blob: 1e357550c776c20d7ffa7ac4a57e59baee6adfd7 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Architecture-specific unaligned trap handling.
3 *
4 * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 *
8 * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix
9 * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
10 * stacked register returns an undefined value; it does NOT trigger a
11 * "rsvd register fault").
12 * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops.
13 * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes.
14 * 2001/01/17 Add support emulation of unaligned kernel accesses.
15 */
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/smp_lock.h>
19#include <linux/tty.h>
20
21#include <asm/intrinsics.h>
22#include <asm/processor.h>
23#include <asm/rse.h>
24#include <asm/uaccess.h>
25#include <asm/unaligned.h>
26
Tony Lucke9637012006-02-27 16:18:58 -080027extern void die_if_kernel(char *str, struct pt_regs *regs, long err);
Linus Torvalds1da177e2005-04-16 15:20:36 -070028
29#undef DEBUG_UNALIGNED_TRAP
30
31#ifdef DEBUG_UNALIGNED_TRAP
32# define DPRINT(a...) do { printk("%s %u: ", __FUNCTION__, __LINE__); printk (a); } while (0)
33# define DDUMP(str,vp,len) dump(str, vp, len)
34
35static void
36dump (const char *str, void *vp, size_t len)
37{
38 unsigned char *cp = vp;
39 int i;
40
41 printk("%s", str);
42 for (i = 0; i < len; ++i)
43 printk (" %02x", *cp++);
44 printk("\n");
45}
46#else
47# define DPRINT(a...)
48# define DDUMP(str,vp,len)
49#endif
50
51#define IA64_FIRST_STACKED_GR 32
52#define IA64_FIRST_ROTATING_FR 32
53#define SIGN_EXT9 0xffffffffffffff00ul
54
55/*
Jes Sorensend2b176e2006-02-28 09:42:23 -080056 * sysctl settable hook which tells the kernel whether to honor the
57 * IA64_THREAD_UAC_NOPRINT prctl. Because this is user settable, we want
58 * to allow the super user to enable/disable this for security reasons
59 * (i.e. don't allow attacker to fill up logs with unaligned accesses).
60 */
61int no_unaligned_warning;
62static int noprint_warning;
63
64/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070065 * For M-unit:
66 *
67 * opcode | m | x6 |
68 * --------|------|---------|
69 * [40-37] | [36] | [35:30] |
70 * --------|------|---------|
71 * 4 | 1 | 6 | = 11 bits
72 * --------------------------
73 * However bits [31:30] are not directly useful to distinguish between
74 * load/store so we can use [35:32] instead, which gives the following
75 * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
76 * checking the m-bit until later in the load/store emulation.
77 */
78#define IA64_OPCODE_MASK 0x1ef
79#define IA64_OPCODE_SHIFT 32
80
81/*
82 * Table C-28 Integer Load/Store
83 *
84 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
85 *
86 * ld8.fill, st8.fill MUST be aligned because the RNATs are based on
87 * the address (bits [8:3]), so we must failed.
88 */
89#define LD_OP 0x080
90#define LDS_OP 0x081
91#define LDA_OP 0x082
92#define LDSA_OP 0x083
93#define LDBIAS_OP 0x084
94#define LDACQ_OP 0x085
95/* 0x086, 0x087 are not relevant */
96#define LDCCLR_OP 0x088
97#define LDCNC_OP 0x089
98#define LDCCLRACQ_OP 0x08a
99#define ST_OP 0x08c
100#define STREL_OP 0x08d
101/* 0x08e,0x8f are not relevant */
102
103/*
104 * Table C-29 Integer Load +Reg
105 *
106 * we use the ld->m (bit [36:36]) field to determine whether or not we have
107 * a load/store of this form.
108 */
109
110/*
111 * Table C-30 Integer Load/Store +Imm
112 *
113 * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
114 *
115 * ld8.fill, st8.fill must be aligned because the Nat register are based on
116 * the address, so we must fail and the program must be fixed.
117 */
118#define LD_IMM_OP 0x0a0
119#define LDS_IMM_OP 0x0a1
120#define LDA_IMM_OP 0x0a2
121#define LDSA_IMM_OP 0x0a3
122#define LDBIAS_IMM_OP 0x0a4
123#define LDACQ_IMM_OP 0x0a5
124/* 0x0a6, 0xa7 are not relevant */
125#define LDCCLR_IMM_OP 0x0a8
126#define LDCNC_IMM_OP 0x0a9
127#define LDCCLRACQ_IMM_OP 0x0aa
128#define ST_IMM_OP 0x0ac
129#define STREL_IMM_OP 0x0ad
130/* 0x0ae,0xaf are not relevant */
131
132/*
133 * Table C-32 Floating-point Load/Store
134 */
135#define LDF_OP 0x0c0
136#define LDFS_OP 0x0c1
137#define LDFA_OP 0x0c2
138#define LDFSA_OP 0x0c3
139/* 0x0c6 is irrelevant */
140#define LDFCCLR_OP 0x0c8
141#define LDFCNC_OP 0x0c9
142/* 0x0cb is irrelevant */
143#define STF_OP 0x0cc
144
145/*
146 * Table C-33 Floating-point Load +Reg
147 *
148 * we use the ld->m (bit [36:36]) field to determine whether or not we have
149 * a load/store of this form.
