pin the queue now that it's allocated, scheduler exit will
4260 * prune it.
4261 */
4262 if (async_bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004263 bfqq->ref++; /*
4264 * Extra group reference, w.r.t. sync
4265 * queue. This extra reference is removed
4266 * only if bfqq->bfqg disappears, to
4267 * guarantee that this queue is not freed
4268 * until its group goes away.
4269 */
4270 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
Paolo Valenteaee69d72017-04-19 08:29:02 -06004271 bfqq, bfqq->ref);
4272 *async_bfqq = bfqq;
4273 }
4274
4275out:
4276 bfqq->ref++; /* get a process reference to this queue */
4277 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4278 rcu_read_unlock();
4279 return bfqq;
4280}
4281
4282static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4283 struct bfq_queue *bfqq)
4284{
4285 struct bfq_ttime *ttime = &bfqq->ttime;
4286 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4287
4288 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4289
4290 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4291 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4292 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4293 ttime->ttime_samples);
4294}
4295
4296static void
4297bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4298 struct request *rq)
4299{
Paolo Valenteaee69d72017-04-19 08:29:02 -06004300 bfqq->seek_history <<= 1;
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004301 bfqq->seek_history |=
4302 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
Paolo Valenteaee69d72017-04-19 08:29:02 -06004303 (!blk_queue_nonrot(bfqd->queue) ||
4304 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4305}
4306
Paolo Valented5be3fe2017-08-04 07:35:10 +02004307static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4308 struct bfq_queue *bfqq,
4309 struct bfq_io_cq *bic)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004310{
Paolo Valented5be3fe2017-08-04 07:35:10 +02004311 bool has_short_ttime = true;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004312
Paolo Valented5be3fe2017-08-04 07:35:10 +02004313 /*
4314 * No need to update has_short_ttime if bfqq is async or in
4315 * idle io prio class, or if bfq_slice_idle is zero, because
4316 * no device idling is performed for bfqq in this case.
4317 */
4318 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4319 bfqd->bfq_slice_idle == 0)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004320 return;
4321
Arianna Avanzini36eca892017-04-12 18:23:16 +02004322 /* Idle window just restored, statistics are meaningless. */
4323 if (time_is_after_eq_jiffies(bfqq->split_time +
4324 bfqd->bfq_wr_min_idle_time))
4325 return;
4326
Paolo Valented5be3fe2017-08-04 07:35:10 +02004327 /* Think time is infinite if no process is linked to
4328 * bfqq. Otherwise check average think time to
4329 * decide whether to mark as has_short_ttime
4330 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004331 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
Paolo Valented5be3fe2017-08-04 07:35:10 +02004332 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4333 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4334 has_short_ttime = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004335
Paolo Valented5be3fe2017-08-04 07:35:10 +02004336 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4337 has_short_ttime);
4338
4339 if (has_short_ttime)
4340 bfq_mark_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004341 else
Paolo Valented5be3fe2017-08-04 07:35:10 +02004342 bfq_clear_bfqq_has_short_ttime(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004343}
4344
4345/*
4346 * Called when a new fs request (rq) is added to bfqq. Check if there's
4347 * something we should do about it.
4348 */
4349static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4350 struct request *rq)
4351{
4352 struct bfq_io_cq *bic = RQ_BIC(rq);
4353
4354 if (rq->cmd_flags & REQ_META)
4355 bfqq->meta_pending++;
4356
4357 bfq_update_io_thinktime(bfqd, bfqq);
Paolo Valented5be3fe2017-08-04 07:35:10 +02004358 bfq_update_has_short_ttime(bfqd, bfqq, bic);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004359 bfq_update_io_seektime(bfqd, bfqq, rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004360
4361 bfq_log_bfqq(bfqd, bfqq,
Paolo Valented5be3fe2017-08-04 07:35:10 +02004362 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4363 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
Paolo Valenteaee69d72017-04-19 08:29:02 -06004364
4365 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4366
4367 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4368 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4369 blk_rq_sectors(rq) < 32;
4370 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4371
4372 /*
4373 * There is just this request queued: if the request
4374 * is small and the queue is not to be expired, then
4375 * just exit.
4376 *
4377 * In this way, if the device is being idled to wait
4378 * for a new request from the in-service queue, we
4379 * avoid unplugging the device and committing the
4380 * device to serve just a small request. On the
4381 * contrary, we wait for the block layer to decide
4382 * when to unplug the device: hopefully, new requests
4383 * will be merged to this one quickly, then the device
4384 * will be unplugged and larger requests will be
4385 * dispatched.
4386 */
4387 if (small_req && !budget_timeout)
4388 return;
4389
4390 /*
4391 * A large enough request arrived, or the queue is to
4392 * be expired: in both cases disk idling is to be
4393 * stopped, so clear wait_request flag and reset
4394 * timer.
4395 */
4396 bfq_clear_bfqq_wait_request(bfqq);
4397 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4398
4399 /*
4400 * The queue is not empty, because a new request just
4401 * arrived. Hence we can safely expire the queue, in
4402 * case of budget timeout, without risking that the
4403 * timestamps of the queue are not updated correctly.
4404 * See [1] for more details.
4405 */
4406 if (budget_timeout)
4407 bfq_bfqq_expire(bfqd, bfqq, false,
4408 BFQQE_BUDGET_TIMEOUT);
4409 }
4410}
4411
Paolo Valente24bfd192017-11-13 07:34:09 +01004412/* returns true if it causes the idle timer to be disabled */
4413static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004414{
Arianna Avanzini36eca892017-04-12 18:23:16 +02004415 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4416 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
Paolo Valente24bfd192017-11-13 07:34:09 +01004417 bool waiting, idle_timer_disabled = false;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004418
4419 if (new_bfqq) {
4420 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4421 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4422 /*
4423 * Release the request's reference to the old bfqq
4424 * and make sure one is taken to the shared queue.
4425 */
4426 new_bfqq->allocated++;
4427 bfqq->allocated--;
4428 new_bfqq->ref++;
4429 /*
4430 * If the bic associated with the process
4431 * issuing this request still points to bfqq
4432 * (and thus has not been already redirected
4433 * to new_bfqq or even some other bfq_queue),
4434 * then complete the merge and redirect it to
4435 * new_bfqq.
