Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1 | /* |
| 2 | * Budget Fair Queueing (BFQ) I/O scheduler. |
| 3 | * |
| 4 | * Based on ideas and code from CFQ: |
| 5 | * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> |
| 6 | * |
| 7 | * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> |
| 8 | * Paolo Valente <paolo.valente@unimore.it> |
| 9 | * |
| 10 | * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> |
| 11 | * Arianna Avanzini <avanzini@google.com> |
| 12 | * |
| 13 | * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org> |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or |
| 16 | * modify it under the terms of the GNU General Public License as |
| 17 | * published by the Free Software Foundation; either version 2 of the |
| 18 | * License, or (at your option) any later version. |
| 19 | * |
| 20 | * This program is distributed in the hope that it will be useful, |
| 21 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 22 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 23 | * General Public License for more details. |
| 24 | * |
| 25 | * BFQ is a proportional-share I/O scheduler, with some extra |
| 26 | * low-latency capabilities. BFQ also supports full hierarchical |
| 27 | * scheduling through cgroups. Next paragraphs provide an introduction |
| 28 | * on BFQ inner workings. Details on BFQ benefits, usage and |
| 29 | * limitations can be found in Documentation/block/bfq-iosched.txt. |
| 30 | * |
| 31 | * BFQ is a proportional-share storage-I/O scheduling algorithm based |
| 32 | * on the slice-by-slice service scheme of CFQ. But BFQ assigns |
| 33 | * budgets, measured in number of sectors, to processes instead of |
| 34 | * time slices. The device is not granted to the in-service process |
| 35 | * for a given time slice, but until it has exhausted its assigned |
| 36 | * budget. This change from the time to the service domain enables BFQ |
| 37 | * to distribute the device throughput among processes as desired, |
| 38 | * without any distortion due to throughput fluctuations, or to device |
| 39 | * internal queueing. BFQ uses an ad hoc internal scheduler, called |
| 40 | * B-WF2Q+, to schedule processes according to their budgets. More |
| 41 | * precisely, BFQ schedules queues associated with processes. Each |
| 42 | * process/queue is assigned a user-configurable weight, and B-WF2Q+ |
| 43 | * guarantees that each queue receives a fraction of the throughput |
| 44 | * proportional to its weight. Thanks to the accurate policy of |
| 45 | * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound |
| 46 | * processes issuing sequential requests (to boost the throughput), |
| 47 | * and yet guarantee a low latency to interactive and soft real-time |
| 48 | * applications. |
| 49 | * |
| 50 | * In particular, to provide these low-latency guarantees, BFQ |
| 51 | * explicitly privileges the I/O of two classes of time-sensitive |
| 52 | * applications: interactive and soft real-time. This feature enables |
| 53 | * BFQ to provide applications in these classes with a very low |
| 54 | * latency. Finally, BFQ also features additional heuristics for |
| 55 | * preserving both a low latency and a high throughput on NCQ-capable, |
| 56 | * rotational or flash-based devices, and to get the job done quickly |
| 57 | * for applications consisting in many I/O-bound processes. |
| 58 | * |
| 59 | * BFQ is described in [1], where also a reference to the initial, more |
| 60 | * theoretical paper on BFQ can be found. The interested reader can find |
| 61 | * in the latter paper full details on the main algorithm, as well as |
| 62 | * formulas of the guarantees and formal proofs of all the properties. |
| 63 | * With respect to the version of BFQ presented in these papers, this |
| 64 | * implementation adds a few more heuristics, such as the one that |
| 65 | * guarantees a low latency to soft real-time applications, and a |
| 66 | * hierarchical extension based on H-WF2Q+. |
| 67 | * |
| 68 | * B-WF2Q+ is based on WF2Q+, which is described in [2], together with |
| 69 | * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ |
| 70 | * with O(log N) complexity derives from the one introduced with EEVDF |
| 71 | * in [3]. |
| 72 | * |
| 73 | * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O |
| 74 | * Scheduler", Proceedings of the First Workshop on Mobile System |
| 75 | * Technologies (MST-2015), May 2015. |
| 76 | * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf |
| 77 | * |
| 78 | * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing |
| 79 | * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, |
| 80 | * Oct 1997. |
| 81 | * |
| 82 | * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz |
| 83 | * |
| 84 | * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline |
| 85 | * First: A Flexible and Accurate Mechanism for Proportional Share |
| 86 | * Resource Allocation", technical report. |
| 87 | * |
| 88 | * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf |
| 89 | */ |
| 90 | #include <linux/module.h> |
| 91 | #include <linux/slab.h> |
| 92 | #include <linux/blkdev.h> |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 93 | #include <linux/cgroup.h> |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 94 | #include <linux/elevator.h> |
| 95 | #include <linux/ktime.h> |
| 96 | #include <linux/rbtree.h> |
| 97 | #include <linux/ioprio.h> |
| 98 | #include <linux/sbitmap.h> |
| 99 | #include <linux/delay.h> |
| 100 | |
| 101 | #include "blk.h" |
| 102 | #include "blk-mq.h" |
| 103 | #include "blk-mq-tag.h" |
| 104 | #include "blk-mq-sched.h" |
| 105 | #include <linux/blktrace_api.h> |
| 106 | #include <linux/hrtimer.h> |
| 107 | #include <linux/blk-cgroup.h> |
| 108 | |
| 109 | #define BFQ_IOPRIO_CLASSES 3 |
| 110 | #define BFQ_CL_IDLE_TIMEOUT (HZ/5) |
| 111 | |
| 112 | #define BFQ_MIN_WEIGHT 1 |
| 113 | #define BFQ_MAX_WEIGHT 1000 |
| 114 | #define BFQ_WEIGHT_CONVERSION_COEFF 10 |
| 115 | |
| 116 | #define BFQ_DEFAULT_QUEUE_IOPRIO 4 |
| 117 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 118 | #define BFQ_WEIGHT_LEGACY_DFL 100 |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 119 | #define BFQ_DEFAULT_GRP_IOPRIO 0 |
| 120 | #define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE |
| 121 | |
| 122 | struct bfq_entity; |
| 123 | |
| 124 | /** |
| 125 | * struct bfq_service_tree - per ioprio_class service tree. |
| 126 | * |
| 127 | * Each service tree represents a B-WF2Q+ scheduler on its own. Each |
| 128 | * ioprio_class has its own independent scheduler, and so its own |
| 129 | * bfq_service_tree. All the fields are protected by the queue lock |
| 130 | * of the containing bfqd. |
| 131 | */ |
| 132 | struct bfq_service_tree { |
| 133 | /* tree for active entities (i.e., those backlogged) */ |
| 134 | struct rb_root active; |
| 135 | /* tree for idle entities (i.e., not backlogged, with V <= F_i)*/ |
| 136 | struct rb_root idle; |
| 137 | |
| 138 | /* idle entity with minimum F_i */ |
| 139 | struct bfq_entity *first_idle; |
| 140 | /* idle entity with maximum F_i */ |
| 141 | struct bfq_entity *last_idle; |
| 142 | |
| 143 | /* scheduler virtual time */ |
| 144 | u64 vtime; |
| 145 | /* scheduler weight sum; active and idle entities contribute to it */ |
| 146 | unsigned long wsum; |
| 147 | }; |
| 148 | |
| 149 | /** |
| 150 | * struct bfq_sched_data - multi-class scheduler. |
| 151 | * |
| 152 | * bfq_sched_data is the basic scheduler queue. It supports three |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 153 | * ioprio_classes, and can be used either as a toplevel queue or as an |
| 154 | * intermediate queue on a hierarchical setup. @next_in_service |
| 155 | * points to the active entity of the sched_data service trees that |
| 156 | * will be scheduled next. It is used to reduce the number of steps |
| 157 | * needed for each hierarchical-schedule update. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 158 | * |
| 159 | * The supported ioprio_classes are the same as in CFQ, in descending |
| 160 | * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. |
| 161 | * Requests from higher priority queues are served before all the |
| 162 | * requests from lower priority queues; among requests of the same |
| 163 | * queue requests are served according to B-WF2Q+. |
| 164 | * All the fields are protected by the queue lock of the containing bfqd. |
| 165 | */ |
| 166 | struct bfq_sched_data { |
| 167 | /* entity in service */ |
| 168 | struct bfq_entity *in_service_entity; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 169 | /* head-of-line entity (see comments above) */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 170 | struct bfq_entity *next_in_service; |
| 171 | /* array of service trees, one per ioprio_class */ |
| 172 | struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 173 | /* last time CLASS_IDLE was served */ |
| 174 | unsigned long bfq_class_idle_last_service; |
| 175 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 176 | }; |
| 177 | |
| 178 | /** |
| 179 | * struct bfq_entity - schedulable entity. |
| 180 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 181 | * A bfq_entity is used to represent either a bfq_queue (leaf node in the |
| 182 | * cgroup hierarchy) or a bfq_group into the upper level scheduler. Each |
| 183 | * entity belongs to the sched_data of the parent group in the cgroup |
| 184 | * hierarchy. Non-leaf entities have also their own sched_data, stored |
| 185 | * in @my_sched_data. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 186 | * |
| 187 | * Each entity stores independently its priority values; this would |
| 188 | * allow different weights on different devices, but this |
| 189 | * functionality is not exported to userspace by now. Priorities and |
| 190 | * weights are updated lazily, first storing the new values into the |
| 191 | * new_* fields, then setting the @prio_changed flag. As soon as |
| 192 | * there is a transition in the entity state that allows the priority |
| 193 | * update to take place the effective and the requested priority |
| 194 | * values are synchronized. |
| 195 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 196 | * Unless cgroups are used, the weight value is calculated from the |
| 197 | * ioprio to export the same interface as CFQ. When dealing with |
| 198 | * ``well-behaved'' queues (i.e., queues that do not spend too much |
| 199 | * time to consume their budget and have true sequential behavior, and |
| 200 | * when there are no external factors breaking anticipation) the |
| 201 | * relative weights at each level of the cgroups hierarchy should be |
| 202 | * guaranteed. All the fields are protected by the queue lock of the |
| 203 | * containing bfqd. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 204 | */ |
| 205 | struct bfq_entity { |
| 206 | /* service_tree member */ |
| 207 | struct rb_node rb_node; |
| 208 | |
| 209 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 210 | * Flag, true if the entity is on a tree (either the active or |
| 211 | * the idle one of its service_tree) or is in service. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 212 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 213 | bool on_st; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 214 | |
| 215 | /* B-WF2Q+ start and finish timestamps [sectors/weight] */ |
| 216 | u64 start, finish; |
| 217 | |
| 218 | /* tree the entity is enqueued into; %NULL if not on a tree */ |
| 219 | struct rb_root *tree; |
| 220 | |
| 221 | /* |
| 222 | * minimum start time of the (active) subtree rooted at this |
| 223 | * entity; used for O(log N) lookups into active trees |
| 224 | */ |
| 225 | u64 min_start; |
| 226 | |
| 227 | /* amount of service received during the last service slot */ |
| 228 | int service; |
| 229 | |
| 230 | /* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */ |
| 231 | int budget; |
| 232 | |
| 233 | /* weight of the queue */ |
| 234 | int weight; |
| 235 | /* next weight if a change is in progress */ |
| 236 | int new_weight; |
| 237 | |
| 238 | /* original weight, used to implement weight boosting */ |
| 239 | int orig_weight; |
| 240 | |
| 241 | /* parent entity, for hierarchical scheduling */ |
| 242 | struct bfq_entity *parent; |
| 243 | |
| 244 | /* |
| 245 | * For non-leaf nodes in the hierarchy, the associated |
| 246 | * scheduler queue, %NULL on leaf nodes. |
| 247 | */ |
| 248 | struct bfq_sched_data *my_sched_data; |
| 249 | /* the scheduler queue this entity belongs to */ |
| 250 | struct bfq_sched_data *sched_data; |
| 251 | |
| 252 | /* flag, set to request a weight, ioprio or ioprio_class change */ |
| 253 | int prio_changed; |
| 254 | }; |
| 255 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 256 | struct bfq_group; |
| 257 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 258 | /** |
| 259 | * struct bfq_ttime - per process thinktime stats. |
| 260 | */ |
| 261 | struct bfq_ttime { |
| 262 | /* completion time of the last request */ |
| 263 | u64 last_end_request; |
| 264 | |
| 265 | /* total process thinktime */ |
| 266 | u64 ttime_total; |
| 267 | /* number of thinktime samples */ |
| 268 | unsigned long ttime_samples; |
| 269 | /* average process thinktime */ |
| 270 | u64 ttime_mean; |
| 271 | }; |
| 272 | |
| 273 | /** |
| 274 | * struct bfq_queue - leaf schedulable entity. |
| 275 | * |
| 276 | * A bfq_queue is a leaf request queue; it can be associated with an |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 277 | * io_context or more, if it is async. @cgroup holds a reference to |
| 278 | * the cgroup, to be sure that it does not disappear while a bfqq |
| 279 | * still references it (mostly to avoid races between request issuing |
| 280 | * and task migration followed by cgroup destruction). All the fields |
| 281 | * are protected by the queue lock of the containing bfqd. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 282 | */ |
| 283 | struct bfq_queue { |
| 284 | /* reference counter */ |
| 285 | int ref; |
| 286 | /* parent bfq_data */ |
| 287 | struct bfq_data *bfqd; |
| 288 | |
| 289 | /* current ioprio and ioprio class */ |
| 290 | unsigned short ioprio, ioprio_class; |
| 291 | /* next ioprio and ioprio class if a change is in progress */ |
| 292 | unsigned short new_ioprio, new_ioprio_class; |
| 293 | |
| 294 | /* sorted list of pending requests */ |
| 295 | struct rb_root sort_list; |
| 296 | /* if fifo isn't expired, next request to serve */ |
| 297 | struct request *next_rq; |
| 298 | /* number of sync and async requests queued */ |
| 299 | int queued[2]; |
| 300 | /* number of requests currently allocated */ |
| 301 | int allocated; |
| 302 | /* number of pending metadata requests */ |
| 303 | int meta_pending; |
| 304 | /* fifo list of requests in sort_list */ |
| 305 | struct list_head fifo; |
| 306 | |
| 307 | /* entity representing this queue in the scheduler */ |
| 308 | struct bfq_entity entity; |
| 309 | |
| 310 | /* maximum budget allowed from the feedback mechanism */ |
| 311 | int max_budget; |
| 312 | /* budget expiration (in jiffies) */ |
| 313 | unsigned long budget_timeout; |
| 314 | |
| 315 | /* number of requests on the dispatch list or inside driver */ |
| 316 | int dispatched; |
| 317 | |
| 318 | /* status flags */ |
| 319 | unsigned long flags; |
| 320 | |
| 321 | /* node for active/idle bfqq list inside parent bfqd */ |
| 322 | struct list_head bfqq_list; |
| 323 | |
| 324 | /* associated @bfq_ttime struct */ |
| 325 | struct bfq_ttime ttime; |
| 326 | |
| 327 | /* bit vector: a 1 for each seeky requests in history */ |
| 328 | u32 seek_history; |
| 329 | /* position of the last request enqueued */ |
| 330 | sector_t last_request_pos; |
| 331 | |
| 332 | /* Number of consecutive pairs of request completion and |
| 333 | * arrival, such that the queue becomes idle after the |
| 334 | * completion, but the next request arrives within an idle |
| 335 | * time slice; used only if the queue's IO_bound flag has been |
| 336 | * cleared. |
| 337 | */ |
| 338 | unsigned int requests_within_timer; |
| 339 | |
| 340 | /* pid of the process owning the queue, used for logging purposes */ |
| 341 | pid_t pid; |
| 342 | }; |
| 343 | |
| 344 | /** |
| 345 | * struct bfq_io_cq - per (request_queue, io_context) structure. |
| 346 | */ |
| 347 | struct bfq_io_cq { |
| 348 | /* associated io_cq structure */ |
| 349 | struct io_cq icq; /* must be the first member */ |
| 350 | /* array of two process queues, the sync and the async */ |
| 351 | struct bfq_queue *bfqq[2]; |
| 352 | /* per (request_queue, blkcg) ioprio */ |
| 353 | int ioprio; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 354 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 355 | uint64_t blkcg_serial_nr; /* the current blkcg serial */ |
| 356 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 357 | }; |
| 358 | |
| 359 | /** |
| 360 | * struct bfq_data - per-device data structure. |
| 361 | * |
| 362 | * All the fields are protected by @lock. |
| 363 | */ |
| 364 | struct bfq_data { |
| 365 | /* device request queue */ |
| 366 | struct request_queue *queue; |
| 367 | /* dispatch queue */ |
| 368 | struct list_head dispatch; |
| 369 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 370 | /* root bfq_group for the device */ |
| 371 | struct bfq_group *root_group; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 372 | |
| 373 | /* |
| 374 | * Number of bfq_queues containing requests (including the |
| 375 | * queue in service, even if it is idling). |
| 376 | */ |
| 377 | int busy_queues; |
| 378 | /* number of queued requests */ |
| 379 | int queued; |
| 380 | /* number of requests dispatched and waiting for completion */ |
| 381 | int rq_in_driver; |
| 382 | |
| 383 | /* |
| 384 | * Maximum number of requests in driver in the last |
| 385 | * @hw_tag_samples completed requests. |
| 386 | */ |
| 387 | int max_rq_in_driver; |
| 388 | /* number of samples used to calculate hw_tag */ |
| 389 | int hw_tag_samples; |
| 390 | /* flag set to one if the driver is showing a queueing behavior */ |
| 391 | int hw_tag; |
| 392 | |
| 393 | /* number of budgets assigned */ |
| 394 | int budgets_assigned; |
| 395 | |
| 396 | /* |
| 397 | * Timer set when idling (waiting) for the next request from |
| 398 | * the queue in service. |
| 399 | */ |
| 400 | struct hrtimer idle_slice_timer; |
| 401 | |
| 402 | /* bfq_queue in service */ |
| 403 | struct bfq_queue *in_service_queue; |
| 404 | /* bfq_io_cq (bic) associated with the @in_service_queue */ |
| 405 | struct bfq_io_cq *in_service_bic; |
| 406 | |
| 407 | /* on-disk position of the last served request */ |
| 408 | sector_t last_position; |
| 409 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 410 | /* time of last request completion (ns) */ |
| 411 | u64 last_completion; |
| 412 | |
| 413 | /* time of first rq dispatch in current observation interval (ns) */ |
| 414 | u64 first_dispatch; |
| 415 | /* time of last rq dispatch in current observation interval (ns) */ |
| 416 | u64 last_dispatch; |
| 417 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 418 | /* beginning of the last budget */ |
| 419 | ktime_t last_budget_start; |
| 420 | /* beginning of the last idle slice */ |
| 421 | ktime_t last_idling_start; |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 422 | |
| 423 | /* number of samples in current observation interval */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 424 | int peak_rate_samples; |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 425 | /* num of samples of seq dispatches in current observation interval */ |
| 426 | u32 sequential_samples; |
| 427 | /* total num of sectors transferred in current observation interval */ |
| 428 | u64 tot_sectors_dispatched; |
| 429 | /* max rq size seen during current observation interval (sectors) */ |
| 430 | u32 last_rq_max_size; |
| 431 | /* time elapsed from first dispatch in current observ. interval (us) */ |
| 432 | u64 delta_from_first; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 433 | /* |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 434 | * Current estimate of the device peak rate, measured in |
| 435 | * [BFQ_RATE_SHIFT * sectors/usec]. The left-shift by |
| 436 | * BFQ_RATE_SHIFT is performed to increase precision in |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 437 | * fixed-point calculations. |
| 438 | */ |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 439 | u32 peak_rate; |
| 440 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 441 | /* maximum budget allotted to a bfq_queue before rescheduling */ |
| 442 | int bfq_max_budget; |
| 443 | |
| 444 | /* list of all the bfq_queues active on the device */ |
| 445 | struct list_head active_list; |
| 446 | /* list of all the bfq_queues idle on the device */ |
| 447 | struct list_head idle_list; |
| 448 | |
| 449 | /* |
| 450 | * Timeout for async/sync requests; when it fires, requests |
| 451 | * are served in fifo order. |
| 452 | */ |
| 453 | u64 bfq_fifo_expire[2]; |
| 454 | /* weight of backward seeks wrt forward ones */ |
| 455 | unsigned int bfq_back_penalty; |
| 456 | /* maximum allowed backward seek */ |
| 457 | unsigned int bfq_back_max; |
| 458 | /* maximum idling time */ |
| 459 | u32 bfq_slice_idle; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 460 | |
| 461 | /* user-configured max budget value (0 for auto-tuning) */ |
| 462 | int bfq_user_max_budget; |
| 463 | /* |
| 464 | * Timeout for bfq_queues to consume their budget; used to |
| 465 | * prevent seeky queues from imposing long latencies to |
| 466 | * sequential or quasi-sequential ones (this also implies that |
| 467 | * seeky queues cannot receive guarantees in the service |
| 468 | * domain; after a timeout they are charged for the time they |
| 469 | * have been in service, to preserve fairness among them, but |
| 470 | * without service-domain guarantees). |
| 471 | */ |
| 472 | unsigned int bfq_timeout; |
| 473 | |
| 474 | /* |
| 475 | * Number of consecutive requests that must be issued within |
| 476 | * the idle time slice to set again idling to a queue which |
| 477 | * was marked as non-I/O-bound (see the definition of the |
| 478 | * IO_bound flag for further details). |
| 479 | */ |
| 480 | unsigned int bfq_requests_within_timer; |
| 481 | |
| 482 | /* |
| 483 | * Force device idling whenever needed to provide accurate |
| 484 | * service guarantees, without caring about throughput |
| 485 | * issues. CAVEAT: this may even increase latencies, in case |
| 486 | * of useless idling for processes that did stop doing I/O. |
| 487 | */ |
| 488 | bool strict_guarantees; |
| 489 | |
| 490 | /* fallback dummy bfqq for extreme OOM conditions */ |
| 491 | struct bfq_queue oom_bfqq; |
| 492 | |
| 493 | spinlock_t lock; |
| 494 | |
| 495 | /* |
| 496 | * bic associated with the task issuing current bio for |
| 497 | * merging. This and the next field are used as a support to |
| 498 | * be able to perform the bic lookup, needed by bio-merge |
| 499 | * functions, before the scheduler lock is taken, and thus |
| 500 | * avoid taking the request-queue lock while the scheduler |
| 501 | * lock is being held. |
| 502 | */ |
| 503 | struct bfq_io_cq *bio_bic; |
| 504 | /* bfqq associated with the task issuing current bio for merging */ |
| 505 | struct bfq_queue *bio_bfqq; |
| 506 | }; |
| 507 | |
| 508 | enum bfqq_state_flags { |
| 509 | BFQQF_busy = 0, /* has requests or is in service */ |
| 510 | BFQQF_wait_request, /* waiting for a request */ |
| 511 | BFQQF_non_blocking_wait_rq, /* |
| 512 | * waiting for a request |
| 513 | * without idling the device |
| 514 | */ |
| 515 | BFQQF_fifo_expire, /* FIFO checked in this slice */ |
| 516 | BFQQF_idle_window, /* slice idling enabled */ |
| 517 | BFQQF_sync, /* synchronous queue */ |
| 518 | BFQQF_budget_new, /* no completion with this budget */ |
| 519 | BFQQF_IO_bound, /* |
| 520 | * bfqq has timed-out at least once |
| 521 | * having consumed at most 2/10 of |
| 522 | * its budget |
| 523 | */ |
| 524 | }; |
| 525 | |
| 526 | #define BFQ_BFQQ_FNS(name) \ |
| 527 | static void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ |
| 528 | { \ |
| 529 | __set_bit(BFQQF_##name, &(bfqq)->flags); \ |
| 530 | } \ |
| 531 | static void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ |
| 532 | { \ |
| 533 | __clear_bit(BFQQF_##name, &(bfqq)->flags); \ |
| 534 | } \ |
| 535 | static int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ |
| 536 | { \ |
| 537 | return test_bit(BFQQF_##name, &(bfqq)->flags); \ |
| 538 | } |
| 539 | |
| 540 | BFQ_BFQQ_FNS(busy); |
| 541 | BFQ_BFQQ_FNS(wait_request); |
| 542 | BFQ_BFQQ_FNS(non_blocking_wait_rq); |
| 543 | BFQ_BFQQ_FNS(fifo_expire); |
| 544 | BFQ_BFQQ_FNS(idle_window); |
| 545 | BFQ_BFQQ_FNS(sync); |
| 546 | BFQ_BFQQ_FNS(budget_new); |
| 547 | BFQ_BFQQ_FNS(IO_bound); |
| 548 | #undef BFQ_BFQQ_FNS |
| 549 | |
| 550 | /* Logging facilities. */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 551 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 552 | static struct bfq_group *bfqq_group(struct bfq_queue *bfqq); |
| 553 | static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg); |
| 554 | |
| 555 | #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do { \ |
| 556 | char __pbuf[128]; \ |
| 557 | \ |
| 558 | blkg_path(bfqg_to_blkg(bfqq_group(bfqq)), __pbuf, sizeof(__pbuf)); \ |
| 559 | blk_add_trace_msg((bfqd)->queue, "bfq%d%c %s " fmt, (bfqq)->pid, \ |
| 560 | bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \ |
| 561 | __pbuf, ##args); \ |
| 562 | } while (0) |
| 563 | |
| 564 | #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do { \ |
| 565 | char __pbuf[128]; \ |
| 566 | \ |
| 567 | blkg_path(bfqg_to_blkg(bfqg), __pbuf, sizeof(__pbuf)); \ |
| 568 | blk_add_trace_msg((bfqd)->queue, "%s " fmt, __pbuf, ##args); \ |
| 569 | } while (0) |
| 570 | |
| 571 | #else /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 572 | |
| 573 | #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \ |
| 574 | blk_add_trace_msg((bfqd)->queue, "bfq%d%c " fmt, (bfqq)->pid, \ |
| 575 | bfq_bfqq_sync((bfqq)) ? 'S' : 'A', \ |
| 576 | ##args) |
| 577 | #define bfq_log_bfqg(bfqd, bfqg, fmt, args...) do {} while (0) |
| 578 | |
| 579 | #endif /* CONFIG_BFQ_GROUP_IOSCHED */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 580 | |
| 581 | #define bfq_log(bfqd, fmt, args...) \ |
| 582 | blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) |
| 583 | |
| 584 | /* Expiration reasons. */ |
| 585 | enum bfqq_expiration { |
| 586 | BFQQE_TOO_IDLE = 0, /* |
| 587 | * queue has been idling for |
| 588 | * too long |
| 589 | */ |
| 590 | BFQQE_BUDGET_TIMEOUT, /* budget took too long to be used */ |
| 591 | BFQQE_BUDGET_EXHAUSTED, /* budget consumed */ |
| 592 | BFQQE_NO_MORE_REQUESTS, /* the queue has no more requests */ |
| 593 | BFQQE_PREEMPTED /* preemption in progress */ |
| 594 | }; |
| 595 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 596 | struct bfqg_stats { |
| 597 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 598 | /* number of ios merged */ |
| 599 | struct blkg_rwstat merged; |
| 600 | /* total time spent on device in ns, may not be accurate w/ queueing */ |
| 601 | struct blkg_rwstat service_time; |
| 602 | /* total time spent waiting in scheduler queue in ns */ |
| 603 | struct blkg_rwstat wait_time; |
| 604 | /* number of IOs queued up */ |
| 605 | struct blkg_rwstat queued; |
| 606 | /* total disk time and nr sectors dispatched by this group */ |
| 607 | struct blkg_stat time; |
| 608 | /* sum of number of ios queued across all samples */ |
| 609 | struct blkg_stat avg_queue_size_sum; |
| 610 | /* count of samples taken for average */ |
| 611 | struct blkg_stat avg_queue_size_samples; |
| 612 | /* how many times this group has been removed from service tree */ |
| 613 | struct blkg_stat dequeue; |
| 614 | /* total time spent waiting for it to be assigned a timeslice. */ |
| 615 | struct blkg_stat group_wait_time; |
| 616 | /* time spent idling for this blkcg_gq */ |
| 617 | struct blkg_stat idle_time; |
| 618 | /* total time with empty current active q with other requests queued */ |
| 619 | struct blkg_stat empty_time; |
| 620 | /* fields after this shouldn't be cleared on stat reset */ |
| 621 | uint64_t start_group_wait_time; |
| 622 | uint64_t start_idle_time; |
| 623 | uint64_t start_empty_time; |
| 624 | uint16_t flags; |
| 625 | #endif /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 626 | }; |
| 627 | |
| 628 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 629 | |
| 630 | /* |
| 631 | * struct bfq_group_data - per-blkcg storage for the blkio subsystem. |
| 632 | * |
| 633 | * @ps: @blkcg_policy_storage that this structure inherits |
| 634 | * @weight: weight of the bfq_group |
| 635 | */ |
| 636 | struct bfq_group_data { |
| 637 | /* must be the first member */ |
| 638 | struct blkcg_policy_data pd; |
| 639 | |
| 640 | unsigned short weight; |
| 641 | }; |
| 642 | |
| 643 | /** |
| 644 | * struct bfq_group - per (device, cgroup) data structure. |
| 645 | * @entity: schedulable entity to insert into the parent group sched_data. |
| 646 | * @sched_data: own sched_data, to contain child entities (they may be |
| 647 | * both bfq_queues and bfq_groups). |
| 648 | * @bfqd: the bfq_data for the device this group acts upon. |
| 649 | * @async_bfqq: array of async queues for all the tasks belonging to |
| 650 | * the group, one queue per ioprio value per ioprio_class, |
| 651 | * except for the idle class that has only one queue. |
| 652 | * @async_idle_bfqq: async queue for the idle class (ioprio is ignored). |
| 653 | * @my_entity: pointer to @entity, %NULL for the toplevel group; used |
| 654 | * to avoid too many special cases during group creation/ |
| 655 | * migration. |
| 656 | * @stats: stats for this bfqg. |
| 657 | * |
| 658 | * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup |
| 659 | * there is a set of bfq_groups, each one collecting the lower-level |
| 660 | * entities belonging to the group that are acting on the same device. |
| 661 | * |
| 662 | * Locking works as follows: |
| 663 | * o @bfqd is protected by the queue lock, RCU is used to access it |
| 664 | * from the readers. |
| 665 | * o All the other fields are protected by the @bfqd queue lock. |
| 666 | */ |
| 667 | struct bfq_group { |
| 668 | /* must be the first member */ |
| 669 | struct blkg_policy_data pd; |
| 670 | |
| 671 | struct bfq_entity entity; |
| 672 | struct bfq_sched_data sched_data; |
| 673 | |
| 674 | void *bfqd; |
| 675 | |
| 676 | struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; |
| 677 | struct bfq_queue *async_idle_bfqq; |
| 678 | |
| 679 | struct bfq_entity *my_entity; |
| 680 | |
| 681 | struct bfqg_stats stats; |
| 682 | }; |
| 683 | |
| 684 | #else |
| 685 | struct bfq_group { |
| 686 | struct bfq_sched_data sched_data; |
| 687 | |
| 688 | struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; |
| 689 | struct bfq_queue *async_idle_bfqq; |
| 690 | |
| 691 | struct rb_root rq_pos_tree; |
| 692 | }; |
| 693 | #endif |
| 694 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 695 | static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity); |
| 696 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 697 | static unsigned int bfq_class_idx(struct bfq_entity *entity) |
| 698 | { |
| 699 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 700 | |
| 701 | return bfqq ? bfqq->ioprio_class - 1 : |
| 702 | BFQ_DEFAULT_GRP_CLASS - 1; |
| 703 | } |
| 704 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 705 | static struct bfq_service_tree * |
| 706 | bfq_entity_service_tree(struct bfq_entity *entity) |
| 707 | { |
| 708 | struct bfq_sched_data *sched_data = entity->sched_data; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 709 | unsigned int idx = bfq_class_idx(entity); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 710 | |
| 711 | return sched_data->service_tree + idx; |
| 712 | } |
| 713 | |
| 714 | static struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync) |
| 715 | { |
| 716 | return bic->bfqq[is_sync]; |
| 717 | } |
| 718 | |
| 719 | static void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, |
| 720 | bool is_sync) |
| 721 | { |
| 722 | bic->bfqq[is_sync] = bfqq; |
| 723 | } |
| 724 | |
| 725 | static struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) |
| 726 | { |
| 727 | return bic->icq.q->elevator->elevator_data; |
| 728 | } |
| 729 | |
| 730 | static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio); |
| 731 | static void bfq_put_queue(struct bfq_queue *bfqq); |
| 732 | static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, |
| 733 | struct bio *bio, bool is_sync, |
| 734 | struct bfq_io_cq *bic); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 735 | static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 736 | static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); |