150 */
151
152/*
153 * Table C-34 Floating-point Load/Store +Imm
154 */
155#define LDF_IMM_OP 0x0e0
156#define LDFS_IMM_OP 0x0e1
157#define LDFA_IMM_OP 0x0e2
158#define LDFSA_IMM_OP 0x0e3
159/* 0x0e6 is irrelevant */
160#define LDFCCLR_IMM_OP 0x0e8
161#define LDFCNC_IMM_OP 0x0e9
162#define STF_IMM_OP 0x0ec
163
164typedef struct {
165 unsigned long qp:6; /* [0:5] */
166 unsigned long r1:7; /* [6:12] */
167 unsigned long imm:7; /* [13:19] */
168 unsigned long r3:7; /* [20:26] */
169 unsigned long x:1; /* [27:27] */
170 unsigned long hint:2; /* [28:29] */
171 unsigned long x6_sz:2; /* [30:31] */
172 unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */
173 unsigned long m:1; /* [36:36] */
174 unsigned long op:4; /* [37:40] */
175 unsigned long pad:23; /* [41:63] */
176} load_store_t;
177
178
179typedef enum {
180 UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */
181 UPD_REG /* ldXZ r1=[r3],r2 */
182} update_t;
183
184/*
185 * We use tables to keep track of the offsets of registers in the saved state.
186 * This way we save having big switch/case statements.
187 *
188 * We use bit 0 to indicate switch_stack or pt_regs.
189 * The offset is simply shifted by 1 bit.
190 * A 2-byte value should be enough to hold any kind of offset
191 *
192 * In case the calling convention changes (and thus pt_regs/switch_stack)
193 * simply use RSW instead of RPT or vice-versa.
194 */
195
196#define RPO(x) ((size_t) &((struct pt_regs *)0)->x)
197#define RSO(x) ((size_t) &((struct switch_stack *)0)->x)
198
199#define RPT(x) (RPO(x) << 1)
200#define RSW(x) (1| RSO(x)<<1)
201
202#define GR_OFFS(x) (gr_info[x]>>1)
203#define GR_IN_SW(x) (gr_info[x] & 0x1)
204
205#define FR_OFFS(x) (fr_info[x]>>1)
206#define FR_IN_SW(x) (fr_info[x] & 0x1)
207
208static u16 gr_info[32]={
209 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */
210
211 RPT(r1), RPT(r2), RPT(r3),
212
213 RSW(r4), RSW(r5), RSW(r6), RSW(r7),
214
215 RPT(r8), RPT(r9), RPT(r10), RPT(r11),
216 RPT(r12), RPT(r13), RPT(r14), RPT(r15),
217
218 RPT(r16), RPT(r17), RPT(r18), RPT(r19),
219 RPT(r20), RPT(r21), RPT(r22), RPT(r23),
220 RPT(r24), RPT(r25), RPT(r26), RPT(r27),
221 RPT(r28), RPT(r29), RPT(r30), RPT(r31)
222};
223
224static u16 fr_info[32]={
225 0, /* constant : WE SHOULD NEVER GET THIS */
226 0, /* constant : WE SHOULD NEVER GET THIS */
227
228 RSW(f2), RSW(f3), RSW(f4), RSW(f5),
229
230 RPT(f6), RPT(f7), RPT(f8), RPT(f9),
231 RPT(f10), RPT(f11),
232
233 RSW(f12), RSW(f13), RSW(f14),
234 RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
235 RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
236 RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
237 RSW(f30), RSW(f31)
238};
239
240/* Invalidate ALAT entry for integer register REGNO. */
241static void
242invala_gr (int regno)
243{
244# define F(reg) case reg: ia64_invala_gr(reg); break
245
246 switch (regno) {
247 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
248 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
249 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
250 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
251 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
252 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
253 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
254 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
255 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
256 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
257 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
258 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
259 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
260 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
261 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
262 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
263 }
264# undef F
265}
266
267/* Invalidate ALAT entry for floating-point register REGNO. */
268static void
269invala_fr (int regno)
270{
271# define F(reg) case reg: ia64_invala_fr(reg); break
272
273 switch (regno) {
274 F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7);
275 F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
276 F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
277 F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
278 F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
279 F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
280 F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
281 F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
282 F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
283 F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
284 F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
285 F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
286 F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
287 F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
288 F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
289 F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
290 }
291# undef F
292}
293
294static inline unsigned long
295rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
296{
297 reg += rrb;
298 if (reg >= sor)
299 reg -= sor;
300 return reg;
301}
302
303static void
304set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
305{
306 struct switch_stack *sw = (struct switch_stack *) regs - 1;
307 unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
308 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
309 unsigned long rnats, nat_mask;
310 unsigned long on_kbs;
311 long sof = (regs->cr_ifs) & 0x7f;
312 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
313 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
314 long ridx = r1 - 32;
315
316 if (ridx >= sof) {
317 /* this should never happen, as the "rsvd register fault" has higher priority */
318 DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
319 return;
320 }
321
322 if (ridx < sor)
323 ridx = rotate_reg(sor, rrb_gr, ridx);
324
325 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
326 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
327
328 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
329 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
330 if (addr >= kbs) {
331 /* the register is on the kernel backing store: easy... */
332 rnat_addr = ia64_rse_rnat_addr(addr);
333 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
334 rnat_addr = &sw->ar_rnat;
335 nat_mask = 1UL << ia64_rse_slot_num(addr);
336
337 *addr = val;
338 if (nat)
339 *rnat_addr |= nat_mask;
340 else
341 *rnat_addr &= ~nat_mask;
342 return;
343 }
344
345 if (!user_stack(current, regs)) {
346 DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
347 return;
348 }
349
350 bspstore = (unsigned long *)regs->ar_bspstore;
351 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
352 bsp = ia64_rse_skip_regs(ubs_end, -sof);
