Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Architecture-specific unaligned trap handling. |
| 3 | * |
| 4 | * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co |
| 5 | * Stephane Eranian <eranian@hpl.hp.com> |
| 6 | * David Mosberger-Tang <davidm@hpl.hp.com> |
| 7 | * |
| 8 | * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix |
| 9 | * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame |
| 10 | * stacked register returns an undefined value; it does NOT trigger a |
| 11 | * "rsvd register fault"). |
| 12 | * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops. |
| 13 | * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes. |
| 14 | * 2001/01/17 Add support emulation of unaligned kernel accesses. |
| 15 | */ |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/sched.h> |
| 18 | #include <linux/smp_lock.h> |
| 19 | #include <linux/tty.h> |
| 20 | |
| 21 | #include <asm/intrinsics.h> |
| 22 | #include <asm/processor.h> |
| 23 | #include <asm/rse.h> |
| 24 | #include <asm/uaccess.h> |
| 25 | #include <asm/unaligned.h> |
| 26 | |
| 27 | extern void die_if_kernel(char *str, struct pt_regs *regs, long err) __attribute__ ((noreturn)); |
| 28 | |
| 29 | #undef DEBUG_UNALIGNED_TRAP |
| 30 | |
| 31 | #ifdef DEBUG_UNALIGNED_TRAP |
| 32 | # define DPRINT(a...) do { printk("%s %u: ", __FUNCTION__, __LINE__); printk (a); } while (0) |
| 33 | # define DDUMP(str,vp,len) dump(str, vp, len) |
| 34 | |
| 35 | static void |
| 36 | dump (const char *str, void *vp, size_t len) |
| 37 | { |
| 38 | unsigned char *cp = vp; |
| 39 | int i; |
| 40 | |
| 41 | printk("%s", str); |
| 42 | for (i = 0; i < len; ++i) |
| 43 | printk (" %02x", *cp++); |
| 44 | printk("\n"); |
| 45 | } |
| 46 | #else |
| 47 | # define DPRINT(a...) |
| 48 | # define DDUMP(str,vp,len) |
| 49 | #endif |
| 50 | |
| 51 | #define IA64_FIRST_STACKED_GR 32 |
| 52 | #define IA64_FIRST_ROTATING_FR 32 |
| 53 | #define SIGN_EXT9 0xffffffffffffff00ul |
| 54 | |
| 55 | /* |
| 56 | * For M-unit: |
| 57 | * |
| 58 | * opcode | m | x6 | |
| 59 | * --------|------|---------| |
| 60 | * [40-37] | [36] | [35:30] | |
| 61 | * --------|------|---------| |
| 62 | * 4 | 1 | 6 | = 11 bits |
| 63 | * -------------------------- |
| 64 | * However bits [31:30] are not directly useful to distinguish between |
| 65 | * load/store so we can use [35:32] instead, which gives the following |
| 66 | * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer |
| 67 | * checking the m-bit until later in the load/store emulation. |
| 68 | */ |
| 69 | #define IA64_OPCODE_MASK 0x1ef |
| 70 | #define IA64_OPCODE_SHIFT 32 |
| 71 | |
| 72 | /* |
| 73 | * Table C-28 Integer Load/Store |
| 74 | * |
| 75 | * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF |
| 76 | * |
| 77 | * ld8.fill, st8.fill MUST be aligned because the RNATs are based on |
| 78 | * the address (bits [8:3]), so we must failed. |
| 79 | */ |
| 80 | #define LD_OP 0x080 |
| 81 | #define LDS_OP 0x081 |
| 82 | #define LDA_OP 0x082 |
| 83 | #define LDSA_OP 0x083 |
| 84 | #define LDBIAS_OP 0x084 |
| 85 | #define LDACQ_OP 0x085 |
| 86 | /* 0x086, 0x087 are not relevant */ |
| 87 | #define LDCCLR_OP 0x088 |
| 88 | #define LDCNC_OP 0x089 |
| 89 | #define LDCCLRACQ_OP 0x08a |
| 90 | #define ST_OP 0x08c |
| 91 | #define STREL_OP 0x08d |
| 92 | /* 0x08e,0x8f are not relevant */ |
| 93 | |
| 94 | /* |
| 95 | * Table C-29 Integer Load +Reg |
| 96 | * |
| 97 | * we use the ld->m (bit [36:36]) field to determine whether or not we have |
| 98 | * a load/store of this form. |
| 99 | */ |
| 100 | |
| 101 | /* |
| 102 | * Table C-30 Integer Load/Store +Imm |
| 103 | * |
| 104 | * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF |
| 105 | * |
| 106 | * ld8.fill, st8.fill must be aligned because the Nat register are based on |
| 107 | * the address, so we must fail and the program must be fixed. |
| 108 | */ |
| 109 | #define LD_IMM_OP 0x0a0 |
| 110 | #define LDS_IMM_OP 0x0a1 |
| 111 | #define LDA_IMM_OP 0x0a2 |
| 112 | #define LDSA_IMM_OP 0x0a3 |
| 113 | #define LDBIAS_IMM_OP 0x0a4 |
| 114 | #define LDACQ_IMM_OP 0x0a5 |
| 115 | /* 0x0a6, 0xa7 are not relevant */ |
| 116 | #define LDCCLR_IMM_OP 0x0a8 |
| 117 | #define LDCNC_IMM_OP 0x0a9 |
| 118 | #define LDCCLRACQ_IMM_OP 0x0aa |
| 119 | #define ST_IMM_OP 0x0ac |
| 120 | #define STREL_IMM_OP 0x0ad |
| 121 | /* 0x0ae,0xaf are not relevant */ |
| 122 | |
| 123 | /* |
| 124 | * Table C-32 Floating-point Load/Store |