| 737 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 738 | /* Expiration time of sync (0) and async (1) requests, in ns. */ |
| 739 | static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; |
| 740 | |
| 741 | /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ |
| 742 | static const int bfq_back_max = 16 * 1024; |
| 743 | |
| 744 | /* Penalty of a backwards seek, in number of sectors. */ |
| 745 | static const int bfq_back_penalty = 2; |
| 746 | |
| 747 | /* Idling period duration, in ns. */ |
| 748 | static u64 bfq_slice_idle = NSEC_PER_SEC / 125; |
| 749 | |
| 750 | /* Minimum number of assigned budgets for which stats are safe to compute. */ |
| 751 | static const int bfq_stats_min_budgets = 194; |
| 752 | |
| 753 | /* Default maximum budget values, in sectors and number of requests. */ |
| 754 | static const int bfq_default_max_budget = 16 * 1024; |
| 755 | |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 756 | /* |
| 757 | * Async to sync throughput distribution is controlled as follows: |
| 758 | * when an async request is served, the entity is charged the number |
| 759 | * of sectors of the request, multiplied by the factor below |
| 760 | */ |
| 761 | static const int bfq_async_charge_factor = 10; |
| 762 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 763 | /* Default timeout values, in jiffies, approximating CFQ defaults. */ |
| 764 | static const int bfq_timeout = HZ / 8; |
| 765 | |
| 766 | static struct kmem_cache *bfq_pool; |
| 767 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 768 | /* Below this threshold (in ns), we consider thinktime immediate. */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 769 | #define BFQ_MIN_TT (2 * NSEC_PER_MSEC) |
| 770 | |
| 771 | /* hw_tag detection: parallel requests threshold and min samples needed. */ |
| 772 | #define BFQ_HW_QUEUE_THRESHOLD 4 |
| 773 | #define BFQ_HW_QUEUE_SAMPLES 32 |
| 774 | |
| 775 | #define BFQQ_SEEK_THR (sector_t)(8 * 100) |
| 776 | #define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) |
| 777 | #define BFQQ_CLOSE_THR (sector_t)(8 * 1024) |
| 778 | #define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 32/8) |
| 779 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 780 | /* Min number of samples required to perform peak-rate update */ |
| 781 | #define BFQ_RATE_MIN_SAMPLES 32 |
| 782 | /* Min observation time interval required to perform a peak-rate update (ns) */ |
| 783 | #define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC) |
| 784 | /* Target observation time interval for a peak-rate update (ns) */ |
| 785 | #define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 786 | |
| 787 | /* Shift used for peak rate fixed precision calculations. */ |
| 788 | #define BFQ_RATE_SHIFT 16 |
| 789 | |
| 790 | #define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \ |
| 791 | { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 }) |
| 792 | |
| 793 | #define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0]) |
| 794 | #define RQ_BFQQ(rq) ((rq)->elv.priv[1]) |
| 795 | |
| 796 | /** |
| 797 | * icq_to_bic - convert iocontext queue structure to bfq_io_cq. |
| 798 | * @icq: the iocontext queue. |
| 799 | */ |
| 800 | static struct bfq_io_cq *icq_to_bic(struct io_cq *icq) |
| 801 | { |
| 802 | /* bic->icq is the first member, %NULL will convert to %NULL */ |
| 803 | return container_of(icq, struct bfq_io_cq, icq); |
| 804 | } |
| 805 | |
| 806 | /** |
| 807 | * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. |
| 808 | * @bfqd: the lookup key. |
| 809 | * @ioc: the io_context of the process doing I/O. |
| 810 | * @q: the request queue. |
| 811 | */ |
| 812 | static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, |
| 813 | struct io_context *ioc, |
| 814 | struct request_queue *q) |
| 815 | { |
| 816 | if (ioc) { |
| 817 | unsigned long flags; |
| 818 | struct bfq_io_cq *icq; |
| 819 | |
| 820 | spin_lock_irqsave(q->queue_lock, flags); |
| 821 | icq = icq_to_bic(ioc_lookup_icq(ioc, q)); |
| 822 | spin_unlock_irqrestore(q->queue_lock, flags); |
| 823 | |
| 824 | return icq; |
| 825 | } |
| 826 | |
| 827 | return NULL; |
| 828 | } |
| 829 | |
| 830 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 831 | * Scheduler run of queue, if there are requests pending and no one in the |
| 832 | * driver that will restart queueing. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 833 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 834 | static void bfq_schedule_dispatch(struct bfq_data *bfqd) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 835 | { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 836 | if (bfqd->queued != 0) { |
| 837 | bfq_log(bfqd, "schedule dispatch"); |
| 838 | blk_mq_run_hw_queues(bfqd->queue, true); |
| 839 | } |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 840 | } |
| 841 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 842 | /** |
| 843 | * bfq_gt - compare two timestamps. |
| 844 | * @a: first ts. |
| 845 | * @b: second ts. |
| 846 | * |
| 847 | * Return @a > @b, dealing with wrapping correctly. |
| 848 | */ |
| 849 | static int bfq_gt(u64 a, u64 b) |
| 850 | { |
| 851 | return (s64)(a - b) > 0; |
| 852 | } |
| 853 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 854 | static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree) |
| 855 | { |
| 856 | struct rb_node *node = tree->rb_node; |
| 857 | |
| 858 | return rb_entry(node, struct bfq_entity, rb_node); |
| 859 | } |
| 860 | |
| 861 | static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd); |
| 862 | |
| 863 | static bool bfq_update_parent_budget(struct bfq_entity *next_in_service); |
| 864 | |
| 865 | /** |
| 866 | * bfq_update_next_in_service - update sd->next_in_service |
| 867 | * @sd: sched_data for which to perform the update. |
| 868 | * @new_entity: if not NULL, pointer to the entity whose activation, |
| 869 | * requeueing or repositionig triggered the invocation of |
| 870 | * this function. |
| 871 | * |
| 872 | * This function is called to update sd->next_in_service, which, in |
| 873 | * its turn, may change as a consequence of the insertion or |
| 874 | * extraction of an entity into/from one of the active trees of |
| 875 | * sd. These insertions/extractions occur as a consequence of |
| 876 | * activations/deactivations of entities, with some activations being |
| 877 | * 'true' activations, and other activations being requeueings (i.e., |
| 878 | * implementing the second, requeueing phase of the mechanism used to |
| 879 | * reposition an entity in its active tree; see comments on |
| 880 | * __bfq_activate_entity and __bfq_requeue_entity for details). In |
| 881 | * both the last two activation sub-cases, new_entity points to the |
| 882 | * just activated or requeued entity. |
| 883 | * |
| 884 | * Returns true if sd->next_in_service changes in such a way that |
| 885 | * entity->parent may become the next_in_service for its parent |
| 886 | * entity. |
| 887 | */ |
| 888 | static bool bfq_update_next_in_service(struct bfq_sched_data *sd, |
| 889 | struct bfq_entity *new_entity) |
| 890 | { |
| 891 | struct bfq_entity *next_in_service = sd->next_in_service; |
| 892 | bool parent_sched_may_change = false; |
| 893 | |
| 894 | /* |
| 895 | * If this update is triggered by the activation, requeueing |
| 896 | * or repositiong of an entity that does not coincide with |
| 897 | * sd->next_in_service, then a full lookup in the active tree |
| 898 | * can be avoided. In fact, it is enough to check whether the |
| 899 | * just-modified entity has a higher priority than |
| 900 | * sd->next_in_service, or, even if it has the same priority |
| 901 | * as sd->next_in_service, is eligible and has a lower virtual |
| 902 | * finish time than sd->next_in_service. If this compound |
| 903 | * condition holds, then the new entity becomes the new |
| 904 | * next_in_service. Otherwise no change is needed. |
| 905 | */ |
| 906 | if (new_entity && new_entity != sd->next_in_service) { |
| 907 | /* |
| 908 | * Flag used to decide whether to replace |
| 909 | * sd->next_in_service with new_entity. Tentatively |
| 910 | * set to true, and left as true if |
| 911 | * sd->next_in_service is NULL. |
| 912 | */ |
| 913 | bool replace_next = true; |
| 914 | |
| 915 | /* |
| 916 | * If there is already a next_in_service candidate |
| 917 | * entity, then compare class priorities or timestamps |
| 918 | * to decide whether to replace sd->service_tree with |
| 919 | * new_entity. |
| 920 | */ |
| 921 | if (next_in_service) { |
| 922 | unsigned int new_entity_class_idx = |
| 923 | bfq_class_idx(new_entity); |
| 924 | struct bfq_service_tree *st = |
| 925 | sd->service_tree + new_entity_class_idx; |
| 926 | |
| 927 | /* |
| 928 | * For efficiency, evaluate the most likely |
| 929 | * sub-condition first. |
| 930 | */ |
| 931 | replace_next = |
| 932 | (new_entity_class_idx == |
| 933 | bfq_class_idx(next_in_service) |
| 934 | && |
| 935 | !bfq_gt(new_entity->start, st->vtime) |
| 936 | && |
| 937 | bfq_gt(next_in_service->finish, |
| 938 | new_entity->finish)) |
| 939 | || |
| 940 | new_entity_class_idx < |
| 941 | bfq_class_idx(next_in_service); |
| 942 | } |
| 943 | |
| 944 | if (replace_next) |
| 945 | next_in_service = new_entity; |
| 946 | } else /* invoked because of a deactivation: lookup needed */ |
| 947 | next_in_service = bfq_lookup_next_entity(sd); |
| 948 | |
| 949 | if (next_in_service) { |
| 950 | parent_sched_may_change = !sd->next_in_service || |
| 951 | bfq_update_parent_budget(next_in_service); |
| 952 | } |
| 953 | |
| 954 | sd->next_in_service = next_in_service; |
| 955 | |
| 956 | if (!next_in_service) |
| 957 | return parent_sched_may_change; |
| 958 | |
| 959 | return parent_sched_may_change; |
| 960 | } |
| 961 | |
| 962 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 963 | /* both next loops stop at one of the child entities of the root group */ |
| 964 | #define for_each_entity(entity) \ |
| 965 | for (; entity ; entity = entity->parent) |
| 966 | |
| 967 | /* |
| 968 | * For each iteration, compute parent in advance, so as to be safe if |
| 969 | * entity is deallocated during the iteration. Such a deallocation may |
| 970 | * happen as a consequence of a bfq_put_queue that frees the bfq_queue |
| 971 | * containing entity. |
| 972 | */ |
| 973 | #define for_each_entity_safe(entity, parent) \ |
| 974 | for (; entity && ({ parent = entity->parent; 1; }); entity = parent) |
| 975 | |
| 976 | /* |
| 977 | * Returns true if this budget changes may let next_in_service->parent |
| 978 | * become the next_in_service entity for its parent entity. |
| 979 | */ |
| 980 | static bool bfq_update_parent_budget(struct bfq_entity *next_in_service) |
| 981 | { |
| 982 | struct bfq_entity *bfqg_entity; |
| 983 | struct bfq_group *bfqg; |
| 984 | struct bfq_sched_data *group_sd; |
| 985 | bool ret = false; |
| 986 | |
| 987 | group_sd = next_in_service->sched_data; |
| 988 | |
| 989 | bfqg = container_of(group_sd, struct bfq_group, sched_data); |
| 990 | /* |
| 991 | * bfq_group's my_entity field is not NULL only if the group |
| 992 | * is not the root group. We must not touch the root entity |
| 993 | * as it must never become an in-service entity. |
| 994 | */ |
| 995 | bfqg_entity = bfqg->my_entity; |
| 996 | if (bfqg_entity) { |
| 997 | if (bfqg_entity->budget > next_in_service->budget) |
| 998 | ret = true; |
| 999 | bfqg_entity->budget = next_in_service->budget; |
| 1000 | } |
| 1001 | |
| 1002 | return ret; |
| 1003 | } |
| 1004 | |
| 1005 | /* |
| 1006 | * This function tells whether entity stops being a candidate for next |
| 1007 | * service, according to the following logic. |
| 1008 | * |
| 1009 | * This function is invoked for an entity that is about to be set in |
| 1010 | * service. If such an entity is a queue, then the entity is no longer |
| 1011 | * a candidate for next service (i.e, a candidate entity to serve |
| 1012 | * after the in-service entity is expired). The function then returns |
| 1013 | * true. |
| 1014 | */ |
| 1015 | static bool bfq_no_longer_next_in_service(struct bfq_entity *entity) |
| 1016 | { |
| 1017 | if (bfq_entity_to_bfqq(entity)) |
| 1018 | return true; |
| 1019 | |
| 1020 | return false; |
| 1021 | } |
| 1022 | |
| 1023 | #else /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 1024 | /* |
| 1025 | * Next two macros are fake loops when cgroups support is not |
| 1026 | * enabled. I fact, in such a case, there is only one level to go up |
| 1027 | * (to reach the root group). |
| 1028 | */ |
| 1029 | #define for_each_entity(entity) \ |
| 1030 | for (; entity ; entity = NULL) |
| 1031 | |
| 1032 | #define for_each_entity_safe(entity, parent) \ |
| 1033 | for (parent = NULL; entity ; entity = parent) |
| 1034 | |
| 1035 | static bool bfq_update_parent_budget(struct bfq_entity *next_in_service) |
| 1036 | { |
| 1037 | return false; |
| 1038 | } |
| 1039 | |
| 1040 | static bool bfq_no_longer_next_in_service(struct bfq_entity *entity) |
| 1041 | { |
| 1042 | return true; |
| 1043 | } |
| 1044 | |
| 1045 | #endif /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 1046 | |
| 1047 | /* |
| 1048 | * Shift for timestamp calculations. This actually limits the maximum |
| 1049 | * service allowed in one timestamp delta (small shift values increase it), |
| 1050 | * the maximum total weight that can be used for the queues in the system |
| 1051 | * (big shift values increase it), and the period of virtual time |
| 1052 | * wraparounds. |
| 1053 | */ |
| 1054 | #define WFQ_SERVICE_SHIFT 22 |
| 1055 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1056 | static struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity) |
| 1057 | { |
| 1058 | struct bfq_queue *bfqq = NULL; |
| 1059 | |
| 1060 | if (!entity->my_sched_data) |
| 1061 | bfqq = container_of(entity, struct bfq_queue, entity); |
| 1062 | |
| 1063 | return bfqq; |
| 1064 | } |
| 1065 | |
| 1066 | |
| 1067 | /** |
| 1068 | * bfq_delta - map service into the virtual time domain. |
| 1069 | * @service: amount of service. |
| 1070 | * @weight: scale factor (weight of an entity or weight sum). |
| 1071 | */ |
| 1072 | static u64 bfq_delta(unsigned long service, unsigned long weight) |
| 1073 | { |
| 1074 | u64 d = (u64)service << WFQ_SERVICE_SHIFT; |
| 1075 | |
| 1076 | do_div(d, weight); |
| 1077 | return d; |
| 1078 | } |
| 1079 | |
| 1080 | /** |
| 1081 | * bfq_calc_finish - assign the finish time to an entity. |
| 1082 | * @entity: the entity to act upon. |
| 1083 | * @service: the service to be charged to the entity. |
| 1084 | */ |
| 1085 | static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service) |
| 1086 | { |
| 1087 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1088 | |
| 1089 | entity->finish = entity->start + |
| 1090 | bfq_delta(service, entity->weight); |
| 1091 | |
| 1092 | if (bfqq) { |
| 1093 | bfq_log_bfqq(bfqq->bfqd, bfqq, |
| 1094 | "calc_finish: serv %lu, w %d", |
| 1095 | service, entity->weight); |
| 1096 | bfq_log_bfqq(bfqq->bfqd, bfqq, |
| 1097 | "calc_finish: start %llu, finish %llu, delta %llu", |
| 1098 | entity->start, entity->finish, |
| 1099 | bfq_delta(service, entity->weight)); |
| 1100 | } |
| 1101 | } |
| 1102 | |
| 1103 | /** |
| 1104 | * bfq_entity_of - get an entity from a node. |
| 1105 | * @node: the node field of the entity. |
| 1106 | * |
| 1107 | * Convert a node pointer to the relative entity. This is used only |
| 1108 | * to simplify the logic of some functions and not as the generic |
| 1109 | * conversion mechanism because, e.g., in the tree walking functions, |
| 1110 | * the check for a %NULL value would be redundant. |
| 1111 | */ |
| 1112 | static struct bfq_entity *bfq_entity_of(struct rb_node *node) |
| 1113 | { |
| 1114 | struct bfq_entity *entity = NULL; |
| 1115 | |
| 1116 | if (node) |
| 1117 | entity = rb_entry(node, struct bfq_entity, rb_node); |
| 1118 | |
| 1119 | return entity; |
| 1120 | } |
| 1121 | |
| 1122 | /** |
| 1123 | * bfq_extract - remove an entity from a tree. |
| 1124 | * @root: the tree root. |
| 1125 | * @entity: the entity to remove. |
| 1126 | */ |
| 1127 | static void bfq_extract(struct rb_root *root, struct bfq_entity *entity) |
| 1128 | { |
| 1129 | entity->tree = NULL; |
| 1130 | rb_erase(&entity->rb_node, root); |
| 1131 | } |
| 1132 | |
| 1133 | /** |
| 1134 | * bfq_idle_extract - extract an entity from the idle tree. |
| 1135 | * @st: the service tree of the owning @entity. |
| 1136 | * @entity: the entity being removed. |
| 1137 | */ |
| 1138 | static void bfq_idle_extract(struct bfq_service_tree *st, |
| 1139 | struct bfq_entity *entity) |
| 1140 | { |
| 1141 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1142 | struct rb_node *next; |
| 1143 | |
| 1144 | if (entity == st->first_idle) { |
| 1145 | next = rb_next(&entity->rb_node); |
| 1146 | st->first_idle = bfq_entity_of(next); |
| 1147 | } |
| 1148 | |
| 1149 | if (entity == st->last_idle) { |
| 1150 | next = rb_prev(&entity->rb_node); |
| 1151 | st->last_idle = bfq_entity_of(next); |
| 1152 | } |
| 1153 | |
| 1154 | bfq_extract(&st->idle, entity); |
| 1155 | |
| 1156 | if (bfqq) |
| 1157 | list_del(&bfqq->bfqq_list); |
| 1158 | } |
| 1159 | |
| 1160 | /** |
| 1161 | * bfq_insert - generic tree insertion. |
| 1162 | * @root: tree root. |
| 1163 | * @entity: entity to insert. |
| 1164 | * |
| 1165 | * This is used for the idle and the active tree, since they are both |
| 1166 | * ordered by finish time. |
| 1167 | */ |
| 1168 | static void bfq_insert(struct rb_root *root, struct bfq_entity *entity) |
| 1169 | { |
| 1170 | struct bfq_entity *entry; |
| 1171 | struct rb_node **node = &root->rb_node; |
| 1172 | struct rb_node *parent = NULL; |
| 1173 | |
| 1174 | while (*node) { |
| 1175 | parent = *node; |
| 1176 | entry = rb_entry(parent, struct bfq_entity, rb_node); |
| 1177 | |
| 1178 | if (bfq_gt(entry->finish, entity->finish)) |
| 1179 | node = &parent->rb_left; |
| 1180 | else |
| 1181 | node = &parent->rb_right; |
| 1182 | } |
| 1183 | |
| 1184 | rb_link_node(&entity->rb_node, parent, node); |
| 1185 | rb_insert_color(&entity->rb_node, root); |
| 1186 | |
| 1187 | entity->tree = root; |
| 1188 | } |
| 1189 | |
| 1190 | /** |
| 1191 | * bfq_update_min - update the min_start field of a entity. |
| 1192 | * @entity: the entity to update. |
| 1193 | * @node: one of its children. |
| 1194 | * |
| 1195 | * This function is called when @entity may store an invalid value for |
| 1196 | * min_start due to updates to the active tree. The function assumes |
| 1197 | * that the subtree rooted at @node (which may be its left or its right |
| 1198 | * child) has a valid min_start value. |
| 1199 | */ |
| 1200 | static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node) |
| 1201 | { |
| 1202 | struct bfq_entity *child; |
| 1203 | |
| 1204 | if (node) { |
| 1205 | child = rb_entry(node, struct bfq_entity, rb_node); |
| 1206 | if (bfq_gt(entity->min_start, child->min_start)) |
| 1207 | entity->min_start = child->min_start; |
| 1208 | } |
| 1209 | } |
| 1210 | |
| 1211 | /** |
| 1212 | * bfq_update_active_node - recalculate min_start. |
| 1213 | * @node: the node to update. |
| 1214 | * |
| 1215 | * @node may have changed position or one of its children may have moved, |
| 1216 | * this function updates its min_start value. The left and right subtrees |
| 1217 | * are assumed to hold a correct min_start value. |
| 1218 | */ |
| 1219 | static void bfq_update_active_node(struct rb_node *node) |
| 1220 | { |
| 1221 | struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node); |
| 1222 | |
| 1223 | entity->min_start = entity->start; |
| 1224 | bfq_update_min(entity, node->rb_right); |
| 1225 | bfq_update_min(entity, node->rb_left); |
| 1226 | } |
| 1227 | |
| 1228 | /** |
| 1229 | * bfq_update_active_tree - update min_start for the whole active tree. |
| 1230 | * @node: the starting node. |
| 1231 | * |
| 1232 | * @node must be the deepest modified node after an update. This function |
| 1233 | * updates its min_start using the values held by its children, assuming |
| 1234 | * that they did not change, and then updates all the nodes that may have |
| 1235 | * changed in the path to the root. The only nodes that may have changed |
| 1236 | * are the ones in the path or their siblings. |
| 1237 | */ |
| 1238 | static void bfq_update_active_tree(struct rb_node *node) |
| 1239 | { |
| 1240 | struct rb_node *parent; |
| 1241 | |
| 1242 | up: |
| 1243 | bfq_update_active_node(node); |
| 1244 | |
| 1245 | parent = rb_parent(node); |
| 1246 | if (!parent) |
| 1247 | return; |
| 1248 | |
| 1249 | if (node == parent->rb_left && parent->rb_right) |
| 1250 | bfq_update_active_node(parent->rb_right); |
| 1251 | else if (parent->rb_left) |
| 1252 | bfq_update_active_node(parent->rb_left); |
| 1253 | |
| 1254 | node = parent; |
| 1255 | goto up; |
| 1256 | } |
| 1257 | |
| 1258 | /** |
| 1259 | * bfq_active_insert - insert an entity in the active tree of its |
| 1260 | * group/device. |
| 1261 | * @st: the service tree of the entity. |
| 1262 | * @entity: the entity being inserted. |
| 1263 | * |
| 1264 | * The active tree is ordered by finish time, but an extra key is kept |
| 1265 | * per each node, containing the minimum value for the start times of |
| 1266 | * its children (and the node itself), so it's possible to search for |
| 1267 | * the eligible node with the lowest finish time in logarithmic time. |
| 1268 | */ |
| 1269 | static void bfq_active_insert(struct bfq_service_tree *st, |
| 1270 | struct bfq_entity *entity) |
| 1271 | { |
| 1272 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1273 | struct rb_node *node = &entity->rb_node; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1274 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1275 | struct bfq_sched_data *sd = NULL; |
| 1276 | struct bfq_group *bfqg = NULL; |
| 1277 | struct bfq_data *bfqd = NULL; |
| 1278 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1279 | |
| 1280 | bfq_insert(&st->active, entity); |
| 1281 | |
| 1282 | if (node->rb_left) |
| 1283 | node = node->rb_left; |
| 1284 | else if (node->rb_right) |
| 1285 | node = node->rb_right; |
| 1286 | |
| 1287 | bfq_update_active_tree(node); |
| 1288 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1289 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1290 | sd = entity->sched_data; |
| 1291 | bfqg = container_of(sd, struct bfq_group, sched_data); |
| 1292 | bfqd = (struct bfq_data *)bfqg->bfqd; |
| 1293 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1294 | if (bfqq) |
| 1295 | list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list); |
| 1296 | } |
| 1297 | |
| 1298 | /** |
| 1299 | * bfq_ioprio_to_weight - calc a weight from an ioprio. |
| 1300 | * @ioprio: the ioprio value to convert. |
| 1301 | */ |
| 1302 | static unsigned short bfq_ioprio_to_weight(int ioprio) |
| 1303 | { |
| 1304 | return (IOPRIO_BE_NR - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF; |
| 1305 | } |
| 1306 | |
| 1307 | /** |
| 1308 | * bfq_weight_to_ioprio - calc an ioprio from a weight. |
| 1309 | * @weight: the weight value to convert. |
| 1310 | * |
| 1311 | * To preserve as much as possible the old only-ioprio user interface, |
| 1312 | * 0 is used as an escape ioprio value for weights (numerically) equal or |
| 1313 | * larger than IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF. |
| 1314 | */ |
| 1315 | static unsigned short bfq_weight_to_ioprio(int weight) |
| 1316 | { |
| 1317 | return max_t(int, 0, |
| 1318 | IOPRIO_BE_NR * BFQ_WEIGHT_CONVERSION_COEFF - weight); |
| 1319 | } |
| 1320 | |
| 1321 | static void bfq_get_entity(struct bfq_entity *entity) |
| 1322 | { |
| 1323 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1324 | |
| 1325 | if (bfqq) { |
| 1326 | bfqq->ref++; |
| 1327 | bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d", |
| 1328 | bfqq, bfqq->ref); |
| 1329 | } |
| 1330 | } |
| 1331 | |
| 1332 | /** |
| 1333 | * bfq_find_deepest - find the deepest node that an extraction can modify. |
| 1334 | * @node: the node being removed. |
| 1335 | * |
| 1336 | * Do the first step of an extraction in an rb tree, looking for the |
| 1337 | * node that will replace @node, and returning the deepest node that |
| 1338 | * the following modifications to the tree can touch. If @node is the |
| 1339 | * last node in the tree return %NULL. |
| 1340 | */ |
| 1341 | static struct rb_node *bfq_find_deepest(struct rb_node *node) |
| 1342 | { |
| 1343 | struct rb_node *deepest; |
| 1344 | |
| 1345 | if (!node->rb_right && !node->rb_left) |
| 1346 | deepest = rb_parent(node); |
| 1347 | else if (!node->rb_right) |
| 1348 | deepest = node->rb_left; |
| 1349 | else if (!node->rb_left) |
| 1350 | deepest = node->rb_right; |
| 1351 | else { |
| 1352 | deepest = rb_next(node); |
| 1353 | if (deepest->rb_right) |
| 1354 | deepest = deepest->rb_right; |
| 1355 | else if (rb_parent(deepest) != node) |
| 1356 | deepest = rb_parent(deepest); |
| 1357 | } |
| 1358 | |
| 1359 | return deepest; |
| 1360 | } |
| 1361 | |
| 1362 | /** |
| 1363 | * bfq_active_extract - remove an entity from the active tree. |
| 1364 | * @st: the service_tree containing the tree. |
| 1365 | * @entity: the entity being removed. |
| 1366 | */ |
| 1367 | static void bfq_active_extract(struct bfq_service_tree *st, |
| 1368 | struct bfq_entity *entity) |
| 1369 | { |
| 1370 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1371 | struct rb_node *node; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1372 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1373 | struct bfq_sched_data *sd = NULL; |
| 1374 | struct bfq_group *bfqg = NULL; |
| 1375 | struct bfq_data *bfqd = NULL; |
| 1376 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1377 | |
| 1378 | node = bfq_find_deepest(&entity->rb_node); |
| 1379 | bfq_extract(&st->active, entity); |
| 1380 | |
| 1381 | if (node) |
| 1382 | bfq_update_active_tree(node); |
| 1383 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1384 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1385 | sd = entity->sched_data; |
| 1386 | bfqg = container_of(sd, struct bfq_group, sched_data); |
| 1387 | bfqd = (struct bfq_data *)bfqg->bfqd; |
| 1388 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1389 | if (bfqq) |
| 1390 | list_del(&bfqq->bfqq_list); |
| 1391 | } |
| 1392 | |
| 1393 | /** |
| 1394 | * bfq_idle_insert - insert an entity into the idle tree. |
| 1395 | * @st: the service tree containing the tree. |
| 1396 | * @entity: the entity to insert. |
| 1397 | */ |
| 1398 | static void bfq_idle_insert(struct bfq_service_tree *st, |
| 1399 | struct bfq_entity *entity) |
| 1400 | { |
| 1401 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1402 | struct bfq_entity *first_idle = st->first_idle; |
| 1403 | struct bfq_entity *last_idle = st->last_idle; |
| 1404 | |
| 1405 | if (!first_idle || bfq_gt(first_idle->finish, entity->finish)) |
| 1406 | st->first_idle = entity; |
| 1407 | if (!last_idle || bfq_gt(entity->finish, last_idle->finish)) |
| 1408 | st->last_idle = entity; |
| 1409 | |
| 1410 | bfq_insert(&st->idle, entity); |
| 1411 | |
| 1412 | if (bfqq) |
| 1413 | list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list); |
| 1414 | } |
| 1415 | |
| 1416 | /** |
| 1417 | * bfq_forget_entity - do not consider entity any longer for scheduling |
| 1418 | * @st: the service tree. |
| 1419 | * @entity: the entity being removed. |
| 1420 | * @is_in_service: true if entity is currently the in-service entity. |
| 1421 | * |
| 1422 | * Forget everything about @entity. In addition, if entity represents |
| 1423 | * a queue, and the latter is not in service, then release the service |
| 1424 | * reference to the queue (the one taken through bfq_get_entity). In |
| 1425 | * fact, in this case, there is really no more service reference to |
| 1426 | * the queue, as the latter is also outside any service tree. If, |
| 1427 | * instead, the queue is in service, then __bfq_bfqd_reset_in_service |
| 1428 | * will take care of putting the reference when the queue finally |
| 1429 | * stops being served. |
| 1430 | */ |
| 1431 | static void bfq_forget_entity(struct bfq_service_tree *st, |
| 1432 | struct bfq_entity *entity, |
| 1433 | bool is_in_service) |
| 1434 | { |
| 1435 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1436 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1437 | entity->on_st = false; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1438 | st->wsum -= entity->weight; |
| 1439 | if (bfqq && !is_in_service) |
| 1440 | bfq_put_queue(bfqq); |
| 1441 | } |
| 1442 | |
| 1443 | /** |
| 1444 | * bfq_put_idle_entity - release the idle tree ref of an entity. |
| 1445 | * @st: service tree for the entity. |
| 1446 | * @entity: the entity being released. |
| 1447 | */ |
| 1448 | static void bfq_put_idle_entity(struct bfq_service_tree *st, |
| 1449 | struct bfq_entity *entity) |
| 1450 | { |
| 1451 | bfq_idle_extract(st, entity); |
| 1452 | bfq_forget_entity(st, entity, |
| 1453 | entity == entity->sched_data->in_service_entity); |
| 1454 | } |
| 1455 | |
| 1456 | /** |
| 1457 | * bfq_forget_idle - update the idle tree if necessary. |
| 1458 | * @st: the service tree to act upon. |
| 1459 | * |
| 1460 | * To preserve the global O(log N) complexity we only remove one entry here; |
| 1461 | * as the idle tree will not grow indefinitely this can be done safely. |
| 1462 | */ |
| 1463 | static void bfq_forget_idle(struct bfq_service_tree *st) |
| 1464 | { |
| 1465 | struct bfq_entity *first_idle = st->first_idle; |
| 1466 | struct bfq_entity *last_idle = st->last_idle; |
| 1467 | |
| 1468 | if (RB_EMPTY_ROOT(&st->active) && last_idle && |
| 1469 | !bfq_gt(last_idle->finish, st->vtime)) { |
| 1470 | /* |
| 1471 | * Forget the whole idle tree, increasing the vtime past |
| 1472 | * the last finish time of idle entities. |
| 1473 | */ |
| 1474 | st->vtime = last_idle->finish; |
| 1475 | } |
| 1476 | |
| 1477 | if (first_idle && !bfq_gt(first_idle->finish, st->vtime)) |
| 1478 | bfq_put_idle_entity(st, first_idle); |
| 1479 | } |
| 1480 | |
| 1481 | static struct bfq_service_tree * |
| 1482 | __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1483 | struct bfq_entity *entity) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1484 | { |
| 1485 | struct bfq_service_tree *new_st = old_st; |
| 1486 | |
| 1487 | if (entity->prio_changed) { |
| 1488 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 1489 | unsigned short prev_weight, new_weight; |
| 1490 | struct bfq_data *bfqd = NULL; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1491 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1492 | struct bfq_sched_data *sd; |
| 1493 | struct bfq_group *bfqg; |
| 1494 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1495 | |
| 1496 | if (bfqq) |
| 1497 | bfqd = bfqq->bfqd; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1498 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 1499 | else { |
| 1500 | sd = entity->my_sched_data; |
| 1501 | bfqg = container_of(sd, struct bfq_group, sched_data); |
| 1502 | bfqd = (struct bfq_data *)bfqg->bfqd; |
| 1503 | } |
| 1504 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1505 | |
| 1506 | old_st->wsum -= entity->weight; |
| 1507 | |
| 1508 | if (entity->new_weight != entity->orig_weight) { |
| 1509 | if (entity->new_weight < BFQ_MIN_WEIGHT || |
| 1510 | entity->new_weight > BFQ_MAX_WEIGHT) { |
| 1511 | pr_crit("update_weight_prio: new_weight %d\n", |
| 1512 | entity->new_weight); |
| 1513 | if (entity->new_weight < BFQ_MIN_WEIGHT) |
| 1514 | entity->new_weight = BFQ_MIN_WEIGHT; |
| 1515 | else |
| 1516 | entity->new_weight = BFQ_MAX_WEIGHT; |
| 1517 | } |
| 1518 | entity->orig_weight = entity->new_weight; |
| 1519 | if (bfqq) |
| 1520 | bfqq->ioprio = |
| 1521 | bfq_weight_to_ioprio(entity->orig_weight); |
| 1522 | } |
| 1523 | |
| 1524 | if (bfqq) |
| 1525 | bfqq->ioprio_class = bfqq->new_ioprio_class; |
| 1526 | entity->prio_changed = 0; |
| 1527 | |
| 1528 | /* |
| 1529 | * NOTE: here we may be changing the weight too early, |
| 1530 | * this will cause unfairness. The correct approach |
| 1531 | * would have required additional complexity to defer |
| 1532 | * weight changes to the proper time instants (i.e., |
| 1533 | * when entity->finish <= old_st->vtime). |
| 1534 | */ |
| 1535 | new_st = bfq_entity_service_tree(entity); |
| 1536 | |
| 1537 | prev_weight = entity->weight; |
| 1538 | new_weight = entity->orig_weight; |
| 1539 | entity->weight = new_weight; |
| 1540 | |
| 1541 | new_st->wsum += entity->weight; |
| 1542 | |
| 1543 | if (new_st != old_st) |
| 1544 | entity->start = new_st->vtime; |
| 1545 | } |
| 1546 | |
| 1547 | return new_st; |
| 1548 | } |
| 1549 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1550 | static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg); |
| 1551 | static struct bfq_group *bfqq_group(struct bfq_queue *bfqq); |
| 1552 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1553 | /** |
| 1554 | * bfq_bfqq_served - update the scheduler status after selection for |