353 addr = ia64_rse_skip_regs(bsp, ridx);
354
355 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
356
357 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
358
359 rnat_addr = ia64_rse_rnat_addr(addr);
360
361 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
362 DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
363 (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
364
365 nat_mask = 1UL << ia64_rse_slot_num(addr);
366 if (nat)
367 rnats |= nat_mask;
368 else
369 rnats &= ~nat_mask;
370 ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
371
372 DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
373}
374
375
376static void
377get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
378{
379 struct switch_stack *sw = (struct switch_stack *) regs - 1;
380 unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
381 unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
382 unsigned long rnats, nat_mask;
383 unsigned long on_kbs;
384 long sof = (regs->cr_ifs) & 0x7f;
385 long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
386 long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
387 long ridx = r1 - 32;
388
389 if (ridx >= sof) {
390 /* read of out-of-frame register returns an undefined value; 0 in our case. */
391 DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
392 goto fail;
393 }
394
395 if (ridx < sor)
396 ridx = rotate_reg(sor, rrb_gr, ridx);
397
398 DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
399 r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
400
401 on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
402 addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
403 if (addr >= kbs) {
404 /* the register is on the kernel backing store: easy... */
405 *val = *addr;
406 if (nat) {
407 rnat_addr = ia64_rse_rnat_addr(addr);
408 if ((unsigned long) rnat_addr >= sw->ar_bspstore)
409 rnat_addr = &sw->ar_rnat;
410 nat_mask = 1UL << ia64_rse_slot_num(addr);
411 *nat = (*rnat_addr & nat_mask) != 0;
412 }
413 return;
414 }
415
416 if (!user_stack(current, regs)) {
417 DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
418 goto fail;
419 }
420
421 bspstore = (unsigned long *)regs->ar_bspstore;
422 ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
423 bsp = ia64_rse_skip_regs(ubs_end, -sof);
424 addr = ia64_rse_skip_regs(bsp, ridx);
425
426 DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
427
428 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
429
430 if (nat) {
431 rnat_addr = ia64_rse_rnat_addr(addr);
432 nat_mask = 1UL << ia64_rse_slot_num(addr);
433
434 DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
435
436 ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
437 *nat = (rnats & nat_mask) != 0;
438 }
439 return;
440
441 fail:
442 *val = 0;
443 if (nat)
444 *nat = 0;
445 return;
446}
447
448
449static void
450setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
451{
452 struct switch_stack *sw = (struct switch_stack *) regs - 1;
453 unsigned long addr;
454 unsigned long bitmask;
455 unsigned long *unat;
456
457 /*
458 * First takes care of stacked registers
459 */
460 if (regnum >= IA64_FIRST_STACKED_GR) {
461 set_rse_reg(regs, regnum, val, nat);
462 return;
463 }
464
465 /*
466 * Using r0 as a target raises a General Exception fault which has higher priority
467 * than the Unaligned Reference fault.
468 */
469
470 /*
471 * Now look at registers in [0-31] range and init correct UNAT
472 */
473 if (GR_IN_SW(regnum)) {
474 addr = (unsigned long)sw;
475 unat = &sw->ar_unat;
476 } else {
477 addr = (unsigned long)regs;
478 unat = &sw->caller_unat;
479 }
480 DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
481 addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
482 /*
483 * add offset from base of struct
484 * and do it !
485 */
486 addr += GR_OFFS(regnum);
487
488 *(unsigned long *)addr = val;
489
490 /*
491 * We need to clear the corresponding UNAT bit to fully emulate the load
492 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
493 */
494 bitmask = 1UL << (addr >> 3 & 0x3f);
495 DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
496 if (nat) {
497 *unat |= bitmask;
498 } else {
499 *unat &= ~bitmask;
500 }
501 DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
502}
503
504/*
505 * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
506 * range from 32-127, result is in the range from 0-95.
507 */
508static inline unsigned long
509fph_index (struct pt_regs *regs, long regnum)
510{
511 unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
512 return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
513}
514
515static void
516setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
517{
518 struct switch_stack *sw = (struct switch_stack *)regs - 1;
519 unsigned long addr;
520
521 /*
522 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
523 * Fault. Thus, when we get here, we know the partition is enabled.
524 * To update f32-f127, there are three choices:
525 *
526 * (1) save f32-f127 to thread.fph and update the values there
527 * (2) use a gigantic switch statement to directly access the registers
528 * (3) generate code on the fly to update the desired register
529 *
530 * For now, we are using approach (1).
531 */
532 if (regnum >= IA64_FIRST_ROTATING_FR) {
533 ia64_sync_fph(current);
534 current->thread.fph[fph_index(regs, regnum)] = *fpval;
535 } else {
536 /*
537 * pt_regs or switch_stack ?
538 */
539 if (FR_IN_SW(regnum)) {
540 addr = (unsigned long)sw;
541 } else {
542 addr = (unsigned long)regs;
543 }
544
545 DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
546
547 addr += FR_OFFS(regnum);
548 *(struct ia64_fpreg *)addr = *fpval;
549
550 /*
551 * mark the low partition as being used now
552 *
553 * It is highly unlikely that this bit is not already set, but
554 * let's do it for safety.
555 */
556 regs->cr_ipsr |= IA64_PSR_MFL;
557 }
558}
559
560/*
561 * Those 2 inline functions generate the spilled versions of the constant floating point
562 * registers which can be used with stfX
563 */
564static inline void
565float_spill_f0 (struct ia64_fpreg *final)
566{
567 ia64_stf_spill(final, 0);
568}
569
570static inline void
571float_spill_f1 (struct ia64_fpreg *final)
572{
573 ia64_stf_spill(final, 1);
574}
575
576static void
577getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
578{
579 struct switch_stack *sw = (struct switch_stack *) regs - 1;
580 unsigned long addr;
581
582 /*
583 * From EAS-2.5: FPDisableFault has higher priority than
584 * Unaligned Fault. Thus, when we get here, we know the partition is
585 * enabled.
586 *
587 * When regnum > 31, the register is still live and we need to force a save
588 * to current->thread.fph to get access to it. See discussion in setfpreg()
589 * for reasons and other ways of doing this.