4436 */
4437 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4438 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4439 bfqq, new_bfqq);
Paolo Valente894df932017-09-21 11:04:02 +02004440
4441 bfq_clear_bfqq_just_created(bfqq);
Arianna Avanzini36eca892017-04-12 18:23:16 +02004442 /*
4443 * rq is about to be enqueued into new_bfqq,
4444 * release rq reference on bfqq
4445 */
4446 bfq_put_queue(bfqq);
4447 rq->elv.priv[1] = new_bfqq;
4448 bfqq = new_bfqq;
4449 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06004450
Paolo Valente24bfd192017-11-13 07:34:09 +01004451 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004452 bfq_add_request(rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004453 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004454
4455 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4456 list_add_tail(&rq->queuelist, &bfqq->fifo);
4457
4458 bfq_rq_enqueued(bfqd, bfqq, rq);
Paolo Valente24bfd192017-11-13 07:34:09 +01004459
4460 return idle_timer_disabled;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004461}
4462
Paolo Valente9b25bd02017-12-04 11:42:05 +01004463#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4464static void bfq_update_insert_stats(struct request_queue *q,
4465 struct bfq_queue *bfqq,
4466 bool idle_timer_disabled,
4467 unsigned int cmd_flags)
4468{
4469 if (!bfqq)
4470 return;
4471
4472 /*
4473 * bfqq still exists, because it can disappear only after
4474 * either it is merged with another queue, or the process it
4475 * is associated with exits. But both actions must be taken by
4476 * the same process currently executing this flow of
4477 * instructions.
4478 *
4479 * In addition, the following queue lock guarantees that
4480 * bfqq_group(bfqq) exists as well.
4481 */
4482 spin_lock_irq(q->queue_lock);
4483 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4484 if (idle_timer_disabled)
4485 bfqg_stats_update_idle_time(bfqq_group(bfqq));
4486 spin_unlock_irq(q->queue_lock);
4487}
4488#else
4489static inline void bfq_update_insert_stats(struct request_queue *q,
4490 struct bfq_queue *bfqq,
4491 bool idle_timer_disabled,
4492 unsigned int cmd_flags) {}
4493#endif
4494
Paolo Valenteaee69d72017-04-19 08:29:02 -06004495static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4496 bool at_head)
4497{
4498 struct request_queue *q = hctx->queue;
4499 struct bfq_data *bfqd = q->elevator->elevator_data;
Paolo Valente18e5a572018-05-04 19:17:01 +02004500 struct bfq_queue *bfqq;
Paolo Valente24bfd192017-11-13 07:34:09 +01004501 bool idle_timer_disabled = false;
4502 unsigned int cmd_flags;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004503
4504 spin_lock_irq(&bfqd->lock);
4505 if (blk_mq_sched_try_insert_merge(q, rq)) {
4506 spin_unlock_irq(&bfqd->lock);
4507 return;
4508 }
4509
4510 spin_unlock_irq(&bfqd->lock);
4511
4512 blk_mq_sched_request_inserted(rq);
4513
4514 spin_lock_irq(&bfqd->lock);
Paolo Valente18e5a572018-05-04 19:17:01 +02004515 bfqq = bfq_init_rq(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004516 if (at_head || blk_rq_is_passthrough(rq)) {
4517 if (at_head)
4518 list_add(&rq->queuelist, &bfqd->dispatch);
4519 else
4520 list_add_tail(&rq->queuelist, &bfqd->dispatch);
Paolo Valente18e5a572018-05-04 19:17:01 +02004521 } else { /* bfqq is assumed to be non null here */
Paolo Valente24bfd192017-11-13 07:34:09 +01004522 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01004523 /*
4524 * Update bfqq, because, if a queue merge has occurred
4525 * in __bfq_insert_request, then rq has been
4526 * redirected into a new queue.
4527 */
4528 bfqq = RQ_BFQQ(rq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004529
4530 if (rq_mergeable(rq)) {
4531 elv_rqhash_add(q, rq);
4532 if (!q->last_merge)
4533 q->last_merge = rq;
4534 }
4535 }
4536
Paolo Valente24bfd192017-11-13 07:34:09 +01004537 /*
4538 * Cache cmd_flags before releasing scheduler lock, because rq
4539 * may disappear afterwards (for example, because of a request
4540 * merge).
4541 */
4542 cmd_flags = rq->cmd_flags;
Paolo Valente9b25bd02017-12-04 11:42:05 +01004543
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004544 spin_unlock_irq(&bfqd->lock);
Paolo Valente24bfd192017-11-13 07:34:09 +01004545
Paolo Valente9b25bd02017-12-04 11:42:05 +01004546 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4547 cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004548}
4549
4550static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4551 struct list_head *list, bool at_head)
4552{
4553 while (!list_empty(list)) {
4554 struct request *rq;
4555
4556 rq = list_first_entry(list, struct request, queuelist);
4557 list_del_init(&rq->queuelist);
4558 bfq_insert_request(hctx, rq, at_head);
4559 }
4560}
4561
4562static void bfq_update_hw_tag(struct bfq_data *bfqd)
4563{
4564 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4565 bfqd->rq_in_driver);
4566
4567 if (bfqd->hw_tag == 1)
4568 return;
4569
4570 /*
4571 * This sample is valid if the number of outstanding requests
4572 * is large enough to allow a queueing behavior. Note that the
4573 * sum is not exact, as it's not taking into account deactivated
4574 * requests.
4575 */
4576 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4577 return;
4578
4579 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4580 return;
4581
4582 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4583 bfqd->max_rq_in_driver = 0;
4584 bfqd->hw_tag_samples = 0;
4585}
4586
4587static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4588{
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004589 u64 now_ns;
4590 u32 delta_us;
4591
Paolo Valenteaee69d72017-04-19 08:29:02 -06004592 bfq_update_hw_tag(bfqd);
4593
4594 bfqd->rq_in_driver--;
4595 bfqq->dispatched--;
4596
Paolo Valente44e44a12017-04-12 18:23:12 +02004597 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4598 /*
4599 * Set budget_timeout (which we overload to store the
4600 * time at which the queue remains with no backlog and
4601 * no outstanding request; used by the weight-raising
4602 * mechanism).
4603 */
4604 bfqq->budget_timeout = jiffies;
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02004605
4606 bfq_weights_tree_remove(bfqd, &bfqq->entity,
4607 &bfqd->queue_weights_tree);
Paolo Valente44e44a12017-04-12 18:23:12 +02004608 }
4609
Paolo Valenteab0e43e2017-04-12 18:23:10 +02004610 now_ns = ktime_get_ns();
4611
4612 bfqq->ttime.last_end_request = now_ns;
4613
4614 /*
4615 * Using us instead of ns, to get a reasonable precision in
4616 * computing rate in next check.