| 125 | */ |
| 126 | #define LDF_OP 0x0c0 |
| 127 | #define LDFS_OP 0x0c1 |
| 128 | #define LDFA_OP 0x0c2 |
| 129 | #define LDFSA_OP 0x0c3 |
| 130 | /* 0x0c6 is irrelevant */ |
| 131 | #define LDFCCLR_OP 0x0c8 |
| 132 | #define LDFCNC_OP 0x0c9 |
| 133 | /* 0x0cb is irrelevant */ |
| 134 | #define STF_OP 0x0cc |
| 135 | |
| 136 | /* |
| 137 | * Table C-33 Floating-point Load +Reg |
| 138 | * |
| 139 | * we use the ld->m (bit [36:36]) field to determine whether or not we have |
| 140 | * a load/store of this form. |
| 141 | */ |
| 142 | |
| 143 | /* |
| 144 | * Table C-34 Floating-point Load/Store +Imm |
| 145 | */ |
| 146 | #define LDF_IMM_OP 0x0e0 |
| 147 | #define LDFS_IMM_OP 0x0e1 |
| 148 | #define LDFA_IMM_OP 0x0e2 |
| 149 | #define LDFSA_IMM_OP 0x0e3 |
| 150 | /* 0x0e6 is irrelevant */ |
| 151 | #define LDFCCLR_IMM_OP 0x0e8 |
| 152 | #define LDFCNC_IMM_OP 0x0e9 |
| 153 | #define STF_IMM_OP 0x0ec |
| 154 | |
| 155 | typedef struct { |
| 156 | unsigned long qp:6; /* [0:5] */ |
| 157 | unsigned long r1:7; /* [6:12] */ |
| 158 | unsigned long imm:7; /* [13:19] */ |
| 159 | unsigned long r3:7; /* [20:26] */ |
| 160 | unsigned long x:1; /* [27:27] */ |
| 161 | unsigned long hint:2; /* [28:29] */ |
| 162 | unsigned long x6_sz:2; /* [30:31] */ |
| 163 | unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */ |
| 164 | unsigned long m:1; /* [36:36] */ |
| 165 | unsigned long op:4; /* [37:40] */ |
| 166 | unsigned long pad:23; /* [41:63] */ |
| 167 | } load_store_t; |
| 168 | |
| 169 | |
| 170 | typedef enum { |
| 171 | UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */ |
| 172 | UPD_REG /* ldXZ r1=[r3],r2 */ |
| 173 | } update_t; |
| 174 | |
| 175 | /* |
| 176 | * We use tables to keep track of the offsets of registers in the saved state. |
| 177 | * This way we save having big switch/case statements. |
| 178 | * |
| 179 | * We use bit 0 to indicate switch_stack or pt_regs. |
| 180 | * The offset is simply shifted by 1 bit. |
| 181 | * A 2-byte value should be enough to hold any kind of offset |
| 182 | * |
| 183 | * In case the calling convention changes (and thus pt_regs/switch_stack) |
| 184 | * simply use RSW instead of RPT or vice-versa. |
| 185 | */ |
| 186 | |
| 187 | #define RPO(x) ((size_t) &((struct pt_regs *)0)->x) |
| 188 | #define RSO(x) ((size_t) &((struct switch_stack *)0)->x) |
| 189 | |
| 190 | #define RPT(x) (RPO(x) << 1) |
| 191 | #define RSW(x) (1| RSO(x)<<1) |
| 192 | |
| 193 | #define GR_OFFS(x) (gr_info[x]>>1) |
| 194 | #define GR_IN_SW(x) (gr_info[x] & 0x1) |
| 195 | |
| 196 | #define FR_OFFS(x) (fr_info[x]>>1) |
| 197 | #define FR_IN_SW(x) (fr_info[x] & 0x1) |
| 198 | |
| 199 | static u16 gr_info[32]={ |
| 200 | 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */ |
| 201 | |
| 202 | RPT(r1), RPT(r2), RPT(r3), |
| 203 | |
| 204 | RSW(r4), RSW(r5), RSW(r6), RSW(r7), |
| 205 | |
| 206 | RPT(r8), RPT(r9), RPT(r10), RPT(r11), |
| 207 | RPT(r12), RPT(r13), RPT(r14), RPT(r15), |
| 208 | |
| 209 | RPT(r16), RPT(r17), RPT(r18), RPT(r19), |
| 210 | RPT(r20), RPT(r21), RPT(r22), RPT(r23), |
| 211 | RPT(r24), RPT(r25), RPT(r26), RPT(r27), |
| 212 | RPT(r28), RPT(r29), RPT(r30), RPT(r31) |
| 213 | }; |
| 214 | |
| 215 | static u16 fr_info[32]={ |
| 216 | 0, /* constant : WE SHOULD NEVER GET THIS */ |
| 217 | 0, /* constant : WE SHOULD NEVER GET THIS */ |
| 218 | |
| 219 | RSW(f2), RSW(f3), RSW(f4), RSW(f5), |
| 220 | |
| 221 | RPT(f6), RPT(f7), RPT(f8), RPT(f9), |
| 222 | RPT(f10), RPT(f11), |
| 223 | |
| 224 | RSW(f12), RSW(f13), RSW(f14), |
| 225 | RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19), |
| 226 | RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24), |
| 227 | RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29), |
| 228 | RSW(f30), RSW(f31) |
| 229 | }; |
| 230 | |
| 231 | /* Invalidate ALAT entry for integer register REGNO. */ |
| 232 | static void |
| 233 | invala_gr (int regno) |
| 234 | { |
| 235 | # define F(reg) case reg: ia64_invala_gr(reg); break |
| 236 | |
| 237 | switch (regno) { |
| 238 | F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); |
| 239 | F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); |
| 240 | F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); |
| 241 | F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); |
| 242 | F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); |
| 243 | F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); |