590 */
591 if (regnum >= IA64_FIRST_ROTATING_FR) {
592 ia64_flush_fph(current);
593 *fpval = current->thread.fph[fph_index(regs, regnum)];
594 } else {
595 /*
596 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
597 * not saved, we must generate their spilled form on the fly
598 */
599 switch(regnum) {
600 case 0:
601 float_spill_f0(fpval);
602 break;
603 case 1:
604 float_spill_f1(fpval);
605 break;
606 default:
607 /*
608 * pt_regs or switch_stack ?
609 */
610 addr = FR_IN_SW(regnum) ? (unsigned long)sw
611 : (unsigned long)regs;
612
613 DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
614 FR_IN_SW(regnum), addr, FR_OFFS(regnum));
615
616 addr += FR_OFFS(regnum);
617 *fpval = *(struct ia64_fpreg *)addr;
618 }
619 }
620}
621
622
623static void
624getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
625{
626 struct switch_stack *sw = (struct switch_stack *) regs - 1;
627 unsigned long addr, *unat;
628
629 if (regnum >= IA64_FIRST_STACKED_GR) {
630 get_rse_reg(regs, regnum, val, nat);
631 return;
632 }
633
634 /*
635 * take care of r0 (read-only always evaluate to 0)
636 */
637 if (regnum == 0) {
638 *val = 0;
639 if (nat)
640 *nat = 0;
641 return;
642 }
643
644 /*
645 * Now look at registers in [0-31] range and init correct UNAT
646 */
647 if (GR_IN_SW(regnum)) {
648 addr = (unsigned long)sw;
649 unat = &sw->ar_unat;
650 } else {
651 addr = (unsigned long)regs;
652 unat = &sw->caller_unat;
653 }
654
655 DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum));
656
657 addr += GR_OFFS(regnum);
658
659 *val = *(unsigned long *)addr;
660
661 /*
662 * do it only when requested
663 */
664 if (nat)
665 *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
666}
667
668static void
669emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
670{
671 /*
672 * IMPORTANT:
673 * Given the way we handle unaligned speculative loads, we should
674 * not get to this point in the code but we keep this sanity check,
675 * just in case.
676 */
677 if (ld.x6_op == 1 || ld.x6_op == 3) {
678 printk(KERN_ERR "%s: register update on speculative load, error\n", __FUNCTION__);
679 die_if_kernel("unaligned reference on speculative load with register update\n",
680 regs, 30);
681 }
682
683
684 /*
685 * at this point, we know that the base register to update is valid i.e.,
686 * it's not r0
687 */
688 if (type == UPD_IMMEDIATE) {
689 unsigned long imm;
690
691 /*
692 * Load +Imm: ldXZ r1=[r3],imm(9)
693 *
694 *
695 * form imm9: [13:19] contain the first 7 bits
696 */
697 imm = ld.x << 7 | ld.imm;
698
699 /*
700 * sign extend (1+8bits) if m set
701 */
702 if (ld.m) imm |= SIGN_EXT9;
703
704 /*
705 * ifa == r3 and we know that the NaT bit on r3 was clear so
706 * we can directly use ifa.
707 */
708 ifa += imm;
709
710 setreg(ld.r3, ifa, 0, regs);
711
712 DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
713
714 } else if (ld.m) {
715 unsigned long r2;
716 int nat_r2;
717
718 /*
719 * Load +Reg Opcode: ldXZ r1=[r3],r2
720 *
721 * Note: that we update r3 even in the case of ldfX.a
722 * (where the load does not happen)
723 *
724 * The way the load algorithm works, we know that r3 does not
725 * have its NaT bit set (would have gotten NaT consumption
726 * before getting the unaligned fault). So we can use ifa
727 * which equals r3 at this point.
728 *
729 * IMPORTANT:
730 * The above statement holds ONLY because we know that we
731 * never reach this code when trying to do a ldX.s.
732 * If we ever make it to here on an ldfX.s then
733 */
734 getreg(ld.imm, &r2, &nat_r2, regs);
735
736 ifa += r2;
737
738 /*
739 * propagate Nat r2 -> r3
740 */
741 setreg(ld.r3, ifa, nat_r2, regs);
742
743 DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
744 }
745}
746
747
748static int
749emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
750{
751 unsigned int len = 1 << ld.x6_sz;
752 unsigned long val = 0;
753
754 /*
755 * r0, as target, doesn't need to be checked because Illegal Instruction
756 * faults have higher priority than unaligned faults.
757 *
758 * r0 cannot be found as the base as it would never generate an
759 * unaligned reference.
760 */
761
762 /*
763 * ldX.a we will emulate load and also invalidate the ALAT entry.
764 * See comment below for explanation on how we handle ldX.a
765 */
766
767 if (len != 2 && len != 4 && len != 8) {
768 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
769 return -1;
770 }
771 /* this assumes little-endian byte-order: */
772 if (copy_from_user(&val, (void __user *) ifa, len))
773 return -1;
774 setreg(ld.r1, val, 0, regs);
775
776 /*
777 * check for updates on any kind of loads
778 */
779 if (ld.op == 0x5 || ld.m)
780 emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
781
782 /*
783 * handling of various loads (based on EAS2.4):
784 *
785 * ldX.acq (ordered load):
786 * - acquire semantics would have been used, so force fence instead.
787 *
788 * ldX.c.clr (check load and clear):
789 * - if we get to this handler, it's because the entry was not in the ALAT.
790 * Therefore the operation reverts to a normal load
791 *
792 * ldX.c.nc (check load no clear):
793 * - same as previous one
794 *
795 * ldX.c.clr.acq (ordered check load and clear):
796 * - same as above for c.clr part. The load needs to have acquire semantics. So
797 * we use the fence semantics which is stronger and thus ensures correctness.
798 *
799 * ldX.a (advanced load):
800 * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
801 * address doesn't match requested size alignment. This means that we would
802 * possibly need more than one load to get the result.