4617 */
4618 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4619
4620 /*
4621 * If the request took rather long to complete, and, according
4622 * to the maximum request size recorded, this completion latency
4623 * implies that the request was certainly served at a very low
4624 * rate (less than 1M sectors/sec), then the whole observation
4625 * interval that lasts up to this time instant cannot be a
4626 * valid time interval for computing a new peak rate. Invoke
4627 * bfq_update_rate_reset to have the following three steps
4628 * taken:
4629 * - close the observation interval at the last (previous)
4630 * request dispatch or completion
4631 * - compute rate, if possible, for that observation interval
4632 * - reset to zero samples, which will trigger a proper
4633 * re-initialization of the observation interval on next
4634 * dispatch
4635 */
4636 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4637 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4638 1UL<<(BFQ_RATE_SHIFT - 10))
4639 bfq_update_rate_reset(bfqd, NULL);
4640 bfqd->last_completion = now_ns;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004641
4642 /*
Paolo Valente77b7dce2017-04-12 18:23:13 +02004643 * If we are waiting to discover whether the request pattern
4644 * of the task associated with the queue is actually
4645 * isochronous, and both requisites for this condition to hold
4646 * are now satisfied, then compute soft_rt_next_start (see the
4647 * comments on the function bfq_bfqq_softrt_next_start()). We
4648 * schedule this delayed check when bfqq expires, if it still
4649 * has in-flight requests.
4650 */
4651 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4652 RB_EMPTY_ROOT(&bfqq->sort_list))
4653 bfqq->soft_rt_next_start =
4654 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4655
4656 /*
Paolo Valenteaee69d72017-04-19 08:29:02 -06004657 * If this is the in-service queue, check if it needs to be expired,
4658 * or if we want to idle in case it has no pending requests.
4659 */
4660 if (bfqd->in_service_queue == bfqq) {
Paolo Valente44e44a12017-04-12 18:23:12 +02004661 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
Paolo Valenteaee69d72017-04-19 08:29:02 -06004662 bfq_arm_slice_timer(bfqd);
4663 return;
4664 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4665 bfq_bfqq_expire(bfqd, bfqq, false,
4666 BFQQE_BUDGET_TIMEOUT);
4667 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4668 (bfqq->dispatched == 0 ||
4669 !bfq_bfqq_may_idle(bfqq)))
4670 bfq_bfqq_expire(bfqd, bfqq, false,
4671 BFQQE_NO_MORE_REQUESTS);
4672 }
Hou Tao3f7cb4f2017-07-11 21:58:15 +08004673
4674 if (!bfqd->rq_in_driver)
4675 bfq_schedule_dispatch(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004676}
4677
Paolo Valentea7877392018-02-07 22:19:20 +01004678static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004679{
4680 bfqq->allocated--;
4681
4682 bfq_put_queue(bfqq);
4683}
4684
Paolo Valentea7877392018-02-07 22:19:20 +01004685/*
4686 * Handle either a requeue or a finish for rq. The things to do are
4687 * the same in both cases: all references to rq are to be dropped. In
4688 * particular, rq is considered completed from the point of view of
4689 * the scheduler.
4690 */
4691static void bfq_finish_requeue_request(struct request *rq)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004692{
Paolo Valentea7877392018-02-07 22:19:20 +01004693 struct bfq_queue *bfqq = RQ_BFQQ(rq);
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004694 struct bfq_data *bfqd;
4695
Paolo Valentea7877392018-02-07 22:19:20 +01004696 /*
4697 * Requeue and finish hooks are invoked in blk-mq without
4698 * checking whether the involved request is actually still
4699 * referenced in the scheduler. To handle this fact, the
4700 * following two checks make this function exit in case of
4701 * spurious invocations, for which there is nothing to do.
4702 *
4703 * First, check whether rq has nothing to do with an elevator.
4704 */
4705 if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004706 return;
4707
Paolo Valentea7877392018-02-07 22:19:20 +01004708 /*
4709 * rq either is not associated with any icq, or is an already
4710 * requeued request that has not (yet) been re-inserted into
4711 * a bfq_queue.
4712 */
4713 if (!rq->elv.icq || !bfqq)
4714 return;
4715
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004716 bfqd = bfqq->bfqd;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004717
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004718 if (rq->rq_flags & RQF_STARTED)
4719 bfqg_stats_update_completion(bfqq_group(bfqq),
Omar Sandoval522a7772018-05-09 02:08:53 -07004720 rq->start_time_ns,
4721 rq->io_start_time_ns,
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004722 rq->cmd_flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004723
4724 if (likely(rq->rq_flags & RQF_STARTED)) {
4725 unsigned long flags;
4726
4727 spin_lock_irqsave(&bfqd->lock, flags);
4728
4729 bfq_completed_request(bfqq, bfqd);
Paolo Valentea7877392018-02-07 22:19:20 +01004730 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004731
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004732 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004733 } else {
4734 /*
4735 * Request rq may be still/already in the scheduler,
Paolo Valentea7877392018-02-07 22:19:20 +01004736 * in which case we need to remove it (this should
4737 * never happen in case of requeue). And we cannot
Paolo Valenteaee69d72017-04-19 08:29:02 -06004738 * defer such a check and removal, to avoid
4739 * inconsistencies in the time interval from the end
4740 * of this function to the start of the deferred work.
4741 * This situation seems to occur only in process
4742 * context, as a consequence of a merge. In the
4743 * current version of the code, this implies that the
4744 * lock is held.
4745 */
4746
Luca Miccio614822f2017-11-13 07:34:08 +01004747 if (!RB_EMPTY_NODE(&rq->rb_node)) {
Christoph Hellwig7b9e9362017-06-16 18:15:21 +02004748 bfq_remove_request(rq->q, rq);
Luca Miccio614822f2017-11-13 07:34:08 +01004749 bfqg_stats_update_io_remove(bfqq_group(bfqq),
4750 rq->cmd_flags);
4751 }
Paolo Valentea7877392018-02-07 22:19:20 +01004752 bfq_finish_requeue_request_body(bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004753 }
4754
Paolo Valentea7877392018-02-07 22:19:20 +01004755 /*
4756 * Reset private fields. In case of a requeue, this allows
4757 * this function to correctly do nothing if it is spuriously
4758 * invoked again on this same request (see the check at the
4759 * beginning of the function). Probably, a better general
4760 * design would be to prevent blk-mq from invoking the requeue
4761 * or finish hooks of an elevator, for a request that is not
4762 * referred by that elevator.
4763 *
4764 * Resetting the following fields would break the
4765 * request-insertion logic if rq is re-inserted into a bfq
4766 * internal queue, without a re-preparation. Here we assume
4767 * that re-insertions of requeued requests, without
4768 * re-preparation, can happen only for pass_through or at_head
4769 * requests (which are not re-inserted into bfq internal
4770 * queues).
4771 */
Paolo Valenteaee69d72017-04-19 08:29:02 -06004772 rq->elv.priv[0] = NULL;
4773 rq->elv.priv[1] = NULL;
4774}
4775
4776/*
Arianna Avanzini36eca892017-04-12 18:23:16 +02004777 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4778 * was the last process referring to that bfqq.