| 1555 | * service. |
| 1556 | * @bfqq: the queue being served. |
| 1557 | * @served: bytes to transfer. |
| 1558 | * |
| 1559 | * NOTE: this can be optimized, as the timestamps of upper level entities |
| 1560 | * are synchronized every time a new bfqq is selected for service. By now, |
| 1561 | * we keep it to better check consistency. |
| 1562 | */ |
| 1563 | static void bfq_bfqq_served(struct bfq_queue *bfqq, int served) |
| 1564 | { |
| 1565 | struct bfq_entity *entity = &bfqq->entity; |
| 1566 | struct bfq_service_tree *st; |
| 1567 | |
| 1568 | for_each_entity(entity) { |
| 1569 | st = bfq_entity_service_tree(entity); |
| 1570 | |
| 1571 | entity->service += served; |
| 1572 | |
| 1573 | st->vtime += bfq_delta(served, st->wsum); |
| 1574 | bfq_forget_idle(st); |
| 1575 | } |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1576 | bfqg_stats_set_start_empty_time(bfqq_group(bfqq)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1577 | bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served); |
| 1578 | } |
| 1579 | |
| 1580 | /** |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 1581 | * bfq_bfqq_charge_time - charge an amount of service equivalent to the length |
| 1582 | * of the time interval during which bfqq has been in |
| 1583 | * service. |
| 1584 | * @bfqd: the device |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1585 | * @bfqq: the queue that needs a service update. |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 1586 | * @time_ms: the amount of time during which the queue has received service |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1587 | * |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 1588 | * If a queue does not consume its budget fast enough, then providing |
| 1589 | * the queue with service fairness may impair throughput, more or less |
| 1590 | * severely. For this reason, queues that consume their budget slowly |
| 1591 | * are provided with time fairness instead of service fairness. This |
| 1592 | * goal is achieved through the BFQ scheduling engine, even if such an |
| 1593 | * engine works in the service, and not in the time domain. The trick |
| 1594 | * is charging these queues with an inflated amount of service, equal |
| 1595 | * to the amount of service that they would have received during their |
| 1596 | * service slot if they had been fast, i.e., if their requests had |
| 1597 | * been dispatched at a rate equal to the estimated peak rate. |
| 1598 | * |
| 1599 | * It is worth noting that time fairness can cause important |
| 1600 | * distortions in terms of bandwidth distribution, on devices with |
| 1601 | * internal queueing. The reason is that I/O requests dispatched |
| 1602 | * during the service slot of a queue may be served after that service |
| 1603 | * slot is finished, and may have a total processing time loosely |
| 1604 | * correlated with the duration of the service slot. This is |
| 1605 | * especially true for short service slots. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1606 | */ |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 1607 | static void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 1608 | unsigned long time_ms) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1609 | { |
| 1610 | struct bfq_entity *entity = &bfqq->entity; |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 1611 | int tot_serv_to_charge = entity->service; |
| 1612 | unsigned int timeout_ms = jiffies_to_msecs(bfq_timeout); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1613 | |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 1614 | if (time_ms > 0 && time_ms < timeout_ms) |
| 1615 | tot_serv_to_charge = |
| 1616 | (bfqd->bfq_max_budget * time_ms) / timeout_ms; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1617 | |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 1618 | if (tot_serv_to_charge < entity->service) |
| 1619 | tot_serv_to_charge = entity->service; |
| 1620 | |
| 1621 | /* Increase budget to avoid inconsistencies */ |
| 1622 | if (tot_serv_to_charge > entity->budget) |
| 1623 | entity->budget = tot_serv_to_charge; |
| 1624 | |
| 1625 | bfq_bfqq_served(bfqq, |
| 1626 | max_t(int, 0, tot_serv_to_charge - entity->service)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1627 | } |
| 1628 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1629 | static void bfq_update_fin_time_enqueue(struct bfq_entity *entity, |
| 1630 | struct bfq_service_tree *st, |
| 1631 | bool backshifted) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1632 | { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1633 | st = __bfq_entity_update_weight_prio(st, entity); |
| 1634 | bfq_calc_finish(entity, entity->budget); |
| 1635 | |
| 1636 | /* |
| 1637 | * If some queues enjoy backshifting for a while, then their |
| 1638 | * (virtual) finish timestamps may happen to become lower and |
| 1639 | * lower than the system virtual time. In particular, if |
| 1640 | * these queues often happen to be idle for short time |
| 1641 | * periods, and during such time periods other queues with |
| 1642 | * higher timestamps happen to be busy, then the backshifted |
| 1643 | * timestamps of the former queues can become much lower than |
| 1644 | * the system virtual time. In fact, to serve the queues with |
| 1645 | * higher timestamps while the ones with lower timestamps are |
| 1646 | * idle, the system virtual time may be pushed-up to much |
| 1647 | * higher values than the finish timestamps of the idle |
| 1648 | * queues. As a consequence, the finish timestamps of all new |
| 1649 | * or newly activated queues may end up being much larger than |
| 1650 | * those of lucky queues with backshifted timestamps. The |
| 1651 | * latter queues may then monopolize the device for a lot of |
| 1652 | * time. This would simply break service guarantees. |
| 1653 | * |
| 1654 | * To reduce this problem, push up a little bit the |
| 1655 | * backshifted timestamps of the queue associated with this |
| 1656 | * entity (only a queue can happen to have the backshifted |
| 1657 | * flag set): just enough to let the finish timestamp of the |
| 1658 | * queue be equal to the current value of the system virtual |
| 1659 | * time. This may introduce a little unfairness among queues |
| 1660 | * with backshifted timestamps, but it does not break |
| 1661 | * worst-case fairness guarantees. |
| 1662 | */ |
| 1663 | if (backshifted && bfq_gt(st->vtime, entity->finish)) { |
| 1664 | unsigned long delta = st->vtime - entity->finish; |
| 1665 | |
| 1666 | entity->start += delta; |
| 1667 | entity->finish += delta; |
| 1668 | } |
| 1669 | |
| 1670 | bfq_active_insert(st, entity); |
| 1671 | } |
| 1672 | |
| 1673 | /** |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1674 | * __bfq_activate_entity - handle activation of entity. |
| 1675 | * @entity: the entity being activated. |
| 1676 | * @non_blocking_wait_rq: true if entity was waiting for a request |
| 1677 | * |
| 1678 | * Called for a 'true' activation, i.e., if entity is not active and |
| 1679 | * one of its children receives a new request. |
| 1680 | * |
| 1681 | * Basically, this function updates the timestamps of entity and |
| 1682 | * inserts entity into its active tree, ater possible extracting it |
| 1683 | * from its idle tree. |
| 1684 | */ |
| 1685 | static void __bfq_activate_entity(struct bfq_entity *entity, |
| 1686 | bool non_blocking_wait_rq) |
| 1687 | { |
| 1688 | struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| 1689 | bool backshifted = false; |
| 1690 | unsigned long long min_vstart; |
| 1691 | |
| 1692 | /* See comments on bfq_fqq_update_budg_for_activation */ |
| 1693 | if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) { |
| 1694 | backshifted = true; |
| 1695 | min_vstart = entity->finish; |
| 1696 | } else |
| 1697 | min_vstart = st->vtime; |
| 1698 | |
| 1699 | if (entity->tree == &st->idle) { |
| 1700 | /* |
| 1701 | * Must be on the idle tree, bfq_idle_extract() will |
| 1702 | * check for that. |
| 1703 | */ |
| 1704 | bfq_idle_extract(st, entity); |
| 1705 | entity->start = bfq_gt(min_vstart, entity->finish) ? |
| 1706 | min_vstart : entity->finish; |
| 1707 | } else { |
| 1708 | /* |
| 1709 | * The finish time of the entity may be invalid, and |
| 1710 | * it is in the past for sure, otherwise the queue |
| 1711 | * would have been on the idle tree. |
| 1712 | */ |
| 1713 | entity->start = min_vstart; |
| 1714 | st->wsum += entity->weight; |
| 1715 | /* |
| 1716 | * entity is about to be inserted into a service tree, |
| 1717 | * and then set in service: get a reference to make |
| 1718 | * sure entity does not disappear until it is no |
| 1719 | * longer in service or scheduled for service. |
| 1720 | */ |
| 1721 | bfq_get_entity(entity); |
| 1722 | |
| 1723 | entity->on_st = true; |
| 1724 | } |
| 1725 | |
| 1726 | bfq_update_fin_time_enqueue(entity, st, backshifted); |
| 1727 | } |
| 1728 | |
| 1729 | /** |
| 1730 | * __bfq_requeue_entity - handle requeueing or repositioning of an entity. |
| 1731 | * @entity: the entity being requeued or repositioned. |
| 1732 | * |
| 1733 | * Requeueing is needed if this entity stops being served, which |
| 1734 | * happens if a leaf descendant entity has expired. On the other hand, |
| 1735 | * repositioning is needed if the next_inservice_entity for the child |
| 1736 | * entity has changed. See the comments inside the function for |
| 1737 | * details. |
| 1738 | * |
| 1739 | * Basically, this function: 1) removes entity from its active tree if |
| 1740 | * present there, 2) updates the timestamps of entity and 3) inserts |
| 1741 | * entity back into its active tree (in the new, right position for |
| 1742 | * the new values of the timestamps). |
| 1743 | */ |
| 1744 | static void __bfq_requeue_entity(struct bfq_entity *entity) |
| 1745 | { |
| 1746 | struct bfq_sched_data *sd = entity->sched_data; |
| 1747 | struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| 1748 | |
| 1749 | if (entity == sd->in_service_entity) { |
| 1750 | /* |
| 1751 | * We are requeueing the current in-service entity, |
| 1752 | * which may have to be done for one of the following |
| 1753 | * reasons: |
| 1754 | * - entity represents the in-service queue, and the |
| 1755 | * in-service queue is being requeued after an |
| 1756 | * expiration; |
| 1757 | * - entity represents a group, and its budget has |
| 1758 | * changed because one of its child entities has |
| 1759 | * just been either activated or requeued for some |
| 1760 | * reason; the timestamps of the entity need then to |
| 1761 | * be updated, and the entity needs to be enqueued |
| 1762 | * or repositioned accordingly. |
| 1763 | * |
| 1764 | * In particular, before requeueing, the start time of |
| 1765 | * the entity must be moved forward to account for the |
| 1766 | * service that the entity has received while in |
| 1767 | * service. This is done by the next instructions. The |
| 1768 | * finish time will then be updated according to this |
| 1769 | * new value of the start time, and to the budget of |
| 1770 | * the entity. |
| 1771 | */ |
| 1772 | bfq_calc_finish(entity, entity->service); |
| 1773 | entity->start = entity->finish; |
| 1774 | /* |
| 1775 | * In addition, if the entity had more than one child |
| 1776 | * when set in service, then was not extracted from |
| 1777 | * the active tree. This implies that the position of |
| 1778 | * the entity in the active tree may need to be |
| 1779 | * changed now, because we have just updated the start |
| 1780 | * time of the entity, and we will update its finish |
| 1781 | * time in a moment (the requeueing is then, more |
| 1782 | * precisely, a repositioning in this case). To |
| 1783 | * implement this repositioning, we: 1) dequeue the |
| 1784 | * entity here, 2) update the finish time and |
| 1785 | * requeue the entity according to the new |
| 1786 | * timestamps below. |
| 1787 | */ |
| 1788 | if (entity->tree) |
| 1789 | bfq_active_extract(st, entity); |
| 1790 | } else { /* The entity is already active, and not in service */ |
| 1791 | /* |
| 1792 | * In this case, this function gets called only if the |
| 1793 | * next_in_service entity below this entity has |
| 1794 | * changed, and this change has caused the budget of |
| 1795 | * this entity to change, which, finally implies that |
| 1796 | * the finish time of this entity must be |
| 1797 | * updated. Such an update may cause the scheduling, |
| 1798 | * i.e., the position in the active tree, of this |
| 1799 | * entity to change. We handle this change by: 1) |
| 1800 | * dequeueing the entity here, 2) updating the finish |
| 1801 | * time and requeueing the entity according to the new |
| 1802 | * timestamps below. This is the same approach as the |
| 1803 | * non-extracted-entity sub-case above. |
| 1804 | */ |
| 1805 | bfq_active_extract(st, entity); |
| 1806 | } |
| 1807 | |
| 1808 | bfq_update_fin_time_enqueue(entity, st, false); |
| 1809 | } |
| 1810 | |
| 1811 | static void __bfq_activate_requeue_entity(struct bfq_entity *entity, |
| 1812 | struct bfq_sched_data *sd, |
| 1813 | bool non_blocking_wait_rq) |
| 1814 | { |
| 1815 | struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| 1816 | |
| 1817 | if (sd->in_service_entity == entity || entity->tree == &st->active) |
| 1818 | /* |
| 1819 | * in service or already queued on the active tree, |
| 1820 | * requeue or reposition |
| 1821 | */ |
| 1822 | __bfq_requeue_entity(entity); |
| 1823 | else |
| 1824 | /* |
| 1825 | * Not in service and not queued on its active tree: |
| 1826 | * the activity is idle and this is a true activation. |
| 1827 | */ |
| 1828 | __bfq_activate_entity(entity, non_blocking_wait_rq); |
| 1829 | } |
| 1830 | |
| 1831 | |
| 1832 | /** |
| 1833 | * bfq_activate_entity - activate or requeue an entity representing a bfq_queue, |
| 1834 | * and activate, requeue or reposition all ancestors |
| 1835 | * for which such an update becomes necessary. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1836 | * @entity: the entity to activate. |
| 1837 | * @non_blocking_wait_rq: true if this entity was waiting for a request |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1838 | * @requeue: true if this is a requeue, which implies that bfqq is |
| 1839 | * being expired; thus ALL its ancestors stop being served and must |
| 1840 | * therefore be requeued |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1841 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1842 | static void bfq_activate_requeue_entity(struct bfq_entity *entity, |
| 1843 | bool non_blocking_wait_rq, |
| 1844 | bool requeue) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1845 | { |
| 1846 | struct bfq_sched_data *sd; |
| 1847 | |
| 1848 | for_each_entity(entity) { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1849 | sd = entity->sched_data; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1850 | __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq); |
| 1851 | |
| 1852 | if (!bfq_update_next_in_service(sd, entity) && !requeue) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1853 | break; |
| 1854 | } |
| 1855 | } |
| 1856 | |
| 1857 | /** |
| 1858 | * __bfq_deactivate_entity - deactivate an entity from its service tree. |
| 1859 | * @entity: the entity to deactivate. |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1860 | * @ins_into_idle_tree: if false, the entity will not be put into the |
| 1861 | * idle tree. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1862 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1863 | * Deactivates an entity, independently from its previous state. Must |
| 1864 | * be invoked only if entity is on a service tree. Extracts the entity |
| 1865 | * from that tree, and if necessary and allowed, puts it on the idle |
| 1866 | * tree. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1867 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1868 | static bool __bfq_deactivate_entity(struct bfq_entity *entity, |
| 1869 | bool ins_into_idle_tree) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1870 | { |
| 1871 | struct bfq_sched_data *sd = entity->sched_data; |
| 1872 | struct bfq_service_tree *st = bfq_entity_service_tree(entity); |
| 1873 | int is_in_service = entity == sd->in_service_entity; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1874 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1875 | if (!entity->on_st) /* entity never activated, or already inactive */ |
| 1876 | return false; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1877 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1878 | if (is_in_service) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1879 | bfq_calc_finish(entity, entity->service); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1880 | |
| 1881 | if (entity->tree == &st->active) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1882 | bfq_active_extract(st, entity); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1883 | else if (!is_in_service && entity->tree == &st->idle) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1884 | bfq_idle_extract(st, entity); |
| 1885 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1886 | if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime)) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1887 | bfq_forget_entity(st, entity, is_in_service); |
| 1888 | else |
| 1889 | bfq_idle_insert(st, entity); |
| 1890 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1891 | return true; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1892 | } |
| 1893 | |
| 1894 | /** |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1895 | * bfq_deactivate_entity - deactivate an entity representing a bfq_queue. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1896 | * @entity: the entity to deactivate. |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1897 | * @ins_into_idle_tree: true if the entity can be put on the idle tree |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1898 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1899 | static void bfq_deactivate_entity(struct bfq_entity *entity, |
| 1900 | bool ins_into_idle_tree, |
| 1901 | bool expiration) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1902 | { |
| 1903 | struct bfq_sched_data *sd; |
| 1904 | struct bfq_entity *parent = NULL; |
| 1905 | |
| 1906 | for_each_entity_safe(entity, parent) { |
| 1907 | sd = entity->sched_data; |
| 1908 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1909 | if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1910 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1911 | * entity is not in any tree any more, so |
| 1912 | * this deactivation is a no-op, and there is |
| 1913 | * nothing to change for upper-level entities |
| 1914 | * (in case of expiration, this can never |
| 1915 | * happen). |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1916 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1917 | return; |
| 1918 | } |
| 1919 | |
| 1920 | if (sd->next_in_service == entity) |
| 1921 | /* |
| 1922 | * entity was the next_in_service entity, |
| 1923 | * then, since entity has just been |
| 1924 | * deactivated, a new one must be found. |
| 1925 | */ |
| 1926 | bfq_update_next_in_service(sd, NULL); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1927 | |
| 1928 | if (sd->next_in_service) |
| 1929 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1930 | * The parent entity is still backlogged, |
| 1931 | * because next_in_service is not NULL. So, no |
| 1932 | * further upwards deactivation must be |
| 1933 | * performed. Yet, next_in_service has |
| 1934 | * changed. Then the schedule does need to be |
| 1935 | * updated upwards. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1936 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1937 | break; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1938 | |
| 1939 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1940 | * If we get here, then the parent is no more |
| 1941 | * backlogged and we need to propagate the |
| 1942 | * deactivation upwards. Thus let the loop go on. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1943 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1944 | |
| 1945 | /* |
| 1946 | * Also let parent be queued into the idle tree on |
| 1947 | * deactivation, to preserve service guarantees, and |
| 1948 | * assuming that who invoked this function does not |
| 1949 | * need parent entities too to be removed completely. |
| 1950 | */ |
| 1951 | ins_into_idle_tree = true; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1952 | } |
| 1953 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1954 | /* |
| 1955 | * If the deactivation loop is fully executed, then there are |
| 1956 | * no more entities to touch and next loop is not executed at |
| 1957 | * all. Otherwise, requeue remaining entities if they are |
| 1958 | * about to stop receiving service, or reposition them if this |
| 1959 | * is not the case. |
| 1960 | */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1961 | entity = parent; |
| 1962 | for_each_entity(entity) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1963 | /* |
| 1964 | * Invoke __bfq_requeue_entity on entity, even if |
| 1965 | * already active, to requeue/reposition it in the |
| 1966 | * active tree (because sd->next_in_service has |
| 1967 | * changed) |
| 1968 | */ |
| 1969 | __bfq_requeue_entity(entity); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1970 | |
| 1971 | sd = entity->sched_data; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1972 | if (!bfq_update_next_in_service(sd, entity) && |
| 1973 | !expiration) |
| 1974 | /* |
| 1975 | * next_in_service unchanged or not causing |
| 1976 | * any change in entity->parent->sd, and no |
| 1977 | * requeueing needed for expiration: stop |
| 1978 | * here. |
| 1979 | */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1980 | break; |
| 1981 | } |
| 1982 | } |
| 1983 | |
| 1984 | /** |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1985 | * bfq_calc_vtime_jump - compute the value to which the vtime should jump, |
| 1986 | * if needed, to have at least one entity eligible. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1987 | * @st: the service tree to act upon. |
| 1988 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1989 | * Assumes that st is not empty. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1990 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1991 | static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1992 | { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1993 | struct bfq_entity *root_entity = bfq_root_active_entity(&st->active); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 1994 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 1995 | if (bfq_gt(root_entity->min_start, st->vtime)) |
| 1996 | return root_entity->min_start; |
| 1997 | |
| 1998 | return st->vtime; |
| 1999 | } |
| 2000 | |
| 2001 | static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value) |
| 2002 | { |
| 2003 | if (new_value > st->vtime) { |
| 2004 | st->vtime = new_value; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2005 | bfq_forget_idle(st); |
| 2006 | } |
| 2007 | } |
| 2008 | |
| 2009 | /** |
| 2010 | * bfq_first_active_entity - find the eligible entity with |
| 2011 | * the smallest finish time |
| 2012 | * @st: the service tree to select from. |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2013 | * @vtime: the system virtual to use as a reference for eligibility |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2014 | * |
| 2015 | * This function searches the first schedulable entity, starting from the |
| 2016 | * root of the tree and going on the left every time on this side there is |
| 2017 | * a subtree with at least one eligible (start >= vtime) entity. The path on |
| 2018 | * the right is followed only if a) the left subtree contains no eligible |
| 2019 | * entities and b) no eligible entity has been found yet. |
| 2020 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2021 | static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st, |
| 2022 | u64 vtime) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2023 | { |
| 2024 | struct bfq_entity *entry, *first = NULL; |
| 2025 | struct rb_node *node = st->active.rb_node; |
| 2026 | |
| 2027 | while (node) { |
| 2028 | entry = rb_entry(node, struct bfq_entity, rb_node); |
| 2029 | left: |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2030 | if (!bfq_gt(entry->start, vtime)) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2031 | first = entry; |
| 2032 | |
| 2033 | if (node->rb_left) { |
| 2034 | entry = rb_entry(node->rb_left, |
| 2035 | struct bfq_entity, rb_node); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2036 | if (!bfq_gt(entry->min_start, vtime)) { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2037 | node = node->rb_left; |
| 2038 | goto left; |
| 2039 | } |
| 2040 | } |
| 2041 | if (first) |
| 2042 | break; |
| 2043 | node = node->rb_right; |
| 2044 | } |
| 2045 | |
| 2046 | return first; |
| 2047 | } |
| 2048 | |
| 2049 | /** |
| 2050 | * __bfq_lookup_next_entity - return the first eligible entity in @st. |
| 2051 | * @st: the service tree. |
| 2052 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2053 | * If there is no in-service entity for the sched_data st belongs to, |
| 2054 | * then return the entity that will be set in service if: |
| 2055 | * 1) the parent entity this st belongs to is set in service; |
| 2056 | * 2) no entity belonging to such parent entity undergoes a state change |
| 2057 | * that would influence the timestamps of the entity (e.g., becomes idle, |
| 2058 | * becomes backlogged, changes its budget, ...). |
| 2059 | * |
| 2060 | * In this first case, update the virtual time in @st too (see the |
| 2061 | * comments on this update inside the function). |
| 2062 | * |
| 2063 | * In constrast, if there is an in-service entity, then return the |
| 2064 | * entity that would be set in service if not only the above |
| 2065 | * conditions, but also the next one held true: the currently |
| 2066 | * in-service entity, on expiration, |
| 2067 | * 1) gets a finish time equal to the current one, or |
| 2068 | * 2) is not eligible any more, or |
| 2069 | * 3) is idle. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2070 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2071 | static struct bfq_entity * |
| 2072 | __bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2073 | { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2074 | struct bfq_entity *entity; |
| 2075 | u64 new_vtime; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2076 | |
| 2077 | if (RB_EMPTY_ROOT(&st->active)) |
| 2078 | return NULL; |
| 2079 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2080 | /* |
| 2081 | * Get the value of the system virtual time for which at |
| 2082 | * least one entity is eligible. |
| 2083 | */ |
| 2084 | new_vtime = bfq_calc_vtime_jump(st); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2085 | |
| 2086 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2087 | * If there is no in-service entity for the sched_data this |
| 2088 | * active tree belongs to, then push the system virtual time |
| 2089 | * up to the value that guarantees that at least one entity is |
| 2090 | * eligible. If, instead, there is an in-service entity, then |
| 2091 | * do not make any such update, because there is already an |
| 2092 | * eligible entity, namely the in-service one (even if the |
| 2093 | * entity is not on st, because it was extracted when set in |
| 2094 | * service). |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2095 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2096 | if (!in_service) |
| 2097 | bfq_update_vtime(st, new_vtime); |
| 2098 | |
| 2099 | entity = bfq_first_active_entity(st, new_vtime); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2100 | |
| 2101 | return entity; |
| 2102 | } |
| 2103 | |
| 2104 | /** |
| 2105 | * bfq_lookup_next_entity - return the first eligible entity in @sd. |
| 2106 | * @sd: the sched_data. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2107 | * |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2108 | * This function is invoked when there has been a change in the trees |
| 2109 | * for sd, and we need know what is the new next entity after this |
| 2110 | * change. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2111 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2112 | static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2113 | { |
| 2114 | struct bfq_service_tree *st = sd->service_tree; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2115 | struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1); |
| 2116 | struct bfq_entity *entity = NULL; |
| 2117 | int class_idx = 0; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2118 | |
| 2119 | /* |
| 2120 | * Choose from idle class, if needed to guarantee a minimum |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2121 | * bandwidth to this class (and if there is some active entity |
| 2122 | * in idle class). This should also mitigate |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2123 | * priority-inversion problems in case a low priority task is |
| 2124 | * holding file system resources. |
| 2125 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2126 | if (time_is_before_jiffies(sd->bfq_class_idle_last_service + |
| 2127 | BFQ_CL_IDLE_TIMEOUT)) { |
| 2128 | if (!RB_EMPTY_ROOT(&idle_class_st->active)) |
| 2129 | class_idx = BFQ_IOPRIO_CLASSES - 1; |
| 2130 | /* About to be served if backlogged, or not yet backlogged */ |
| 2131 | sd->bfq_class_idle_last_service = jiffies; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2132 | } |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2133 | |
| 2134 | /* |
| 2135 | * Find the next entity to serve for the highest-priority |
| 2136 | * class, unless the idle class needs to be served. |
| 2137 | */ |
| 2138 | for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) { |
| 2139 | entity = __bfq_lookup_next_entity(st + class_idx, |
| 2140 | sd->in_service_entity); |
| 2141 | |
| 2142 | if (entity) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2143 | break; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2144 | } |
| 2145 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2146 | if (!entity) |
| 2147 | return NULL; |
| 2148 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2149 | return entity; |
| 2150 | } |
| 2151 | |
| 2152 | static bool next_queue_may_preempt(struct bfq_data *bfqd) |
| 2153 | { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2154 | struct bfq_sched_data *sd = &bfqd->root_group->sched_data; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2155 | |
| 2156 | return sd->next_in_service != sd->in_service_entity; |
| 2157 | } |
| 2158 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2159 | /* |
| 2160 | * Get next queue for service. |
| 2161 | */ |
| 2162 | static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd) |
| 2163 | { |
| 2164 | struct bfq_entity *entity = NULL; |
| 2165 | struct bfq_sched_data *sd; |
| 2166 | struct bfq_queue *bfqq; |
| 2167 | |
| 2168 | if (bfqd->busy_queues == 0) |
| 2169 | return NULL; |
| 2170 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2171 | /* |
| 2172 | * Traverse the path from the root to the leaf entity to |
| 2173 | * serve. Set in service all the entities visited along the |
| 2174 | * way. |
| 2175 | */ |
| 2176 | sd = &bfqd->root_group->sched_data; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2177 | for (; sd ; sd = entity->my_sched_data) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2178 | /* |
| 2179 | * WARNING. We are about to set the in-service entity |
| 2180 | * to sd->next_in_service, i.e., to the (cached) value |
| 2181 | * returned by bfq_lookup_next_entity(sd) the last |
| 2182 | * time it was invoked, i.e., the last time when the |
| 2183 | * service order in sd changed as a consequence of the |
| 2184 | * activation or deactivation of an entity. In this |
| 2185 | * respect, if we execute bfq_lookup_next_entity(sd) |
| 2186 | * in this very moment, it may, although with low |
| 2187 | * probability, yield a different entity than that |
| 2188 | * pointed to by sd->next_in_service. This rare event |
| 2189 | * happens in case there was no CLASS_IDLE entity to |
| 2190 | * serve for sd when bfq_lookup_next_entity(sd) was |
| 2191 | * invoked for the last time, while there is now one |
| 2192 | * such entity. |
| 2193 | * |
| 2194 | * If the above event happens, then the scheduling of |
| 2195 | * such entity in CLASS_IDLE is postponed until the |
| 2196 | * service of the sd->next_in_service entity |
| 2197 | * finishes. In fact, when the latter is expired, |
| 2198 | * bfq_lookup_next_entity(sd) gets called again, |
| 2199 | * exactly to update sd->next_in_service. |