803 *
804 * The load part can be handled just like a normal load, however the difficult
805 * part is to get the right thing into the ALAT. The critical piece of information
806 * in the base address of the load & size. To do that, a ld.a must be executed,
807 * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
808 * if we use the same target register, we will be okay for the check.a instruction.
809 * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry
810 * which would overlap within [r3,r3+X] (the size of the load was store in the
811 * ALAT). If such an entry is found the entry is invalidated. But this is not good
812 * enough, take the following example:
813 * r3=3
814 * ld4.a r1=[r3]
815 *
816 * Could be emulated by doing:
817 * ld1.a r1=[r3],1
818 * store to temporary;
819 * ld1.a r1=[r3],1
820 * store & shift to temporary;
821 * ld1.a r1=[r3],1
822 * store & shift to temporary;
823 * ld1.a r1=[r3]
824 * store & shift to temporary;
825 * r1=temporary
826 *
827 * So in this case, you would get the right value is r1 but the wrong info in
828 * the ALAT. Notice that you could do it in reverse to finish with address 3
829 * but you would still get the size wrong. To get the size right, one needs to
830 * execute exactly the same kind of load. You could do it from a aligned
831 * temporary location, but you would get the address wrong.
832 *
833 * So no matter what, it is not possible to emulate an advanced load
834 * correctly. But is that really critical ?
835 *
836 * We will always convert ld.a into a normal load with ALAT invalidated. This
837 * will enable compiler to do optimization where certain code path after ld.a
838 * is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
839 *
840 * If there is a store after the advanced load, one must either do a ld.c.* or
841 * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
842 * entry found in ALAT), and that's perfectly ok because:
843 *
844 * - ld.c.*, if the entry is not present a normal load is executed
845 * - chk.a.*, if the entry is not present, execution jumps to recovery code
846 *
847 * In either case, the load can be potentially retried in another form.
848 *
849 * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
850 * up a stale entry later). The register base update MUST also be performed.
851 */
852
853 /*
854 * when the load has the .acq completer then
855 * use ordering fence.
856 */
857 if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
858 mb();
859
860 /*
861 * invalidate ALAT entry in case of advanced load
862 */
863 if (ld.x6_op == 0x2)
864 invala_gr(ld.r1);
865
866 return 0;
867}
868
869static int
870emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
871{
872 unsigned long r2;
873 unsigned int len = 1 << ld.x6_sz;
874
875 /*
876 * if we get to this handler, Nat bits on both r3 and r2 have already
877 * been checked. so we don't need to do it
878 *
879 * extract the value to be stored
880 */
881 getreg(ld.imm, &r2, NULL, regs);
882
883 /*
884 * we rely on the macros in unaligned.h for now i.e.,
885 * we let the compiler figure out how to read memory gracefully.
886 *
887 * We need this switch/case because the way the inline function
888 * works. The code is optimized by the compiler and looks like
889 * a single switch/case.
890 */
891 DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
892
893 if (len != 2 && len != 4 && len != 8) {
894 DPRINT("unknown size: x6=%d\n", ld.x6_sz);
895 return -1;
896 }
897
898 /* this assumes little-endian byte-order: */
899 if (copy_to_user((void __user *) ifa, &r2, len))
900 return -1;
901
902 /*
903 * stX [r3]=r2,imm(9)
904 *
905 * NOTE:
906 * ld.r3 can never be r0, because r0 would not generate an
907 * unaligned access.
908 */
909 if (ld.op == 0x5) {
910 unsigned long imm;
911
912 /*
913 * form imm9: [12:6] contain first 7bits
914 */
915 imm = ld.x << 7 | ld.r1;
916 /*
917 * sign extend (8bits) if m set
918 */
919 if (ld.m) imm |= SIGN_EXT9;
920 /*
921 * ifa == r3 (NaT is necessarily cleared)
922 */
923 ifa += imm;
924
925 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
926
927 setreg(ld.r3, ifa, 0, regs);
928 }
929 /*
930 * we don't have alat_invalidate_multiple() so we need
931 * to do the complete flush :-<<
932 */
933 ia64_invala();
934
935 /*
936 * stX.rel: use fence instead of release
937 */
938 if (ld.x6_op == 0xd)
939 mb();
940
941 return 0;
942}
943
944/*
945 * floating point operations sizes in bytes
946 */
947static const unsigned char float_fsz[4]={
948 10, /* extended precision (e) */
949 8, /* integer (8) */
950 4, /* single precision (s) */
951 8 /* double precision (d) */
952};
953
954static inline void
955mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
956{
957 ia64_ldfe(6, init);
958 ia64_stop();
959 ia64_stf_spill(final, 6);
960}
961
962static inline void
963mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
964{
965 ia64_ldf8(6, init);
966 ia64_stop();
967 ia64_stf_spill(final, 6);
968}
969
970static inline void
971mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
972{
973 ia64_ldfs(6, init);
974 ia64_stop();
975 ia64_stf_spill(final, 6);
976}
977
978static inline void
979mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
980{
981 ia64_ldfd(6, init);
982 ia64_stop();
983 ia64_stf_spill(final, 6);
984}
985
986static inline void
987float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
988{
989 ia64_ldf_fill(6, init);
990 ia64_stop();
991 ia64_stfe(final, 6);
992}
993
994static inline void
995float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
996{
997 ia64_ldf_fill(6, init);
998 ia64_stop();
999 ia64_stf8(final, 6);
1000}
1001
1002static inline void
1003float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
1004{
1005 ia64_ldf_fill(6, init);
1006 ia64_stop();
1007 ia64_stfs(final, 6);
1008}
1009
1010static inline void
1011float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
1012{
1013 ia64_ldf_fill(6, init);
1014 ia64_stop();
1015 ia64_stfd(final, 6);
1016}
1017
1018static int
1019emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1020{
1021 struct ia64_fpreg fpr_init[2];
1022 struct ia64_fpreg fpr_final[2];
1023 unsigned long len = float_fsz[ld.x6_sz];
1024
1025 /*
1026 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
1027 * higher priority than unaligned faults.