| 244 | F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); |
| 245 | F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); |
| 246 | F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); |
| 247 | F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); |
| 248 | F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); |
| 249 | F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); |
| 250 | F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); |
| 251 | F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); |
| 252 | F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); |
| 253 | F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); |
| 254 | } |
| 255 | # undef F |
| 256 | } |
| 257 | |
| 258 | /* Invalidate ALAT entry for floating-point register REGNO. */ |
| 259 | static void |
| 260 | invala_fr (int regno) |
| 261 | { |
| 262 | # define F(reg) case reg: ia64_invala_fr(reg); break |
| 263 | |
| 264 | switch (regno) { |
| 265 | F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); |
| 266 | F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); |
| 267 | F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); |
| 268 | F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); |
| 269 | F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); |
| 270 | F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); |
| 271 | F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); |
| 272 | F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); |
| 273 | F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); |
| 274 | F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); |
| 275 | F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); |
| 276 | F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); |
| 277 | F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); |
| 278 | F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); |
| 279 | F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); |
| 280 | F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); |
| 281 | } |
| 282 | # undef F |
| 283 | } |
| 284 | |
| 285 | static inline unsigned long |
| 286 | rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg) |
| 287 | { |
| 288 | reg += rrb; |
| 289 | if (reg >= sor) |
| 290 | reg -= sor; |
| 291 | return reg; |
| 292 | } |
| 293 | |
| 294 | static void |
| 295 | set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat) |
| 296 | { |
| 297 | struct switch_stack *sw = (struct switch_stack *) regs - 1; |
| 298 | unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end; |
| 299 | unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; |
| 300 | unsigned long rnats, nat_mask; |
| 301 | unsigned long on_kbs; |
| 302 | long sof = (regs->cr_ifs) & 0x7f; |
| 303 | long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); |
| 304 | long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; |
| 305 | long ridx = r1 - 32; |
| 306 | |
| 307 | if (ridx >= sof) { |
| 308 | /* this should never happen, as the "rsvd register fault" has higher priority */ |
| 309 | DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof); |
| 310 | return; |
| 311 | } |
| 312 | |
| 313 | if (ridx < sor) |
| 314 | ridx = rotate_reg(sor, rrb_gr, ridx); |
| 315 | |
| 316 | DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", |
| 317 | r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); |
| 318 | |
| 319 | on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); |
| 320 | addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); |
| 321 | if (addr >= kbs) { |
| 322 | /* the register is on the kernel backing store: easy... */ |
| 323 | rnat_addr = ia64_rse_rnat_addr(addr); |
| 324 | if ((unsigned long) rnat_addr >= sw->ar_bspstore) |
| 325 | rnat_addr = &sw->ar_rnat; |
| 326 | nat_mask = 1UL << ia64_rse_slot_num(addr); |
| 327 | |
| 328 | *addr = val; |
| 329 | if (nat) |
| 330 | *rnat_addr |= nat_mask; |
| 331 | else |
| 332 | *rnat_addr &= ~nat_mask; |
| 333 | return; |
| 334 | } |
| 335 | |
| 336 | if (!user_stack(current, regs)) { |
| 337 | DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1); |
| 338 | return; |
| 339 | } |
| 340 | |
| 341 | bspstore = (unsigned long *)regs->ar_bspstore; |
| 342 | ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); |
| 343 | bsp = ia64_rse_skip_regs(ubs_end, -sof); |
| 344 | addr = ia64_rse_skip_regs(bsp, ridx); |
| 345 | |
| 346 | DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); |