4779 */
4780static struct bfq_queue *
4781bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4782{
4783 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4784
4785 if (bfqq_process_refs(bfqq) == 1) {
4786 bfqq->pid = current->pid;
4787 bfq_clear_bfqq_coop(bfqq);
4788 bfq_clear_bfqq_split_coop(bfqq);
4789 return bfqq;
4790 }
4791
4792 bic_set_bfqq(bic, NULL, 1);
4793
4794 bfq_put_cooperator(bfqq);
4795
4796 bfq_put_queue(bfqq);
4797 return NULL;
4798}
4799
4800static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4801 struct bfq_io_cq *bic,
4802 struct bio *bio,
4803 bool split, bool is_sync,
4804 bool *new_queue)
4805{
4806 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4807
4808 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4809 return bfqq;
4810
4811 if (new_queue)
4812 *new_queue = true;
4813
4814 if (bfqq)
4815 bfq_put_queue(bfqq);
4816 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4817
4818 bic_set_bfqq(bic, bfqq, is_sync);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004819 if (split && is_sync) {
4820 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4821 bic->saved_in_large_burst)
4822 bfq_mark_bfqq_in_large_burst(bfqq);
4823 else {
4824 bfq_clear_bfqq_in_large_burst(bfqq);
4825 if (bic->was_in_burst_list)
Paolo Valente99fead82017-10-09 13:11:23 +02004826 /*
4827 * If bfqq was in the current
4828 * burst list before being
4829 * merged, then we have to add
4830 * it back. And we do not need
4831 * to increase burst_size, as
4832 * we did not decrement
4833 * burst_size when we removed
4834 * bfqq from the burst list as
4835 * a consequence of a merge
4836 * (see comments in
4837 * bfq_put_queue). In this
4838 * respect, it would be rather
4839 * costly to know whether the
4840 * current burst list is still
4841 * the same burst list from
4842 * which bfqq was removed on
4843 * the merge. To avoid this
4844 * cost, if bfqq was in a
4845 * burst list, then we add
4846 * bfqq to the current burst
4847 * list without any further
4848 * check. This can cause
4849 * inappropriate insertions,
4850 * but rarely enough to not
4851 * harm the detection of large
4852 * bursts significantly.
4853 */
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004854 hlist_add_head(&bfqq->burst_list_node,
4855 &bfqd->burst_list);
4856 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02004857 bfqq->split_time = jiffies;
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004858 }
Arianna Avanzini36eca892017-04-12 18:23:16 +02004859
4860 return bfqq;
4861}
4862
4863/*
Paolo Valente18e5a572018-05-04 19:17:01 +02004864 * Only reset private fields. The actual request preparation will be
4865 * performed by bfq_init_rq, when rq is either inserted or merged. See
4866 * comments on bfq_init_rq for the reason behind this delayed
4867 * preparation.
Paolo Valenteaee69d72017-04-19 08:29:02 -06004868 */
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004869static void bfq_prepare_request(struct request *rq, struct bio *bio)
Paolo Valenteaee69d72017-04-19 08:29:02 -06004870{
Paolo Valente18e5a572018-05-04 19:17:01 +02004871 /*
4872 * Regardless of whether we have an icq attached, we have to
4873 * clear the scheduler pointers, as they might point to
4874 * previously allocated bic/bfqq structs.
4875 */
4876 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
4877}
4878
4879/*
4880 * If needed, init rq, allocate bfq data structures associated with
4881 * rq, and increment reference counters in the destination bfq_queue
4882 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
4883 * not associated with any bfq_queue.
4884 *
4885 * This function is invoked by the functions that perform rq insertion
4886 * or merging. One may have expected the above preparation operations
4887 * to be performed in bfq_prepare_request, and not delayed to when rq
4888 * is inserted or merged. The rationale behind this delayed
4889 * preparation is that, after the prepare_request hook is invoked for
4890 * rq, rq may still be transformed into a request with no icq, i.e., a
4891 * request not associated with any queue. No bfq hook is invoked to
4892 * signal this tranformation. As a consequence, should these
4893 * preparation operations be performed when the prepare_request hook
4894 * is invoked, and should rq be transformed one moment later, bfq
4895 * would end up in an inconsistent state, because it would have
4896 * incremented some queue counters for an rq destined to
4897 * transformation, without any chance to correctly lower these
4898 * counters back. In contrast, no transformation can still happen for
4899 * rq after rq has been inserted or merged. So, it is safe to execute
4900 * these preparation operations when rq is finally inserted or merged.
4901 */
4902static struct bfq_queue *bfq_init_rq(struct request *rq)
4903{
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02004904 struct request_queue *q = rq->q;
Paolo Valente18e5a572018-05-04 19:17:01 +02004905 struct bio *bio = rq->bio;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004906 struct bfq_data *bfqd = q->elevator->elevator_data;
Christoph Hellwig9f210732017-06-16 18:15:24 +02004907 struct bfq_io_cq *bic;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004908 const int is_sync = rq_is_sync(rq);
4909 struct bfq_queue *bfqq;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004910 bool new_queue = false;
Paolo Valente13c931b2017-06-27 12:30:47 -06004911 bool bfqq_already_existing = false, split = false;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004912
Paolo Valente18e5a572018-05-04 19:17:01 +02004913 if (unlikely(!rq->elv.icq))
4914 return NULL;
4915
Jens Axboe72961c42018-04-17 17:08:52 -06004916 /*
Paolo Valente18e5a572018-05-04 19:17:01 +02004917 * Assuming that elv.priv[1] is set only if everything is set
4918 * for this rq. This holds true, because this function is
4919 * invoked only for insertion or merging, and, after such
4920 * events, a request cannot be manipulated any longer before
4921 * being removed from bfq.
Jens Axboe72961c42018-04-17 17:08:52 -06004922 */
Paolo Valente18e5a572018-05-04 19:17:01 +02004923 if (rq->elv.priv[1])
4924 return rq->elv.priv[1];
Jens Axboe72961c42018-04-17 17:08:52 -06004925
Christoph Hellwig9f210732017-06-16 18:15:24 +02004926 bic = icq_to_bic(rq->elv.icq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06004927
Colin Ian King8c9ff1a2017-04-20 15:07:18 +01004928 bfq_check_ioprio_change(bic, bio);
4929
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02004930 bfq_bic_update_cgroup(bic, bio);
4931
Arianna Avanzini36eca892017-04-12 18:23:16 +02004932 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4933 &new_queue);
4934
4935 if (likely(!new_queue)) {
4936 /* If the queue was seeky for too long, break it apart. */
4937 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4938 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004939
4940 /* Update bic before losing reference to bfqq */
4941 if (bfq_bfqq_in_large_burst(bfqq))
4942 bic->saved_in_large_burst = true;
4943
Arianna Avanzini36eca892017-04-12 18:23:16 +02004944 bfqq = bfq_split_bfqq(bic, bfqq);
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004945 split = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004946
4947 if (!bfqq)
4948 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4949 true, is_sync,
4950 NULL);
Paolo Valente13c931b2017-06-27 12:30:47 -06004951 else
4952 bfqq_already_existing = true;
Arianna Avanzini36eca892017-04-12 18:23:16 +02004953 }
Paolo Valenteaee69d72017-04-19 08:29:02 -06004954 }
4955
4956 bfqq->allocated++;
4957 bfqq->ref++;
4958 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4959 rq, bfqq, bfqq->ref);
4960
4961 rq->elv.priv[0] = bic;
4962 rq->elv.priv[1] = bfqq;
4963
Arianna Avanzini36eca892017-04-12 18:23:16 +02004964 /*
4965 * If a bfq_queue has only one process reference, it is owned
4966 * by only this bic: we can then set bfqq->bic = bic. in
4967 * addition, if the queue has also just been split, we have to
4968 * resume its state.