1028 *
1029 * r0 cannot be found as the base as it would never generate an unaligned
1030 * reference.
1031 */
1032
1033 /*
1034 * make sure we get clean buffers
1035 */
1036 memset(&fpr_init, 0, sizeof(fpr_init));
1037 memset(&fpr_final, 0, sizeof(fpr_final));
1038
1039 /*
1040 * ldfpX.a: we don't try to emulate anything but we must
1041 * invalidate the ALAT entry and execute updates, if any.
1042 */
1043 if (ld.x6_op != 0x2) {
1044 /*
1045 * This assumes little-endian byte-order. Note that there is no "ldfpe"
1046 * instruction:
1047 */
1048 if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
1049 || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
1050 return -1;
1051
1052 DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
1053 DDUMP("frp_init =", &fpr_init, 2*len);
1054 /*
1055 * XXX fixme
1056 * Could optimize inlines by using ldfpX & 2 spills
1057 */
1058 switch( ld.x6_sz ) {
1059 case 0:
1060 mem2float_extended(&fpr_init[0], &fpr_final[0]);
1061 mem2float_extended(&fpr_init[1], &fpr_final[1]);
1062 break;
1063 case 1:
1064 mem2float_integer(&fpr_init[0], &fpr_final[0]);
1065 mem2float_integer(&fpr_init[1], &fpr_final[1]);
1066 break;
1067 case 2:
1068 mem2float_single(&fpr_init[0], &fpr_final[0]);
1069 mem2float_single(&fpr_init[1], &fpr_final[1]);
1070 break;
1071 case 3:
1072 mem2float_double(&fpr_init[0], &fpr_final[0]);
1073 mem2float_double(&fpr_init[1], &fpr_final[1]);
1074 break;
1075 }
1076 DDUMP("fpr_final =", &fpr_final, 2*len);
1077 /*
1078 * XXX fixme
1079 *
1080 * A possible optimization would be to drop fpr_final and directly
1081 * use the storage from the saved context i.e., the actual final
1082 * destination (pt_regs, switch_stack or thread structure).
1083 */
1084 setfpreg(ld.r1, &fpr_final[0], regs);
1085 setfpreg(ld.imm, &fpr_final[1], regs);
1086 }
1087
1088 /*
1089 * Check for updates: only immediate updates are available for this
1090 * instruction.
1091 */
1092 if (ld.m) {
1093 /*
1094 * the immediate is implicit given the ldsz of the operation:
1095 * single: 8 (2x4) and for all others it's 16 (2x8)
1096 */
1097 ifa += len<<1;
1098
1099 /*
1100 * IMPORTANT:
1101 * the fact that we force the NaT of r3 to zero is ONLY valid
1102 * as long as we don't come here with a ldfpX.s.
1103 * For this reason we keep this sanity check
1104 */
1105 if (ld.x6_op == 1 || ld.x6_op == 3)
1106 printk(KERN_ERR "%s: register update on speculative load pair, error\n",
1107 __FUNCTION__);
1108
1109 setreg(ld.r3, ifa, 0, regs);
1110 }
1111
1112 /*
1113 * Invalidate ALAT entries, if any, for both registers.
1114 */
1115 if (ld.x6_op == 0x2) {
1116 invala_fr(ld.r1);
1117 invala_fr(ld.imm);
1118 }
1119 return 0;
1120}
1121
1122
1123static int
1124emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1125{
1126 struct ia64_fpreg fpr_init;
1127 struct ia64_fpreg fpr_final;
1128 unsigned long len = float_fsz[ld.x6_sz];
1129
1130 /*
1131 * fr0 & fr1 don't need to be checked because Illegal Instruction
1132 * faults have higher priority than unaligned faults.
1133 *
1134 * r0 cannot be found as the base as it would never generate an
1135 * unaligned reference.
1136 */
1137
1138 /*
1139 * make sure we get clean buffers
1140 */
1141 memset(&fpr_init,0, sizeof(fpr_init));
1142 memset(&fpr_final,0, sizeof(fpr_final));
1143
1144 /*
1145 * ldfX.a we don't try to emulate anything but we must
1146 * invalidate the ALAT entry.
1147 * See comments in ldX for descriptions on how the various loads are handled.
1148 */
1149 if (ld.x6_op != 0x2) {
1150 if (copy_from_user(&fpr_init, (void __user *) ifa, len))
1151 return -1;
1152
1153 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1154 DDUMP("fpr_init =", &fpr_init, len);
1155 /*
1156 * we only do something for x6_op={0,8,9}
1157 */
1158 switch( ld.x6_sz ) {
1159 case 0:
1160 mem2float_extended(&fpr_init, &fpr_final);
1161 break;
1162 case 1:
1163 mem2float_integer(&fpr_init, &fpr_final);
1164 break;
1165 case 2:
1166 mem2float_single(&fpr_init, &fpr_final);
1167 break;
1168 case 3:
1169 mem2float_double(&fpr_init, &fpr_final);
1170 break;
1171 }
1172 DDUMP("fpr_final =", &fpr_final, len);
1173 /*
1174 * XXX fixme
1175 *
1176 * A possible optimization would be to drop fpr_final and directly
1177 * use the storage from the saved context i.e., the actual final
1178 * destination (pt_regs, switch_stack or thread structure).