| 2200 | */ |
| 2201 | |
| 2202 | /* Make next_in_service entity become in_service_entity */ |
| 2203 | entity = sd->next_in_service; |
| 2204 | sd->in_service_entity = entity; |
| 2205 | |
| 2206 | /* |
| 2207 | * Reset the accumulator of the amount of service that |
| 2208 | * the entity is about to receive. |
| 2209 | */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2210 | entity->service = 0; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2211 | |
| 2212 | /* |
| 2213 | * If entity is no longer a candidate for next |
| 2214 | * service, then we extract it from its active tree, |
| 2215 | * for the following reason. To further boost the |
| 2216 | * throughput in some special case, BFQ needs to know |
| 2217 | * which is the next candidate entity to serve, while |
| 2218 | * there is already an entity in service. In this |
| 2219 | * respect, to make it easy to compute/update the next |
| 2220 | * candidate entity to serve after the current |
| 2221 | * candidate has been set in service, there is a case |
| 2222 | * where it is necessary to extract the current |
| 2223 | * candidate from its service tree. Such a case is |
| 2224 | * when the entity just set in service cannot be also |
| 2225 | * a candidate for next service. Details about when |
| 2226 | * this conditions holds are reported in the comments |
| 2227 | * on the function bfq_no_longer_next_in_service() |
| 2228 | * invoked below. |
| 2229 | */ |
| 2230 | if (bfq_no_longer_next_in_service(entity)) |
| 2231 | bfq_active_extract(bfq_entity_service_tree(entity), |
| 2232 | entity); |
| 2233 | |
| 2234 | /* |
| 2235 | * For the same reason why we may have just extracted |
| 2236 | * entity from its active tree, we may need to update |
| 2237 | * next_in_service for the sched_data of entity too, |
| 2238 | * regardless of whether entity has been extracted. |
| 2239 | * In fact, even if entity has not been extracted, a |
| 2240 | * descendant entity may get extracted. Such an event |
| 2241 | * would cause a change in next_in_service for the |
| 2242 | * level of the descendant entity, and thus possibly |
| 2243 | * back to upper levels. |
| 2244 | * |
| 2245 | * We cannot perform the resulting needed update |
| 2246 | * before the end of this loop, because, to know which |
| 2247 | * is the correct next-to-serve candidate entity for |
| 2248 | * each level, we need first to find the leaf entity |
| 2249 | * to set in service. In fact, only after we know |
| 2250 | * which is the next-to-serve leaf entity, we can |
| 2251 | * discover whether the parent entity of the leaf |
| 2252 | * entity becomes the next-to-serve, and so on. |
| 2253 | */ |
| 2254 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2255 | } |
| 2256 | |
| 2257 | bfqq = bfq_entity_to_bfqq(entity); |
| 2258 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2259 | /* |
| 2260 | * We can finally update all next-to-serve entities along the |
| 2261 | * path from the leaf entity just set in service to the root. |
| 2262 | */ |
| 2263 | for_each_entity(entity) { |
| 2264 | struct bfq_sched_data *sd = entity->sched_data; |
| 2265 | |
| 2266 | if (!bfq_update_next_in_service(sd, NULL)) |
| 2267 | break; |
| 2268 | } |
| 2269 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2270 | return bfqq; |
| 2271 | } |
| 2272 | |
| 2273 | static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd) |
| 2274 | { |
| 2275 | struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue; |
| 2276 | struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2277 | struct bfq_entity *entity = in_serv_entity; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2278 | |
| 2279 | if (bfqd->in_service_bic) { |
| 2280 | put_io_context(bfqd->in_service_bic->icq.ioc); |
| 2281 | bfqd->in_service_bic = NULL; |
| 2282 | } |
| 2283 | |
| 2284 | bfq_clear_bfqq_wait_request(in_serv_bfqq); |
| 2285 | hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
| 2286 | bfqd->in_service_queue = NULL; |
| 2287 | |
| 2288 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2289 | * When this function is called, all in-service entities have |
| 2290 | * been properly deactivated or requeued, so we can safely |
| 2291 | * execute the final step: reset in_service_entity along the |
| 2292 | * path from entity to the root. |
| 2293 | */ |
| 2294 | for_each_entity(entity) |
| 2295 | entity->sched_data->in_service_entity = NULL; |
| 2296 | |
| 2297 | /* |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2298 | * in_serv_entity is no longer in service, so, if it is in no |
| 2299 | * service tree either, then release the service reference to |
| 2300 | * the queue it represents (taken with bfq_get_entity). |
| 2301 | */ |
| 2302 | if (!in_serv_entity->on_st) |
| 2303 | bfq_put_queue(in_serv_bfqq); |
| 2304 | } |
| 2305 | |
| 2306 | static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2307 | bool ins_into_idle_tree, bool expiration) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2308 | { |
| 2309 | struct bfq_entity *entity = &bfqq->entity; |
| 2310 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2311 | bfq_deactivate_entity(entity, ins_into_idle_tree, expiration); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2312 | } |
| 2313 | |
| 2314 | static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 2315 | { |
| 2316 | struct bfq_entity *entity = &bfqq->entity; |
| 2317 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2318 | bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq), |
| 2319 | false); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2320 | bfq_clear_bfqq_non_blocking_wait_rq(bfqq); |
| 2321 | } |
| 2322 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2323 | static void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 2324 | { |
| 2325 | struct bfq_entity *entity = &bfqq->entity; |
| 2326 | |
| 2327 | bfq_activate_requeue_entity(entity, false, |
| 2328 | bfqq == bfqd->in_service_queue); |
| 2329 | } |
| 2330 | |
| 2331 | static void bfqg_stats_update_dequeue(struct bfq_group *bfqg); |
| 2332 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2333 | /* |
| 2334 | * Called when the bfqq no longer has requests pending, remove it from |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2335 | * the service tree. As a special case, it can be invoked during an |
| 2336 | * expiration. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2337 | */ |
| 2338 | static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2339 | bool expiration) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2340 | { |
| 2341 | bfq_log_bfqq(bfqd, bfqq, "del from busy"); |
| 2342 | |
| 2343 | bfq_clear_bfqq_busy(bfqq); |
| 2344 | |
| 2345 | bfqd->busy_queues--; |
| 2346 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2347 | bfqg_stats_update_dequeue(bfqq_group(bfqq)); |
| 2348 | |
| 2349 | bfq_deactivate_bfqq(bfqd, bfqq, true, expiration); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2350 | } |
| 2351 | |
| 2352 | /* |
| 2353 | * Called when an inactive queue receives a new request. |
| 2354 | */ |
| 2355 | static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 2356 | { |
| 2357 | bfq_log_bfqq(bfqd, bfqq, "add to busy"); |
| 2358 | |
| 2359 | bfq_activate_bfqq(bfqd, bfqq); |
| 2360 | |
| 2361 | bfq_mark_bfqq_busy(bfqq); |
| 2362 | bfqd->busy_queues++; |
| 2363 | } |
| 2364 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2365 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 2366 | |
| 2367 | /* bfqg stats flags */ |
| 2368 | enum bfqg_stats_flags { |
| 2369 | BFQG_stats_waiting = 0, |
| 2370 | BFQG_stats_idling, |
| 2371 | BFQG_stats_empty, |
| 2372 | }; |
| 2373 | |
| 2374 | #define BFQG_FLAG_FNS(name) \ |
| 2375 | static void bfqg_stats_mark_##name(struct bfqg_stats *stats) \ |
| 2376 | { \ |
| 2377 | stats->flags |= (1 << BFQG_stats_##name); \ |
| 2378 | } \ |
| 2379 | static void bfqg_stats_clear_##name(struct bfqg_stats *stats) \ |
| 2380 | { \ |
| 2381 | stats->flags &= ~(1 << BFQG_stats_##name); \ |
| 2382 | } \ |
| 2383 | static int bfqg_stats_##name(struct bfqg_stats *stats) \ |
| 2384 | { \ |
| 2385 | return (stats->flags & (1 << BFQG_stats_##name)) != 0; \ |
| 2386 | } \ |
| 2387 | |
| 2388 | BFQG_FLAG_FNS(waiting) |
| 2389 | BFQG_FLAG_FNS(idling) |
| 2390 | BFQG_FLAG_FNS(empty) |
| 2391 | #undef BFQG_FLAG_FNS |
| 2392 | |
| 2393 | /* This should be called with the queue_lock held. */ |
| 2394 | static void bfqg_stats_update_group_wait_time(struct bfqg_stats *stats) |
| 2395 | { |
| 2396 | unsigned long long now; |
| 2397 | |
| 2398 | if (!bfqg_stats_waiting(stats)) |
| 2399 | return; |
| 2400 | |
| 2401 | now = sched_clock(); |
| 2402 | if (time_after64(now, stats->start_group_wait_time)) |
| 2403 | blkg_stat_add(&stats->group_wait_time, |
| 2404 | now - stats->start_group_wait_time); |
| 2405 | bfqg_stats_clear_waiting(stats); |
| 2406 | } |
| 2407 | |
| 2408 | /* This should be called with the queue_lock held. */ |
| 2409 | static void bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg, |
| 2410 | struct bfq_group *curr_bfqg) |
| 2411 | { |
| 2412 | struct bfqg_stats *stats = &bfqg->stats; |
| 2413 | |
| 2414 | if (bfqg_stats_waiting(stats)) |
| 2415 | return; |
| 2416 | if (bfqg == curr_bfqg) |
| 2417 | return; |
| 2418 | stats->start_group_wait_time = sched_clock(); |
| 2419 | bfqg_stats_mark_waiting(stats); |
| 2420 | } |
| 2421 | |
| 2422 | /* This should be called with the queue_lock held. */ |
| 2423 | static void bfqg_stats_end_empty_time(struct bfqg_stats *stats) |
| 2424 | { |
| 2425 | unsigned long long now; |
| 2426 | |
| 2427 | if (!bfqg_stats_empty(stats)) |
| 2428 | return; |
| 2429 | |
| 2430 | now = sched_clock(); |
| 2431 | if (time_after64(now, stats->start_empty_time)) |
| 2432 | blkg_stat_add(&stats->empty_time, |
| 2433 | now - stats->start_empty_time); |
| 2434 | bfqg_stats_clear_empty(stats); |
| 2435 | } |
| 2436 | |
| 2437 | static void bfqg_stats_update_dequeue(struct bfq_group *bfqg) |
| 2438 | { |
| 2439 | blkg_stat_add(&bfqg->stats.dequeue, 1); |
| 2440 | } |
| 2441 | |
| 2442 | static void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) |
| 2443 | { |
| 2444 | struct bfqg_stats *stats = &bfqg->stats; |
| 2445 | |
| 2446 | if (blkg_rwstat_total(&stats->queued)) |
| 2447 | return; |
| 2448 | |
| 2449 | /* |
| 2450 | * group is already marked empty. This can happen if bfqq got new |
| 2451 | * request in parent group and moved to this group while being added |
| 2452 | * to service tree. Just ignore the event and move on. |
| 2453 | */ |
| 2454 | if (bfqg_stats_empty(stats)) |
| 2455 | return; |
| 2456 | |
| 2457 | stats->start_empty_time = sched_clock(); |
| 2458 | bfqg_stats_mark_empty(stats); |
| 2459 | } |
| 2460 | |
| 2461 | static void bfqg_stats_update_idle_time(struct bfq_group *bfqg) |
| 2462 | { |
| 2463 | struct bfqg_stats *stats = &bfqg->stats; |
| 2464 | |
| 2465 | if (bfqg_stats_idling(stats)) { |
| 2466 | unsigned long long now = sched_clock(); |
| 2467 | |
| 2468 | if (time_after64(now, stats->start_idle_time)) |
| 2469 | blkg_stat_add(&stats->idle_time, |
| 2470 | now - stats->start_idle_time); |
| 2471 | bfqg_stats_clear_idling(stats); |
| 2472 | } |
| 2473 | } |
| 2474 | |
| 2475 | static void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) |
| 2476 | { |
| 2477 | struct bfqg_stats *stats = &bfqg->stats; |
| 2478 | |
| 2479 | stats->start_idle_time = sched_clock(); |
| 2480 | bfqg_stats_mark_idling(stats); |
| 2481 | } |
| 2482 | |
| 2483 | static void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) |
| 2484 | { |
| 2485 | struct bfqg_stats *stats = &bfqg->stats; |
| 2486 | |
| 2487 | blkg_stat_add(&stats->avg_queue_size_sum, |
| 2488 | blkg_rwstat_total(&stats->queued)); |
| 2489 | blkg_stat_add(&stats->avg_queue_size_samples, 1); |
| 2490 | bfqg_stats_update_group_wait_time(stats); |
| 2491 | } |
| 2492 | |
| 2493 | /* |
| 2494 | * blk-cgroup policy-related handlers |
| 2495 | * The following functions help in converting between blk-cgroup |
| 2496 | * internal structures and BFQ-specific structures. |
| 2497 | */ |
| 2498 | |
| 2499 | static struct bfq_group *pd_to_bfqg(struct blkg_policy_data *pd) |
| 2500 | { |
| 2501 | return pd ? container_of(pd, struct bfq_group, pd) : NULL; |
| 2502 | } |
| 2503 | |
| 2504 | static struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg) |
| 2505 | { |
| 2506 | return pd_to_blkg(&bfqg->pd); |
| 2507 | } |
| 2508 | |
| 2509 | static struct blkcg_policy blkcg_policy_bfq; |
| 2510 | |
| 2511 | static struct bfq_group *blkg_to_bfqg(struct blkcg_gq *blkg) |
| 2512 | { |
| 2513 | return pd_to_bfqg(blkg_to_pd(blkg, &blkcg_policy_bfq)); |
| 2514 | } |
| 2515 | |
| 2516 | /* |
| 2517 | * bfq_group handlers |
| 2518 | * The following functions help in navigating the bfq_group hierarchy |
| 2519 | * by allowing to find the parent of a bfq_group or the bfq_group |
| 2520 | * associated to a bfq_queue. |
| 2521 | */ |
| 2522 | |
| 2523 | static struct bfq_group *bfqg_parent(struct bfq_group *bfqg) |
| 2524 | { |
| 2525 | struct blkcg_gq *pblkg = bfqg_to_blkg(bfqg)->parent; |
| 2526 | |
| 2527 | return pblkg ? blkg_to_bfqg(pblkg) : NULL; |
| 2528 | } |
| 2529 | |
| 2530 | static struct bfq_group *bfqq_group(struct bfq_queue *bfqq) |
| 2531 | { |
| 2532 | struct bfq_entity *group_entity = bfqq->entity.parent; |
| 2533 | |
| 2534 | return group_entity ? container_of(group_entity, struct bfq_group, |
| 2535 | entity) : |
| 2536 | bfqq->bfqd->root_group; |
| 2537 | } |
| 2538 | |
| 2539 | /* |
| 2540 | * The following two functions handle get and put of a bfq_group by |
| 2541 | * wrapping the related blk-cgroup hooks. |
| 2542 | */ |
| 2543 | |
| 2544 | static void bfqg_get(struct bfq_group *bfqg) |
| 2545 | { |
| 2546 | return blkg_get(bfqg_to_blkg(bfqg)); |
| 2547 | } |
| 2548 | |
| 2549 | static void bfqg_put(struct bfq_group *bfqg) |
| 2550 | { |
| 2551 | return blkg_put(bfqg_to_blkg(bfqg)); |
| 2552 | } |
| 2553 | |
| 2554 | static void bfqg_stats_update_io_add(struct bfq_group *bfqg, |
| 2555 | struct bfq_queue *bfqq, |
| 2556 | unsigned int op) |
| 2557 | { |
| 2558 | blkg_rwstat_add(&bfqg->stats.queued, op, 1); |
| 2559 | bfqg_stats_end_empty_time(&bfqg->stats); |
| 2560 | if (!(bfqq == ((struct bfq_data *)bfqg->bfqd)->in_service_queue)) |
| 2561 | bfqg_stats_set_start_group_wait_time(bfqg, bfqq_group(bfqq)); |
| 2562 | } |
| 2563 | |
| 2564 | static void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) |
| 2565 | { |
| 2566 | blkg_rwstat_add(&bfqg->stats.queued, op, -1); |
| 2567 | } |
| 2568 | |
| 2569 | static void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) |
| 2570 | { |
| 2571 | blkg_rwstat_add(&bfqg->stats.merged, op, 1); |
| 2572 | } |
| 2573 | |
| 2574 | static void bfqg_stats_update_completion(struct bfq_group *bfqg, |
| 2575 | uint64_t start_time, uint64_t io_start_time, |
| 2576 | unsigned int op) |
| 2577 | { |
| 2578 | struct bfqg_stats *stats = &bfqg->stats; |
| 2579 | unsigned long long now = sched_clock(); |
| 2580 | |
| 2581 | if (time_after64(now, io_start_time)) |
| 2582 | blkg_rwstat_add(&stats->service_time, op, |
| 2583 | now - io_start_time); |
| 2584 | if (time_after64(io_start_time, start_time)) |
| 2585 | blkg_rwstat_add(&stats->wait_time, op, |
| 2586 | io_start_time - start_time); |
| 2587 | } |
| 2588 | |
| 2589 | /* @stats = 0 */ |
| 2590 | static void bfqg_stats_reset(struct bfqg_stats *stats) |
| 2591 | { |
| 2592 | /* queued stats shouldn't be cleared */ |
| 2593 | blkg_rwstat_reset(&stats->merged); |
| 2594 | blkg_rwstat_reset(&stats->service_time); |
| 2595 | blkg_rwstat_reset(&stats->wait_time); |
| 2596 | blkg_stat_reset(&stats->time); |
| 2597 | blkg_stat_reset(&stats->avg_queue_size_sum); |
| 2598 | blkg_stat_reset(&stats->avg_queue_size_samples); |
| 2599 | blkg_stat_reset(&stats->dequeue); |
| 2600 | blkg_stat_reset(&stats->group_wait_time); |
| 2601 | blkg_stat_reset(&stats->idle_time); |
| 2602 | blkg_stat_reset(&stats->empty_time); |
| 2603 | } |
| 2604 | |
| 2605 | /* @to += @from */ |
| 2606 | static void bfqg_stats_add_aux(struct bfqg_stats *to, struct bfqg_stats *from) |
| 2607 | { |
| 2608 | if (!to || !from) |
| 2609 | return; |
| 2610 | |
| 2611 | /* queued stats shouldn't be cleared */ |
| 2612 | blkg_rwstat_add_aux(&to->merged, &from->merged); |
| 2613 | blkg_rwstat_add_aux(&to->service_time, &from->service_time); |
| 2614 | blkg_rwstat_add_aux(&to->wait_time, &from->wait_time); |
| 2615 | blkg_stat_add_aux(&from->time, &from->time); |
| 2616 | blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum); |
| 2617 | blkg_stat_add_aux(&to->avg_queue_size_samples, |
| 2618 | &from->avg_queue_size_samples); |
| 2619 | blkg_stat_add_aux(&to->dequeue, &from->dequeue); |
| 2620 | blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time); |
| 2621 | blkg_stat_add_aux(&to->idle_time, &from->idle_time); |
| 2622 | blkg_stat_add_aux(&to->empty_time, &from->empty_time); |
| 2623 | } |
| 2624 | |
| 2625 | /* |
| 2626 | * Transfer @bfqg's stats to its parent's aux counts so that the ancestors' |
| 2627 | * recursive stats can still account for the amount used by this bfqg after |
| 2628 | * it's gone. |
| 2629 | */ |
| 2630 | static void bfqg_stats_xfer_dead(struct bfq_group *bfqg) |
| 2631 | { |
| 2632 | struct bfq_group *parent; |
| 2633 | |
| 2634 | if (!bfqg) /* root_group */ |
| 2635 | return; |
| 2636 | |
| 2637 | parent = bfqg_parent(bfqg); |
| 2638 | |
| 2639 | lockdep_assert_held(bfqg_to_blkg(bfqg)->q->queue_lock); |
| 2640 | |
| 2641 | if (unlikely(!parent)) |
| 2642 | return; |
| 2643 | |
| 2644 | bfqg_stats_add_aux(&parent->stats, &bfqg->stats); |
| 2645 | bfqg_stats_reset(&bfqg->stats); |
| 2646 | } |
| 2647 | |
| 2648 | static void bfq_init_entity(struct bfq_entity *entity, |
| 2649 | struct bfq_group *bfqg) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2650 | { |
| 2651 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 2652 | |
| 2653 | entity->weight = entity->new_weight; |
| 2654 | entity->orig_weight = entity->new_weight; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2655 | if (bfqq) { |
| 2656 | bfqq->ioprio = bfqq->new_ioprio; |
| 2657 | bfqq->ioprio_class = bfqq->new_ioprio_class; |
| 2658 | bfqg_get(bfqg); |
| 2659 | } |
| 2660 | entity->parent = bfqg->my_entity; /* NULL for root group */ |
| 2661 | entity->sched_data = &bfqg->sched_data; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 2662 | } |
| 2663 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 2664 | static void bfqg_stats_exit(struct bfqg_stats *stats) |
| 2665 | { |
| 2666 | blkg_rwstat_exit(&stats->merged); |
| 2667 | blkg_rwstat_exit(&stats->service_time); |
| 2668 | blkg_rwstat_exit(&stats->wait_time); |
| 2669 | blkg_rwstat_exit(&stats->queued); |
| 2670 | blkg_stat_exit(&stats->time); |
| 2671 | blkg_stat_exit(&stats->avg_queue_size_sum); |
| 2672 | blkg_stat_exit(&stats->avg_queue_size_samples); |
| 2673 | blkg_stat_exit(&stats->dequeue); |
| 2674 | blkg_stat_exit(&stats->group_wait_time); |
| 2675 | blkg_stat_exit(&stats->idle_time); |
| 2676 | blkg_stat_exit(&stats->empty_time); |
| 2677 | } |
| 2678 | |
| 2679 | static int bfqg_stats_init(struct bfqg_stats *stats, gfp_t gfp) |
| 2680 | { |
| 2681 | if (blkg_rwstat_init(&stats->merged, gfp) || |
| 2682 | blkg_rwstat_init(&stats->service_time, gfp) || |
| 2683 | blkg_rwstat_init(&stats->wait_time, gfp) || |
| 2684 | blkg_rwstat_init(&stats->queued, gfp) || |
| 2685 | blkg_stat_init(&stats->time, gfp) || |
| 2686 | blkg_stat_init(&stats->avg_queue_size_sum, gfp) || |
| 2687 | blkg_stat_init(&stats->avg_queue_size_samples, gfp) || |
| 2688 | blkg_stat_init(&stats->dequeue, gfp) || |
| 2689 | blkg_stat_init(&stats->group_wait_time, gfp) || |
| 2690 | blkg_stat_init(&stats->idle_time, gfp) || |
| 2691 | blkg_stat_init(&stats->empty_time, gfp)) { |
| 2692 | bfqg_stats_exit(stats); |
| 2693 | return -ENOMEM; |
| 2694 | } |
| 2695 | |
| 2696 | return 0; |
| 2697 | } |
| 2698 | |
| 2699 | static struct bfq_group_data *cpd_to_bfqgd(struct blkcg_policy_data *cpd) |
| 2700 | { |
| 2701 | return cpd ? container_of(cpd, struct bfq_group_data, pd) : NULL; |
| 2702 | } |
| 2703 | |
| 2704 | static struct bfq_group_data *blkcg_to_bfqgd(struct blkcg *blkcg) |
| 2705 | { |
| 2706 | return cpd_to_bfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_bfq)); |
| 2707 | } |
| 2708 | |
| 2709 | static struct blkcg_policy_data *bfq_cpd_alloc(gfp_t gfp) |
| 2710 | { |
| 2711 | struct bfq_group_data *bgd; |
| 2712 | |
| 2713 | bgd = kzalloc(sizeof(*bgd), gfp); |
| 2714 | if (!bgd) |
| 2715 | return NULL; |
| 2716 | return &bgd->pd; |
| 2717 | } |
| 2718 | |
| 2719 | static void bfq_cpd_init(struct blkcg_policy_data *cpd) |
| 2720 | { |
| 2721 | struct bfq_group_data *d = cpd_to_bfqgd(cpd); |
| 2722 | |
| 2723 | d->weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ? |
| 2724 | CGROUP_WEIGHT_DFL : BFQ_WEIGHT_LEGACY_DFL; |
| 2725 | } |
| 2726 | |
| 2727 | static void bfq_cpd_free(struct blkcg_policy_data *cpd) |
| 2728 | { |
| 2729 | kfree(cpd_to_bfqgd(cpd)); |
| 2730 | } |
| 2731 | |
| 2732 | static struct blkg_policy_data *bfq_pd_alloc(gfp_t gfp, int node) |
| 2733 | { |
| 2734 | struct bfq_group *bfqg; |
| 2735 | |
| 2736 | bfqg = kzalloc_node(sizeof(*bfqg), gfp, node); |
| 2737 | if (!bfqg) |
| 2738 | return NULL; |
| 2739 | |
| 2740 | if (bfqg_stats_init(&bfqg->stats, gfp)) { |
| 2741 | kfree(bfqg); |
| 2742 | return NULL; |
| 2743 | } |
| 2744 | |
| 2745 | return &bfqg->pd; |
| 2746 | } |
| 2747 | |
| 2748 | static void bfq_pd_init(struct blkg_policy_data *pd) |
| 2749 | { |
| 2750 | struct blkcg_gq *blkg = pd_to_blkg(pd); |
| 2751 | struct bfq_group *bfqg = blkg_to_bfqg(blkg); |
| 2752 | struct bfq_data *bfqd = blkg->q->elevator->elevator_data; |
| 2753 | struct bfq_entity *entity = &bfqg->entity; |
| 2754 | struct bfq_group_data *d = blkcg_to_bfqgd(blkg->blkcg); |
| 2755 | |
| 2756 | entity->orig_weight = entity->weight = entity->new_weight = d->weight; |
| 2757 | entity->my_sched_data = &bfqg->sched_data; |
| 2758 | bfqg->my_entity = entity; /* |
| 2759 | * the root_group's will be set to NULL |
| 2760 | * in bfq_init_queue() |
| 2761 | */ |
| 2762 | bfqg->bfqd = bfqd; |
| 2763 | } |
| 2764 | |
| 2765 | static void bfq_pd_free(struct blkg_policy_data *pd) |
| 2766 | { |
| 2767 | struct bfq_group *bfqg = pd_to_bfqg(pd); |
| 2768 | |
| 2769 | bfqg_stats_exit(&bfqg->stats); |
| 2770 | return kfree(bfqg); |
| 2771 | } |
| 2772 | |
| 2773 | static void bfq_pd_reset_stats(struct blkg_policy_data *pd) |
| 2774 | { |
| 2775 | struct bfq_group *bfqg = pd_to_bfqg(pd); |
| 2776 | |
| 2777 | bfqg_stats_reset(&bfqg->stats); |
| 2778 | } |
| 2779 | |
| 2780 | static void bfq_group_set_parent(struct bfq_group *bfqg, |
| 2781 | struct bfq_group *parent) |
| 2782 | { |
| 2783 | struct bfq_entity *entity; |
| 2784 | |
| 2785 | entity = &bfqg->entity; |
| 2786 | entity->parent = parent->my_entity; |
| 2787 | entity->sched_data = &parent->sched_data; |
| 2788 | } |
| 2789 | |
| 2790 | static struct bfq_group *bfq_lookup_bfqg(struct bfq_data *bfqd, |
| 2791 | struct blkcg *blkcg) |
| 2792 | { |
| 2793 | struct blkcg_gq *blkg; |
| 2794 | |
| 2795 | blkg = blkg_lookup(blkcg, bfqd->queue); |
| 2796 | if (likely(blkg)) |
| 2797 | return blkg_to_bfqg(blkg); |
| 2798 | return NULL; |
| 2799 | } |
| 2800 | |
| 2801 | static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd, |
| 2802 | struct blkcg *blkcg) |
| 2803 | { |
| 2804 | struct bfq_group *bfqg, *parent; |
| 2805 | struct bfq_entity *entity; |
| 2806 | |
| 2807 | bfqg = bfq_lookup_bfqg(bfqd, blkcg); |
| 2808 | |
| 2809 | if (unlikely(!bfqg)) |
| 2810 | return NULL; |
| 2811 | |
| 2812 | /* |
| 2813 | * Update chain of bfq_groups as we might be handling a leaf group |
| 2814 | * which, along with some of its relatives, has not been hooked yet |
| 2815 | * to the private hierarchy of BFQ. |
| 2816 | */ |
| 2817 | entity = &bfqg->entity; |
| 2818 | for_each_entity(entity) { |
| 2819 | bfqg = container_of(entity, struct bfq_group, entity); |
| 2820 | if (bfqg != bfqd->root_group) { |
| 2821 | parent = bfqg_parent(bfqg); |
| 2822 | if (!parent) |
| 2823 | parent = bfqd->root_group; |
| 2824 | bfq_group_set_parent(bfqg, parent); |
| 2825 | } |
| 2826 | } |
| 2827 | |
| 2828 | return bfqg; |
| 2829 | } |
| 2830 | |
| 2831 | static void bfq_bfqq_expire(struct bfq_data *bfqd, |
| 2832 | struct bfq_queue *bfqq, |
| 2833 | bool compensate, |
| 2834 | enum bfqq_expiration reason); |
| 2835 | |
| 2836 | /** |
| 2837 | * bfq_bfqq_move - migrate @bfqq to @bfqg. |
| 2838 | * @bfqd: queue descriptor. |
| 2839 | * @bfqq: the queue to move. |
| 2840 | * @bfqg: the group to move to. |
| 2841 | * |
| 2842 | * Move @bfqq to @bfqg, deactivating it from its old group and reactivating |
| 2843 | * it on the new one. Avoid putting the entity on the old group idle tree. |
| 2844 | * |
| 2845 | * Must be called under the queue lock; the cgroup owning @bfqg must |
| 2846 | * not disappear (by now this just means that we are called under |
| 2847 | * rcu_read_lock()). |
| 2848 | */ |
| 2849 | static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 2850 | struct bfq_group *bfqg) |
| 2851 | { |
| 2852 | struct bfq_entity *entity = &bfqq->entity; |
| 2853 | |
| 2854 | /* If bfqq is empty, then bfq_bfqq_expire also invokes |
| 2855 | * bfq_del_bfqq_busy, thereby removing bfqq and its entity |
| 2856 | * from data structures related to current group. Otherwise we |
| 2857 | * need to remove bfqq explicitly with bfq_deactivate_bfqq, as |
| 2858 | * we do below. |
| 2859 | */ |
| 2860 | if (bfqq == bfqd->in_service_queue) |
| 2861 | bfq_bfqq_expire(bfqd, bfqd->in_service_queue, |
| 2862 | false, BFQQE_PREEMPTED); |
| 2863 | |
| 2864 | if (bfq_bfqq_busy(bfqq)) |
| 2865 | bfq_deactivate_bfqq(bfqd, bfqq, false, false); |
| 2866 | else if (entity->on_st) |
| 2867 | bfq_put_idle_entity(bfq_entity_service_tree(entity), entity); |
| 2868 | bfqg_put(bfqq_group(bfqq)); |
| 2869 | |
| 2870 | /* |
| 2871 | * Here we use a reference to bfqg. We don't need a refcounter |
| 2872 | * as the cgroup reference will not be dropped, so that its |
| 2873 | * destroy() callback will not be invoked. |
| 2874 | */ |
| 2875 | entity->parent = bfqg->my_entity; |
| 2876 | entity->sched_data = &bfqg->sched_data; |
| 2877 | bfqg_get(bfqg); |
| 2878 | |
| 2879 | if (bfq_bfqq_busy(bfqq)) |
| 2880 | bfq_activate_bfqq(bfqd, bfqq); |
| 2881 | |
| 2882 | if (!bfqd->in_service_queue && !bfqd->rq_in_driver) |
| 2883 | bfq_schedule_dispatch(bfqd); |
| 2884 | } |
| 2885 | |
| 2886 | /** |
| 2887 | * __bfq_bic_change_cgroup - move @bic to @cgroup. |
| 2888 | * @bfqd: the queue descriptor. |
| 2889 | * @bic: the bic to move. |
| 2890 | * @blkcg: the blk-cgroup to move to. |
| 2891 | * |
| 2892 | * Move bic to blkcg, assuming that bfqd->queue is locked; the caller |
| 2893 | * has to make sure that the reference to cgroup is valid across the call. |
| 2894 | * |
| 2895 | * NOTE: an alternative approach might have been to store the current |
| 2896 | * cgroup in bfqq and getting a reference to it, reducing the lookup |
| 2897 | * time here, at the price of slightly more complex code. |
| 2898 | */ |
| 2899 | static struct bfq_group *__bfq_bic_change_cgroup(struct bfq_data *bfqd, |
| 2900 | struct bfq_io_cq *bic, |
| 2901 | struct blkcg *blkcg) |
| 2902 | { |
| 2903 | struct bfq_queue *async_bfqq = bic_to_bfqq(bic, 0); |
| 2904 | struct bfq_queue *sync_bfqq = bic_to_bfqq(bic, 1); |
| 2905 | struct bfq_group *bfqg; |
| 2906 | struct bfq_entity *entity; |
| 2907 | |
| 2908 | bfqg = bfq_find_set_group(bfqd, blkcg); |
| 2909 | |
| 2910 | if (unlikely(!bfqg)) |
| 2911 | bfqg = bfqd->root_group; |
| 2912 | |
| 2913 | if (async_bfqq) { |
| 2914 | entity = &async_bfqq->entity; |
| 2915 | |
| 2916 | if (entity->sched_data != &bfqg->sched_data) { |
| 2917 | bic_set_bfqq(bic, NULL, 0); |
| 2918 | bfq_log_bfqq(bfqd, async_bfqq, |
| 2919 | "bic_change_group: %p %d", |
| 2920 | async_bfqq, |
| 2921 | async_bfqq->ref); |
| 2922 | bfq_put_queue(async_bfqq); |
| 2923 | } |
| 2924 | } |
| 2925 | |
| 2926 | if (sync_bfqq) { |
| 2927 | entity = &sync_bfqq->entity; |
| 2928 | if (entity->sched_data != &bfqg->sched_data) |
| 2929 | bfq_bfqq_move(bfqd, sync_bfqq, bfqg); |
| 2930 | } |
| 2931 | |
| 2932 | return bfqg; |
| 2933 | } |
| 2934 | |
| 2935 | static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) |
| 2936 | { |
| 2937 | struct bfq_data *bfqd = bic_to_bfqd(bic); |
| 2938 | struct bfq_group *bfqg = NULL; |
| 2939 | uint64_t serial_nr; |
| 2940 | |
| 2941 | rcu_read_lock(); |
| 2942 | serial_nr = bio_blkcg(bio)->css.serial_nr; |
| 2943 | |
| 2944 | /* |
| 2945 | * Check whether blkcg has changed. The condition may trigger |
| 2946 | * spuriously on a newly created cic but there's no harm. |
| 2947 | */ |
| 2948 | if (unlikely(!bfqd) || likely(bic->blkcg_serial_nr == serial_nr)) |
| 2949 | goto out; |
| 2950 | |
| 2951 | bfqg = __bfq_bic_change_cgroup(bfqd, bic, bio_blkcg(bio)); |
| 2952 | bic->blkcg_serial_nr = serial_nr; |
| 2953 | out: |
| 2954 | rcu_read_unlock(); |
| 2955 | } |
| 2956 | |
| 2957 | /** |
| 2958 | * bfq_flush_idle_tree - deactivate any entity on the idle tree of @st. |
| 2959 | * @st: the service tree being flushed. |
| 2960 | */ |
| 2961 | static void bfq_flush_idle_tree(struct bfq_service_tree *st) |
| 2962 | { |
| 2963 | struct bfq_entity *entity = st->first_idle; |
| 2964 | |
| 2965 | for (; entity ; entity = st->first_idle) |
| 2966 | __bfq_deactivate_entity(entity, false); |
| 2967 | } |
| 2968 | |
| 2969 | /** |
| 2970 | * bfq_reparent_leaf_entity - move leaf entity to the root_group. |
| 2971 | * @bfqd: the device data structure with the root group. |
| 2972 | * @entity: the entity to move. |
| 2973 | */ |
| 2974 | static void bfq_reparent_leaf_entity(struct bfq_data *bfqd, |
| 2975 | struct bfq_entity *entity) |
| 2976 | { |
| 2977 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 2978 | |
| 2979 | bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); |
| 2980 | } |
| 2981 | |
| 2982 | /** |
| 2983 | * bfq_reparent_active_entities - move to the root group all active |
| 2984 | * entities. |
| 2985 | * @bfqd: the device data structure with the root group. |
| 2986 | * @bfqg: the group to move from. |
| 2987 | * @st: the service tree with the entities. |
| 2988 | * |
| 2989 | * Needs queue_lock to be taken and reference to be valid over the call. |
| 2990 | */ |
| 2991 | static void bfq_reparent_active_entities(struct bfq_data *bfqd, |
| 2992 | struct bfq_group *bfqg, |
| 2993 | struct bfq_service_tree *st) |
| 2994 | { |
| 2995 | struct rb_root *active = &st->active; |
| 2996 | struct bfq_entity *entity = NULL; |
| 2997 | |
| 2998 | if (!RB_EMPTY_ROOT(&st->active)) |
| 2999 | entity = bfq_entity_of(rb_first(active)); |
| 3000 | |
| 3001 | for (; entity ; entity = bfq_entity_of(rb_first(active))) |
| 3002 | bfq_reparent_leaf_entity(bfqd, entity); |
| 3003 | |
| 3004 | if (bfqg->sched_data.in_service_entity) |
| 3005 | bfq_reparent_leaf_entity(bfqd, |
| 3006 | bfqg->sched_data.in_service_entity); |
| 3007 | } |
| 3008 | |
| 3009 | /** |
| 3010 | * bfq_pd_offline - deactivate the entity associated with @pd, |
| 3011 | * and reparent its children entities. |
| 3012 | * @pd: descriptor of the policy going offline. |
| 3013 | * |
| 3014 | * blkio already grabs the queue_lock for us, so no need to use |
| 3015 | * RCU-based magic |
| 3016 | */ |
| 3017 | static void bfq_pd_offline(struct blkg_policy_data *pd) |
| 3018 | { |
| 3019 | struct bfq_service_tree *st; |
| 3020 | struct bfq_group *bfqg = pd_to_bfqg(pd); |
| 3021 | struct bfq_data *bfqd = bfqg->bfqd; |
| 3022 | struct bfq_entity *entity = bfqg->my_entity; |
| 3023 | unsigned long flags; |
| 3024 | int i; |
| 3025 | |
| 3026 | if (!entity) /* root group */ |
| 3027 | return; |
| 3028 | |
| 3029 | spin_lock_irqsave(&bfqd->lock, flags); |
| 3030 | /* |
| 3031 | * Empty all service_trees belonging to this group before |
| 3032 | * deactivating the group itself. |
| 3033 | */ |
| 3034 | for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) { |
| 3035 | st = bfqg->sched_data.service_tree + i; |
| 3036 | |
| 3037 | /* |
| 3038 | * The idle tree may still contain bfq_queues belonging |
| 3039 | * to exited task because they never migrated to a different |
| 3040 | * cgroup from the one being destroyed now. No one else |
| 3041 | * can access them so it's safe to act without any lock. |
| 3042 | */ |
| 3043 | bfq_flush_idle_tree(st); |
| 3044 | |
| 3045 | /* |
| 3046 | * It may happen that some queues are still active |
| 3047 | * (busy) upon group destruction (if the corresponding |
| 3048 | * processes have been forced to terminate). We move |
| 3049 | * all the leaf entities corresponding to these queues |
| 3050 | * to the root_group. |
| 3051 | * Also, it may happen that the group has an entity |
| 3052 | * in service, which is disconnected from the active |
| 3053 | * tree: it must be moved, too. |
| 3054 | * There is no need to put the sync queues, as the |
| 3055 | * scheduler has taken no reference. |