4969 */
4970 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4971 bfqq->bic = bic;
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02004972 if (split) {
Arianna Avanzini36eca892017-04-12 18:23:16 +02004973 /*
4974 * The queue has just been split from a shared
4975 * queue: restore the idle window and the
4976 * possible weight raising period.
4977 */
Paolo Valente13c931b2017-06-27 12:30:47 -06004978 bfq_bfqq_resume_state(bfqq, bfqd, bic,
4979 bfqq_already_existing);
Arianna Avanzini36eca892017-04-12 18:23:16 +02004980 }
4981 }
4982
Arianna Avanzinie1b23242017-04-12 18:23:20 +02004983 if (unlikely(bfq_bfqq_just_created(bfqq)))
4984 bfq_handle_burst(bfqd, bfqq);
4985
Paolo Valente18e5a572018-05-04 19:17:01 +02004986 return bfqq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06004987}
4988
4989static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4990{
4991 struct bfq_data *bfqd = bfqq->bfqd;
4992 enum bfqq_expiration reason;
4993 unsigned long flags;
4994
4995 spin_lock_irqsave(&bfqd->lock, flags);
4996 bfq_clear_bfqq_wait_request(bfqq);
4997
4998 if (bfqq != bfqd->in_service_queue) {
4999 spin_unlock_irqrestore(&bfqd->lock, flags);
5000 return;
5001 }
5002
5003 if (bfq_bfqq_budget_timeout(bfqq))
5004 /*
5005 * Also here the queue can be safely expired
5006 * for budget timeout without wasting
5007 * guarantees
5008 */
5009 reason = BFQQE_BUDGET_TIMEOUT;
5010 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
5011 /*
5012 * The queue may not be empty upon timer expiration,
5013 * because we may not disable the timer when the
5014 * first request of the in-service queue arrives
5015 * during disk idling.
5016 */
5017 reason = BFQQE_TOO_IDLE;
5018 else
5019 goto schedule_dispatch;
5020
5021 bfq_bfqq_expire(bfqd, bfqq, true, reason);
5022
5023schedule_dispatch:
Paolo Valente6fa3e8d2017-04-12 18:23:21 +02005024 spin_unlock_irqrestore(&bfqd->lock, flags);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005025 bfq_schedule_dispatch(bfqd);
5026}
5027
5028/*
5029 * Handler of the expiration of the timer running if the in-service queue
5030 * is idling inside its time slice.
5031 */
5032static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
5033{
5034 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
5035 idle_slice_timer);
5036 struct bfq_queue *bfqq = bfqd->in_service_queue;
5037
5038 /*
5039 * Theoretical race here: the in-service queue can be NULL or
5040 * different from the queue that was idling if a new request
5041 * arrives for the current queue and there is a full dispatch
5042 * cycle that changes the in-service queue. This can hardly
5043 * happen, but in the worst case we just expire a queue too
5044 * early.
5045 */
5046 if (bfqq)
5047 bfq_idle_slice_timer_body(bfqq);
5048
5049 return HRTIMER_NORESTART;
5050}
5051
5052static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
5053 struct bfq_queue **bfqq_ptr)
5054{
5055 struct bfq_queue *bfqq = *bfqq_ptr;
5056
5057 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
5058 if (bfqq) {
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005059 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
5060
Paolo Valenteaee69d72017-04-19 08:29:02 -06005061 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
5062 bfqq, bfqq->ref);
5063 bfq_put_queue(bfqq);
5064 *bfqq_ptr = NULL;
5065 }
5066}
5067
5068/*
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005069 * Release all the bfqg references to its async queues. If we are
5070 * deallocating the group these queues may still contain requests, so
5071 * we reparent them to the root cgroup (i.e., the only one that will
5072 * exist for sure until all the requests on a device are gone).
Paolo Valenteaee69d72017-04-19 08:29:02 -06005073 */
Paolo Valenteea25da42017-04-19 08:48:24 -06005074void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005075{
5076 int i, j;
5077
5078 for (i = 0; i < 2; i++)
5079 for (j = 0; j < IOPRIO_BE_NR; j++)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005080 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005081
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005082 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005083}
5084
Jens Axboef0635b82018-05-09 13:27:21 -06005085/*
5086 * See the comments on bfq_limit_depth for the purpose of
Jens Axboe483b7bf2018-05-09 15:26:55 -06005087 * the depths set in the function. Return minimum shallow depth we'll use.
Jens Axboef0635b82018-05-09 13:27:21 -06005088 */
Jens Axboe483b7bf2018-05-09 15:26:55 -06005089static unsigned int bfq_update_depths(struct bfq_data *bfqd,
5090 struct sbitmap_queue *bt)
Jens Axboef0635b82018-05-09 13:27:21 -06005091{
Jens Axboe483b7bf2018-05-09 15:26:55 -06005092 unsigned int i, j, min_shallow = UINT_MAX;
5093
Jens Axboef0635b82018-05-09 13:27:21 -06005094 /*
5095 * In-word depths if no bfq_queue is being weight-raised:
5096 * leaving 25% of tags only for sync reads.
5097 *
5098 * In next formulas, right-shift the value
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005099 * (1U<<bt->sb.shift), instead of computing directly
5100 * (1U<<(bt->sb.shift - something)), to be robust against
5101 * any possible value of bt->sb.shift, without having to
Jens Axboef0635b82018-05-09 13:27:21 -06005102 * limit 'something'.
5103 */
5104 /* no more than 50% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005105 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005106 /*
5107 * no more than 75% of tags for sync writes (25% extra tags
5108 * w.r.t. async I/O, to prevent async I/O from starving sync
5109 * writes)
5110 */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005111 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005112
5113 /*
5114 * In-word depths in case some bfq_queue is being weight-
5115 * raised: leaving ~63% of tags for sync reads. This is the
5116 * highest percentage for which, in our tests, application
5117 * start-up times didn't suffer from any regression due to tag
5118 * shortage.