1179 */
1180 setfpreg(ld.r1, &fpr_final, regs);
1181 }
1182
1183 /*
1184 * check for updates on any loads
1185 */
1186 if (ld.op == 0x7 || ld.m)
1187 emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
1188
1189 /*
1190 * invalidate ALAT entry in case of advanced floating point loads
1191 */
1192 if (ld.x6_op == 0x2)
1193 invala_fr(ld.r1);
1194
1195 return 0;
1196}
1197
1198
1199static int
1200emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
1201{
1202 struct ia64_fpreg fpr_init;
1203 struct ia64_fpreg fpr_final;
1204 unsigned long len = float_fsz[ld.x6_sz];
1205
1206 /*
1207 * make sure we get clean buffers
1208 */
1209 memset(&fpr_init,0, sizeof(fpr_init));
1210 memset(&fpr_final,0, sizeof(fpr_final));
1211
1212 /*
1213 * if we get to this handler, Nat bits on both r3 and r2 have already
1214 * been checked. so we don't need to do it
1215 *
1216 * extract the value to be stored
1217 */
1218 getfpreg(ld.imm, &fpr_init, regs);
1219 /*
1220 * during this step, we extract the spilled registers from the saved
1221 * context i.e., we refill. Then we store (no spill) to temporary
1222 * aligned location
1223 */
1224 switch( ld.x6_sz ) {
1225 case 0:
1226 float2mem_extended(&fpr_init, &fpr_final);
1227 break;
1228 case 1:
1229 float2mem_integer(&fpr_init, &fpr_final);
1230 break;
1231 case 2:
1232 float2mem_single(&fpr_init, &fpr_final);
1233 break;
1234 case 3:
1235 float2mem_double(&fpr_init, &fpr_final);
1236 break;
1237 }
1238 DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
1239 DDUMP("fpr_init =", &fpr_init, len);
1240 DDUMP("fpr_final =", &fpr_final, len);
1241
1242 if (copy_to_user((void __user *) ifa, &fpr_final, len))
1243 return -1;
1244
1245 /*
1246 * stfX [r3]=r2,imm(9)
1247 *
1248 * NOTE:
1249 * ld.r3 can never be r0, because r0 would not generate an
1250 * unaligned access.
1251 */
1252 if (ld.op == 0x7) {
1253 unsigned long imm;
1254
1255 /*
1256 * form imm9: [12:6] contain first 7bits
1257 */
1258 imm = ld.x << 7 | ld.r1;
1259 /*
1260 * sign extend (8bits) if m set
1261 */
1262 if (ld.m)
1263 imm |= SIGN_EXT9;
1264 /*
1265 * ifa == r3 (NaT is necessarily cleared)
1266 */
1267 ifa += imm;
1268
1269 DPRINT("imm=%lx r3=%lx\n", imm, ifa);
1270
1271 setreg(ld.r3, ifa, 0, regs);
1272 }
1273 /*
1274 * we don't have alat_invalidate_multiple() so we need
1275 * to do the complete flush :-<<
1276 */
1277 ia64_invala();
1278
1279 return 0;
1280}
1281
1282/*
1283 * Make sure we log the unaligned access, so that user/sysadmin can notice it and
1284 * eventually fix the program. However, we don't want to do that for every access so we
1285 * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be
1286 * either...
1287 */
1288static int
1289within_logging_rate_limit (void)
1290{
1291 static unsigned long count, last_time;
1292
1293 if (jiffies - last_time > 5*HZ)
1294 count = 0;
Jack Steiner79c83bd2006-01-24 16:32:11 -06001295 if (count < 5) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001296 last_time = jiffies;
Jack Steiner79c83bd2006-01-24 16:32:11 -06001297 count++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001298 return 1;
1299 }
1300 return 0;
1301
1302}
1303
1304void
1305ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
1306{
1307 struct ia64_psr *ipsr = ia64_psr(regs);
1308 mm_segment_t old_fs = get_fs();
1309 unsigned long bundle[2];
1310 unsigned long opcode;
1311 struct siginfo si;
1312 const struct exception_table_entry *eh = NULL;
1313 union {
1314 unsigned long l;
1315 load_store_t insn;
1316 } u;
1317 int ret = -1;
1318
1319 if (ia64_psr(regs)->be) {
1320 /* we don't support big-endian accesses */
1321 die_if_kernel("big-endian unaligned accesses are not supported", regs, 0);
1322 goto force_sigbus;
1323 }
1324
1325 /*
1326 * Treat kernel accesses for which there is an exception handler entry the same as
1327 * user-level unaligned accesses. Otherwise, a clever program could trick this
1328 * handler into reading an arbitrary kernel addresses...
1329 */
1330 if (!user_mode(regs))
1331 eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
1332 if (user_mode(regs) || eh) {
1333 if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
1334 goto force_sigbus;
1335
Jes Sorensend2b176e2006-02-28 09:42:23 -08001336 if (!no_unaligned_warning &&
1337 !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
1338 within_logging_rate_limit())
Linus Torvalds1da177e2005-04-16 15:20:36 -07001339 {
1340 char buf[200]; /* comm[] is at most 16 bytes... */
1341 size_t len;
1342
1343 len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
1344 "ip=0x%016lx\n\r", current->comm, current->pid,
1345 ifa, regs->cr_iip + ipsr->ri);
1346 /*
1347 * Don't call tty_write_message() if we're in the kernel; we might
1348 * be holding locks...