| 3056 | */ |
| 3057 | bfq_reparent_active_entities(bfqd, bfqg, st); |
| 3058 | } |
| 3059 | |
| 3060 | __bfq_deactivate_entity(entity, false); |
| 3061 | bfq_put_async_queues(bfqd, bfqg); |
| 3062 | |
| 3063 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 3064 | /* |
| 3065 | * @blkg is going offline and will be ignored by |
| 3066 | * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so |
| 3067 | * that they don't get lost. If IOs complete after this point, the |
| 3068 | * stats for them will be lost. Oh well... |
| 3069 | */ |
| 3070 | bfqg_stats_xfer_dead(bfqg); |
| 3071 | } |
| 3072 | |
| 3073 | static int bfq_io_show_weight(struct seq_file *sf, void *v) |
| 3074 | { |
| 3075 | struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); |
| 3076 | struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg); |
| 3077 | unsigned int val = 0; |
| 3078 | |
| 3079 | if (bfqgd) |
| 3080 | val = bfqgd->weight; |
| 3081 | |
| 3082 | seq_printf(sf, "%u\n", val); |
| 3083 | |
| 3084 | return 0; |
| 3085 | } |
| 3086 | |
| 3087 | static int bfq_io_set_weight_legacy(struct cgroup_subsys_state *css, |
| 3088 | struct cftype *cftype, |
| 3089 | u64 val) |
| 3090 | { |
| 3091 | struct blkcg *blkcg = css_to_blkcg(css); |
| 3092 | struct bfq_group_data *bfqgd = blkcg_to_bfqgd(blkcg); |
| 3093 | struct blkcg_gq *blkg; |
| 3094 | int ret = -ERANGE; |
| 3095 | |
| 3096 | if (val < BFQ_MIN_WEIGHT || val > BFQ_MAX_WEIGHT) |
| 3097 | return ret; |
| 3098 | |
| 3099 | ret = 0; |
| 3100 | spin_lock_irq(&blkcg->lock); |
| 3101 | bfqgd->weight = (unsigned short)val; |
| 3102 | hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { |
| 3103 | struct bfq_group *bfqg = blkg_to_bfqg(blkg); |
| 3104 | |
| 3105 | if (!bfqg) |
| 3106 | continue; |
| 3107 | /* |
| 3108 | * Setting the prio_changed flag of the entity |
| 3109 | * to 1 with new_weight == weight would re-set |
| 3110 | * the value of the weight to its ioprio mapping. |
| 3111 | * Set the flag only if necessary. |
| 3112 | */ |
| 3113 | if ((unsigned short)val != bfqg->entity.new_weight) { |
| 3114 | bfqg->entity.new_weight = (unsigned short)val; |
| 3115 | /* |
| 3116 | * Make sure that the above new value has been |
| 3117 | * stored in bfqg->entity.new_weight before |
| 3118 | * setting the prio_changed flag. In fact, |
| 3119 | * this flag may be read asynchronously (in |
| 3120 | * critical sections protected by a different |
| 3121 | * lock than that held here), and finding this |
| 3122 | * flag set may cause the execution of the code |
| 3123 | * for updating parameters whose value may |
| 3124 | * depend also on bfqg->entity.new_weight (in |
| 3125 | * __bfq_entity_update_weight_prio). |
| 3126 | * This barrier makes sure that the new value |
| 3127 | * of bfqg->entity.new_weight is correctly |
| 3128 | * seen in that code. |
| 3129 | */ |
| 3130 | smp_wmb(); |
| 3131 | bfqg->entity.prio_changed = 1; |
| 3132 | } |
| 3133 | } |
| 3134 | spin_unlock_irq(&blkcg->lock); |
| 3135 | |
| 3136 | return ret; |
| 3137 | } |
| 3138 | |
| 3139 | static ssize_t bfq_io_set_weight(struct kernfs_open_file *of, |
| 3140 | char *buf, size_t nbytes, |
| 3141 | loff_t off) |
| 3142 | { |
| 3143 | u64 weight; |
| 3144 | /* First unsigned long found in the file is used */ |
| 3145 | int ret = kstrtoull(strim(buf), 0, &weight); |
| 3146 | |
| 3147 | if (ret) |
| 3148 | return ret; |
| 3149 | |
| 3150 | return bfq_io_set_weight_legacy(of_css(of), NULL, weight); |
| 3151 | } |
| 3152 | |
| 3153 | static int bfqg_print_stat(struct seq_file *sf, void *v) |
| 3154 | { |
| 3155 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat, |
| 3156 | &blkcg_policy_bfq, seq_cft(sf)->private, false); |
| 3157 | return 0; |
| 3158 | } |
| 3159 | |
| 3160 | static int bfqg_print_rwstat(struct seq_file *sf, void *v) |
| 3161 | { |
| 3162 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat, |
| 3163 | &blkcg_policy_bfq, seq_cft(sf)->private, true); |
| 3164 | return 0; |
| 3165 | } |
| 3166 | |
| 3167 | static u64 bfqg_prfill_stat_recursive(struct seq_file *sf, |
| 3168 | struct blkg_policy_data *pd, int off) |
| 3169 | { |
| 3170 | u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd), |
| 3171 | &blkcg_policy_bfq, off); |
| 3172 | return __blkg_prfill_u64(sf, pd, sum); |
| 3173 | } |
| 3174 | |
| 3175 | static u64 bfqg_prfill_rwstat_recursive(struct seq_file *sf, |
| 3176 | struct blkg_policy_data *pd, int off) |
| 3177 | { |
| 3178 | struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd), |
| 3179 | &blkcg_policy_bfq, |
| 3180 | off); |
| 3181 | return __blkg_prfill_rwstat(sf, pd, &sum); |
| 3182 | } |
| 3183 | |
| 3184 | static int bfqg_print_stat_recursive(struct seq_file *sf, void *v) |
| 3185 | { |
| 3186 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), |
| 3187 | bfqg_prfill_stat_recursive, &blkcg_policy_bfq, |
| 3188 | seq_cft(sf)->private, false); |
| 3189 | return 0; |
| 3190 | } |
| 3191 | |
| 3192 | static int bfqg_print_rwstat_recursive(struct seq_file *sf, void *v) |
| 3193 | { |
| 3194 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), |
| 3195 | bfqg_prfill_rwstat_recursive, &blkcg_policy_bfq, |
| 3196 | seq_cft(sf)->private, true); |
| 3197 | return 0; |
| 3198 | } |
| 3199 | |
| 3200 | static u64 bfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd, |
| 3201 | int off) |
| 3202 | { |
| 3203 | u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes); |
| 3204 | |
| 3205 | return __blkg_prfill_u64(sf, pd, sum >> 9); |
| 3206 | } |
| 3207 | |
| 3208 | static int bfqg_print_stat_sectors(struct seq_file *sf, void *v) |
| 3209 | { |
| 3210 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), |
| 3211 | bfqg_prfill_sectors, &blkcg_policy_bfq, 0, false); |
| 3212 | return 0; |
| 3213 | } |
| 3214 | |
| 3215 | static u64 bfqg_prfill_sectors_recursive(struct seq_file *sf, |
| 3216 | struct blkg_policy_data *pd, int off) |
| 3217 | { |
| 3218 | struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL, |
| 3219 | offsetof(struct blkcg_gq, stat_bytes)); |
| 3220 | u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) + |
| 3221 | atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]); |
| 3222 | |
| 3223 | return __blkg_prfill_u64(sf, pd, sum >> 9); |
| 3224 | } |
| 3225 | |
| 3226 | static int bfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v) |
| 3227 | { |
| 3228 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), |
| 3229 | bfqg_prfill_sectors_recursive, &blkcg_policy_bfq, 0, |
| 3230 | false); |
| 3231 | return 0; |
| 3232 | } |
| 3233 | |
| 3234 | static u64 bfqg_prfill_avg_queue_size(struct seq_file *sf, |
| 3235 | struct blkg_policy_data *pd, int off) |
| 3236 | { |
| 3237 | struct bfq_group *bfqg = pd_to_bfqg(pd); |
| 3238 | u64 samples = blkg_stat_read(&bfqg->stats.avg_queue_size_samples); |
| 3239 | u64 v = 0; |
| 3240 | |
| 3241 | if (samples) { |
| 3242 | v = blkg_stat_read(&bfqg->stats.avg_queue_size_sum); |
| 3243 | v = div64_u64(v, samples); |
| 3244 | } |
| 3245 | __blkg_prfill_u64(sf, pd, v); |
| 3246 | return 0; |
| 3247 | } |
| 3248 | |
| 3249 | /* print avg_queue_size */ |
| 3250 | static int bfqg_print_avg_queue_size(struct seq_file *sf, void *v) |
| 3251 | { |
| 3252 | blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), |
| 3253 | bfqg_prfill_avg_queue_size, &blkcg_policy_bfq, |
| 3254 | 0, false); |
| 3255 | return 0; |
| 3256 | } |
| 3257 | |
| 3258 | static struct bfq_group * |
| 3259 | bfq_create_group_hierarchy(struct bfq_data *bfqd, int node) |
| 3260 | { |
| 3261 | int ret; |
| 3262 | |
| 3263 | ret = blkcg_activate_policy(bfqd->queue, &blkcg_policy_bfq); |
| 3264 | if (ret) |
| 3265 | return NULL; |
| 3266 | |
| 3267 | return blkg_to_bfqg(bfqd->queue->root_blkg); |
| 3268 | } |
| 3269 | |
| 3270 | static struct cftype bfq_blkcg_legacy_files[] = { |
| 3271 | { |
| 3272 | .name = "bfq.weight", |
| 3273 | .flags = CFTYPE_NOT_ON_ROOT, |
| 3274 | .seq_show = bfq_io_show_weight, |
| 3275 | .write_u64 = bfq_io_set_weight_legacy, |
| 3276 | }, |
| 3277 | |
| 3278 | /* statistics, covers only the tasks in the bfqg */ |
| 3279 | { |
| 3280 | .name = "bfq.time", |
| 3281 | .private = offsetof(struct bfq_group, stats.time), |
| 3282 | .seq_show = bfqg_print_stat, |
| 3283 | }, |
| 3284 | { |
| 3285 | .name = "bfq.sectors", |
| 3286 | .seq_show = bfqg_print_stat_sectors, |
| 3287 | }, |
| 3288 | { |
| 3289 | .name = "bfq.io_service_bytes", |
| 3290 | .private = (unsigned long)&blkcg_policy_bfq, |
| 3291 | .seq_show = blkg_print_stat_bytes, |
| 3292 | }, |
| 3293 | { |
| 3294 | .name = "bfq.io_serviced", |
| 3295 | .private = (unsigned long)&blkcg_policy_bfq, |
| 3296 | .seq_show = blkg_print_stat_ios, |
| 3297 | }, |
| 3298 | { |
| 3299 | .name = "bfq.io_service_time", |
| 3300 | .private = offsetof(struct bfq_group, stats.service_time), |
| 3301 | .seq_show = bfqg_print_rwstat, |
| 3302 | }, |
| 3303 | { |
| 3304 | .name = "bfq.io_wait_time", |
| 3305 | .private = offsetof(struct bfq_group, stats.wait_time), |
| 3306 | .seq_show = bfqg_print_rwstat, |
| 3307 | }, |
| 3308 | { |
| 3309 | .name = "bfq.io_merged", |
| 3310 | .private = offsetof(struct bfq_group, stats.merged), |
| 3311 | .seq_show = bfqg_print_rwstat, |
| 3312 | }, |
| 3313 | { |
| 3314 | .name = "bfq.io_queued", |
| 3315 | .private = offsetof(struct bfq_group, stats.queued), |
| 3316 | .seq_show = bfqg_print_rwstat, |
| 3317 | }, |
| 3318 | |
| 3319 | /* the same statictics which cover the bfqg and its descendants */ |
| 3320 | { |
| 3321 | .name = "bfq.time_recursive", |
| 3322 | .private = offsetof(struct bfq_group, stats.time), |
| 3323 | .seq_show = bfqg_print_stat_recursive, |
| 3324 | }, |
| 3325 | { |
| 3326 | .name = "bfq.sectors_recursive", |
| 3327 | .seq_show = bfqg_print_stat_sectors_recursive, |
| 3328 | }, |
| 3329 | { |
| 3330 | .name = "bfq.io_service_bytes_recursive", |
| 3331 | .private = (unsigned long)&blkcg_policy_bfq, |
| 3332 | .seq_show = blkg_print_stat_bytes_recursive, |
| 3333 | }, |
| 3334 | { |
| 3335 | .name = "bfq.io_serviced_recursive", |
| 3336 | .private = (unsigned long)&blkcg_policy_bfq, |
| 3337 | .seq_show = blkg_print_stat_ios_recursive, |
| 3338 | }, |
| 3339 | { |
| 3340 | .name = "bfq.io_service_time_recursive", |
| 3341 | .private = offsetof(struct bfq_group, stats.service_time), |
| 3342 | .seq_show = bfqg_print_rwstat_recursive, |
| 3343 | }, |
| 3344 | { |
| 3345 | .name = "bfq.io_wait_time_recursive", |
| 3346 | .private = offsetof(struct bfq_group, stats.wait_time), |
| 3347 | .seq_show = bfqg_print_rwstat_recursive, |
| 3348 | }, |
| 3349 | { |
| 3350 | .name = "bfq.io_merged_recursive", |
| 3351 | .private = offsetof(struct bfq_group, stats.merged), |
| 3352 | .seq_show = bfqg_print_rwstat_recursive, |
| 3353 | }, |
| 3354 | { |
| 3355 | .name = "bfq.io_queued_recursive", |
| 3356 | .private = offsetof(struct bfq_group, stats.queued), |
| 3357 | .seq_show = bfqg_print_rwstat_recursive, |
| 3358 | }, |
| 3359 | { |
| 3360 | .name = "bfq.avg_queue_size", |
| 3361 | .seq_show = bfqg_print_avg_queue_size, |
| 3362 | }, |
| 3363 | { |
| 3364 | .name = "bfq.group_wait_time", |
| 3365 | .private = offsetof(struct bfq_group, stats.group_wait_time), |
| 3366 | .seq_show = bfqg_print_stat, |
| 3367 | }, |
| 3368 | { |
| 3369 | .name = "bfq.idle_time", |
| 3370 | .private = offsetof(struct bfq_group, stats.idle_time), |
| 3371 | .seq_show = bfqg_print_stat, |
| 3372 | }, |
| 3373 | { |
| 3374 | .name = "bfq.empty_time", |
| 3375 | .private = offsetof(struct bfq_group, stats.empty_time), |
| 3376 | .seq_show = bfqg_print_stat, |
| 3377 | }, |
| 3378 | { |
| 3379 | .name = "bfq.dequeue", |
| 3380 | .private = offsetof(struct bfq_group, stats.dequeue), |
| 3381 | .seq_show = bfqg_print_stat, |
| 3382 | }, |
| 3383 | { } /* terminate */ |
| 3384 | }; |
| 3385 | |
| 3386 | static struct cftype bfq_blkg_files[] = { |
| 3387 | { |
| 3388 | .name = "bfq.weight", |
| 3389 | .flags = CFTYPE_NOT_ON_ROOT, |
| 3390 | .seq_show = bfq_io_show_weight, |
| 3391 | .write = bfq_io_set_weight, |
| 3392 | }, |
| 3393 | {} /* terminate */ |
| 3394 | }; |
| 3395 | |
| 3396 | #else /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 3397 | |
| 3398 | static inline void bfqg_stats_update_io_add(struct bfq_group *bfqg, |
| 3399 | struct bfq_queue *bfqq, unsigned int op) { } |
| 3400 | static inline void |
| 3401 | bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op) { } |
| 3402 | static inline void |
| 3403 | bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op) { } |
| 3404 | static inline void bfqg_stats_update_completion(struct bfq_group *bfqg, |
| 3405 | uint64_t start_time, uint64_t io_start_time, |
| 3406 | unsigned int op) { } |
| 3407 | static inline void |
| 3408 | bfqg_stats_set_start_group_wait_time(struct bfq_group *bfqg, |
| 3409 | struct bfq_group *curr_bfqg) { } |
| 3410 | static inline void bfqg_stats_end_empty_time(struct bfqg_stats *stats) { } |
| 3411 | static inline void bfqg_stats_update_dequeue(struct bfq_group *bfqg) { } |
| 3412 | static inline void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg) { } |
| 3413 | static inline void bfqg_stats_update_idle_time(struct bfq_group *bfqg) { } |
| 3414 | static inline void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg) { } |
| 3415 | static inline void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg) { } |
| 3416 | |
| 3417 | static void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 3418 | struct bfq_group *bfqg) {} |
| 3419 | |
| 3420 | static void bfq_init_entity(struct bfq_entity *entity, |
| 3421 | struct bfq_group *bfqg) |
| 3422 | { |
| 3423 | struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); |
| 3424 | |
| 3425 | entity->weight = entity->new_weight; |
| 3426 | entity->orig_weight = entity->new_weight; |
| 3427 | if (bfqq) { |
| 3428 | bfqq->ioprio = bfqq->new_ioprio; |
| 3429 | bfqq->ioprio_class = bfqq->new_ioprio_class; |
| 3430 | } |
| 3431 | entity->sched_data = &bfqg->sched_data; |
| 3432 | } |
| 3433 | |
| 3434 | static void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio) {} |
| 3435 | |
| 3436 | static struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd, |
| 3437 | struct blkcg *blkcg) |
| 3438 | { |
| 3439 | return bfqd->root_group; |
| 3440 | } |
| 3441 | |
| 3442 | static struct bfq_group *bfqq_group(struct bfq_queue *bfqq) |
| 3443 | { |
| 3444 | return bfqq->bfqd->root_group; |
| 3445 | } |
| 3446 | |
| 3447 | static struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, |
| 3448 | int node) |
| 3449 | { |
| 3450 | struct bfq_group *bfqg; |
| 3451 | int i; |
| 3452 | |
| 3453 | bfqg = kmalloc_node(sizeof(*bfqg), GFP_KERNEL | __GFP_ZERO, node); |
| 3454 | if (!bfqg) |
| 3455 | return NULL; |
| 3456 | |
| 3457 | for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) |
| 3458 | bfqg->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; |
| 3459 | |
| 3460 | return bfqg; |
| 3461 | } |
| 3462 | #endif /* CONFIG_BFQ_GROUP_IOSCHED */ |
| 3463 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3464 | #define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) |
| 3465 | #define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT) |
| 3466 | |
| 3467 | #define bfq_sample_valid(samples) ((samples) > 80) |
| 3468 | |
| 3469 | /* |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3470 | * Lifted from AS - choose which of rq1 and rq2 that is best served now. |
| 3471 | * We choose the request that is closesr to the head right now. Distance |
| 3472 | * behind the head is penalized and only allowed to a certain extent. |
| 3473 | */ |
| 3474 | static struct request *bfq_choose_req(struct bfq_data *bfqd, |
| 3475 | struct request *rq1, |
| 3476 | struct request *rq2, |
| 3477 | sector_t last) |
| 3478 | { |
| 3479 | sector_t s1, s2, d1 = 0, d2 = 0; |
| 3480 | unsigned long back_max; |
| 3481 | #define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ |
| 3482 | #define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ |
| 3483 | unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ |
| 3484 | |
| 3485 | if (!rq1 || rq1 == rq2) |
| 3486 | return rq2; |
| 3487 | if (!rq2) |
| 3488 | return rq1; |
| 3489 | |
| 3490 | if (rq_is_sync(rq1) && !rq_is_sync(rq2)) |
| 3491 | return rq1; |
| 3492 | else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) |
| 3493 | return rq2; |
| 3494 | if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) |
| 3495 | return rq1; |
| 3496 | else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) |
| 3497 | return rq2; |
| 3498 | |
| 3499 | s1 = blk_rq_pos(rq1); |
| 3500 | s2 = blk_rq_pos(rq2); |
| 3501 | |
| 3502 | /* |
| 3503 | * By definition, 1KiB is 2 sectors. |
| 3504 | */ |
| 3505 | back_max = bfqd->bfq_back_max * 2; |
| 3506 | |
| 3507 | /* |
| 3508 | * Strict one way elevator _except_ in the case where we allow |
| 3509 | * short backward seeks which are biased as twice the cost of a |
| 3510 | * similar forward seek. |
| 3511 | */ |
| 3512 | if (s1 >= last) |
| 3513 | d1 = s1 - last; |
| 3514 | else if (s1 + back_max >= last) |
| 3515 | d1 = (last - s1) * bfqd->bfq_back_penalty; |
| 3516 | else |
| 3517 | wrap |= BFQ_RQ1_WRAP; |
| 3518 | |
| 3519 | if (s2 >= last) |
| 3520 | d2 = s2 - last; |
| 3521 | else if (s2 + back_max >= last) |
| 3522 | d2 = (last - s2) * bfqd->bfq_back_penalty; |
| 3523 | else |
| 3524 | wrap |= BFQ_RQ2_WRAP; |
| 3525 | |
| 3526 | /* Found required data */ |
| 3527 | |
| 3528 | /* |
| 3529 | * By doing switch() on the bit mask "wrap" we avoid having to |
| 3530 | * check two variables for all permutations: --> faster! |
| 3531 | */ |
| 3532 | switch (wrap) { |
| 3533 | case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ |
| 3534 | if (d1 < d2) |
| 3535 | return rq1; |
| 3536 | else if (d2 < d1) |
| 3537 | return rq2; |
| 3538 | |
| 3539 | if (s1 >= s2) |
| 3540 | return rq1; |
| 3541 | else |
| 3542 | return rq2; |
| 3543 | |
| 3544 | case BFQ_RQ2_WRAP: |
| 3545 | return rq1; |
| 3546 | case BFQ_RQ1_WRAP: |
| 3547 | return rq2; |
| 3548 | case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ |
| 3549 | default: |
| 3550 | /* |
| 3551 | * Since both rqs are wrapped, |
| 3552 | * start with the one that's further behind head |
| 3553 | * (--> only *one* back seek required), |
| 3554 | * since back seek takes more time than forward. |
| 3555 | */ |
| 3556 | if (s1 <= s2) |
| 3557 | return rq1; |
| 3558 | else |
| 3559 | return rq2; |
| 3560 | } |
| 3561 | } |
| 3562 | |
| 3563 | /* |
| 3564 | * Return expired entry, or NULL to just start from scratch in rbtree. |
| 3565 | */ |
| 3566 | static struct request *bfq_check_fifo(struct bfq_queue *bfqq, |
| 3567 | struct request *last) |
| 3568 | { |
| 3569 | struct request *rq; |
| 3570 | |
| 3571 | if (bfq_bfqq_fifo_expire(bfqq)) |
| 3572 | return NULL; |
| 3573 | |
| 3574 | bfq_mark_bfqq_fifo_expire(bfqq); |
| 3575 | |
| 3576 | rq = rq_entry_fifo(bfqq->fifo.next); |
| 3577 | |
| 3578 | if (rq == last || ktime_get_ns() < rq->fifo_time) |
| 3579 | return NULL; |
| 3580 | |
| 3581 | bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); |
| 3582 | return rq; |
| 3583 | } |
| 3584 | |
| 3585 | static struct request *bfq_find_next_rq(struct bfq_data *bfqd, |
| 3586 | struct bfq_queue *bfqq, |
| 3587 | struct request *last) |
| 3588 | { |
| 3589 | struct rb_node *rbnext = rb_next(&last->rb_node); |
| 3590 | struct rb_node *rbprev = rb_prev(&last->rb_node); |
| 3591 | struct request *next, *prev = NULL; |
| 3592 | |
| 3593 | /* Follow expired path, else get first next available. */ |
| 3594 | next = bfq_check_fifo(bfqq, last); |
| 3595 | if (next) |
| 3596 | return next; |
| 3597 | |
| 3598 | if (rbprev) |
| 3599 | prev = rb_entry_rq(rbprev); |
| 3600 | |
| 3601 | if (rbnext) |
| 3602 | next = rb_entry_rq(rbnext); |
| 3603 | else { |
| 3604 | rbnext = rb_first(&bfqq->sort_list); |
| 3605 | if (rbnext && rbnext != &last->rb_node) |
| 3606 | next = rb_entry_rq(rbnext); |
| 3607 | } |
| 3608 | |
| 3609 | return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); |
| 3610 | } |
| 3611 | |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 3612 | /* see the definition of bfq_async_charge_factor for details */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3613 | static unsigned long bfq_serv_to_charge(struct request *rq, |
| 3614 | struct bfq_queue *bfqq) |
| 3615 | { |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 3616 | if (bfq_bfqq_sync(bfqq)) |
| 3617 | return blk_rq_sectors(rq); |
| 3618 | |
| 3619 | return blk_rq_sectors(rq) * bfq_async_charge_factor; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3620 | } |
| 3621 | |
| 3622 | /** |
| 3623 | * bfq_updated_next_req - update the queue after a new next_rq selection. |
| 3624 | * @bfqd: the device data the queue belongs to. |
| 3625 | * @bfqq: the queue to update. |
| 3626 | * |
| 3627 | * If the first request of a queue changes we make sure that the queue |
| 3628 | * has enough budget to serve at least its first request (if the |
| 3629 | * request has grown). We do this because if the queue has not enough |
| 3630 | * budget for its first request, it has to go through two dispatch |
| 3631 | * rounds to actually get it dispatched. |
| 3632 | */ |
| 3633 | static void bfq_updated_next_req(struct bfq_data *bfqd, |
| 3634 | struct bfq_queue *bfqq) |
| 3635 | { |
| 3636 | struct bfq_entity *entity = &bfqq->entity; |
| 3637 | struct request *next_rq = bfqq->next_rq; |
| 3638 | unsigned long new_budget; |
| 3639 | |
| 3640 | if (!next_rq) |
| 3641 | return; |
| 3642 | |
| 3643 | if (bfqq == bfqd->in_service_queue) |
| 3644 | /* |
| 3645 | * In order not to break guarantees, budgets cannot be |
| 3646 | * changed after an entity has been selected. |
| 3647 | */ |
| 3648 | return; |
| 3649 | |
| 3650 | new_budget = max_t(unsigned long, bfqq->max_budget, |
| 3651 | bfq_serv_to_charge(next_rq, bfqq)); |
| 3652 | if (entity->budget != new_budget) { |
| 3653 | entity->budget = new_budget; |
| 3654 | bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", |
| 3655 | new_budget); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 3656 | bfq_requeue_bfqq(bfqd, bfqq); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3657 | } |
| 3658 | } |
| 3659 | |
| 3660 | static int bfq_bfqq_budget_left(struct bfq_queue *bfqq) |
| 3661 | { |
| 3662 | struct bfq_entity *entity = &bfqq->entity; |
| 3663 | |
| 3664 | return entity->budget - entity->service; |
| 3665 | } |
| 3666 | |
| 3667 | /* |
| 3668 | * If enough samples have been computed, return the current max budget |
| 3669 | * stored in bfqd, which is dynamically updated according to the |
| 3670 | * estimated disk peak rate; otherwise return the default max budget |
| 3671 | */ |
| 3672 | static int bfq_max_budget(struct bfq_data *bfqd) |
| 3673 | { |
| 3674 | if (bfqd->budgets_assigned < bfq_stats_min_budgets) |
| 3675 | return bfq_default_max_budget; |
| 3676 | else |
| 3677 | return bfqd->bfq_max_budget; |
| 3678 | } |
| 3679 | |
| 3680 | /* |
| 3681 | * Return min budget, which is a fraction of the current or default |
| 3682 | * max budget (trying with 1/32) |
| 3683 | */ |
| 3684 | static int bfq_min_budget(struct bfq_data *bfqd) |
| 3685 | { |
| 3686 | if (bfqd->budgets_assigned < bfq_stats_min_budgets) |
| 3687 | return bfq_default_max_budget / 32; |
| 3688 | else |
| 3689 | return bfqd->bfq_max_budget / 32; |
| 3690 | } |
| 3691 | |
| 3692 | static void bfq_bfqq_expire(struct bfq_data *bfqd, |
| 3693 | struct bfq_queue *bfqq, |
| 3694 | bool compensate, |
| 3695 | enum bfqq_expiration reason); |
| 3696 | |
| 3697 | /* |
| 3698 | * The next function, invoked after the input queue bfqq switches from |
| 3699 | * idle to busy, updates the budget of bfqq. The function also tells |
| 3700 | * whether the in-service queue should be expired, by returning |
| 3701 | * true. The purpose of expiring the in-service queue is to give bfqq |
| 3702 | * the chance to possibly preempt the in-service queue, and the reason |
| 3703 | * for preempting the in-service queue is to achieve the following |
| 3704 | * goal: guarantee to bfqq its reserved bandwidth even if bfqq has |
| 3705 | * expired because it has remained idle. |
| 3706 | * |
| 3707 | * In particular, bfqq may have expired for one of the following two |
| 3708 | * reasons: |
| 3709 | * |
| 3710 | * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling |
| 3711 | * and did not make it to issue a new request before its last |
| 3712 | * request was served; |
| 3713 | * |
| 3714 | * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue |
| 3715 | * a new request before the expiration of the idling-time. |
| 3716 | * |
| 3717 | * Even if bfqq has expired for one of the above reasons, the process |
| 3718 | * associated with the queue may be however issuing requests greedily, |
| 3719 | * and thus be sensitive to the bandwidth it receives (bfqq may have |
| 3720 | * remained idle for other reasons: CPU high load, bfqq not enjoying |
| 3721 | * idling, I/O throttling somewhere in the path from the process to |
| 3722 | * the I/O scheduler, ...). But if, after every expiration for one of |
| 3723 | * the above two reasons, bfqq has to wait for the service of at least |
| 3724 | * one full budget of another queue before being served again, then |
| 3725 | * bfqq is likely to get a much lower bandwidth or resource time than |
| 3726 | * its reserved ones. To address this issue, two countermeasures need |
| 3727 | * to be taken. |
| 3728 | * |
| 3729 | * First, the budget and the timestamps of bfqq need to be updated in |
| 3730 | * a special way on bfqq reactivation: they need to be updated as if |
| 3731 | * bfqq did not remain idle and did not expire. In fact, if they are |
| 3732 | * computed as if bfqq expired and remained idle until reactivation, |
| 3733 | * then the process associated with bfqq is treated as if, instead of |
| 3734 | * being greedy, it stopped issuing requests when bfqq remained idle, |
| 3735 | * and restarts issuing requests only on this reactivation. In other |
| 3736 | * words, the scheduler does not help the process recover the "service |
| 3737 | * hole" between bfqq expiration and reactivation. As a consequence, |
| 3738 | * the process receives a lower bandwidth than its reserved one. In |
| 3739 | * contrast, to recover this hole, the budget must be updated as if |
| 3740 | * bfqq was not expired at all before this reactivation, i.e., it must |
| 3741 | * be set to the value of the remaining budget when bfqq was |
| 3742 | * expired. Along the same line, timestamps need to be assigned the |
| 3743 | * value they had the last time bfqq was selected for service, i.e., |
| 3744 | * before last expiration. Thus timestamps need to be back-shifted |
| 3745 | * with respect to their normal computation (see [1] for more details |
| 3746 | * on this tricky aspect). |
| 3747 | * |
| 3748 | * Secondly, to allow the process to recover the hole, the in-service |
| 3749 | * queue must be expired too, to give bfqq the chance to preempt it |
| 3750 | * immediately. In fact, if bfqq has to wait for a full budget of the |
| 3751 | * in-service queue to be completed, then it may become impossible to |
| 3752 | * let the process recover the hole, even if the back-shifted |
| 3753 | * timestamps of bfqq are lower than those of the in-service queue. If |
| 3754 | * this happens for most or all of the holes, then the process may not |
| 3755 | * receive its reserved bandwidth. In this respect, it is worth noting |
| 3756 | * that, being the service of outstanding requests unpreemptible, a |
| 3757 | * little fraction of the holes may however be unrecoverable, thereby |
| 3758 | * causing a little loss of bandwidth. |
| 3759 | * |
| 3760 | * The last important point is detecting whether bfqq does need this |
| 3761 | * bandwidth recovery. In this respect, the next function deems the |
| 3762 | * process associated with bfqq greedy, and thus allows it to recover |
| 3763 | * the hole, if: 1) the process is waiting for the arrival of a new |
| 3764 | * request (which implies that bfqq expired for one of the above two |
| 3765 | * reasons), and 2) such a request has arrived soon. The first |
| 3766 | * condition is controlled through the flag non_blocking_wait_rq, |
| 3767 | * while the second through the flag arrived_in_time. If both |
| 3768 | * conditions hold, then the function computes the budget in the |
| 3769 | * above-described special way, and signals that the in-service queue |
| 3770 | * should be expired. Timestamp back-shifting is done later in |
| 3771 | * __bfq_activate_entity. |
| 3772 | */ |
| 3773 | static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, |
| 3774 | struct bfq_queue *bfqq, |
| 3775 | bool arrived_in_time) |
| 3776 | { |
| 3777 | struct bfq_entity *entity = &bfqq->entity; |
| 3778 | |
| 3779 | if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { |
| 3780 | /* |
| 3781 | * We do not clear the flag non_blocking_wait_rq here, as |
| 3782 | * the latter is used in bfq_activate_bfqq to signal |
| 3783 | * that timestamps need to be back-shifted (and is |
| 3784 | * cleared right after). |
| 3785 | */ |
| 3786 | |
| 3787 | /* |
| 3788 | * In next assignment we rely on that either |
| 3789 | * entity->service or entity->budget are not updated |
| 3790 | * on expiration if bfqq is empty (see |
| 3791 | * __bfq_bfqq_recalc_budget). Thus both quantities |
| 3792 | * remain unchanged after such an expiration, and the |
| 3793 | * following statement therefore assigns to |
| 3794 | * entity->budget the remaining budget on such an |
| 3795 | * expiration. For clarity, entity->service is not |
| 3796 | * updated on expiration in any case, and, in normal |
| 3797 | * operation, is reset only when bfqq is selected for |
| 3798 | * service (see bfq_get_next_queue). |
| 3799 | */ |
| 3800 | entity->budget = min_t(unsigned long, |
| 3801 | bfq_bfqq_budget_left(bfqq), |
| 3802 | bfqq->max_budget); |
| 3803 | |
| 3804 | return true; |
| 3805 | } |
| 3806 | |
| 3807 | entity->budget = max_t(unsigned long, bfqq->max_budget, |
| 3808 | bfq_serv_to_charge(bfqq->next_rq, bfqq)); |
| 3809 | bfq_clear_bfqq_non_blocking_wait_rq(bfqq); |
| 3810 | return false; |
| 3811 | } |
| 3812 | |
| 3813 | static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, |
| 3814 | struct bfq_queue *bfqq, |
| 3815 | struct request *rq) |
| 3816 | { |
| 3817 | bool bfqq_wants_to_preempt, |
| 3818 | /* |
| 3819 | * See the comments on |
| 3820 | * bfq_bfqq_update_budg_for_activation for |
| 3821 | * details on the usage of the next variable. |
| 3822 | */ |
| 3823 | arrived_in_time = ktime_get_ns() <= |
| 3824 | bfqq->ttime.last_end_request + |
| 3825 | bfqd->bfq_slice_idle * 3; |
| 3826 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 3827 | bfqg_stats_update_io_add(bfqq_group(RQ_BFQQ(rq)), bfqq, rq->cmd_flags); |
| 3828 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3829 | /* |
| 3830 | * Update budget and check whether bfqq may want to preempt |
| 3831 | * the in-service queue. |
| 3832 | */ |
| 3833 | bfqq_wants_to_preempt = |
| 3834 | bfq_bfqq_update_budg_for_activation(bfqd, bfqq, |
| 3835 | arrived_in_time); |
| 3836 | |
| 3837 | if (!bfq_bfqq_IO_bound(bfqq)) { |
| 3838 | if (arrived_in_time) { |
| 3839 | bfqq->requests_within_timer++; |
| 3840 | if (bfqq->requests_within_timer >= |
| 3841 | bfqd->bfq_requests_within_timer) |
| 3842 | bfq_mark_bfqq_IO_bound(bfqq); |
| 3843 | } else |
| 3844 | bfqq->requests_within_timer = 0; |
| 3845 | } |
| 3846 | |
| 3847 | bfq_add_bfqq_busy(bfqd, bfqq); |
| 3848 | |
| 3849 | /* |
| 3850 | * Expire in-service queue only if preemption may be needed |
| 3851 | * for guarantees. In this respect, the function |
| 3852 | * next_queue_may_preempt just checks a simple, necessary |
| 3853 | * condition, and not a sufficient condition based on |
| 3854 | * timestamps. In fact, for the latter condition to be |
| 3855 | * evaluated, timestamps would need first to be updated, and |
| 3856 | * this operation is quite costly (see the comments on the |
| 3857 | * function bfq_bfqq_update_budg_for_activation). |
| 3858 | */ |
| 3859 | if (bfqd->in_service_queue && bfqq_wants_to_preempt && |
| 3860 | next_queue_may_preempt(bfqd)) |
| 3861 | bfq_bfqq_expire(bfqd, bfqd->in_service_queue, |
| 3862 | false, BFQQE_PREEMPTED); |
| 3863 | } |
| 3864 | |
| 3865 | static void bfq_add_request(struct request *rq) |
| 3866 | { |
| 3867 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 3868 | struct bfq_data *bfqd = bfqq->bfqd; |
| 3869 | struct request *next_rq, *prev; |
| 3870 | |
| 3871 | bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); |
| 3872 | bfqq->queued[rq_is_sync(rq)]++; |
| 3873 | bfqd->queued++; |
| 3874 | |
| 3875 | elv_rb_add(&bfqq->sort_list, rq); |
| 3876 | |
| 3877 | /* |
| 3878 | * Check if this request is a better next-serve candidate. |
| 3879 | */ |
| 3880 | prev = bfqq->next_rq; |
| 3881 | next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); |
| 3882 | bfqq->next_rq = next_rq; |
| 3883 | |
| 3884 | if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ |
| 3885 | bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, rq); |
| 3886 | else if (prev != bfqq->next_rq) |
| 3887 | bfq_updated_next_req(bfqd, bfqq); |
| 3888 | } |
| 3889 | |
| 3890 | static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, |
| 3891 | struct bio *bio, |
| 3892 | struct request_queue *q) |
| 3893 | { |
| 3894 | struct bfq_queue *bfqq = bfqd->bio_bfqq; |
| 3895 | |
| 3896 | |
| 3897 | if (bfqq) |
| 3898 | return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); |
| 3899 | |
| 3900 | return NULL; |
| 3901 | } |
| 3902 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 3903 | static sector_t get_sdist(sector_t last_pos, struct request *rq) |
| 3904 | { |
| 3905 | if (last_pos) |
| 3906 | return abs(blk_rq_pos(rq) - last_pos); |
| 3907 | |
| 3908 | return 0; |
| 3909 | } |
| 3910 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3911 | #if 0 /* Still not clear if we can do without next two functions */ |
| 3912 | static void bfq_activate_request(struct request_queue *q, struct request *rq) |
| 3913 | { |
| 3914 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 3915 | |
| 3916 | bfqd->rq_in_driver++; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3917 | } |
| 3918 | |
| 3919 | static void bfq_deactivate_request(struct request_queue *q, struct request *rq) |
| 3920 | { |
| 3921 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 3922 | |
| 3923 | bfqd->rq_in_driver--; |
| 3924 | } |
| 3925 | #endif |
| 3926 | |
| 3927 | static void bfq_remove_request(struct request_queue *q, |
| 3928 | struct request *rq) |
| 3929 | { |
| 3930 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 3931 | struct bfq_data *bfqd = bfqq->bfqd; |
| 3932 | const int sync = rq_is_sync(rq); |
| 3933 | |
| 3934 | if (bfqq->next_rq == rq) { |
| 3935 | bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); |
| 3936 | bfq_updated_next_req(bfqd, bfqq); |
| 3937 | } |
| 3938 | |
| 3939 | if (rq->queuelist.prev != &rq->queuelist) |
| 3940 | list_del_init(&rq->queuelist); |
| 3941 | bfqq->queued[sync]--; |
| 3942 | bfqd->queued--; |
| 3943 | elv_rb_del(&bfqq->sort_list, rq); |
| 3944 | |
| 3945 | elv_rqhash_del(q, rq); |
| 3946 | if (q->last_merge == rq) |
| 3947 | q->last_merge = NULL; |
| 3948 | |
| 3949 | if (RB_EMPTY_ROOT(&bfqq->sort_list)) { |
| 3950 | bfqq->next_rq = NULL; |
| 3951 | |
| 3952 | if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 3953 | bfq_del_bfqq_busy(bfqd, bfqq, false); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3954 | /* |
| 3955 | * bfqq emptied. In normal operation, when |
| 3956 | * bfqq is empty, bfqq->entity.service and |
| 3957 | * bfqq->entity.budget must contain, |
| 3958 | * respectively, the service received and the |
| 3959 | * budget used last time bfqq emptied. These |
| 3960 | * facts do not hold in this case, as at least |
| 3961 | * this last removal occurred while bfqq is |
| 3962 | * not in service. To avoid inconsistencies, |
| 3963 | * reset both bfqq->entity.service and |
| 3964 | * bfqq->entity.budget, if bfqq has still a |
| 3965 | * process that may issue I/O requests to it. |
| 3966 | */ |
| 3967 | bfqq->entity.budget = bfqq->entity.service = 0; |
| 3968 | } |
| 3969 | } |
| 3970 | |
| 3971 | if (rq->cmd_flags & REQ_META) |
| 3972 | bfqq->meta_pending--; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 3973 | |
| 3974 | bfqg_stats_update_io_remove(bfqq_group(bfqq), rq->cmd_flags); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 3975 | } |
| 3976 | |
| 3977 | static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio) |
| 3978 | { |
| 3979 | struct request_queue *q = hctx->queue; |
| 3980 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 3981 | struct request *free = NULL; |
| 3982 | /* |
| 3983 | * bfq_bic_lookup grabs the queue_lock: invoke it now and |
| 3984 | * store its return value for later use, to avoid nesting |
| 3985 | * queue_lock inside the bfqd->lock. We assume that the bic |
| 3986 | * returned by bfq_bic_lookup does not go away before |
| 3987 | * bfqd->lock is taken. |
| 3988 | */ |
| 3989 | struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q); |
| 3990 | bool ret; |
| 3991 | |
| 3992 | spin_lock_irq(&bfqd->lock); |
| 3993 | |
| 3994 | if (bic) |
| 3995 | bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf)); |
| 3996 | else |
| 3997 | bfqd->bio_bfqq = NULL; |
| 3998 | bfqd->bio_bic = bic; |
| 3999 | |
| 4000 | ret = blk_mq_sched_try_merge(q, bio, &free); |
| 4001 | |
| 4002 | if (free) |
| 4003 | blk_mq_free_request(free); |
| 4004 | spin_unlock_irq(&bfqd->lock); |
| 4005 | |
| 4006 | return ret; |
| 4007 | } |
| 4008 | |
| 4009 | static int bfq_request_merge(struct request_queue *q, struct request **req, |
| 4010 | struct bio *bio) |
| 4011 | { |
| 4012 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 4013 | struct request *__rq; |
| 4014 | |
| 4015 | __rq = bfq_find_rq_fmerge(bfqd, bio, q); |
| 4016 | if (__rq && elv_bio_merge_ok(__rq, bio)) { |
| 4017 | *req = __rq; |
| 4018 | return ELEVATOR_FRONT_MERGE; |
| 4019 | } |
| 4020 | |
| 4021 | return ELEVATOR_NO_MERGE; |
| 4022 | } |
| 4023 | |
| 4024 | static void bfq_request_merged(struct request_queue *q, struct request *req, |
| 4025 | enum elv_merge type) |
| 4026 | { |
| 4027 | if (type == ELEVATOR_FRONT_MERGE && |
| 4028 | rb_prev(&req->rb_node) && |
| 4029 | blk_rq_pos(req) < |
| 4030 | blk_rq_pos(container_of(rb_prev(&req->rb_node), |
| 4031 | struct request, rb_node))) { |
| 4032 | struct bfq_queue *bfqq = RQ_BFQQ(req); |
| 4033 | struct bfq_data *bfqd = bfqq->bfqd; |
| 4034 | struct request *prev, *next_rq; |
| 4035 | |
| 4036 | /* Reposition request in its sort_list */ |
| 4037 | elv_rb_del(&bfqq->sort_list, req); |
| 4038 | elv_rb_add(&bfqq->sort_list, req); |
| 4039 | |
| 4040 | /* Choose next request to be served for bfqq */ |
| 4041 | prev = bfqq->next_rq; |
| 4042 | next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, |
| 4043 | bfqd->last_position); |
| 4044 | bfqq->next_rq = next_rq; |
| 4045 | /* |
| 4046 | * If next_rq changes, update the queue's budget to fit |
| 4047 | * the new request. |
| 4048 | */ |
| 4049 | if (prev != bfqq->next_rq) |
| 4050 | bfq_updated_next_req(bfqd, bfqq); |
| 4051 | } |
| 4052 | } |
| 4053 | |
| 4054 | static void bfq_requests_merged(struct request_queue *q, struct request *rq, |
| 4055 | struct request *next) |
| 4056 | { |
| 4057 | struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next); |
| 4058 | |
| 4059 | if (!RB_EMPTY_NODE(&rq->rb_node)) |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4060 | goto end; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4061 | spin_lock_irq(&bfqq->bfqd->lock); |
| 4062 | |
| 4063 | /* |
| 4064 | * If next and rq belong to the same bfq_queue and next is older |
| 4065 | * than rq, then reposition rq in the fifo (by substituting next |
| 4066 | * with rq). Otherwise, if next and rq belong to different |
| 4067 | * bfq_queues, never reposition rq: in fact, we would have to |
| 4068 | * reposition it with respect to next's position in its own fifo, |
| 4069 | * which would most certainly be too expensive with respect to |
| 4070 | * the benefits. |
| 4071 | */ |
| 4072 | if (bfqq == next_bfqq && |
| 4073 | !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && |
| 4074 | next->fifo_time < rq->fifo_time) { |
| 4075 | list_del_init(&rq->queuelist); |
| 4076 | list_replace_init(&next->queuelist, &rq->queuelist); |
| 4077 | rq->fifo_time = next->fifo_time; |
| 4078 | } |
| 4079 | |
| 4080 | if (bfqq->next_rq == next) |
| 4081 | bfqq->next_rq = rq; |
| 4082 | |
| 4083 | bfq_remove_request(q, next); |
| 4084 | |
| 4085 | spin_unlock_irq(&bfqq->bfqd->lock); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4086 | end: |
| 4087 | bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4088 | } |
| 4089 | |
| 4090 | static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, |
| 4091 | struct bio *bio) |
| 4092 | { |
| 4093 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 4094 | bool is_sync = op_is_sync(bio->bi_opf); |
| 4095 | struct bfq_queue *bfqq = bfqd->bio_bfqq; |
| 4096 | |
| 4097 | /* |
| 4098 | * Disallow merge of a sync bio into an async request. |
| 4099 | */ |
| 4100 | if (is_sync && !rq_is_sync(rq)) |
| 4101 | return false; |
| 4102 | |
| 4103 | /* |
| 4104 | * Lookup the bfqq that this bio will be queued with. Allow |
| 4105 | * merge only if rq is queued there. |
| 4106 | */ |
| 4107 | if (!bfqq) |
| 4108 | return false; |
| 4109 | |
| 4110 | return bfqq == RQ_BFQQ(rq); |
| 4111 | } |
| 4112 | |
| 4113 | static void __bfq_set_in_service_queue(struct bfq_data *bfqd, |
| 4114 | struct bfq_queue *bfqq) |
| 4115 | { |
| 4116 | if (bfqq) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4117 | bfqg_stats_update_avg_queue_size(bfqq_group(bfqq)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4118 | bfq_mark_bfqq_budget_new(bfqq); |
| 4119 | bfq_clear_bfqq_fifo_expire(bfqq); |
| 4120 | |
| 4121 | bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; |
| 4122 | |
| 4123 | bfq_log_bfqq(bfqd, bfqq, |
| 4124 | "set_in_service_queue, cur-budget = %d", |
| 4125 | bfqq->entity.budget); |
| 4126 | } |
| 4127 | |
| 4128 | bfqd->in_service_queue = bfqq; |
| 4129 | } |
| 4130 | |
| 4131 | /* |
| 4132 | * Get and set a new queue for service. |
| 4133 | */ |
| 4134 | static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) |
| 4135 | { |
| 4136 | struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); |
| 4137 | |
| 4138 | __bfq_set_in_service_queue(bfqd, bfqq); |
| 4139 | return bfqq; |
| 4140 | } |
| 4141 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4142 | static void bfq_arm_slice_timer(struct bfq_data *bfqd) |
| 4143 | { |
| 4144 | struct bfq_queue *bfqq = bfqd->in_service_queue; |
| 4145 | struct bfq_io_cq *bic; |
| 4146 | u32 sl; |
| 4147 | |
| 4148 | /* Processes have exited, don't wait. */ |
| 4149 | bic = bfqd->in_service_bic; |
| 4150 | if (!bic || atomic_read(&bic->icq.ioc->active_ref) == 0) |
| 4151 | return; |
| 4152 | |
| 4153 | bfq_mark_bfqq_wait_request(bfqq); |
| 4154 | |
| 4155 | /* |
| 4156 | * We don't want to idle for seeks, but we do want to allow |
| 4157 | * fair distribution of slice time for a process doing back-to-back |
| 4158 | * seeks. So allow a little bit of time for him to submit a new rq. |
| 4159 | */ |
| 4160 | sl = bfqd->bfq_slice_idle; |
| 4161 | /* |
| 4162 | * Grant only minimum idle time if the queue is seeky. |
| 4163 | */ |
| 4164 | if (BFQQ_SEEKY(bfqq)) |
| 4165 | sl = min_t(u64, sl, BFQ_MIN_TT); |
| 4166 | |
| 4167 | bfqd->last_idling_start = ktime_get(); |
| 4168 | hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), |
| 4169 | HRTIMER_MODE_REL); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4170 | bfqg_stats_set_start_idle_time(bfqq_group(bfqq)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4171 | } |
| 4172 | |
| 4173 | /* |
| 4174 | * Set the maximum time for the in-service queue to consume its |
| 4175 | * budget. This prevents seeky processes from lowering the disk |
| 4176 | * throughput (always guaranteed with a time slice scheme as in CFQ). |
| 4177 | */ |
| 4178 | static void bfq_set_budget_timeout(struct bfq_data *bfqd) |
| 4179 | { |
| 4180 | struct bfq_queue *bfqq = bfqd->in_service_queue; |
| 4181 | unsigned int timeout_coeff = bfqq->entity.weight / |
| 4182 | bfqq->entity.orig_weight; |
| 4183 | |
| 4184 | bfqd->last_budget_start = ktime_get(); |
| 4185 | |
| 4186 | bfq_clear_bfqq_budget_new(bfqq); |
| 4187 | bfqq->budget_timeout = jiffies + |
| 4188 | bfqd->bfq_timeout * timeout_coeff; |
| 4189 | |
| 4190 | bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u", |
| 4191 | jiffies_to_msecs(bfqd->bfq_timeout * timeout_coeff)); |
| 4192 | } |
| 4193 | |
| 4194 | /* |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4195 | * In autotuning mode, max_budget is dynamically recomputed as the |
| 4196 | * amount of sectors transferred in timeout at the estimated peak |
| 4197 | * rate. This enables BFQ to utilize a full timeslice with a full |
| 4198 | * budget, even if the in-service queue is served at peak rate. And |
| 4199 | * this maximises throughput with sequential workloads. |
| 4200 | */ |
| 4201 | static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd) |
| 4202 | { |
| 4203 | return (u64)bfqd->peak_rate * USEC_PER_MSEC * |
| 4204 | jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT; |
| 4205 | } |
| 4206 | |
| 4207 | static void bfq_reset_rate_computation(struct bfq_data *bfqd, |
| 4208 | struct request *rq) |
| 4209 | { |
| 4210 | if (rq != NULL) { /* new rq dispatch now, reset accordingly */ |
| 4211 | bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns(); |
| 4212 | bfqd->peak_rate_samples = 1; |
| 4213 | bfqd->sequential_samples = 0; |
| 4214 | bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size = |
| 4215 | blk_rq_sectors(rq); |
| 4216 | } else /* no new rq dispatched, just reset the number of samples */ |
| 4217 | bfqd->peak_rate_samples = 0; /* full re-init on next disp. */ |
| 4218 | |
| 4219 | bfq_log(bfqd, |
| 4220 | "reset_rate_computation at end, sample %u/%u tot_sects %llu", |
| 4221 | bfqd->peak_rate_samples, bfqd->sequential_samples, |
| 4222 | bfqd->tot_sectors_dispatched); |
| 4223 | } |
| 4224 | |
| 4225 | static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq) |
| 4226 | { |
| 4227 | u32 rate, weight, divisor; |
| 4228 | |
| 4229 | /* |
| 4230 | * For the convergence property to hold (see comments on |
| 4231 | * bfq_update_peak_rate()) and for the assessment to be |
| 4232 | * reliable, a minimum number of samples must be present, and |
| 4233 | * a minimum amount of time must have elapsed. If not so, do |
| 4234 | * not compute new rate. Just reset parameters, to get ready |
| 4235 | * for a new evaluation attempt. |
| 4236 | */ |
| 4237 | if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES || |
| 4238 | bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) |
| 4239 | goto reset_computation; |
| 4240 | |
| 4241 | /* |
| 4242 | * If a new request completion has occurred after last |
| 4243 | * dispatch, then, to approximate the rate at which requests |
| 4244 | * have been served by the device, it is more precise to |
| 4245 | * extend the observation interval to the last completion. |
| 4246 | */ |
| 4247 | bfqd->delta_from_first = |
| 4248 | max_t(u64, bfqd->delta_from_first, |
| 4249 | bfqd->last_completion - bfqd->first_dispatch); |
| 4250 | |
| 4251 | /* |
| 4252 | * Rate computed in sects/usec, and not sects/nsec, for |
| 4253 | * precision issues. |
| 4254 | */ |
| 4255 | rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT, |
| 4256 | div_u64(bfqd->delta_from_first, NSEC_PER_USEC)); |
| 4257 | |
| 4258 | /* |
| 4259 | * Peak rate not updated if: |
| 4260 | * - the percentage of sequential dispatches is below 3/4 of the |
| 4261 | * total, and rate is below the current estimated peak rate |
| 4262 | * - rate is unreasonably high (> 20M sectors/sec) |
| 4263 | */ |
| 4264 | if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 && |
| 4265 | rate <= bfqd->peak_rate) || |
| 4266 | rate > 20<<BFQ_RATE_SHIFT) |
| 4267 | goto reset_computation; |
| 4268 | |
| 4269 | /* |
| 4270 | * We have to update the peak rate, at last! To this purpose, |
| 4271 | * we use a low-pass filter. We compute the smoothing constant |
| 4272 | * of the filter as a function of the 'weight' of the new |
| 4273 | * measured rate. |
| 4274 | * |
| 4275 | * As can be seen in next formulas, we define this weight as a |
| 4276 | * quantity proportional to how sequential the workload is, |
| 4277 | * and to how long the observation time interval is. |
| 4278 | * |
| 4279 | * The weight runs from 0 to 8. The maximum value of the |
| 4280 | * weight, 8, yields the minimum value for the smoothing |
| 4281 | * constant. At this minimum value for the smoothing constant, |
| 4282 | * the measured rate contributes for half of the next value of |
| 4283 | * the estimated peak rate. |
| 4284 | * |
| 4285 | * So, the first step is to compute the weight as a function |
| 4286 | * of how sequential the workload is. Note that the weight |
| 4287 | * cannot reach 9, because bfqd->sequential_samples cannot |
| 4288 | * become equal to bfqd->peak_rate_samples, which, in its |
| 4289 | * turn, holds true because bfqd->sequential_samples is not |
| 4290 | * incremented for the first sample. |
| 4291 | */ |
| 4292 | weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples; |
| 4293 | |
| 4294 | /* |
| 4295 | * Second step: further refine the weight as a function of the |
| 4296 | * duration of the observation interval. |
| 4297 | */ |
| 4298 | weight = min_t(u32, 8, |
| 4299 | div_u64(weight * bfqd->delta_from_first, |
| 4300 | BFQ_RATE_REF_INTERVAL)); |
| 4301 | |
| 4302 | /* |
| 4303 | * Divisor ranging from 10, for minimum weight, to 2, for |
| 4304 | * maximum weight. |
| 4305 | */ |
| 4306 | divisor = 10 - weight; |
| 4307 | |
| 4308 | /* |
| 4309 | * Finally, update peak rate: |
| 4310 | * |
| 4311 | * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor |
| 4312 | */ |
| 4313 | bfqd->peak_rate *= divisor-1; |
| 4314 | bfqd->peak_rate /= divisor; |
| 4315 | rate /= divisor; /* smoothing constant alpha = 1/divisor */ |
| 4316 | |
| 4317 | bfqd->peak_rate += rate; |
| 4318 | if (bfqd->bfq_user_max_budget == 0) |
| 4319 | bfqd->bfq_max_budget = |
| 4320 | bfq_calc_max_budget(bfqd); |
| 4321 | |
| 4322 | reset_computation: |
| 4323 | bfq_reset_rate_computation(bfqd, rq); |
| 4324 | } |
| 4325 | |
| 4326 | /* |
| 4327 | * Update the read/write peak rate (the main quantity used for |
| 4328 | * auto-tuning, see update_thr_responsiveness_params()). |
| 4329 | * |
| 4330 | * It is not trivial to estimate the peak rate (correctly): because of |
| 4331 | * the presence of sw and hw queues between the scheduler and the |
| 4332 | * device components that finally serve I/O requests, it is hard to |
| 4333 | * say exactly when a given dispatched request is served inside the |
| 4334 | * device, and for how long. As a consequence, it is hard to know |
| 4335 | * precisely at what rate a given set of requests is actually served |
| 4336 | * by the device. |
| 4337 | * |
| 4338 | * On the opposite end, the dispatch time of any request is trivially |
| 4339 | * available, and, from this piece of information, the "dispatch rate" |
| 4340 | * of requests can be immediately computed. So, the idea in the next |
| 4341 | * function is to use what is known, namely request dispatch times |
| 4342 | * (plus, when useful, request completion times), to estimate what is |
| 4343 | * unknown, namely in-device request service rate. |
| 4344 | * |
| 4345 | * The main issue is that, because of the above facts, the rate at |
| 4346 | * which a certain set of requests is dispatched over a certain time |
| 4347 | * interval can vary greatly with respect to the rate at which the |
| 4348 | * same requests are then served. But, since the size of any |
| 4349 | * intermediate queue is limited, and the service scheme is lossless |
| 4350 | * (no request is silently dropped), the following obvious convergence |
| 4351 | * property holds: the number of requests dispatched MUST become |
| 4352 | * closer and closer to the number of requests completed as the |
| 4353 | * observation interval grows. This is the key property used in |
| 4354 | * the next function to estimate the peak service rate as a function |
| 4355 | * of the observed dispatch rate. The function assumes to be invoked |
| 4356 | * on every request dispatch. |
| 4357 | */ |
| 4358 | static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq) |
| 4359 | { |
| 4360 | u64 now_ns = ktime_get_ns(); |
| 4361 | |
| 4362 | if (bfqd->peak_rate_samples == 0) { /* first dispatch */ |
| 4363 | bfq_log(bfqd, "update_peak_rate: goto reset, samples %d", |
| 4364 | bfqd->peak_rate_samples); |
| 4365 | bfq_reset_rate_computation(bfqd, rq); |
| 4366 | goto update_last_values; /* will add one sample */ |
| 4367 | } |
| 4368 | |
| 4369 | /* |
| 4370 | * Device idle for very long: the observation interval lasting |
| 4371 | * up to this dispatch cannot be a valid observation interval |
| 4372 | * for computing a new peak rate (similarly to the late- |
| 4373 | * completion event in bfq_completed_request()). Go to |
| 4374 | * update_rate_and_reset to have the following three steps |
| 4375 | * taken: |
| 4376 | * - close the observation interval at the last (previous) |
| 4377 | * request dispatch or completion |
| 4378 | * - compute rate, if possible, for that observation interval |
| 4379 | * - start a new observation interval with this dispatch |
| 4380 | */ |
| 4381 | if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC && |
| 4382 | bfqd->rq_in_driver == 0) |
| 4383 | goto update_rate_and_reset; |
| 4384 | |
| 4385 | /* Update sampling information */ |
| 4386 | bfqd->peak_rate_samples++; |
| 4387 | |
| 4388 | if ((bfqd->rq_in_driver > 0 || |
| 4389 | now_ns - bfqd->last_completion < BFQ_MIN_TT) |
| 4390 | && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR) |
| 4391 | bfqd->sequential_samples++; |
| 4392 | |
| 4393 | bfqd->tot_sectors_dispatched += blk_rq_sectors(rq); |
| 4394 | |
| 4395 | /* Reset max observed rq size every 32 dispatches */ |
| 4396 | if (likely(bfqd->peak_rate_samples % 32)) |
| 4397 | bfqd->last_rq_max_size = |
| 4398 | max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size); |
| 4399 | else |
| 4400 | bfqd->last_rq_max_size = blk_rq_sectors(rq); |
| 4401 | |
| 4402 | bfqd->delta_from_first = now_ns - bfqd->first_dispatch; |
| 4403 | |
| 4404 | /* Target observation interval not yet reached, go on sampling */ |
| 4405 | if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL) |
| 4406 | goto update_last_values; |
| 4407 | |
| 4408 | update_rate_and_reset: |
| 4409 | bfq_update_rate_reset(bfqd, rq); |
| 4410 | update_last_values: |
| 4411 | bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); |
| 4412 | bfqd->last_dispatch = now_ns; |
| 4413 | } |
| 4414 | |
| 4415 | /* |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4416 | * Remove request from internal lists. |
| 4417 | */ |
| 4418 | static void bfq_dispatch_remove(struct request_queue *q, struct request *rq) |
| 4419 | { |
| 4420 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 4421 | |
| 4422 | /* |
| 4423 | * For consistency, the next instruction should have been |
| 4424 | * executed after removing the request from the queue and |
| 4425 | * dispatching it. We execute instead this instruction before |
| 4426 | * bfq_remove_request() (and hence introduce a temporary |
| 4427 | * inconsistency), for efficiency. In fact, should this |
| 4428 | * dispatch occur for a non in-service bfqq, this anticipated |
| 4429 | * increment prevents two counters related to bfqq->dispatched |
| 4430 | * from risking to be, first, uselessly decremented, and then |
| 4431 | * incremented again when the (new) value of bfqq->dispatched |
| 4432 | * happens to be taken into account. |
| 4433 | */ |
| 4434 | bfqq->dispatched++; |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4435 | bfq_update_peak_rate(q->elevator->elevator_data, rq); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4436 | |
| 4437 | bfq_remove_request(q, rq); |
| 4438 | } |
| 4439 | |
| 4440 | static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 4441 | { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4442 | if (RB_EMPTY_ROOT(&bfqq->sort_list)) |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4443 | bfq_del_bfqq_busy(bfqd, bfqq, true); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4444 | else |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4445 | bfq_requeue_bfqq(bfqd, bfqq); |
| 4446 | |
| 4447 | /* |
| 4448 | * All in-service entities must have been properly deactivated |
| 4449 | * or requeued before executing the next function, which |
| 4450 | * resets all in-service entites as no more in service. |
| 4451 | */ |
| 4452 | __bfq_bfqd_reset_in_service(bfqd); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4453 | } |
| 4454 | |
| 4455 | /** |
| 4456 | * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. |
| 4457 | * @bfqd: device data. |
| 4458 | * @bfqq: queue to update. |
| 4459 | * @reason: reason for expiration. |
| 4460 | * |
| 4461 | * Handle the feedback on @bfqq budget at queue expiration. |
| 4462 | * See the body for detailed comments. |
| 4463 | */ |
| 4464 | static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, |
| 4465 | struct bfq_queue *bfqq, |
| 4466 | enum bfqq_expiration reason) |
| 4467 | { |
| 4468 | struct request *next_rq; |
| 4469 | int budget, min_budget; |
| 4470 | |
| 4471 | budget = bfqq->max_budget; |
| 4472 | min_budget = bfq_min_budget(bfqd); |
| 4473 | |
| 4474 | bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", |
| 4475 | bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); |
| 4476 | bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", |
| 4477 | budget, bfq_min_budget(bfqd)); |
| 4478 | bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", |
| 4479 | bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); |
| 4480 | |
| 4481 | if (bfq_bfqq_sync(bfqq)) { |
| 4482 | switch (reason) { |
| 4483 | /* |
| 4484 | * Caveat: in all the following cases we trade latency |
| 4485 | * for throughput. |
| 4486 | */ |
| 4487 | case BFQQE_TOO_IDLE: |
Paolo Valente | 54b6045 | 2017-04-12 18:23:09 +0200 | [diff] [blame] | 4488 | /* |
| 4489 | * This is the only case where we may reduce |
| 4490 | * the budget: if there is no request of the |
| 4491 | * process still waiting for completion, then |
| 4492 | * we assume (tentatively) that the timer has |
| 4493 | * expired because the batch of requests of |
| 4494 | * the process could have been served with a |
| 4495 | * smaller budget. Hence, betting that |
| 4496 | * process will behave in the same way when it |
| 4497 | * becomes backlogged again, we reduce its |
| 4498 | * next budget. As long as we guess right, |
| 4499 | * this budget cut reduces the latency |
| 4500 | * experienced by the process. |
| 4501 | * |
| 4502 | * However, if there are still outstanding |
| 4503 | * requests, then the process may have not yet |
| 4504 | * issued its next request just because it is |
| 4505 | * still waiting for the completion of some of |
| 4506 | * the still outstanding ones. So in this |
| 4507 | * subcase we do not reduce its budget, on the |
| 4508 | * contrary we increase it to possibly boost |
| 4509 | * the throughput, as discussed in the |
| 4510 | * comments to the BUDGET_TIMEOUT case. |
| 4511 | */ |
| 4512 | if (bfqq->dispatched > 0) /* still outstanding reqs */ |
| 4513 | budget = min(budget * 2, bfqd->bfq_max_budget); |
| 4514 | else { |
| 4515 | if (budget > 5 * min_budget) |
| 4516 | budget -= 4 * min_budget; |
| 4517 | else |
| 4518 | budget = min_budget; |
| 4519 | } |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4520 | break; |
| 4521 | case BFQQE_BUDGET_TIMEOUT: |
Paolo Valente | 54b6045 | 2017-04-12 18:23:09 +0200 | [diff] [blame] | 4522 | /* |
| 4523 | * We double the budget here because it gives |
| 4524 | * the chance to boost the throughput if this |
| 4525 | * is not a seeky process (and has bumped into |
| 4526 | * this timeout because of, e.g., ZBR). |
| 4527 | */ |
| 4528 | budget = min(budget * 2, bfqd->bfq_max_budget); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4529 | break; |
| 4530 | case BFQQE_BUDGET_EXHAUSTED: |
| 4531 | /* |
| 4532 | * The process still has backlog, and did not |
| 4533 | * let either the budget timeout or the disk |
| 4534 | * idling timeout expire. Hence it is not |
| 4535 | * seeky, has a short thinktime and may be |
| 4536 | * happy with a higher budget too. So |
| 4537 | * definitely increase the budget of this good |
| 4538 | * candidate to boost the disk throughput. |
| 4539 | */ |
Paolo Valente | 54b6045 | 2017-04-12 18:23:09 +0200 | [diff] [blame] | 4540 | budget = min(budget * 4, bfqd->bfq_max_budget); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4541 | break; |
| 4542 | case BFQQE_NO_MORE_REQUESTS: |
| 4543 | /* |
| 4544 | * For queues that expire for this reason, it |
| 4545 | * is particularly important to keep the |
| 4546 | * budget close to the actual service they |
| 4547 | * need. Doing so reduces the timestamp |
| 4548 | * misalignment problem described in the |
| 4549 | * comments in the body of |
| 4550 | * __bfq_activate_entity. In fact, suppose |
| 4551 | * that a queue systematically expires for |
| 4552 | * BFQQE_NO_MORE_REQUESTS and presents a |
| 4553 | * new request in time to enjoy timestamp |
| 4554 | * back-shifting. The larger the budget of the |
| 4555 | * queue is with respect to the service the |
| 4556 | * queue actually requests in each service |
| 4557 | * slot, the more times the queue can be |
| 4558 | * reactivated with the same virtual finish |
| 4559 | * time. It follows that, even if this finish |
| 4560 | * time is pushed to the system virtual time |
| 4561 | * to reduce the consequent timestamp |
| 4562 | * misalignment, the queue unjustly enjoys for |
| 4563 | * many re-activations a lower finish time |
| 4564 | * than all newly activated queues. |
| 4565 | * |
| 4566 | * The service needed by bfqq is measured |
| 4567 | * quite precisely by bfqq->entity.service. |
| 4568 | * Since bfqq does not enjoy device idling, |
| 4569 | * bfqq->entity.service is equal to the number |
| 4570 | * of sectors that the process associated with |
| 4571 | * bfqq requested to read/write before waiting |
| 4572 | * for request completions, or blocking for |
| 4573 | * other reasons. |
| 4574 | */ |
| 4575 | budget = max_t(int, bfqq->entity.service, min_budget); |
| 4576 | break; |
| 4577 | default: |
| 4578 | return; |
| 4579 | } |
| 4580 | } else { |
| 4581 | /* |
| 4582 | * Async queues get always the maximum possible |
| 4583 | * budget, as for them we do not care about latency |
| 4584 | * (in addition, their ability to dispatch is limited |
| 4585 | * by the charging factor). |
| 4586 | */ |
| 4587 | budget = bfqd->bfq_max_budget; |
| 4588 | } |
| 4589 | |
| 4590 | bfqq->max_budget = budget; |
| 4591 | |
| 4592 | if (bfqd->budgets_assigned >= bfq_stats_min_budgets && |
| 4593 | !bfqd->bfq_user_max_budget) |
| 4594 | bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); |
| 4595 | |
| 4596 | /* |
| 4597 | * If there is still backlog, then assign a new budget, making |
| 4598 | * sure that it is large enough for the next request. Since |
| 4599 | * the finish time of bfqq must be kept in sync with the |
| 4600 | * budget, be sure to call __bfq_bfqq_expire() *after* this |
| 4601 | * update. |
| 4602 | * |
| 4603 | * If there is no backlog, then no need to update the budget; |
| 4604 | * it will be updated on the arrival of a new request. |
| 4605 | */ |
| 4606 | next_rq = bfqq->next_rq; |
| 4607 | if (next_rq) |
| 4608 | bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, |
| 4609 | bfq_serv_to_charge(next_rq, bfqq)); |
| 4610 | |
| 4611 | bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", |
| 4612 | next_rq ? blk_rq_sectors(next_rq) : 0, |
| 4613 | bfqq->entity.budget); |
| 4614 | } |
| 4615 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4616 | /* |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4617 | * Return true if the process associated with bfqq is "slow". The slow |
| 4618 | * flag is used, in addition to the budget timeout, to reduce the |
| 4619 | * amount of service provided to seeky processes, and thus reduce |
| 4620 | * their chances to lower the throughput. More details in the comments |
| 4621 | * on the function bfq_bfqq_expire(). |
| 4622 | * |
| 4623 | * An important observation is in order: as discussed in the comments |
| 4624 | * on the function bfq_update_peak_rate(), with devices with internal |
| 4625 | * queues, it is hard if ever possible to know when and for how long |
| 4626 | * an I/O request is processed by the device (apart from the trivial |
| 4627 | * I/O pattern where a new request is dispatched only after the |
| 4628 | * previous one has been completed). This makes it hard to evaluate |
| 4629 | * the real rate at which the I/O requests of each bfq_queue are |
| 4630 | * served. In fact, for an I/O scheduler like BFQ, serving a |
| 4631 | * bfq_queue means just dispatching its requests during its service |
| 4632 | * slot (i.e., until the budget of the queue is exhausted, or the |
| 4633 | * queue remains idle, or, finally, a timeout fires). But, during the |
| 4634 | * service slot of a bfq_queue, around 100 ms at most, the device may |
| 4635 | * be even still processing requests of bfq_queues served in previous |
| 4636 | * service slots. On the opposite end, the requests of the in-service |
| 4637 | * bfq_queue may be completed after the service slot of the queue |
| 4638 | * finishes. |
| 4639 | * |
| 4640 | * Anyway, unless more sophisticated solutions are used |
| 4641 | * (where possible), the sum of the sizes of the requests dispatched |