5119 */
5120 /* no more than ~18% of tags for async I/O */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005121 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
Jens Axboef0635b82018-05-09 13:27:21 -06005122 /* no more than ~37% of tags for sync writes (~20% extra tags) */
Jens Axboebd7d4ef2018-05-09 15:25:22 -06005123 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
Jens Axboe483b7bf2018-05-09 15:26:55 -06005124
5125 for (i = 0; i < 2; i++)
5126 for (j = 0; j < 2; j++)
5127 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
5128
5129 return min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005130}
5131
5132static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
5133{
5134 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5135 struct blk_mq_tags *tags = hctx->sched_tags;
Jens Axboe483b7bf2018-05-09 15:26:55 -06005136 unsigned int min_shallow;
Jens Axboef0635b82018-05-09 13:27:21 -06005137
Jens Axboe483b7bf2018-05-09 15:26:55 -06005138 min_shallow = bfq_update_depths(bfqd, &tags->bitmap_tags);
5139 sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, min_shallow);
Jens Axboef0635b82018-05-09 13:27:21 -06005140 return 0;
5141}
5142
Paolo Valenteaee69d72017-04-19 08:29:02 -06005143static void bfq_exit_queue(struct elevator_queue *e)
5144{
5145 struct bfq_data *bfqd = e->elevator_data;
5146 struct bfq_queue *bfqq, *n;
5147
5148 hrtimer_cancel(&bfqd->idle_slice_timer);
5149
5150 spin_lock_irq(&bfqd->lock);
5151 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005152 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005153 spin_unlock_irq(&bfqd->lock);
5154
5155 hrtimer_cancel(&bfqd->idle_slice_timer);
5156
Jens Axboe8abef102018-01-09 12:20:51 -07005157#ifdef CONFIG_BFQ_GROUP_IOSCHED
Paolo Valente0d52af52018-01-09 10:27:59 +01005158 /* release oom-queue reference to root group */
5159 bfqg_and_blkg_put(bfqd->root_group);
5160
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005161 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
5162#else
5163 spin_lock_irq(&bfqd->lock);
5164 bfq_put_async_queues(bfqd, bfqd->root_group);
5165 kfree(bfqd->root_group);
5166 spin_unlock_irq(&bfqd->lock);
5167#endif
5168
Paolo Valenteaee69d72017-04-19 08:29:02 -06005169 kfree(bfqd);
5170}
5171
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005172static void bfq_init_root_group(struct bfq_group *root_group,
5173 struct bfq_data *bfqd)
5174{
5175 int i;
5176
5177#ifdef CONFIG_BFQ_GROUP_IOSCHED
5178 root_group->entity.parent = NULL;
5179 root_group->my_entity = NULL;
5180 root_group->bfqd = bfqd;
5181#endif
Arianna Avanzini36eca892017-04-12 18:23:16 +02005182 root_group->rq_pos_tree = RB_ROOT;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005183 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
5184 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5185 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5186}
5187
Paolo Valenteaee69d72017-04-19 08:29:02 -06005188static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5189{
5190 struct bfq_data *bfqd;
5191 struct elevator_queue *eq;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005192
5193 eq = elevator_alloc(q, e);
5194 if (!eq)
5195 return -ENOMEM;
5196
5197 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5198 if (!bfqd) {
5199 kobject_put(&eq->kobj);
5200 return -ENOMEM;
5201 }
5202 eq->elevator_data = bfqd;
5203
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005204 spin_lock_irq(q->queue_lock);
5205 q->elevator = eq;
5206 spin_unlock_irq(q->queue_lock);
5207
Paolo Valenteaee69d72017-04-19 08:29:02 -06005208 /*
5209 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5210 * Grab a permanent reference to it, so that the normal code flow
5211 * will not attempt to free it.
5212 */
5213 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5214 bfqd->oom_bfqq.ref++;
5215 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5216 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5217 bfqd->oom_bfqq.entity.new_weight =
5218 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005219
5220 /* oom_bfqq does not participate to bursts */
5221 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5222
Paolo Valenteaee69d72017-04-19 08:29:02 -06005223 /*
5224 * Trigger weight initialization, according to ioprio, at the
5225 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5226 * class won't be changed any more.
5227 */
5228 bfqd->oom_bfqq.entity.prio_changed = 1;
5229
5230 bfqd->queue = q;
5231
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005232 INIT_LIST_HEAD(&bfqd->dispatch);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005233
5234 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5235 HRTIMER_MODE_REL);
5236 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5237
Arianna Avanzini1de0c4c2017-04-12 18:23:17 +02005238 bfqd->queue_weights_tree = RB_ROOT;
5239 bfqd->group_weights_tree = RB_ROOT;
5240
Paolo Valenteaee69d72017-04-19 08:29:02 -06005241 INIT_LIST_HEAD(&bfqd->active_list);
5242 INIT_LIST_HEAD(&bfqd->idle_list);
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005243 INIT_HLIST_HEAD(&bfqd->burst_list);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005244
5245 bfqd->hw_tag = -1;
5246
5247 bfqd->bfq_max_budget = bfq_default_max_budget;
5248
5249 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5250 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5251 bfqd->bfq_back_max = bfq_back_max;
5252 bfqd->bfq_back_penalty = bfq_back_penalty;
5253 bfqd->bfq_slice_idle = bfq_slice_idle;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005254 bfqd->bfq_timeout = bfq_timeout;
5255
5256 bfqd->bfq_requests_within_timer = 120;
5257
Arianna Avanzinie1b23242017-04-12 18:23:20 +02005258 bfqd->bfq_large_burst_thresh = 8;
5259 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5260
Paolo Valente44e44a12017-04-12 18:23:12 +02005261 bfqd->low_latency = true;
5262
5263 /*
5264 * Trade-off between responsiveness and fairness.
5265 */
5266 bfqd->bfq_wr_coeff = 30;
Paolo Valente77b7dce2017-04-12 18:23:13 +02005267 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
Paolo Valente44e44a12017-04-12 18:23:12 +02005268 bfqd->bfq_wr_max_time = 0;
5269 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5270 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
Paolo Valente77b7dce2017-04-12 18:23:13 +02005271 bfqd->bfq_wr_max_softrt_rate = 7000; /*
5272 * Approximate rate required
5273 * to playback or record a
5274 * high-definition compressed
5275 * video.
5276 */
Paolo Valentecfd69712017-04-12 18:23:15 +02005277 bfqd->wr_busy_queues = 0;
Paolo Valente44e44a12017-04-12 18:23:12 +02005278
5279 /*
Paolo Valentee24f1c22018-05-31 16:45:06 +02005280 * Begin by assuming, optimistically, that the device peak
5281 * rate is equal to 2/3 of the highest reference rate.