| 347 | |
| 348 | ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); |
| 349 | |
| 350 | rnat_addr = ia64_rse_rnat_addr(addr); |
| 351 | |
| 352 | ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); |
| 353 | DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n", |
| 354 | (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1); |
| 355 | |
| 356 | nat_mask = 1UL << ia64_rse_slot_num(addr); |
| 357 | if (nat) |
| 358 | rnats |= nat_mask; |
| 359 | else |
| 360 | rnats &= ~nat_mask; |
| 361 | ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats); |
| 362 | |
| 363 | DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats); |
| 364 | } |
| 365 | |
| 366 | |
| 367 | static void |
| 368 | get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat) |
| 369 | { |
| 370 | struct switch_stack *sw = (struct switch_stack *) regs - 1; |
| 371 | unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore; |
| 372 | unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; |
| 373 | unsigned long rnats, nat_mask; |
| 374 | unsigned long on_kbs; |
| 375 | long sof = (regs->cr_ifs) & 0x7f; |
| 376 | long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); |
| 377 | long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; |
| 378 | long ridx = r1 - 32; |
| 379 | |
| 380 | if (ridx >= sof) { |
| 381 | /* read of out-of-frame register returns an undefined value; 0 in our case. */ |
| 382 | DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof); |
| 383 | goto fail; |
| 384 | } |
| 385 | |
| 386 | if (ridx < sor) |
| 387 | ridx = rotate_reg(sor, rrb_gr, ridx); |
| 388 | |
| 389 | DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", |
| 390 | r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); |
| 391 | |
| 392 | on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); |
| 393 | addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); |
| 394 | if (addr >= kbs) { |
| 395 | /* the register is on the kernel backing store: easy... */ |
| 396 | *val = *addr; |
| 397 | if (nat) { |
| 398 | rnat_addr = ia64_rse_rnat_addr(addr); |
| 399 | if ((unsigned long) rnat_addr >= sw->ar_bspstore) |
| 400 | rnat_addr = &sw->ar_rnat; |
| 401 | nat_mask = 1UL << ia64_rse_slot_num(addr); |
| 402 | *nat = (*rnat_addr & nat_mask) != 0; |
| 403 | } |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | if (!user_stack(current, regs)) { |
| 408 | DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1); |
| 409 | goto fail; |
| 410 | } |
| 411 | |
| 412 | bspstore = (unsigned long *)regs->ar_bspstore; |
| 413 | ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); |
| 414 | bsp = ia64_rse_skip_regs(ubs_end, -sof); |
| 415 | addr = ia64_rse_skip_regs(bsp, ridx); |
| 416 | |
| 417 | DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); |
| 418 | |
| 419 | ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); |
| 420 | |
| 421 | if (nat) { |
| 422 | rnat_addr = ia64_rse_rnat_addr(addr); |
| 423 | nat_mask = 1UL << ia64_rse_slot_num(addr); |
| 424 | |
| 425 | DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats); |
| 426 | |
| 427 | ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); |
| 428 | *nat = (rnats & nat_mask) != 0; |
| 429 | } |
| 430 | return; |
| 431 | |
| 432 | fail: |
| 433 | *val = 0; |
| 434 | if (nat) |
| 435 | *nat = 0; |
| 436 | return; |
| 437 | } |
| 438 | |
| 439 | |
| 440 | static void |
| 441 | setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs) |
| 442 | { |
| 443 | struct switch_stack *sw = (struct switch_stack *) regs - 1; |
| 444 | unsigned long addr; |
| 445 | unsigned long bitmask; |
| 446 | unsigned long *unat; |
| 447 | |
| 448 | /* |
| 449 | * First takes care of stacked registers |
| 450 | */ |
| 451 | if (regnum >= IA64_FIRST_STACKED_GR) { |
| 452 | set_rse_reg(regs, regnum, val, nat); |
| 453 | return; |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * Using r0 as a target raises a General Exception fault which has higher priority |
| 458 | * than the Unaligned Reference fault. |
| 459 | */ |
| 460 | |
| 461 | /* |
| 462 | * Now look at registers in [0-31] range and init correct UNAT |
| 463 | */ |
| 464 | if (GR_IN_SW(regnum)) { |
| 465 | addr = (unsigned long)sw; |
| 466 | unat = &sw->ar_unat; |
| 467 | } else { |
| 468 | addr = (unsigned long)regs; |
| 469 | unat = &sw->caller_unat; |
| 470 | } |
| 471 | DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n", |