| 4642 | * during the service slot of a bfq_queue is probably the only |
| 4643 | * approximation available for the service received by the bfq_queue |
| 4644 | * during its service slot. And this sum is the quantity used in this |
| 4645 | * function to evaluate the I/O speed of a process. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4646 | */ |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4647 | static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 4648 | bool compensate, enum bfqq_expiration reason, |
| 4649 | unsigned long *delta_ms) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4650 | { |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4651 | ktime_t delta_ktime; |
| 4652 | u32 delta_usecs; |
| 4653 | bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */ |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4654 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4655 | if (!bfq_bfqq_sync(bfqq)) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4656 | return false; |
| 4657 | |
| 4658 | if (compensate) |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4659 | delta_ktime = bfqd->last_idling_start; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4660 | else |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4661 | delta_ktime = ktime_get(); |
| 4662 | delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start); |
| 4663 | delta_usecs = ktime_to_us(delta_ktime); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4664 | |
| 4665 | /* don't use too short time intervals */ |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4666 | if (delta_usecs < 1000) { |
| 4667 | if (blk_queue_nonrot(bfqd->queue)) |
| 4668 | /* |
| 4669 | * give same worst-case guarantees as idling |
| 4670 | * for seeky |
| 4671 | */ |
| 4672 | *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC; |
| 4673 | else /* charge at least one seek */ |
| 4674 | *delta_ms = bfq_slice_idle / NSEC_PER_MSEC; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4675 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4676 | return slow; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4677 | } |
| 4678 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4679 | *delta_ms = delta_usecs / USEC_PER_MSEC; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4680 | |
| 4681 | /* |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4682 | * Use only long (> 20ms) intervals to filter out excessive |
| 4683 | * spikes in service rate estimation. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4684 | */ |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4685 | if (delta_usecs > 20000) { |
| 4686 | /* |
| 4687 | * Caveat for rotational devices: processes doing I/O |
| 4688 | * in the slower disk zones tend to be slow(er) even |
| 4689 | * if not seeky. In this respect, the estimated peak |
| 4690 | * rate is likely to be an average over the disk |
| 4691 | * surface. Accordingly, to not be too harsh with |
| 4692 | * unlucky processes, a process is deemed slow only if |
| 4693 | * its rate has been lower than half of the estimated |
| 4694 | * peak rate. |
| 4695 | */ |
| 4696 | slow = bfqq->entity.service < bfqd->bfq_max_budget / 2; |
| 4697 | } |
| 4698 | |
| 4699 | bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow); |
| 4700 | |
| 4701 | return slow; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4702 | } |
| 4703 | |
| 4704 | /* |
| 4705 | * Return the farthest past time instant according to jiffies |
| 4706 | * macros. |
| 4707 | */ |
| 4708 | static unsigned long bfq_smallest_from_now(void) |
| 4709 | { |
| 4710 | return jiffies - MAX_JIFFY_OFFSET; |
| 4711 | } |
| 4712 | |
| 4713 | /** |
| 4714 | * bfq_bfqq_expire - expire a queue. |
| 4715 | * @bfqd: device owning the queue. |
| 4716 | * @bfqq: the queue to expire. |
| 4717 | * @compensate: if true, compensate for the time spent idling. |
| 4718 | * @reason: the reason causing the expiration. |
| 4719 | * |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 4720 | * If the process associated with bfqq does slow I/O (e.g., because it |
| 4721 | * issues random requests), we charge bfqq with the time it has been |
| 4722 | * in service instead of the service it has received (see |
| 4723 | * bfq_bfqq_charge_time for details on how this goal is achieved). As |
| 4724 | * a consequence, bfqq will typically get higher timestamps upon |
| 4725 | * reactivation, and hence it will be rescheduled as if it had |
| 4726 | * received more service than what it has actually received. In the |
| 4727 | * end, bfqq receives less service in proportion to how slowly its |
| 4728 | * associated process consumes its budgets (and hence how seriously it |
| 4729 | * tends to lower the throughput). In addition, this time-charging |
| 4730 | * strategy guarantees time fairness among slow processes. In |
| 4731 | * contrast, if the process associated with bfqq is not slow, we |
| 4732 | * charge bfqq exactly with the service it has received. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4733 | * |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 4734 | * Charging time to the first type of queues and the exact service to |
| 4735 | * the other has the effect of using the WF2Q+ policy to schedule the |
| 4736 | * former on a timeslice basis, without violating service domain |
| 4737 | * guarantees among the latter. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4738 | */ |
| 4739 | static void bfq_bfqq_expire(struct bfq_data *bfqd, |
| 4740 | struct bfq_queue *bfqq, |
| 4741 | bool compensate, |
| 4742 | enum bfqq_expiration reason) |
| 4743 | { |
| 4744 | bool slow; |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4745 | unsigned long delta = 0; |
| 4746 | struct bfq_entity *entity = &bfqq->entity; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4747 | int ref; |
| 4748 | |
| 4749 | /* |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4750 | * Check whether the process is slow (see bfq_bfqq_is_slow). |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4751 | */ |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4752 | slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4753 | |
| 4754 | /* |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 4755 | * As above explained, charge slow (typically seeky) and |
| 4756 | * timed-out queues with the time and not the service |
| 4757 | * received, to favor sequential workloads. |
| 4758 | * |
| 4759 | * Processes doing I/O in the slower disk zones will tend to |
| 4760 | * be slow(er) even if not seeky. Therefore, since the |
| 4761 | * estimated peak rate is actually an average over the disk |
| 4762 | * surface, these processes may timeout just for bad luck. To |
| 4763 | * avoid punishing them, do not charge time to processes that |
| 4764 | * succeeded in consuming at least 2/3 of their budget. This |
| 4765 | * allows BFQ to preserve enough elasticity to still perform |
| 4766 | * bandwidth, and not time, distribution with little unlucky |
| 4767 | * or quasi-sequential processes. |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4768 | */ |
Paolo Valente | c074170e | 2017-04-12 18:23:11 +0200 | [diff] [blame^] | 4769 | if (slow || |
| 4770 | (reason == BFQQE_BUDGET_TIMEOUT && |
| 4771 | bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)) |
| 4772 | bfq_bfqq_charge_time(bfqd, bfqq, delta); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4773 | |
| 4774 | if (reason == BFQQE_TOO_IDLE && |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 4775 | entity->service <= 2 * entity->budget / 10) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4776 | bfq_clear_bfqq_IO_bound(bfqq); |
| 4777 | |
| 4778 | bfq_log_bfqq(bfqd, bfqq, |
| 4779 | "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, |
| 4780 | slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq)); |
| 4781 | |
| 4782 | /* |
| 4783 | * Increase, decrease or leave budget unchanged according to |
| 4784 | * reason. |
| 4785 | */ |
| 4786 | __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); |
| 4787 | ref = bfqq->ref; |
| 4788 | __bfq_bfqq_expire(bfqd, bfqq); |
| 4789 | |
| 4790 | /* mark bfqq as waiting a request only if a bic still points to it */ |
| 4791 | if (ref > 1 && !bfq_bfqq_busy(bfqq) && |
| 4792 | reason != BFQQE_BUDGET_TIMEOUT && |
| 4793 | reason != BFQQE_BUDGET_EXHAUSTED) |
| 4794 | bfq_mark_bfqq_non_blocking_wait_rq(bfqq); |
| 4795 | } |
| 4796 | |
| 4797 | /* |
| 4798 | * Budget timeout is not implemented through a dedicated timer, but |
| 4799 | * just checked on request arrivals and completions, as well as on |
| 4800 | * idle timer expirations. |
| 4801 | */ |
| 4802 | static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) |
| 4803 | { |
| 4804 | if (bfq_bfqq_budget_new(bfqq) || |
| 4805 | time_is_after_jiffies(bfqq->budget_timeout)) |
| 4806 | return false; |
| 4807 | return true; |
| 4808 | } |
| 4809 | |
| 4810 | /* |
| 4811 | * If we expire a queue that is actively waiting (i.e., with the |
| 4812 | * device idled) for the arrival of a new request, then we may incur |
| 4813 | * the timestamp misalignment problem described in the body of the |
| 4814 | * function __bfq_activate_entity. Hence we return true only if this |
| 4815 | * condition does not hold, or if the queue is slow enough to deserve |
| 4816 | * only to be kicked off for preserving a high throughput. |
| 4817 | */ |
| 4818 | static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) |
| 4819 | { |
| 4820 | bfq_log_bfqq(bfqq->bfqd, bfqq, |
| 4821 | "may_budget_timeout: wait_request %d left %d timeout %d", |
| 4822 | bfq_bfqq_wait_request(bfqq), |
| 4823 | bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, |
| 4824 | bfq_bfqq_budget_timeout(bfqq)); |
| 4825 | |
| 4826 | return (!bfq_bfqq_wait_request(bfqq) || |
| 4827 | bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) |
| 4828 | && |
| 4829 | bfq_bfqq_budget_timeout(bfqq); |
| 4830 | } |
| 4831 | |
| 4832 | /* |
| 4833 | * For a queue that becomes empty, device idling is allowed only if |
| 4834 | * this function returns true for the queue. And this function returns |
| 4835 | * true only if idling is beneficial for throughput. |
| 4836 | */ |
| 4837 | static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq) |
| 4838 | { |
| 4839 | struct bfq_data *bfqd = bfqq->bfqd; |
| 4840 | bool idling_boosts_thr; |
| 4841 | |
| 4842 | if (bfqd->strict_guarantees) |
| 4843 | return true; |
| 4844 | |
| 4845 | /* |
| 4846 | * The value of the next variable is computed considering that |
| 4847 | * idling is usually beneficial for the throughput if: |
| 4848 | * (a) the device is not NCQ-capable, or |
| 4849 | * (b) regardless of the presence of NCQ, the request pattern |
| 4850 | * for bfqq is I/O-bound (possible throughput losses |
| 4851 | * caused by granting idling to seeky queues are mitigated |
| 4852 | * by the fact that, in all scenarios where boosting |
| 4853 | * throughput is the best thing to do, i.e., in all |
| 4854 | * symmetric scenarios, only a minimal idle time is |
| 4855 | * allowed to seeky queues). |
| 4856 | */ |
| 4857 | idling_boosts_thr = !bfqd->hw_tag || bfq_bfqq_IO_bound(bfqq); |
| 4858 | |
| 4859 | /* |
| 4860 | * We have now the components we need to compute the return |
| 4861 | * value of the function, which is true only if both the |
| 4862 | * following conditions hold: |
| 4863 | * 1) bfqq is sync, because idling make sense only for sync queues; |
| 4864 | * 2) idling boosts the throughput. |
| 4865 | */ |
| 4866 | return bfq_bfqq_sync(bfqq) && idling_boosts_thr; |
| 4867 | } |
| 4868 | |
| 4869 | /* |
| 4870 | * If the in-service queue is empty but the function bfq_bfqq_may_idle |
| 4871 | * returns true, then: |
| 4872 | * 1) the queue must remain in service and cannot be expired, and |
| 4873 | * 2) the device must be idled to wait for the possible arrival of a new |
| 4874 | * request for the queue. |
| 4875 | * See the comments on the function bfq_bfqq_may_idle for the reasons |
| 4876 | * why performing device idling is the best choice to boost the throughput |
| 4877 | * and preserve service guarantees when bfq_bfqq_may_idle itself |
| 4878 | * returns true. |
| 4879 | */ |
| 4880 | static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) |
| 4881 | { |
| 4882 | struct bfq_data *bfqd = bfqq->bfqd; |
| 4883 | |
| 4884 | return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 && |
| 4885 | bfq_bfqq_may_idle(bfqq); |
| 4886 | } |
| 4887 | |
| 4888 | /* |
| 4889 | * Select a queue for service. If we have a current queue in service, |
| 4890 | * check whether to continue servicing it, or retrieve and set a new one. |
| 4891 | */ |
| 4892 | static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) |
| 4893 | { |
| 4894 | struct bfq_queue *bfqq; |
| 4895 | struct request *next_rq; |
| 4896 | enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; |
| 4897 | |
| 4898 | bfqq = bfqd->in_service_queue; |
| 4899 | if (!bfqq) |
| 4900 | goto new_queue; |
| 4901 | |
| 4902 | bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); |
| 4903 | |
| 4904 | if (bfq_may_expire_for_budg_timeout(bfqq) && |
| 4905 | !bfq_bfqq_wait_request(bfqq) && |
| 4906 | !bfq_bfqq_must_idle(bfqq)) |
| 4907 | goto expire; |
| 4908 | |
| 4909 | check_queue: |
| 4910 | /* |
| 4911 | * This loop is rarely executed more than once. Even when it |
| 4912 | * happens, it is much more convenient to re-execute this loop |
| 4913 | * than to return NULL and trigger a new dispatch to get a |
| 4914 | * request served. |
| 4915 | */ |
| 4916 | next_rq = bfqq->next_rq; |
| 4917 | /* |
| 4918 | * If bfqq has requests queued and it has enough budget left to |
| 4919 | * serve them, keep the queue, otherwise expire it. |
| 4920 | */ |
| 4921 | if (next_rq) { |
| 4922 | if (bfq_serv_to_charge(next_rq, bfqq) > |
| 4923 | bfq_bfqq_budget_left(bfqq)) { |
| 4924 | /* |
| 4925 | * Expire the queue for budget exhaustion, |
| 4926 | * which makes sure that the next budget is |
| 4927 | * enough to serve the next request, even if |
| 4928 | * it comes from the fifo expired path. |
| 4929 | */ |
| 4930 | reason = BFQQE_BUDGET_EXHAUSTED; |
| 4931 | goto expire; |
| 4932 | } else { |
| 4933 | /* |
| 4934 | * The idle timer may be pending because we may |
| 4935 | * not disable disk idling even when a new request |
| 4936 | * arrives. |
| 4937 | */ |
| 4938 | if (bfq_bfqq_wait_request(bfqq)) { |
| 4939 | /* |
| 4940 | * If we get here: 1) at least a new request |
| 4941 | * has arrived but we have not disabled the |
| 4942 | * timer because the request was too small, |
| 4943 | * 2) then the block layer has unplugged |
| 4944 | * the device, causing the dispatch to be |
| 4945 | * invoked. |
| 4946 | * |
| 4947 | * Since the device is unplugged, now the |
| 4948 | * requests are probably large enough to |
| 4949 | * provide a reasonable throughput. |
| 4950 | * So we disable idling. |
| 4951 | */ |
| 4952 | bfq_clear_bfqq_wait_request(bfqq); |
| 4953 | hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 4954 | bfqg_stats_update_idle_time(bfqq_group(bfqq)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 4955 | } |
| 4956 | goto keep_queue; |
| 4957 | } |
| 4958 | } |
| 4959 | |
| 4960 | /* |
| 4961 | * No requests pending. However, if the in-service queue is idling |
| 4962 | * for a new request, or has requests waiting for a completion and |
| 4963 | * may idle after their completion, then keep it anyway. |
| 4964 | */ |
| 4965 | if (bfq_bfqq_wait_request(bfqq) || |
| 4966 | (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) { |
| 4967 | bfqq = NULL; |
| 4968 | goto keep_queue; |
| 4969 | } |
| 4970 | |
| 4971 | reason = BFQQE_NO_MORE_REQUESTS; |
| 4972 | expire: |
| 4973 | bfq_bfqq_expire(bfqd, bfqq, false, reason); |
| 4974 | new_queue: |
| 4975 | bfqq = bfq_set_in_service_queue(bfqd); |
| 4976 | if (bfqq) { |
| 4977 | bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); |
| 4978 | goto check_queue; |
| 4979 | } |
| 4980 | keep_queue: |
| 4981 | if (bfqq) |
| 4982 | bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); |
| 4983 | else |
| 4984 | bfq_log(bfqd, "select_queue: no queue returned"); |
| 4985 | |
| 4986 | return bfqq; |
| 4987 | } |
| 4988 | |
| 4989 | /* |
| 4990 | * Dispatch next request from bfqq. |
| 4991 | */ |
| 4992 | static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, |
| 4993 | struct bfq_queue *bfqq) |
| 4994 | { |
| 4995 | struct request *rq = bfqq->next_rq; |
| 4996 | unsigned long service_to_charge; |
| 4997 | |
| 4998 | service_to_charge = bfq_serv_to_charge(rq, bfqq); |
| 4999 | |
| 5000 | bfq_bfqq_served(bfqq, service_to_charge); |
| 5001 | |
| 5002 | bfq_dispatch_remove(bfqd->queue, rq); |
| 5003 | |
| 5004 | if (!bfqd->in_service_bic) { |
| 5005 | atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount); |
| 5006 | bfqd->in_service_bic = RQ_BIC(rq); |
| 5007 | } |
| 5008 | |
| 5009 | /* |
| 5010 | * Expire bfqq, pretending that its budget expired, if bfqq |
| 5011 | * belongs to CLASS_IDLE and other queues are waiting for |
| 5012 | * service. |
| 5013 | */ |
| 5014 | if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq)) |
| 5015 | goto expire; |
| 5016 | |
| 5017 | return rq; |
| 5018 | |
| 5019 | expire: |
| 5020 | bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); |
| 5021 | return rq; |
| 5022 | } |
| 5023 | |
| 5024 | static bool bfq_has_work(struct blk_mq_hw_ctx *hctx) |
| 5025 | { |
| 5026 | struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| 5027 | |
| 5028 | /* |
| 5029 | * Avoiding lock: a race on bfqd->busy_queues should cause at |
| 5030 | * most a call to dispatch for nothing |
| 5031 | */ |
| 5032 | return !list_empty_careful(&bfqd->dispatch) || |
| 5033 | bfqd->busy_queues > 0; |
| 5034 | } |
| 5035 | |
| 5036 | static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) |
| 5037 | { |
| 5038 | struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| 5039 | struct request *rq = NULL; |
| 5040 | struct bfq_queue *bfqq = NULL; |
| 5041 | |
| 5042 | if (!list_empty(&bfqd->dispatch)) { |
| 5043 | rq = list_first_entry(&bfqd->dispatch, struct request, |
| 5044 | queuelist); |
| 5045 | list_del_init(&rq->queuelist); |
| 5046 | |
| 5047 | bfqq = RQ_BFQQ(rq); |
| 5048 | |
| 5049 | if (bfqq) { |
| 5050 | /* |
| 5051 | * Increment counters here, because this |
| 5052 | * dispatch does not follow the standard |
| 5053 | * dispatch flow (where counters are |
| 5054 | * incremented) |
| 5055 | */ |
| 5056 | bfqq->dispatched++; |
| 5057 | |
| 5058 | goto inc_in_driver_start_rq; |
| 5059 | } |
| 5060 | |
| 5061 | /* |
| 5062 | * We exploit the put_rq_private hook to decrement |
| 5063 | * rq_in_driver, but put_rq_private will not be |
| 5064 | * invoked on this request. So, to avoid unbalance, |
| 5065 | * just start this request, without incrementing |
| 5066 | * rq_in_driver. As a negative consequence, |
| 5067 | * rq_in_driver is deceptively lower than it should be |
| 5068 | * while this request is in service. This may cause |
| 5069 | * bfq_schedule_dispatch to be invoked uselessly. |
| 5070 | * |
| 5071 | * As for implementing an exact solution, the |
| 5072 | * put_request hook, if defined, is probably invoked |
| 5073 | * also on this request. So, by exploiting this hook, |
| 5074 | * we could 1) increment rq_in_driver here, and 2) |
| 5075 | * decrement it in put_request. Such a solution would |
| 5076 | * let the value of the counter be always accurate, |
| 5077 | * but it would entail using an extra interface |
| 5078 | * function. This cost seems higher than the benefit, |
| 5079 | * being the frequency of non-elevator-private |
| 5080 | * requests very low. |
| 5081 | */ |
| 5082 | goto start_rq; |
| 5083 | } |
| 5084 | |
| 5085 | bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); |
| 5086 | |
| 5087 | if (bfqd->busy_queues == 0) |
| 5088 | goto exit; |
| 5089 | |
| 5090 | /* |
| 5091 | * Force device to serve one request at a time if |
| 5092 | * strict_guarantees is true. Forcing this service scheme is |
| 5093 | * currently the ONLY way to guarantee that the request |
| 5094 | * service order enforced by the scheduler is respected by a |
| 5095 | * queueing device. Otherwise the device is free even to make |
| 5096 | * some unlucky request wait for as long as the device |
| 5097 | * wishes. |
| 5098 | * |
| 5099 | * Of course, serving one request at at time may cause loss of |
| 5100 | * throughput. |
| 5101 | */ |
| 5102 | if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0) |
| 5103 | goto exit; |
| 5104 | |
| 5105 | bfqq = bfq_select_queue(bfqd); |
| 5106 | if (!bfqq) |
| 5107 | goto exit; |
| 5108 | |
| 5109 | rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); |
| 5110 | |
| 5111 | if (rq) { |
| 5112 | inc_in_driver_start_rq: |
| 5113 | bfqd->rq_in_driver++; |
| 5114 | start_rq: |
| 5115 | rq->rq_flags |= RQF_STARTED; |
| 5116 | } |
| 5117 | exit: |
| 5118 | return rq; |
| 5119 | } |
| 5120 | |
| 5121 | static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) |
| 5122 | { |
| 5123 | struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; |
| 5124 | struct request *rq; |
| 5125 | |
| 5126 | spin_lock_irq(&bfqd->lock); |
| 5127 | rq = __bfq_dispatch_request(hctx); |
| 5128 | spin_unlock_irq(&bfqd->lock); |
| 5129 | |
| 5130 | return rq; |
| 5131 | } |
| 5132 | |
| 5133 | /* |
| 5134 | * Task holds one reference to the queue, dropped when task exits. Each rq |
| 5135 | * in-flight on this queue also holds a reference, dropped when rq is freed. |
| 5136 | * |
| 5137 | * Scheduler lock must be held here. Recall not to use bfqq after calling |
| 5138 | * this function on it. |
| 5139 | */ |
| 5140 | static void bfq_put_queue(struct bfq_queue *bfqq) |
| 5141 | { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5142 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 5143 | struct bfq_group *bfqg = bfqq_group(bfqq); |
| 5144 | #endif |
| 5145 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5146 | if (bfqq->bfqd) |
| 5147 | bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", |
| 5148 | bfqq, bfqq->ref); |
| 5149 | |
| 5150 | bfqq->ref--; |
| 5151 | if (bfqq->ref) |
| 5152 | return; |
| 5153 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5154 | bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p freed", bfqq); |
| 5155 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5156 | kmem_cache_free(bfq_pool, bfqq); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5157 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 5158 | bfqg_put(bfqg); |
| 5159 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5160 | } |
| 5161 | |
| 5162 | static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) |
| 5163 | { |
| 5164 | if (bfqq == bfqd->in_service_queue) { |
| 5165 | __bfq_bfqq_expire(bfqd, bfqq); |
| 5166 | bfq_schedule_dispatch(bfqd); |
| 5167 | } |
| 5168 | |
| 5169 | bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); |
| 5170 | |
| 5171 | bfq_put_queue(bfqq); /* release process reference */ |
| 5172 | } |
| 5173 | |
| 5174 | static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync) |
| 5175 | { |
| 5176 | struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync); |
| 5177 | struct bfq_data *bfqd; |
| 5178 | |
| 5179 | if (bfqq) |
| 5180 | bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ |
| 5181 | |
| 5182 | if (bfqq && bfqd) { |
| 5183 | unsigned long flags; |
| 5184 | |
| 5185 | spin_lock_irqsave(&bfqd->lock, flags); |
| 5186 | bfq_exit_bfqq(bfqd, bfqq); |
| 5187 | bic_set_bfqq(bic, NULL, is_sync); |
| 5188 | spin_unlock_irq(&bfqd->lock); |
| 5189 | } |
| 5190 | } |
| 5191 | |
| 5192 | static void bfq_exit_icq(struct io_cq *icq) |
| 5193 | { |
| 5194 | struct bfq_io_cq *bic = icq_to_bic(icq); |
| 5195 | |
| 5196 | bfq_exit_icq_bfqq(bic, true); |
| 5197 | bfq_exit_icq_bfqq(bic, false); |
| 5198 | } |
| 5199 | |
| 5200 | /* |
| 5201 | * Update the entity prio values; note that the new values will not |
| 5202 | * be used until the next (re)activation. |
| 5203 | */ |
| 5204 | static void |
| 5205 | bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) |
| 5206 | { |
| 5207 | struct task_struct *tsk = current; |
| 5208 | int ioprio_class; |
| 5209 | struct bfq_data *bfqd = bfqq->bfqd; |
| 5210 | |
| 5211 | if (!bfqd) |
| 5212 | return; |
| 5213 | |
| 5214 | ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); |
| 5215 | switch (ioprio_class) { |
| 5216 | default: |
| 5217 | dev_err(bfqq->bfqd->queue->backing_dev_info->dev, |
| 5218 | "bfq: bad prio class %d\n", ioprio_class); |
| 5219 | case IOPRIO_CLASS_NONE: |
| 5220 | /* |
| 5221 | * No prio set, inherit CPU scheduling settings. |
| 5222 | */ |
| 5223 | bfqq->new_ioprio = task_nice_ioprio(tsk); |
| 5224 | bfqq->new_ioprio_class = task_nice_ioclass(tsk); |
| 5225 | break; |
| 5226 | case IOPRIO_CLASS_RT: |
| 5227 | bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| 5228 | bfqq->new_ioprio_class = IOPRIO_CLASS_RT; |
| 5229 | break; |
| 5230 | case IOPRIO_CLASS_BE: |
| 5231 | bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| 5232 | bfqq->new_ioprio_class = IOPRIO_CLASS_BE; |
| 5233 | break; |
| 5234 | case IOPRIO_CLASS_IDLE: |
| 5235 | bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; |
| 5236 | bfqq->new_ioprio = 7; |
| 5237 | bfq_clear_bfqq_idle_window(bfqq); |
| 5238 | break; |
| 5239 | } |
| 5240 | |
| 5241 | if (bfqq->new_ioprio >= IOPRIO_BE_NR) { |
| 5242 | pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", |
| 5243 | bfqq->new_ioprio); |
| 5244 | bfqq->new_ioprio = IOPRIO_BE_NR; |
| 5245 | } |
| 5246 | |
| 5247 | bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); |
| 5248 | bfqq->entity.prio_changed = 1; |
| 5249 | } |
| 5250 | |
| 5251 | static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) |
| 5252 | { |
| 5253 | struct bfq_data *bfqd = bic_to_bfqd(bic); |
| 5254 | struct bfq_queue *bfqq; |
| 5255 | int ioprio = bic->icq.ioc->ioprio; |
| 5256 | |
| 5257 | /* |
| 5258 | * This condition may trigger on a newly created bic, be sure to |
| 5259 | * drop the lock before returning. |
| 5260 | */ |
| 5261 | if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) |
| 5262 | return; |
| 5263 | |
| 5264 | bic->ioprio = ioprio; |
| 5265 | |
| 5266 | bfqq = bic_to_bfqq(bic, false); |
| 5267 | if (bfqq) { |
| 5268 | /* release process reference on this queue */ |
| 5269 | bfq_put_queue(bfqq); |
| 5270 | bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic); |
| 5271 | bic_set_bfqq(bic, bfqq, false); |
| 5272 | } |
| 5273 | |
| 5274 | bfqq = bic_to_bfqq(bic, true); |
| 5275 | if (bfqq) |
| 5276 | bfq_set_next_ioprio_data(bfqq, bic); |
| 5277 | } |
| 5278 | |
| 5279 | static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 5280 | struct bfq_io_cq *bic, pid_t pid, int is_sync) |
| 5281 | { |
| 5282 | RB_CLEAR_NODE(&bfqq->entity.rb_node); |
| 5283 | INIT_LIST_HEAD(&bfqq->fifo); |
| 5284 | |
| 5285 | bfqq->ref = 0; |
| 5286 | bfqq->bfqd = bfqd; |
| 5287 | |
| 5288 | if (bic) |
| 5289 | bfq_set_next_ioprio_data(bfqq, bic); |
| 5290 | |
| 5291 | if (is_sync) { |
| 5292 | if (!bfq_class_idle(bfqq)) |
| 5293 | bfq_mark_bfqq_idle_window(bfqq); |
| 5294 | bfq_mark_bfqq_sync(bfqq); |
| 5295 | } else |
| 5296 | bfq_clear_bfqq_sync(bfqq); |
| 5297 | |
| 5298 | /* set end request to minus infinity from now */ |
| 5299 | bfqq->ttime.last_end_request = ktime_get_ns() + 1; |
| 5300 | |
| 5301 | bfq_mark_bfqq_IO_bound(bfqq); |
| 5302 | |
| 5303 | bfqq->pid = pid; |
| 5304 | |
| 5305 | /* Tentative initial value to trade off between thr and lat */ |
Paolo Valente | 54b6045 | 2017-04-12 18:23:09 +0200 | [diff] [blame] | 5306 | bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5307 | bfqq->budget_timeout = bfq_smallest_from_now(); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5308 | |
| 5309 | /* first request is almost certainly seeky */ |
| 5310 | bfqq->seek_history = 1; |
| 5311 | } |
| 5312 | |
| 5313 | static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5314 | struct bfq_group *bfqg, |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5315 | int ioprio_class, int ioprio) |
| 5316 | { |
| 5317 | switch (ioprio_class) { |
| 5318 | case IOPRIO_CLASS_RT: |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5319 | return &bfqg->async_bfqq[0][ioprio]; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5320 | case IOPRIO_CLASS_NONE: |
| 5321 | ioprio = IOPRIO_NORM; |
| 5322 | /* fall through */ |
| 5323 | case IOPRIO_CLASS_BE: |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5324 | return &bfqg->async_bfqq[1][ioprio]; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5325 | case IOPRIO_CLASS_IDLE: |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5326 | return &bfqg->async_idle_bfqq; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5327 | default: |
| 5328 | return NULL; |
| 5329 | } |
| 5330 | } |
| 5331 | |
| 5332 | static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, |
| 5333 | struct bio *bio, bool is_sync, |
| 5334 | struct bfq_io_cq *bic) |
| 5335 | { |
| 5336 | const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); |
| 5337 | const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); |
| 5338 | struct bfq_queue **async_bfqq = NULL; |
| 5339 | struct bfq_queue *bfqq; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5340 | struct bfq_group *bfqg; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5341 | |
| 5342 | rcu_read_lock(); |
| 5343 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5344 | bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio)); |
| 5345 | if (!bfqg) { |
| 5346 | bfqq = &bfqd->oom_bfqq; |
| 5347 | goto out; |
| 5348 | } |
| 5349 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5350 | if (!is_sync) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5351 | async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class, |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5352 | ioprio); |
| 5353 | bfqq = *async_bfqq; |
| 5354 | if (bfqq) |
| 5355 | goto out; |
| 5356 | } |
| 5357 | |
| 5358 | bfqq = kmem_cache_alloc_node(bfq_pool, |
| 5359 | GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, |
| 5360 | bfqd->queue->node); |
| 5361 | |
| 5362 | if (bfqq) { |
| 5363 | bfq_init_bfqq(bfqd, bfqq, bic, current->pid, |
| 5364 | is_sync); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5365 | bfq_init_entity(&bfqq->entity, bfqg); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5366 | bfq_log_bfqq(bfqd, bfqq, "allocated"); |
| 5367 | } else { |
| 5368 | bfqq = &bfqd->oom_bfqq; |
| 5369 | bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); |
| 5370 | goto out; |
| 5371 | } |
| 5372 | |
| 5373 | /* |
| 5374 | * Pin the queue now that it's allocated, scheduler exit will |
| 5375 | * prune it. |
| 5376 | */ |
| 5377 | if (async_bfqq) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5378 | bfqq->ref++; /* |
| 5379 | * Extra group reference, w.r.t. sync |
| 5380 | * queue. This extra reference is removed |
| 5381 | * only if bfqq->bfqg disappears, to |
| 5382 | * guarantee that this queue is not freed |
| 5383 | * until its group goes away. |
| 5384 | */ |
| 5385 | bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d", |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5386 | bfqq, bfqq->ref); |
| 5387 | *async_bfqq = bfqq; |
| 5388 | } |
| 5389 | |
| 5390 | out: |
| 5391 | bfqq->ref++; /* get a process reference to this queue */ |
| 5392 | bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref); |
| 5393 | rcu_read_unlock(); |
| 5394 | return bfqq; |
| 5395 | } |
| 5396 | |
| 5397 | static void bfq_update_io_thinktime(struct bfq_data *bfqd, |
| 5398 | struct bfq_queue *bfqq) |
| 5399 | { |
| 5400 | struct bfq_ttime *ttime = &bfqq->ttime; |
| 5401 | u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; |
| 5402 | |
| 5403 | elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); |
| 5404 | |
| 5405 | ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8; |
| 5406 | ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); |
| 5407 | ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, |
| 5408 | ttime->ttime_samples); |
| 5409 | } |
| 5410 | |
| 5411 | static void |
| 5412 | bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 5413 | struct request *rq) |
| 5414 | { |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5415 | bfqq->seek_history <<= 1; |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5416 | bfqq->seek_history |= |
| 5417 | get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR && |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5418 | (!blk_queue_nonrot(bfqd->queue) || |
| 5419 | blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT); |
| 5420 | } |
| 5421 | |
| 5422 | /* |
| 5423 | * Disable idle window if the process thinks too long or seeks so much that |
| 5424 | * it doesn't matter. |
| 5425 | */ |
| 5426 | static void bfq_update_idle_window(struct bfq_data *bfqd, |
| 5427 | struct bfq_queue *bfqq, |
| 5428 | struct bfq_io_cq *bic) |