Paolo Valente44e44a12017-04-12 18:23:12 +02005282 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005283 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
5284 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
5285 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
Paolo Valente44e44a12017-04-12 18:23:12 +02005286
Paolo Valenteaee69d72017-04-19 08:29:02 -06005287 spin_lock_init(&bfqd->lock);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005288
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005289 /*
5290 * The invocation of the next bfq_create_group_hierarchy
5291 * function is the head of a chain of function calls
5292 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5293 * blk_mq_freeze_queue) that may lead to the invocation of the
5294 * has_work hook function. For this reason,
5295 * bfq_create_group_hierarchy is invoked only after all
5296 * scheduler data has been initialized, apart from the fields
5297 * that can be initialized only after invoking
5298 * bfq_create_group_hierarchy. This, in particular, enables
5299 * has_work to correctly return false. Of course, to avoid
5300 * other inconsistencies, the blk-mq stack must then refrain
5301 * from invoking further scheduler hooks before this init
5302 * function is finished.
5303 */
5304 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5305 if (!bfqd->root_group)
5306 goto out_free;
5307 bfq_init_root_group(bfqd->root_group, bfqd);
5308 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5309
Luca Micciob5dc5d42017-10-09 16:27:21 +02005310 wbt_disable_default(q);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005311 return 0;
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005312
5313out_free:
5314 kfree(bfqd);
5315 kobject_put(&eq->kobj);
5316 return -ENOMEM;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005317}
5318
5319static void bfq_slab_kill(void)
5320{
5321 kmem_cache_destroy(bfq_pool);
5322}
5323
5324static int __init bfq_slab_setup(void)
5325{
5326 bfq_pool = KMEM_CACHE(bfq_queue, 0);
5327 if (!bfq_pool)
5328 return -ENOMEM;
5329 return 0;
5330}
5331
5332static ssize_t bfq_var_show(unsigned int var, char *page)
5333{
5334 return sprintf(page, "%u\n", var);
5335}
5336
Bart Van Assche2f791362017-08-30 11:42:09 -07005337static int bfq_var_store(unsigned long *var, const char *page)
Paolo Valenteaee69d72017-04-19 08:29:02 -06005338{
5339 unsigned long new_val;
5340 int ret = kstrtoul(page, 10, &new_val);
5341
Bart Van Assche2f791362017-08-30 11:42:09 -07005342 if (ret)
5343 return ret;
5344 *var = new_val;
5345 return 0;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005346}
5347
5348#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
5349static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5350{ \
5351 struct bfq_data *bfqd = e->elevator_data; \
5352 u64 __data = __VAR; \
5353 if (__CONV == 1) \
5354 __data = jiffies_to_msecs(__data); \
5355 else if (__CONV == 2) \
5356 __data = div_u64(__data, NSEC_PER_MSEC); \
5357 return bfq_var_show(__data, (page)); \
5358}
5359SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5360SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5361SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5362SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5363SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5364SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5365SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5366SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
Paolo Valente44e44a12017-04-12 18:23:12 +02005367SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005368#undef SHOW_FUNCTION
5369
5370#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
5371static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5372{ \
5373 struct bfq_data *bfqd = e->elevator_data; \
5374 u64 __data = __VAR; \
5375 __data = div_u64(__data, NSEC_PER_USEC); \
5376 return bfq_var_show(__data, (page)); \
5377}
5378USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5379#undef USEC_SHOW_FUNCTION
5380
5381#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
5382static ssize_t \
5383__FUNC(struct elevator_queue *e, const char *page, size_t count) \
5384{ \
5385 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005386 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07005387 int ret; \
5388 \
5389 ret = bfq_var_store(&__data, (page)); \
5390 if (ret) \
5391 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005392 if (__data < __min) \
5393 __data = __min; \
5394 else if (__data > __max) \
5395 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005396 if (__CONV == 1) \
5397 *(__PTR) = msecs_to_jiffies(__data); \
5398 else if (__CONV == 2) \
5399 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
5400 else \
5401 *(__PTR) = __data; \
weiping zhang235f8da2017-08-25 01:11:33 +08005402 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005403}
5404STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5405 INT_MAX, 2);
5406STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5407 INT_MAX, 2);
5408STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5409STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5410 INT_MAX, 0);
5411STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5412#undef STORE_FUNCTION
5413
5414#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
5415static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5416{ \
5417 struct bfq_data *bfqd = e->elevator_data; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005418 unsigned long __data, __min = (MIN), __max = (MAX); \
Bart Van Assche2f791362017-08-30 11:42:09 -07005419 int ret; \
5420 \
5421 ret = bfq_var_store(&__data, (page)); \
5422 if (ret) \
5423 return ret; \
Bart Van Assche1530486c2017-08-30 11:42:10 -07005424 if (__data < __min) \
5425 __data = __min; \
5426 else if (__data > __max) \
5427 __data = __max; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005428 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
weiping zhang235f8da2017-08-25 01:11:33 +08005429 return count; \
Paolo Valenteaee69d72017-04-19 08:29:02 -06005430}
5431USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5432 UINT_MAX);
5433#undef USEC_STORE_FUNCTION
5434
Paolo Valenteaee69d72017-04-19 08:29:02 -06005435static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5436 const char *page, size_t count)
5437{
5438 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005439 unsigned long __data;
5440 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005441
Bart Van Assche2f791362017-08-30 11:42:09 -07005442 ret = bfq_var_store(&__data, (page));
5443 if (ret)
5444 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005445
5446 if (__data == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005447 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005448 else {
5449 if (__data > INT_MAX)
5450 __data = INT_MAX;
5451 bfqd->bfq_max_budget = __data;
5452 }
5453
5454 bfqd->bfq_user_max_budget = __data;
5455
weiping zhang235f8da2017-08-25 01:11:33 +08005456 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005457}
5458
5459/*
5460 * Leaving this name to preserve name compatibility with cfq
5461 * parameters, but this timeout is used for both sync and async.