| 472 | addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum)); |
| 473 | /* |
| 474 | * add offset from base of struct |
| 475 | * and do it ! |
| 476 | */ |
| 477 | addr += GR_OFFS(regnum); |
| 478 | |
| 479 | *(unsigned long *)addr = val; |
| 480 | |
| 481 | /* |
| 482 | * We need to clear the corresponding UNAT bit to fully emulate the load |
| 483 | * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4 |
| 484 | */ |
| 485 | bitmask = 1UL << (addr >> 3 & 0x3f); |
| 486 | DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat); |
| 487 | if (nat) { |
| 488 | *unat |= bitmask; |
| 489 | } else { |
| 490 | *unat &= ~bitmask; |
| 491 | } |
| 492 | DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat); |
| 493 | } |
| 494 | |
| 495 | /* |
| 496 | * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the |
| 497 | * range from 32-127, result is in the range from 0-95. |
| 498 | */ |
| 499 | static inline unsigned long |
| 500 | fph_index (struct pt_regs *regs, long regnum) |
| 501 | { |
| 502 | unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f; |
| 503 | return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR)); |
| 504 | } |
| 505 | |
| 506 | static void |
| 507 | setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) |
| 508 | { |
| 509 | struct switch_stack *sw = (struct switch_stack *)regs - 1; |
| 510 | unsigned long addr; |
| 511 | |
| 512 | /* |
| 513 | * From EAS-2.5: FPDisableFault has higher priority than Unaligned |
| 514 | * Fault. Thus, when we get here, we know the partition is enabled. |
| 515 | * To update f32-f127, there are three choices: |
| 516 | * |
| 517 | * (1) save f32-f127 to thread.fph and update the values there |
| 518 | * (2) use a gigantic switch statement to directly access the registers |
| 519 | * (3) generate code on the fly to update the desired register |
| 520 | * |
| 521 | * For now, we are using approach (1). |
| 522 | */ |
| 523 | if (regnum >= IA64_FIRST_ROTATING_FR) { |
| 524 | ia64_sync_fph(current); |
| 525 | current->thread.fph[fph_index(regs, regnum)] = *fpval; |
| 526 | } else { |
| 527 | /* |
| 528 | * pt_regs or switch_stack ? |
| 529 | */ |
| 530 | if (FR_IN_SW(regnum)) { |
| 531 | addr = (unsigned long)sw; |
| 532 | } else { |
| 533 | addr = (unsigned long)regs; |
| 534 | } |
| 535 | |
| 536 | DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum)); |
| 537 | |
| 538 | addr += FR_OFFS(regnum); |
| 539 | *(struct ia64_fpreg *)addr = *fpval; |
| 540 | |
| 541 | /* |
| 542 | * mark the low partition as being used now |
| 543 | * |
| 544 | * It is highly unlikely that this bit is not already set, but |
| 545 | * let's do it for safety. |
| 546 | */ |
| 547 | regs->cr_ipsr |= IA64_PSR_MFL; |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | /* |
| 552 | * Those 2 inline functions generate the spilled versions of the constant floating point |
| 553 | * registers which can be used with stfX |
| 554 | */ |
| 555 | static inline void |
| 556 | float_spill_f0 (struct ia64_fpreg *final) |
| 557 | { |
| 558 | ia64_stf_spill(final, 0); |
| 559 | } |
| 560 | |
| 561 | static inline void |
| 562 | float_spill_f1 (struct ia64_fpreg *final) |
| 563 | { |
| 564 | ia64_stf_spill(final, 1); |
| 565 | } |
| 566 | |
| 567 | static void |
| 568 | getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) |
| 569 | { |
| 570 | struct switch_stack *sw = (struct switch_stack *) regs - 1; |
| 571 | unsigned long addr; |
| 572 | |
| 573 | /* |
| 574 | * From EAS-2.5: FPDisableFault has higher priority than |
| 575 | * Unaligned Fault. Thus, when we get here, we know the partition is |
| 576 | * enabled. |
| 577 | * |
| 578 | * When regnum > 31, the register is still live and we need to force a save |
| 579 | * to current->thread.fph to get access to it. See discussion in setfpreg() |
| 580 | * for reasons and other ways of doing this. |
| 581 | */ |
| 582 | if (regnum >= IA64_FIRST_ROTATING_FR) { |
| 583 | ia64_flush_fph(current); |
| 584 | *fpval = current->thread.fph[fph_index(regs, regnum)]; |
| 585 | } else { |
| 586 | /* |
| 587 | * f0 = 0.0, f1= 1.0. Those registers are constant and are thus |
| 588 | * not saved, we must generate their spilled form on the fly |
| 589 | */ |
| 590 | switch(regnum) { |
| 591 | case 0: |
| 592 | float_spill_f0(fpval); |
| 593 | break; |
| 594 | case 1: |
| 595 | float_spill_f1(fpval); |
| 596 | break; |
| 597 | default: |
| 598 | /* |