1349 */
1350 if (user_mode(regs))
1351 tty_write_message(current->signal->tty, buf);
1352 buf[len-1] = '\0'; /* drop '\r' */
Jes Sorensend2b176e2006-02-28 09:42:23 -08001353 /* watch for command names containing %s */
1354 printk(KERN_WARNING "%s", buf);
1355 } else {
1356 if (no_unaligned_warning && !noprint_warning) {
1357 noprint_warning = 1;
1358 printk(KERN_WARNING "%s(%d) encountered an "
1359 "unaligned exception which required\n"
1360 "kernel assistance, which degrades "
1361 "the performance of the application.\n"
1362 "Unaligned exception warnings have "
1363 "been disabled by the system "
1364 "administrator\n"
1365 "echo 0 > /proc/sys/kernel/ignore-"
1366 "unaligned-usertrap to re-enable\n",
1367 current->comm, current->pid);
1368 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001369 }
1370 } else {
1371 if (within_logging_rate_limit())
1372 printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
1373 ifa, regs->cr_iip + ipsr->ri);
1374 set_fs(KERNEL_DS);
1375 }
1376
1377 DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
1378 regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
1379
1380 if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
1381 goto failure;
1382
1383 /*
1384 * extract the instruction from the bundle given the slot number
1385 */
1386 switch (ipsr->ri) {
1387 case 0: u.l = (bundle[0] >> 5); break;
1388 case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
1389 case 2: u.l = (bundle[1] >> 23); break;
1390 }
1391 opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
1392
1393 DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
1394 "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
1395 u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
1396
1397 /*
1398 * IMPORTANT:
1399 * Notice that the switch statement DOES not cover all possible instructions
1400 * that DO generate unaligned references. This is made on purpose because for some
1401 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
1402 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
1403 * the program will get a signal and die:
1404 *
1405 * load/store:
1406 * - ldX.spill
1407 * - stX.spill
1408 * Reason: RNATs are based on addresses
1409 * - ld16
1410 * - st16
1411 * Reason: ld16 and st16 are supposed to occur in a single
1412 * memory op
1413 *
1414 * synchronization:
1415 * - cmpxchg
1416 * - fetchadd
1417 * - xchg
1418 * Reason: ATOMIC operations cannot be emulated properly using multiple
1419 * instructions.
1420 *
1421 * speculative loads:
1422 * - ldX.sZ
1423 * Reason: side effects, code must be ready to deal with failure so simpler
1424 * to let the load fail.
1425 * ---------------------------------------------------------------------------------
1426 * XXX fixme
1427 *
1428 * I would like to get rid of this switch case and do something
1429 * more elegant.
1430 */
1431 switch (opcode) {
1432 case LDS_OP:
1433 case LDSA_OP:
1434 if (u.insn.x)
1435 /* oops, really a semaphore op (cmpxchg, etc) */
1436 goto failure;
1437 /* no break */
1438 case LDS_IMM_OP:
1439 case LDSA_IMM_OP:
1440 case LDFS_OP:
1441 case LDFSA_OP:
1442 case LDFS_IMM_OP:
1443 /*
1444 * The instruction will be retried with deferred exceptions turned on, and
1445 * we should get Nat bit installed
1446 *
1447 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
1448 * are actually executed even though the operation failed. So we don't
1449 * need to take care of this.
1450 */
1451 DPRINT("forcing PSR_ED\n");
1452 regs->cr_ipsr |= IA64_PSR_ED;
1453 goto done;
1454
1455 case LD_OP:
1456 case LDA_OP:
1457 case LDBIAS_OP:
1458 case LDACQ_OP:
1459 case LDCCLR_OP:
1460 case LDCNC_OP:
1461 case LDCCLRACQ_OP:
1462 if (u.insn.x)
1463 /* oops, really a semaphore op (cmpxchg, etc) */
1464 goto failure;
1465 /* no break */
1466 case LD_IMM_OP:
1467 case LDA_IMM_OP:
1468 case LDBIAS_IMM_OP:
1469 case LDACQ_IMM_OP:
1470 case LDCCLR_IMM_OP:
1471 case LDCNC_IMM_OP:
1472 case LDCCLRACQ_IMM_OP:
1473 ret = emulate_load_int(ifa, u.insn, regs);
1474 break;
1475
1476 case ST_OP:
1477 case STREL_OP:
1478 if (u.insn.x)
1479 /* oops, really a semaphore op (cmpxchg, etc) */
1480 goto failure;
1481 /* no break */
1482 case ST_IMM_OP:
1483 case STREL_IMM_OP:
1484 ret = emulate_store_int(ifa, u.insn, regs);
1485 break;
1486
1487 case LDF_OP:
1488 case LDFA_OP:
1489 case LDFCCLR_OP:
1490 case LDFCNC_OP:
1491 case LDF_IMM_OP:
1492 case LDFA_IMM_OP:
1493 case LDFCCLR_IMM_OP:
1494 case LDFCNC_IMM_OP:
1495 if (u.insn.x)
1496 ret = emulate_load_floatpair(ifa, u.insn, regs);
1497 else
1498 ret = emulate_load_float(ifa, u.insn, regs);
1499 break;
1500
1501 case STF_OP:
1502 case STF_IMM_OP:
1503 ret = emulate_store_float(ifa, u.insn, regs);
1504 break;
1505
1506 default:
1507 goto failure;
1508 }
1509 DPRINT("ret=%d\n", ret);
1510 if (ret)
1511 goto failure;
1512
1513 if (ipsr->ri == 2)
1514 /*
1515 * given today's architecture this case is not likely to happen because a
1516 * memory access instruction (M) can never be in the last slot of a
1517 * bundle. But let's keep it for now.
1518 */
1519 regs->cr_iip += 16;
1520 ipsr->ri = (ipsr->ri + 1) & 0x3;
1521
1522 DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
1523 done:
1524 set_fs(old_fs); /* restore original address limit */
1525 return;
1526
1527 failure:
1528 /* something went wrong... */
1529 if (!user_mode(regs)) {
1530 if (eh) {
1531 ia64_handle_exception(regs, eh);
1532 goto done;
1533 }
1534 die_if_kernel("error during unaligned kernel access\n", regs, ret);
1535 /* NOT_REACHED */
1536 }
1537 force_sigbus:
1538 si.si_signo = SIGBUS;
1539 si.si_errno = 0;
1540 si.si_code = BUS_ADRALN;
1541 si.si_addr = (void __user *) ifa;
1542 si.si_flags = 0;
1543 si.si_isr = 0;
1544 si.si_imm = 0;
1545 force_sig_info(SIGBUS, &si, current);
1546 goto done;
1547}