5462 */
5463static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5464 const char *page, size_t count)
5465{
5466 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005467 unsigned long __data;
5468 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005469
Bart Van Assche2f791362017-08-30 11:42:09 -07005470 ret = bfq_var_store(&__data, (page));
5471 if (ret)
5472 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005473
5474 if (__data < 1)
5475 __data = 1;
5476 else if (__data > INT_MAX)
5477 __data = INT_MAX;
5478
5479 bfqd->bfq_timeout = msecs_to_jiffies(__data);
5480 if (bfqd->bfq_user_max_budget == 0)
Paolo Valenteab0e43e2017-04-12 18:23:10 +02005481 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
Paolo Valenteaee69d72017-04-19 08:29:02 -06005482
weiping zhang235f8da2017-08-25 01:11:33 +08005483 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005484}
5485
5486static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5487 const char *page, size_t count)
5488{
5489 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005490 unsigned long __data;
5491 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005492
Bart Van Assche2f791362017-08-30 11:42:09 -07005493 ret = bfq_var_store(&__data, (page));
5494 if (ret)
5495 return ret;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005496
5497 if (__data > 1)
5498 __data = 1;
5499 if (!bfqd->strict_guarantees && __data == 1
5500 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5501 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5502
5503 bfqd->strict_guarantees = __data;
5504
weiping zhang235f8da2017-08-25 01:11:33 +08005505 return count;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005506}
5507
Paolo Valente44e44a12017-04-12 18:23:12 +02005508static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5509 const char *page, size_t count)
5510{
5511 struct bfq_data *bfqd = e->elevator_data;
Bart Van Assche2f791362017-08-30 11:42:09 -07005512 unsigned long __data;
5513 int ret;
weiping zhang235f8da2017-08-25 01:11:33 +08005514
Bart Van Assche2f791362017-08-30 11:42:09 -07005515 ret = bfq_var_store(&__data, (page));
5516 if (ret)
5517 return ret;
Paolo Valente44e44a12017-04-12 18:23:12 +02005518
5519 if (__data > 1)
5520 __data = 1;
5521 if (__data == 0 && bfqd->low_latency != 0)
5522 bfq_end_wr(bfqd);
5523 bfqd->low_latency = __data;
5524
weiping zhang235f8da2017-08-25 01:11:33 +08005525 return count;
Paolo Valente44e44a12017-04-12 18:23:12 +02005526}
5527
Paolo Valenteaee69d72017-04-19 08:29:02 -06005528#define BFQ_ATTR(name) \
5529 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5530
5531static struct elv_fs_entry bfq_attrs[] = {
5532 BFQ_ATTR(fifo_expire_sync),
5533 BFQ_ATTR(fifo_expire_async),
5534 BFQ_ATTR(back_seek_max),
5535 BFQ_ATTR(back_seek_penalty),
5536 BFQ_ATTR(slice_idle),
5537 BFQ_ATTR(slice_idle_us),
5538 BFQ_ATTR(max_budget),
5539 BFQ_ATTR(timeout_sync),
5540 BFQ_ATTR(strict_guarantees),
Paolo Valente44e44a12017-04-12 18:23:12 +02005541 BFQ_ATTR(low_latency),
Paolo Valenteaee69d72017-04-19 08:29:02 -06005542 __ATTR_NULL
5543};
5544
5545static struct elevator_type iosched_bfq_mq = {
5546 .ops.mq = {
Paolo Valentea52a69e2018-01-13 12:05:17 +01005547 .limit_depth = bfq_limit_depth,
Christoph Hellwig5bbf4e52017-06-16 18:15:26 +02005548 .prepare_request = bfq_prepare_request,
Paolo Valentea7877392018-02-07 22:19:20 +01005549 .requeue_request = bfq_finish_requeue_request,
5550 .finish_request = bfq_finish_requeue_request,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005551 .exit_icq = bfq_exit_icq,
5552 .insert_requests = bfq_insert_requests,
5553 .dispatch_request = bfq_dispatch_request,
5554 .next_request = elv_rb_latter_request,
5555 .former_request = elv_rb_former_request,
5556 .allow_merge = bfq_allow_bio_merge,
5557 .bio_merge = bfq_bio_merge,
5558 .request_merge = bfq_request_merge,
5559 .requests_merged = bfq_requests_merged,
5560 .request_merged = bfq_request_merged,
5561 .has_work = bfq_has_work,
Jens Axboef0635b82018-05-09 13:27:21 -06005562 .init_hctx = bfq_init_hctx,
Paolo Valenteaee69d72017-04-19 08:29:02 -06005563 .init_sched = bfq_init_queue,
5564 .exit_sched = bfq_exit_queue,
5565 },
5566
5567 .uses_mq = true,
5568 .icq_size = sizeof(struct bfq_io_cq),
5569 .icq_align = __alignof__(struct bfq_io_cq),
5570 .elevator_attrs = bfq_attrs,
5571 .elevator_name = "bfq",
5572 .elevator_owner = THIS_MODULE,
5573};
Ben Hutchings26b4cf22017-08-13 18:02:19 +01005574MODULE_ALIAS("bfq-iosched");
Paolo Valenteaee69d72017-04-19 08:29:02 -06005575
5576static int __init bfq_init(void)
5577{
5578 int ret;
5579
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005580#ifdef CONFIG_BFQ_GROUP_IOSCHED
5581 ret = blkcg_policy_register(&blkcg_policy_bfq);
5582 if (ret)
5583 return ret;
5584#endif
5585
Paolo Valenteaee69d72017-04-19 08:29:02 -06005586 ret = -ENOMEM;
5587 if (bfq_slab_setup())
5588 goto err_pol_unreg;
5589
Paolo Valente44e44a12017-04-12 18:23:12 +02005590 /*
5591 * Times to load large popular applications for the typical
5592 * systems installed on the reference devices (see the
Paolo Valentee24f1c22018-05-31 16:45:06 +02005593 * comments before the definition of the next
5594 * array). Actually, we use slightly lower values, as the
Paolo Valente44e44a12017-04-12 18:23:12 +02005595 * estimated peak rate tends to be smaller than the actual
5596 * peak rate. The reason for this last fact is that estimates
5597 * are computed over much shorter time intervals than the long
5598 * intervals typically used for benchmarking. Why? First, to
5599 * adapt more quickly to variations. Second, because an I/O
5600 * scheduler cannot rely on a peak-rate-evaluation workload to
5601 * be run for a long time.
5602 */
Paolo Valentee24f1c22018-05-31 16:45:06 +02005603 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5604 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
Paolo Valente44e44a12017-04-12 18:23:12 +02005605
Paolo Valenteaee69d72017-04-19 08:29:02 -06005606 ret = elv_register(&iosched_bfq_mq);
5607 if (ret)
weiping zhang37dcd652017-08-19 00:37:20 +08005608 goto slab_kill;
Paolo Valenteaee69d72017-04-19 08:29:02 -06005609
5610 return 0;
5611
weiping zhang37dcd652017-08-19 00:37:20 +08005612slab_kill:
5613 bfq_slab_kill();
Paolo Valenteaee69d72017-04-19 08:29:02 -06005614err_pol_unreg:
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005615#ifdef CONFIG_BFQ_GROUP_IOSCHED
5616 blkcg_policy_unregister(&blkcg_policy_bfq);
5617#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005618 return ret;
5619}
5620
5621static void __exit bfq_exit(void)
5622{
5623 elv_unregister(&iosched_bfq_mq);
Arianna Avanzinie21b7a02017-04-12 18:23:08 +02005624#ifdef CONFIG_BFQ_GROUP_IOSCHED
5625 blkcg_policy_unregister(&blkcg_policy_bfq);
5626#endif
Paolo Valenteaee69d72017-04-19 08:29:02 -06005627 bfq_slab_kill();
5628}
5629
5630module_init(bfq_init);
5631module_exit(bfq_exit);
5632
5633MODULE_AUTHOR("Paolo Valente");
5634MODULE_LICENSE("GPL");
5635MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");