| 599 | * pt_regs or switch_stack ? |
| 600 | */ |
| 601 | addr = FR_IN_SW(regnum) ? (unsigned long)sw |
| 602 | : (unsigned long)regs; |
| 603 | |
| 604 | DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n", |
| 605 | FR_IN_SW(regnum), addr, FR_OFFS(regnum)); |
| 606 | |
| 607 | addr += FR_OFFS(regnum); |
| 608 | *fpval = *(struct ia64_fpreg *)addr; |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | |
| 614 | static void |
| 615 | getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs) |
| 616 | { |
| 617 | struct switch_stack *sw = (struct switch_stack *) regs - 1; |
| 618 | unsigned long addr, *unat; |
| 619 | |
| 620 | if (regnum >= IA64_FIRST_STACKED_GR) { |
| 621 | get_rse_reg(regs, regnum, val, nat); |
| 622 | return; |
| 623 | } |
| 624 | |
| 625 | /* |
| 626 | * take care of r0 (read-only always evaluate to 0) |
| 627 | */ |
| 628 | if (regnum == 0) { |
| 629 | *val = 0; |
| 630 | if (nat) |
| 631 | *nat = 0; |
| 632 | return; |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * Now look at registers in [0-31] range and init correct UNAT |
| 637 | */ |
| 638 | if (GR_IN_SW(regnum)) { |
| 639 | addr = (unsigned long)sw; |
| 640 | unat = &sw->ar_unat; |
| 641 | } else { |
| 642 | addr = (unsigned long)regs; |
| 643 | unat = &sw->caller_unat; |
| 644 | } |
| 645 | |
| 646 | DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum)); |
| 647 | |
| 648 | addr += GR_OFFS(regnum); |
| 649 | |
| 650 | *val = *(unsigned long *)addr; |
| 651 | |
| 652 | /* |
| 653 | * do it only when requested |
| 654 | */ |
| 655 | if (nat) |
| 656 | *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL; |
| 657 | } |
| 658 | |
| 659 | static void |
| 660 | emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa) |
| 661 | { |
| 662 | /* |
| 663 | * IMPORTANT: |
| 664 | * Given the way we handle unaligned speculative loads, we should |
| 665 | * not get to this point in the code but we keep this sanity check, |
| 666 | * just in case. |
| 667 | */ |
| 668 | if (ld.x6_op == 1 || ld.x6_op == 3) { |
| 669 | printk(KERN_ERR "%s: register update on speculative load, error\n", __FUNCTION__); |
| 670 | die_if_kernel("unaligned reference on speculative load with register update\n", |
| 671 | regs, 30); |
| 672 | } |
| 673 | |
| 674 | |
| 675 | /* |
| 676 | * at this point, we know that the base register to update is valid i.e., |
| 677 | * it's not r0 |
| 678 | */ |
| 679 | if (type == UPD_IMMEDIATE) { |
| 680 | unsigned long imm; |
| 681 | |
| 682 | /* |
| 683 | * Load +Imm: ldXZ r1=[r3],imm(9) |
| 684 | * |
| 685 | * |
| 686 | * form imm9: [13:19] contain the first 7 bits |
| 687 | */ |
| 688 | imm = ld.x << 7 | ld.imm; |
| 689 | |
| 690 | /* |
| 691 | * sign extend (1+8bits) if m set |
| 692 | */ |
| 693 | if (ld.m) imm |= SIGN_EXT9; |
| 694 | |
| 695 | /* |
| 696 | * ifa == r3 and we know that the NaT bit on r3 was clear so |
| 697 | * we can directly use ifa. |
| 698 | */ |
| 699 | ifa += imm; |
| 700 | |
| 701 | setreg(ld.r3, ifa, 0, regs); |
| 702 | |
| 703 | DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa); |
| 704 | |
| 705 | } else if (ld.m) { |
| 706 | unsigned long r2; |
| 707 | int nat_r2; |
| 708 | |
| 709 | /* |
| 710 | * Load +Reg Opcode: ldXZ r1=[r3],r2 |
| 711 | * |
| 712 | * Note: that we update r3 even in the case of ldfX.a |
| 713 | * (where the load does not happen) |
| 714 | * |
| 715 | * The way the load algorithm works, we know that r3 does not |
| 716 | * have its NaT bit set (would have gotten NaT consumption |
| 717 | * before getting the unaligned fault). So we can use ifa |
| 718 | * which equals r3 at this point. |
| 719 | * |
| 720 | * IMPORTANT: |
| 721 | * The above statement holds ONLY because we know that we |
| 722 | * never reach this code when trying to do a ldX.s. |
| 723 | * If we ever make it to here on an ldfX.s then |
| 724 | */ |
| 725 | getreg(ld.imm, &r2, &nat_r2, regs); |
| 726 | |
| 727 | ifa += r2; |
| 728 | |
| 729 | /* |
| 730 | * propagate Nat r2 -> r3 |
| 731 | */ |
| 732 | setreg(ld.r3, ifa, nat_r2, regs); |
| 733 | |
| 734 | DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2); |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | |
| 739 | static int |
| 740 | emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) |
| 741 | { |
| 742 | unsigned int len = 1 << ld.x6_sz; |
| 743 | unsigned long val = 0; |
| 744 | |
| 745 | /* |
| 746 | * r0, as target, doesn't need to be checked because Illegal Instruction |