| 5429 | { |
| 5430 | int enable_idle; |
| 5431 | |
| 5432 | /* Don't idle for async or idle io prio class. */ |
| 5433 | if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq)) |
| 5434 | return; |
| 5435 | |
| 5436 | enable_idle = bfq_bfqq_idle_window(bfqq); |
| 5437 | |
| 5438 | if (atomic_read(&bic->icq.ioc->active_ref) == 0 || |
| 5439 | bfqd->bfq_slice_idle == 0 || |
| 5440 | (bfqd->hw_tag && BFQQ_SEEKY(bfqq))) |
| 5441 | enable_idle = 0; |
| 5442 | else if (bfq_sample_valid(bfqq->ttime.ttime_samples)) { |
| 5443 | if (bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle) |
| 5444 | enable_idle = 0; |
| 5445 | else |
| 5446 | enable_idle = 1; |
| 5447 | } |
| 5448 | bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d", |
| 5449 | enable_idle); |
| 5450 | |
| 5451 | if (enable_idle) |
| 5452 | bfq_mark_bfqq_idle_window(bfqq); |
| 5453 | else |
| 5454 | bfq_clear_bfqq_idle_window(bfqq); |
| 5455 | } |
| 5456 | |
| 5457 | /* |
| 5458 | * Called when a new fs request (rq) is added to bfqq. Check if there's |
| 5459 | * something we should do about it. |
| 5460 | */ |
| 5461 | static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, |
| 5462 | struct request *rq) |
| 5463 | { |
| 5464 | struct bfq_io_cq *bic = RQ_BIC(rq); |
| 5465 | |
| 5466 | if (rq->cmd_flags & REQ_META) |
| 5467 | bfqq->meta_pending++; |
| 5468 | |
| 5469 | bfq_update_io_thinktime(bfqd, bfqq); |
| 5470 | bfq_update_io_seektime(bfqd, bfqq, rq); |
| 5471 | if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 || |
| 5472 | !BFQQ_SEEKY(bfqq)) |
| 5473 | bfq_update_idle_window(bfqd, bfqq, bic); |
| 5474 | |
| 5475 | bfq_log_bfqq(bfqd, bfqq, |
| 5476 | "rq_enqueued: idle_window=%d (seeky %d)", |
| 5477 | bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq)); |
| 5478 | |
| 5479 | bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); |
| 5480 | |
| 5481 | if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { |
| 5482 | bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && |
| 5483 | blk_rq_sectors(rq) < 32; |
| 5484 | bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); |
| 5485 | |
| 5486 | /* |
| 5487 | * There is just this request queued: if the request |
| 5488 | * is small and the queue is not to be expired, then |
| 5489 | * just exit. |
| 5490 | * |
| 5491 | * In this way, if the device is being idled to wait |
| 5492 | * for a new request from the in-service queue, we |
| 5493 | * avoid unplugging the device and committing the |
| 5494 | * device to serve just a small request. On the |
| 5495 | * contrary, we wait for the block layer to decide |
| 5496 | * when to unplug the device: hopefully, new requests |
| 5497 | * will be merged to this one quickly, then the device |
| 5498 | * will be unplugged and larger requests will be |
| 5499 | * dispatched. |
| 5500 | */ |
| 5501 | if (small_req && !budget_timeout) |
| 5502 | return; |
| 5503 | |
| 5504 | /* |
| 5505 | * A large enough request arrived, or the queue is to |
| 5506 | * be expired: in both cases disk idling is to be |
| 5507 | * stopped, so clear wait_request flag and reset |
| 5508 | * timer. |
| 5509 | */ |
| 5510 | bfq_clear_bfqq_wait_request(bfqq); |
| 5511 | hrtimer_try_to_cancel(&bfqd->idle_slice_timer); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5512 | bfqg_stats_update_idle_time(bfqq_group(bfqq)); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5513 | |
| 5514 | /* |
| 5515 | * The queue is not empty, because a new request just |
| 5516 | * arrived. Hence we can safely expire the queue, in |
| 5517 | * case of budget timeout, without risking that the |
| 5518 | * timestamps of the queue are not updated correctly. |
| 5519 | * See [1] for more details. |
| 5520 | */ |
| 5521 | if (budget_timeout) |
| 5522 | bfq_bfqq_expire(bfqd, bfqq, false, |
| 5523 | BFQQE_BUDGET_TIMEOUT); |
| 5524 | } |
| 5525 | } |
| 5526 | |
| 5527 | static void __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) |
| 5528 | { |
| 5529 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 5530 | |
| 5531 | bfq_add_request(rq); |
| 5532 | |
| 5533 | rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; |
| 5534 | list_add_tail(&rq->queuelist, &bfqq->fifo); |
| 5535 | |
| 5536 | bfq_rq_enqueued(bfqd, bfqq, rq); |
| 5537 | } |
| 5538 | |
| 5539 | static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, |
| 5540 | bool at_head) |
| 5541 | { |
| 5542 | struct request_queue *q = hctx->queue; |
| 5543 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 5544 | |
| 5545 | spin_lock_irq(&bfqd->lock); |
| 5546 | if (blk_mq_sched_try_insert_merge(q, rq)) { |
| 5547 | spin_unlock_irq(&bfqd->lock); |
| 5548 | return; |
| 5549 | } |
| 5550 | |
| 5551 | spin_unlock_irq(&bfqd->lock); |
| 5552 | |
| 5553 | blk_mq_sched_request_inserted(rq); |
| 5554 | |
| 5555 | spin_lock_irq(&bfqd->lock); |
| 5556 | if (at_head || blk_rq_is_passthrough(rq)) { |
| 5557 | if (at_head) |
| 5558 | list_add(&rq->queuelist, &bfqd->dispatch); |
| 5559 | else |
| 5560 | list_add_tail(&rq->queuelist, &bfqd->dispatch); |
| 5561 | } else { |
| 5562 | __bfq_insert_request(bfqd, rq); |
| 5563 | |
| 5564 | if (rq_mergeable(rq)) { |
| 5565 | elv_rqhash_add(q, rq); |
| 5566 | if (!q->last_merge) |
| 5567 | q->last_merge = rq; |
| 5568 | } |
| 5569 | } |
| 5570 | |
| 5571 | spin_unlock_irq(&bfqd->lock); |
| 5572 | } |
| 5573 | |
| 5574 | static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, |
| 5575 | struct list_head *list, bool at_head) |
| 5576 | { |
| 5577 | while (!list_empty(list)) { |
| 5578 | struct request *rq; |
| 5579 | |
| 5580 | rq = list_first_entry(list, struct request, queuelist); |
| 5581 | list_del_init(&rq->queuelist); |
| 5582 | bfq_insert_request(hctx, rq, at_head); |
| 5583 | } |
| 5584 | } |
| 5585 | |
| 5586 | static void bfq_update_hw_tag(struct bfq_data *bfqd) |
| 5587 | { |
| 5588 | bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, |
| 5589 | bfqd->rq_in_driver); |
| 5590 | |
| 5591 | if (bfqd->hw_tag == 1) |
| 5592 | return; |
| 5593 | |
| 5594 | /* |
| 5595 | * This sample is valid if the number of outstanding requests |
| 5596 | * is large enough to allow a queueing behavior. Note that the |
| 5597 | * sum is not exact, as it's not taking into account deactivated |
| 5598 | * requests. |
| 5599 | */ |
| 5600 | if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) |
| 5601 | return; |
| 5602 | |
| 5603 | if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) |
| 5604 | return; |
| 5605 | |
| 5606 | bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; |
| 5607 | bfqd->max_rq_in_driver = 0; |
| 5608 | bfqd->hw_tag_samples = 0; |
| 5609 | } |
| 5610 | |
| 5611 | static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) |
| 5612 | { |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5613 | u64 now_ns; |
| 5614 | u32 delta_us; |
| 5615 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5616 | bfq_update_hw_tag(bfqd); |
| 5617 | |
| 5618 | bfqd->rq_in_driver--; |
| 5619 | bfqq->dispatched--; |
| 5620 | |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 5621 | now_ns = ktime_get_ns(); |
| 5622 | |
| 5623 | bfqq->ttime.last_end_request = now_ns; |
| 5624 | |
| 5625 | /* |
| 5626 | * Using us instead of ns, to get a reasonable precision in |
| 5627 | * computing rate in next check. |
| 5628 | */ |
| 5629 | delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC); |
| 5630 | |
| 5631 | /* |
| 5632 | * If the request took rather long to complete, and, according |
| 5633 | * to the maximum request size recorded, this completion latency |
| 5634 | * implies that the request was certainly served at a very low |
| 5635 | * rate (less than 1M sectors/sec), then the whole observation |
| 5636 | * interval that lasts up to this time instant cannot be a |
| 5637 | * valid time interval for computing a new peak rate. Invoke |
| 5638 | * bfq_update_rate_reset to have the following three steps |
| 5639 | * taken: |
| 5640 | * - close the observation interval at the last (previous) |
| 5641 | * request dispatch or completion |
| 5642 | * - compute rate, if possible, for that observation interval |
| 5643 | * - reset to zero samples, which will trigger a proper |
| 5644 | * re-initialization of the observation interval on next |
| 5645 | * dispatch |
| 5646 | */ |
| 5647 | if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC && |
| 5648 | (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us < |
| 5649 | 1UL<<(BFQ_RATE_SHIFT - 10)) |
| 5650 | bfq_update_rate_reset(bfqd, NULL); |
| 5651 | bfqd->last_completion = now_ns; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5652 | |
| 5653 | /* |
| 5654 | * If this is the in-service queue, check if it needs to be expired, |
| 5655 | * or if we want to idle in case it has no pending requests. |
| 5656 | */ |
| 5657 | if (bfqd->in_service_queue == bfqq) { |
| 5658 | if (bfq_bfqq_budget_new(bfqq)) |
| 5659 | bfq_set_budget_timeout(bfqd); |
| 5660 | |
| 5661 | if (bfq_bfqq_must_idle(bfqq)) { |
| 5662 | bfq_arm_slice_timer(bfqd); |
| 5663 | return; |
| 5664 | } else if (bfq_may_expire_for_budg_timeout(bfqq)) |
| 5665 | bfq_bfqq_expire(bfqd, bfqq, false, |
| 5666 | BFQQE_BUDGET_TIMEOUT); |
| 5667 | else if (RB_EMPTY_ROOT(&bfqq->sort_list) && |
| 5668 | (bfqq->dispatched == 0 || |
| 5669 | !bfq_bfqq_may_idle(bfqq))) |
| 5670 | bfq_bfqq_expire(bfqd, bfqq, false, |
| 5671 | BFQQE_NO_MORE_REQUESTS); |
| 5672 | } |
| 5673 | } |
| 5674 | |
| 5675 | static void bfq_put_rq_priv_body(struct bfq_queue *bfqq) |
| 5676 | { |
| 5677 | bfqq->allocated--; |
| 5678 | |
| 5679 | bfq_put_queue(bfqq); |
| 5680 | } |
| 5681 | |
| 5682 | static void bfq_put_rq_private(struct request_queue *q, struct request *rq) |
| 5683 | { |
| 5684 | struct bfq_queue *bfqq = RQ_BFQQ(rq); |
| 5685 | struct bfq_data *bfqd = bfqq->bfqd; |
| 5686 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5687 | if (rq->rq_flags & RQF_STARTED) |
| 5688 | bfqg_stats_update_completion(bfqq_group(bfqq), |
| 5689 | rq_start_time_ns(rq), |
| 5690 | rq_io_start_time_ns(rq), |
| 5691 | rq->cmd_flags); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5692 | |
| 5693 | if (likely(rq->rq_flags & RQF_STARTED)) { |
| 5694 | unsigned long flags; |
| 5695 | |
| 5696 | spin_lock_irqsave(&bfqd->lock, flags); |
| 5697 | |
| 5698 | bfq_completed_request(bfqq, bfqd); |
| 5699 | bfq_put_rq_priv_body(bfqq); |
| 5700 | |
| 5701 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 5702 | } else { |
| 5703 | /* |
| 5704 | * Request rq may be still/already in the scheduler, |
| 5705 | * in which case we need to remove it. And we cannot |
| 5706 | * defer such a check and removal, to avoid |
| 5707 | * inconsistencies in the time interval from the end |
| 5708 | * of this function to the start of the deferred work. |
| 5709 | * This situation seems to occur only in process |
| 5710 | * context, as a consequence of a merge. In the |
| 5711 | * current version of the code, this implies that the |
| 5712 | * lock is held. |
| 5713 | */ |
| 5714 | |
| 5715 | if (!RB_EMPTY_NODE(&rq->rb_node)) |
| 5716 | bfq_remove_request(q, rq); |
| 5717 | bfq_put_rq_priv_body(bfqq); |
| 5718 | } |
| 5719 | |
| 5720 | rq->elv.priv[0] = NULL; |
| 5721 | rq->elv.priv[1] = NULL; |
| 5722 | } |
| 5723 | |
| 5724 | /* |
| 5725 | * Allocate bfq data structures associated with this request. |
| 5726 | */ |
| 5727 | static int bfq_get_rq_private(struct request_queue *q, struct request *rq, |
| 5728 | struct bio *bio) |
| 5729 | { |
| 5730 | struct bfq_data *bfqd = q->elevator->elevator_data; |
| 5731 | struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq); |
| 5732 | const int is_sync = rq_is_sync(rq); |
| 5733 | struct bfq_queue *bfqq; |
| 5734 | |
| 5735 | spin_lock_irq(&bfqd->lock); |
| 5736 | |
| 5737 | bfq_check_ioprio_change(bic, bio); |
| 5738 | |
| 5739 | if (!bic) |
| 5740 | goto queue_fail; |
| 5741 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5742 | bfq_bic_update_cgroup(bic, bio); |
| 5743 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5744 | bfqq = bic_to_bfqq(bic, is_sync); |
| 5745 | if (!bfqq || bfqq == &bfqd->oom_bfqq) { |
| 5746 | if (bfqq) |
| 5747 | bfq_put_queue(bfqq); |
| 5748 | bfqq = bfq_get_queue(bfqd, bio, is_sync, bic); |
| 5749 | bic_set_bfqq(bic, bfqq, is_sync); |
| 5750 | } |
| 5751 | |
| 5752 | bfqq->allocated++; |
| 5753 | bfqq->ref++; |
| 5754 | bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", |
| 5755 | rq, bfqq, bfqq->ref); |
| 5756 | |
| 5757 | rq->elv.priv[0] = bic; |
| 5758 | rq->elv.priv[1] = bfqq; |
| 5759 | |
| 5760 | spin_unlock_irq(&bfqd->lock); |
| 5761 | |
| 5762 | return 0; |
| 5763 | |
| 5764 | queue_fail: |
| 5765 | spin_unlock_irq(&bfqd->lock); |
| 5766 | |
| 5767 | return 1; |
| 5768 | } |
| 5769 | |
| 5770 | static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq) |
| 5771 | { |
| 5772 | struct bfq_data *bfqd = bfqq->bfqd; |
| 5773 | enum bfqq_expiration reason; |
| 5774 | unsigned long flags; |
| 5775 | |
| 5776 | spin_lock_irqsave(&bfqd->lock, flags); |
| 5777 | bfq_clear_bfqq_wait_request(bfqq); |
| 5778 | |
| 5779 | if (bfqq != bfqd->in_service_queue) { |
| 5780 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 5781 | return; |
| 5782 | } |
| 5783 | |
| 5784 | if (bfq_bfqq_budget_timeout(bfqq)) |
| 5785 | /* |
| 5786 | * Also here the queue can be safely expired |
| 5787 | * for budget timeout without wasting |
| 5788 | * guarantees |
| 5789 | */ |
| 5790 | reason = BFQQE_BUDGET_TIMEOUT; |
| 5791 | else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) |
| 5792 | /* |
| 5793 | * The queue may not be empty upon timer expiration, |
| 5794 | * because we may not disable the timer when the |
| 5795 | * first request of the in-service queue arrives |
| 5796 | * during disk idling. |
| 5797 | */ |
| 5798 | reason = BFQQE_TOO_IDLE; |
| 5799 | else |
| 5800 | goto schedule_dispatch; |
| 5801 | |
| 5802 | bfq_bfqq_expire(bfqd, bfqq, true, reason); |
| 5803 | |
| 5804 | schedule_dispatch: |
| 5805 | spin_unlock_irqrestore(&bfqd->lock, flags); |
| 5806 | bfq_schedule_dispatch(bfqd); |
| 5807 | } |
| 5808 | |
| 5809 | /* |
| 5810 | * Handler of the expiration of the timer running if the in-service queue |
| 5811 | * is idling inside its time slice. |
| 5812 | */ |
| 5813 | static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) |
| 5814 | { |
| 5815 | struct bfq_data *bfqd = container_of(timer, struct bfq_data, |
| 5816 | idle_slice_timer); |
| 5817 | struct bfq_queue *bfqq = bfqd->in_service_queue; |
| 5818 | |
| 5819 | /* |
| 5820 | * Theoretical race here: the in-service queue can be NULL or |
| 5821 | * different from the queue that was idling if a new request |
| 5822 | * arrives for the current queue and there is a full dispatch |
| 5823 | * cycle that changes the in-service queue. This can hardly |
| 5824 | * happen, but in the worst case we just expire a queue too |
| 5825 | * early. |
| 5826 | */ |
| 5827 | if (bfqq) |
| 5828 | bfq_idle_slice_timer_body(bfqq); |
| 5829 | |
| 5830 | return HRTIMER_NORESTART; |
| 5831 | } |
| 5832 | |
| 5833 | static void __bfq_put_async_bfqq(struct bfq_data *bfqd, |
| 5834 | struct bfq_queue **bfqq_ptr) |
| 5835 | { |
| 5836 | struct bfq_queue *bfqq = *bfqq_ptr; |
| 5837 | |
| 5838 | bfq_log(bfqd, "put_async_bfqq: %p", bfqq); |
| 5839 | if (bfqq) { |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5840 | bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); |
| 5841 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5842 | bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", |
| 5843 | bfqq, bfqq->ref); |
| 5844 | bfq_put_queue(bfqq); |
| 5845 | *bfqq_ptr = NULL; |
| 5846 | } |
| 5847 | } |
| 5848 | |
| 5849 | /* |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5850 | * Release all the bfqg references to its async queues. If we are |
| 5851 | * deallocating the group these queues may still contain requests, so |
| 5852 | * we reparent them to the root cgroup (i.e., the only one that will |
| 5853 | * exist for sure until all the requests on a device are gone). |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5854 | */ |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5855 | static void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg) |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5856 | { |
| 5857 | int i, j; |
| 5858 | |
| 5859 | for (i = 0; i < 2; i++) |
| 5860 | for (j = 0; j < IOPRIO_BE_NR; j++) |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5861 | __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5862 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5863 | __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5864 | } |
| 5865 | |
| 5866 | static void bfq_exit_queue(struct elevator_queue *e) |
| 5867 | { |
| 5868 | struct bfq_data *bfqd = e->elevator_data; |
| 5869 | struct bfq_queue *bfqq, *n; |
| 5870 | |
| 5871 | hrtimer_cancel(&bfqd->idle_slice_timer); |
| 5872 | |
| 5873 | spin_lock_irq(&bfqd->lock); |
| 5874 | list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5875 | bfq_deactivate_bfqq(bfqd, bfqq, false, false); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5876 | spin_unlock_irq(&bfqd->lock); |
| 5877 | |
| 5878 | hrtimer_cancel(&bfqd->idle_slice_timer); |
| 5879 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5880 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 5881 | blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq); |
| 5882 | #else |
| 5883 | spin_lock_irq(&bfqd->lock); |
| 5884 | bfq_put_async_queues(bfqd, bfqd->root_group); |
| 5885 | kfree(bfqd->root_group); |
| 5886 | spin_unlock_irq(&bfqd->lock); |
| 5887 | #endif |
| 5888 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5889 | kfree(bfqd); |
| 5890 | } |
| 5891 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5892 | static void bfq_init_root_group(struct bfq_group *root_group, |
| 5893 | struct bfq_data *bfqd) |
| 5894 | { |
| 5895 | int i; |
| 5896 | |
| 5897 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 5898 | root_group->entity.parent = NULL; |
| 5899 | root_group->my_entity = NULL; |
| 5900 | root_group->bfqd = bfqd; |
| 5901 | #endif |
| 5902 | for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) |
| 5903 | root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; |
| 5904 | root_group->sched_data.bfq_class_idle_last_service = jiffies; |
| 5905 | } |
| 5906 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5907 | static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) |
| 5908 | { |
| 5909 | struct bfq_data *bfqd; |
| 5910 | struct elevator_queue *eq; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5911 | |
| 5912 | eq = elevator_alloc(q, e); |
| 5913 | if (!eq) |
| 5914 | return -ENOMEM; |
| 5915 | |
| 5916 | bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); |
| 5917 | if (!bfqd) { |
| 5918 | kobject_put(&eq->kobj); |
| 5919 | return -ENOMEM; |
| 5920 | } |
| 5921 | eq->elevator_data = bfqd; |
| 5922 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5923 | spin_lock_irq(q->queue_lock); |
| 5924 | q->elevator = eq; |
| 5925 | spin_unlock_irq(q->queue_lock); |
| 5926 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5927 | /* |
| 5928 | * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. |
| 5929 | * Grab a permanent reference to it, so that the normal code flow |
| 5930 | * will not attempt to free it. |
| 5931 | */ |
| 5932 | bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0); |
| 5933 | bfqd->oom_bfqq.ref++; |
| 5934 | bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; |
| 5935 | bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; |
| 5936 | bfqd->oom_bfqq.entity.new_weight = |
| 5937 | bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); |
| 5938 | /* |
| 5939 | * Trigger weight initialization, according to ioprio, at the |
| 5940 | * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio |
| 5941 | * class won't be changed any more. |
| 5942 | */ |
| 5943 | bfqd->oom_bfqq.entity.prio_changed = 1; |
| 5944 | |
| 5945 | bfqd->queue = q; |
| 5946 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5947 | INIT_LIST_HEAD(&bfqd->dispatch); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5948 | |
| 5949 | hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, |
| 5950 | HRTIMER_MODE_REL); |
| 5951 | bfqd->idle_slice_timer.function = bfq_idle_slice_timer; |
| 5952 | |
| 5953 | INIT_LIST_HEAD(&bfqd->active_list); |
| 5954 | INIT_LIST_HEAD(&bfqd->idle_list); |
| 5955 | |
| 5956 | bfqd->hw_tag = -1; |
| 5957 | |
| 5958 | bfqd->bfq_max_budget = bfq_default_max_budget; |
| 5959 | |
| 5960 | bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; |
| 5961 | bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; |
| 5962 | bfqd->bfq_back_max = bfq_back_max; |
| 5963 | bfqd->bfq_back_penalty = bfq_back_penalty; |
| 5964 | bfqd->bfq_slice_idle = bfq_slice_idle; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5965 | bfqd->bfq_timeout = bfq_timeout; |
| 5966 | |
| 5967 | bfqd->bfq_requests_within_timer = 120; |
| 5968 | |
| 5969 | spin_lock_init(&bfqd->lock); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5970 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5971 | /* |
| 5972 | * The invocation of the next bfq_create_group_hierarchy |
| 5973 | * function is the head of a chain of function calls |
| 5974 | * (bfq_create_group_hierarchy->blkcg_activate_policy-> |
| 5975 | * blk_mq_freeze_queue) that may lead to the invocation of the |
| 5976 | * has_work hook function. For this reason, |
| 5977 | * bfq_create_group_hierarchy is invoked only after all |
| 5978 | * scheduler data has been initialized, apart from the fields |
| 5979 | * that can be initialized only after invoking |
| 5980 | * bfq_create_group_hierarchy. This, in particular, enables |
| 5981 | * has_work to correctly return false. Of course, to avoid |
| 5982 | * other inconsistencies, the blk-mq stack must then refrain |
| 5983 | * from invoking further scheduler hooks before this init |
| 5984 | * function is finished. |
| 5985 | */ |
| 5986 | bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node); |
| 5987 | if (!bfqd->root_group) |
| 5988 | goto out_free; |
| 5989 | bfq_init_root_group(bfqd->root_group, bfqd); |
| 5990 | bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group); |
| 5991 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5992 | |
| 5993 | return 0; |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 5994 | |
| 5995 | out_free: |
| 5996 | kfree(bfqd); |
| 5997 | kobject_put(&eq->kobj); |
| 5998 | return -ENOMEM; |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 5999 | } |
| 6000 | |
| 6001 | static void bfq_slab_kill(void) |
| 6002 | { |
| 6003 | kmem_cache_destroy(bfq_pool); |
| 6004 | } |
| 6005 | |
| 6006 | static int __init bfq_slab_setup(void) |
| 6007 | { |
| 6008 | bfq_pool = KMEM_CACHE(bfq_queue, 0); |
| 6009 | if (!bfq_pool) |
| 6010 | return -ENOMEM; |
| 6011 | return 0; |
| 6012 | } |
| 6013 | |
| 6014 | static ssize_t bfq_var_show(unsigned int var, char *page) |
| 6015 | { |
| 6016 | return sprintf(page, "%u\n", var); |
| 6017 | } |
| 6018 | |
| 6019 | static ssize_t bfq_var_store(unsigned long *var, const char *page, |
| 6020 | size_t count) |
| 6021 | { |
| 6022 | unsigned long new_val; |
| 6023 | int ret = kstrtoul(page, 10, &new_val); |
| 6024 | |
| 6025 | if (ret == 0) |
| 6026 | *var = new_val; |
| 6027 | |
| 6028 | return count; |
| 6029 | } |
| 6030 | |
| 6031 | #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ |
| 6032 | static ssize_t __FUNC(struct elevator_queue *e, char *page) \ |
| 6033 | { \ |
| 6034 | struct bfq_data *bfqd = e->elevator_data; \ |
| 6035 | u64 __data = __VAR; \ |
| 6036 | if (__CONV == 1) \ |
| 6037 | __data = jiffies_to_msecs(__data); \ |
| 6038 | else if (__CONV == 2) \ |
| 6039 | __data = div_u64(__data, NSEC_PER_MSEC); \ |
| 6040 | return bfq_var_show(__data, (page)); \ |
| 6041 | } |
| 6042 | SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); |
| 6043 | SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); |
| 6044 | SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); |
| 6045 | SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); |
| 6046 | SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); |
| 6047 | SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); |
| 6048 | SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); |
| 6049 | SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); |
| 6050 | #undef SHOW_FUNCTION |
| 6051 | |
| 6052 | #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ |
| 6053 | static ssize_t __FUNC(struct elevator_queue *e, char *page) \ |
| 6054 | { \ |
| 6055 | struct bfq_data *bfqd = e->elevator_data; \ |
| 6056 | u64 __data = __VAR; \ |
| 6057 | __data = div_u64(__data, NSEC_PER_USEC); \ |
| 6058 | return bfq_var_show(__data, (page)); \ |
| 6059 | } |
| 6060 | USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); |
| 6061 | #undef USEC_SHOW_FUNCTION |
| 6062 | |
| 6063 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ |
| 6064 | static ssize_t \ |
| 6065 | __FUNC(struct elevator_queue *e, const char *page, size_t count) \ |
| 6066 | { \ |
| 6067 | struct bfq_data *bfqd = e->elevator_data; \ |
| 6068 | unsigned long uninitialized_var(__data); \ |
| 6069 | int ret = bfq_var_store(&__data, (page), count); \ |
| 6070 | if (__data < (MIN)) \ |
| 6071 | __data = (MIN); \ |
| 6072 | else if (__data > (MAX)) \ |
| 6073 | __data = (MAX); \ |
| 6074 | if (__CONV == 1) \ |
| 6075 | *(__PTR) = msecs_to_jiffies(__data); \ |
| 6076 | else if (__CONV == 2) \ |
| 6077 | *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ |
| 6078 | else \ |
| 6079 | *(__PTR) = __data; \ |
| 6080 | return ret; \ |
| 6081 | } |
| 6082 | STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, |
| 6083 | INT_MAX, 2); |
| 6084 | STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, |
| 6085 | INT_MAX, 2); |
| 6086 | STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); |
| 6087 | STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, |
| 6088 | INT_MAX, 0); |
| 6089 | STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); |
| 6090 | #undef STORE_FUNCTION |
| 6091 | |
| 6092 | #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ |
| 6093 | static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ |
| 6094 | { \ |
| 6095 | struct bfq_data *bfqd = e->elevator_data; \ |
| 6096 | unsigned long uninitialized_var(__data); \ |
| 6097 | int ret = bfq_var_store(&__data, (page), count); \ |
| 6098 | if (__data < (MIN)) \ |
| 6099 | __data = (MIN); \ |
| 6100 | else if (__data > (MAX)) \ |
| 6101 | __data = (MAX); \ |
| 6102 | *(__PTR) = (u64)__data * NSEC_PER_USEC; \ |
| 6103 | return ret; \ |
| 6104 | } |
| 6105 | USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, |
| 6106 | UINT_MAX); |
| 6107 | #undef USEC_STORE_FUNCTION |
| 6108 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6109 | static ssize_t bfq_max_budget_store(struct elevator_queue *e, |
| 6110 | const char *page, size_t count) |
| 6111 | { |
| 6112 | struct bfq_data *bfqd = e->elevator_data; |
| 6113 | unsigned long uninitialized_var(__data); |
| 6114 | int ret = bfq_var_store(&__data, (page), count); |
| 6115 | |
| 6116 | if (__data == 0) |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 6117 | bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6118 | else { |
| 6119 | if (__data > INT_MAX) |
| 6120 | __data = INT_MAX; |
| 6121 | bfqd->bfq_max_budget = __data; |
| 6122 | } |
| 6123 | |
| 6124 | bfqd->bfq_user_max_budget = __data; |
| 6125 | |
| 6126 | return ret; |
| 6127 | } |
| 6128 | |
| 6129 | /* |
| 6130 | * Leaving this name to preserve name compatibility with cfq |
| 6131 | * parameters, but this timeout is used for both sync and async. |
| 6132 | */ |
| 6133 | static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, |
| 6134 | const char *page, size_t count) |
| 6135 | { |
| 6136 | struct bfq_data *bfqd = e->elevator_data; |
| 6137 | unsigned long uninitialized_var(__data); |
| 6138 | int ret = bfq_var_store(&__data, (page), count); |
| 6139 | |
| 6140 | if (__data < 1) |
| 6141 | __data = 1; |
| 6142 | else if (__data > INT_MAX) |
| 6143 | __data = INT_MAX; |
| 6144 | |
| 6145 | bfqd->bfq_timeout = msecs_to_jiffies(__data); |
| 6146 | if (bfqd->bfq_user_max_budget == 0) |
Paolo Valente | ab0e43e | 2017-04-12 18:23:10 +0200 | [diff] [blame] | 6147 | bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6148 | |
| 6149 | return ret; |
| 6150 | } |
| 6151 | |
| 6152 | static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, |
| 6153 | const char *page, size_t count) |
| 6154 | { |
| 6155 | struct bfq_data *bfqd = e->elevator_data; |
| 6156 | unsigned long uninitialized_var(__data); |
| 6157 | int ret = bfq_var_store(&__data, (page), count); |
| 6158 | |
| 6159 | if (__data > 1) |
| 6160 | __data = 1; |
| 6161 | if (!bfqd->strict_guarantees && __data == 1 |
| 6162 | && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) |
| 6163 | bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; |
| 6164 | |
| 6165 | bfqd->strict_guarantees = __data; |
| 6166 | |
| 6167 | return ret; |
| 6168 | } |
| 6169 | |
| 6170 | #define BFQ_ATTR(name) \ |
| 6171 | __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) |
| 6172 | |
| 6173 | static struct elv_fs_entry bfq_attrs[] = { |
| 6174 | BFQ_ATTR(fifo_expire_sync), |
| 6175 | BFQ_ATTR(fifo_expire_async), |
| 6176 | BFQ_ATTR(back_seek_max), |
| 6177 | BFQ_ATTR(back_seek_penalty), |
| 6178 | BFQ_ATTR(slice_idle), |
| 6179 | BFQ_ATTR(slice_idle_us), |
| 6180 | BFQ_ATTR(max_budget), |
| 6181 | BFQ_ATTR(timeout_sync), |
| 6182 | BFQ_ATTR(strict_guarantees), |
| 6183 | __ATTR_NULL |
| 6184 | }; |
| 6185 | |
| 6186 | static struct elevator_type iosched_bfq_mq = { |
| 6187 | .ops.mq = { |
| 6188 | .get_rq_priv = bfq_get_rq_private, |
| 6189 | .put_rq_priv = bfq_put_rq_private, |
| 6190 | .exit_icq = bfq_exit_icq, |
| 6191 | .insert_requests = bfq_insert_requests, |
| 6192 | .dispatch_request = bfq_dispatch_request, |
| 6193 | .next_request = elv_rb_latter_request, |
| 6194 | .former_request = elv_rb_former_request, |
| 6195 | .allow_merge = bfq_allow_bio_merge, |
| 6196 | .bio_merge = bfq_bio_merge, |
| 6197 | .request_merge = bfq_request_merge, |
| 6198 | .requests_merged = bfq_requests_merged, |
| 6199 | .request_merged = bfq_request_merged, |
| 6200 | .has_work = bfq_has_work, |
| 6201 | .init_sched = bfq_init_queue, |
| 6202 | .exit_sched = bfq_exit_queue, |
| 6203 | }, |
| 6204 | |
| 6205 | .uses_mq = true, |
| 6206 | .icq_size = sizeof(struct bfq_io_cq), |
| 6207 | .icq_align = __alignof__(struct bfq_io_cq), |
| 6208 | .elevator_attrs = bfq_attrs, |
| 6209 | .elevator_name = "bfq", |
| 6210 | .elevator_owner = THIS_MODULE, |
| 6211 | }; |
| 6212 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6213 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 6214 | static struct blkcg_policy blkcg_policy_bfq = { |
| 6215 | .dfl_cftypes = bfq_blkg_files, |
| 6216 | .legacy_cftypes = bfq_blkcg_legacy_files, |
| 6217 | |
| 6218 | .cpd_alloc_fn = bfq_cpd_alloc, |
| 6219 | .cpd_init_fn = bfq_cpd_init, |
| 6220 | .cpd_bind_fn = bfq_cpd_init, |
| 6221 | .cpd_free_fn = bfq_cpd_free, |
| 6222 | |
| 6223 | .pd_alloc_fn = bfq_pd_alloc, |
| 6224 | .pd_init_fn = bfq_pd_init, |
| 6225 | .pd_offline_fn = bfq_pd_offline, |
| 6226 | .pd_free_fn = bfq_pd_free, |
| 6227 | .pd_reset_stats_fn = bfq_pd_reset_stats, |
| 6228 | }; |
| 6229 | #endif |
| 6230 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6231 | static int __init bfq_init(void) |
| 6232 | { |
| 6233 | int ret; |
| 6234 | |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6235 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 6236 | ret = blkcg_policy_register(&blkcg_policy_bfq); |
| 6237 | if (ret) |
| 6238 | return ret; |
| 6239 | #endif |
| 6240 | |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6241 | ret = -ENOMEM; |
| 6242 | if (bfq_slab_setup()) |
| 6243 | goto err_pol_unreg; |
| 6244 | |
| 6245 | ret = elv_register(&iosched_bfq_mq); |
| 6246 | if (ret) |
| 6247 | goto err_pol_unreg; |
| 6248 | |
| 6249 | return 0; |
| 6250 | |
| 6251 | err_pol_unreg: |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6252 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 6253 | blkcg_policy_unregister(&blkcg_policy_bfq); |
| 6254 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6255 | return ret; |
| 6256 | } |
| 6257 | |
| 6258 | static void __exit bfq_exit(void) |
| 6259 | { |
| 6260 | elv_unregister(&iosched_bfq_mq); |
Arianna Avanzini | e21b7a0 | 2017-04-12 18:23:08 +0200 | [diff] [blame] | 6261 | #ifdef CONFIG_BFQ_GROUP_IOSCHED |
| 6262 | blkcg_policy_unregister(&blkcg_policy_bfq); |
| 6263 | #endif |
Paolo Valente | aee69d7 | 2017-04-19 08:29:02 -0600 | [diff] [blame] | 6264 | bfq_slab_kill(); |
| 6265 | } |
| 6266 | |
| 6267 | module_init(bfq_init); |
| 6268 | module_exit(bfq_exit); |
| 6269 | |
| 6270 | MODULE_AUTHOR("Paolo Valente"); |
| 6271 | MODULE_LICENSE("GPL"); |
| 6272 | MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler"); |