| 747 | * faults have higher priority than unaligned faults. |
| 748 | * |
| 749 | * r0 cannot be found as the base as it would never generate an |
| 750 | * unaligned reference. |
| 751 | */ |
| 752 | |
| 753 | /* |
| 754 | * ldX.a we will emulate load and also invalidate the ALAT entry. |
| 755 | * See comment below for explanation on how we handle ldX.a |
| 756 | */ |
| 757 | |
| 758 | if (len != 2 && len != 4 && len != 8) { |
| 759 | DPRINT("unknown size: x6=%d\n", ld.x6_sz); |
| 760 | return -1; |
| 761 | } |
| 762 | /* this assumes little-endian byte-order: */ |
| 763 | if (copy_from_user(&val, (void __user *) ifa, len)) |
| 764 | return -1; |
| 765 | setreg(ld.r1, val, 0, regs); |
| 766 | |
| 767 | /* |
| 768 | * check for updates on any kind of loads |
| 769 | */ |
| 770 | if (ld.op == 0x5 || ld.m) |
| 771 | emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); |
| 772 | |
| 773 | /* |
| 774 | * handling of various loads (based on EAS2.4): |
| 775 | * |
| 776 | * ldX.acq (ordered load): |
| 777 | * - acquire semantics would have been used, so force fence instead. |
| 778 | * |
| 779 | * ldX.c.clr (check load and clear): |
| 780 | * - if we get to this handler, it's because the entry was not in the ALAT. |
| 781 | * Therefore the operation reverts to a normal load |
| 782 | * |
| 783 | * ldX.c.nc (check load no clear): |
| 784 | * - same as previous one |
| 785 | * |
| 786 | * ldX.c.clr.acq (ordered check load and clear): |
| 787 | * - same as above for c.clr part. The load needs to have acquire semantics. So |
| 788 | * we use the fence semantics which is stronger and thus ensures correctness. |
| 789 | * |
| 790 | * ldX.a (advanced load): |
| 791 | * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the |
| 792 | * address doesn't match requested size alignment. This means that we would |
| 793 | * possibly need more than one load to get the result. |
| 794 | * |
| 795 | * The load part can be handled just like a normal load, however the difficult |
| 796 | * part is to get the right thing into the ALAT. The critical piece of information |
| 797 | * in the base address of the load & size. To do that, a ld.a must be executed, |
| 798 | * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now |
| 799 | * if we use the same target register, we will be okay for the check.a instruction. |
| 800 | * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry |
| 801 | * which would overlap within [r3,r3+X] (the size of the load was store in the |
| 802 | * ALAT). If such an entry is found the entry is invalidated. But this is not good |
| 803 | * enough, take the following example: |
| 804 | * r3=3 |
| 805 | * ld4.a r1=[r3] |
| 806 | * |
| 807 | * Could be emulated by doing: |
| 808 | * ld1.a r1=[r3],1 |
| 809 | * store to temporary; |
| 810 | * ld1.a r1=[r3],1 |
| 811 | * store & shift to temporary; |
| 812 | * ld1.a r1=[r3],1 |
| 813 | * store & shift to temporary; |
| 814 | * ld1.a r1=[r3] |
| 815 | * store & shift to temporary; |
| 816 | * r1=temporary |
| 817 | * |
| 818 | * So in this case, you would get the right value is r1 but the wrong info in |
| 819 | * the ALAT. Notice that you could do it in reverse to finish with address 3 |
| 820 | * but you would still get the size wrong. To get the size right, one needs to |
| 821 | * execute exactly the same kind of load. You could do it from a aligned |
| 822 | * temporary location, but you would get the address wrong. |
| 823 | * |
| 824 | * So no matter what, it is not possible to emulate an advanced load |
| 825 | * correctly. But is that really critical ? |
| 826 | * |
| 827 | * We will always convert ld.a into a normal load with ALAT invalidated. This |
| 828 | * will enable compiler to do optimization where certain code path after ld.a |
| 829 | * is not required to have ld.c/chk.a, e.g., code path with no intervening stores. |
| 830 | * |
| 831 | * If there is a store after the advanced load, one must either do a ld.c.* or |
| 832 | * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no |
| 833 | * entry found in ALAT), and that's perfectly ok because: |
| 834 | * |
| 835 | * - ld.c.*, if the entry is not present a normal load is executed |
| 836 | * - chk.a.*, if the entry is not present, execution jumps to recovery code |
| 837 | * |
| 838 | * In either case, the load can be potentially retried in another form. |
| 839 | * |
| 840 | * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick |
| 841 | * up a stale entry later). The register base update MUST also be performed. |
| 842 | */ |
| 843 | |
| 844 | /* |
| 845 | * when the load has the .acq completer then |
| 846 | * use ordering fence. |
| 847 | */ |
| 848 | if (ld.x6_op == 0x5 || ld.x6_op == 0xa) |
| 849 | mb(); |
| 850 | |
| 851 | /* |
| 852 | * invalidate ALAT entry in case of advanced load |
| 853 | */ |
| 854 | if (ld.x6_op == 0x2) |
| 855 | invala_gr(ld.r1); |
| 856 | |
| 857 | return 0; |
| 858 | } |
| 859 | |
| 860 | static int |
| 861 | emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) |
| 862 | { |
| 863 | unsigned long r2; |
| 864 | unsigned int len = 1 << ld.x6_sz; |
| 865 | |
| 866 | /* |
| 867 | * if we get to this handler, Nat bits on both r3 and r2 have already |
| 868 | * been checked. so we don't need to do it |
| 869 | * |
| 870 | * extract the value to be stored |
| 871 | */ |
| 872 | getreg(ld.imm, &r2, NULL, regs); |
| 873 | |
| 874 | /* |
| 875 | * we rely on the macros in unaligned.h for now i.e., |
| 876 | * we let the compiler figure out how to read memory gracefully. |
| 877 | * |
| 878 | * We need this switch/case because the way the inline function |
| 879 | * works. The code is optimized by the compiler and looks like |
| 880 | * a single switch/case. |
| 881 | */ |
| 882 | DPRINT("st%d [%lx]=%lx\n", len, ifa, r2); |
| 883 | |
| 884 | if (len != 2 && len != 4 && len != 8) { |
| 885 | DPRINT("unknown size: x6=%d\n", ld.x6_sz); |
| 886 | return -1; |
| 887 | } |
| 888 | |
| 889 | /* this assumes little-endian byte-order: */ |
| 890 | if (copy_to_user((void __user *) ifa, &r2, len)) |
| 891 | return -1; |
| 892 | |
| 893 | /* |
| 894 | * stX [r3]=r2,imm(9) |
| 895 | * |
| 896 | * NOTE: |
| 897 | * ld.r3 can never be r0, because r0 would not generate an |
| 898 | * unaligned access. |
| 899 | */ |
| 900 | if (ld.op == 0x5) { |
| 901 | unsigned long imm; |
| 902 | |
| 903 | /* |
| 904 | * form imm9: [12:6] contain first 7bits |
| 905 | */ |
| 906 | imm = ld.x << 7 | ld.r1; |
| 907 | /* |
| 908 | * sign extend (8bits) if m set |
| 909 | */ |
| 910 | if (ld.m) imm |= SIGN_EXT9; |
| 911 | /* |
| 912 | * ifa == r3 (NaT is necessarily cleared) |
| 913 | */ |
| 914 | ifa += imm; |
| 915 | |
| 916 | DPRINT("imm=%lx r3=%lx\n", imm, ifa); |
| 917 | |
| 918 | setreg(ld.r3, ifa, 0, regs); |
| 919 | } |
| 920 | /* |
| 921 | * we don't have alat_invalidate_multiple() so we need |
| 922 | * to do the complete flush :-<< |
| 923 | */ |
| 924 | ia64_invala(); |
| 925 | |
| 926 | /* |
| 927 | * stX.rel: use fence instead of release |
| 928 | */ |
| 929 | if (ld.x6_op == 0xd) |
| 930 | mb(); |
| 931 | |
| 932 | return 0; |
| 933 | } |
| 934 | |
| 935 | /* |
| 936 | * floating point operations sizes in bytes |
| 937 | */ |
| 938 | static const unsigned char float_fsz[4]={ |
| 939 | 10, /* extended precision (e) */ |
| 940 | 8, /* integer (8) */ |
| 941 | 4, /* single precision (s) */ |
| 942 | 8 /* double precision (d) */ |
| 943 | }; |
| 944 | |
| 945 | static inline void |
| 946 | mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| 947 | { |
| 948 | ia64_ldfe(6, init); |
| 949 | ia64_stop(); |
| 950 | ia64_stf_spill(final, 6); |
| 951 | } |
| 952 | |
| 953 | static inline void |
| 954 | mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| 955 | { |
| 956 | ia64_ldf8(6, init); |
| 957 | ia64_stop(); |
| 958 | ia64_stf_spill(final, 6); |
| 959 | } |
| 960 | |
| 961 | static inline void |
| 962 | mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| 963 | { |
| 964 | ia64_ldfs(6, init); |
| 965 | ia64_stop(); |
| 966 | ia64_stf_spill(final, 6); |
| 967 | } |
| 968 | |
| 969 | static inline void |
| 970 | mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| 971 | { |
| 972 | ia64_ldfd(6, init); |
| 973 | ia64_stop(); |
| 974 | ia64_stf_spill(final, 6); |
| 975 | } |
| 976 | |
| 977 | static inline void |
| 978 | float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| 979 | { |
| 980 | ia64_ldf_fill(6, init); |
| 981 | ia64_stop(); |
| 982 | ia64_stfe(final, 6); |
| 983 | } |
| 984 | |
| 985 | static inline void |
| 986 | float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| 987 | { |
| 988 | ia64_ldf_fill(6, init); |
| 989 | ia64_stop(); |
| 990 | ia64_stf8(final, 6); |
| 991 | } |
| 992 | |
| 993 | static inline void |
| 994 | float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| 995 | { |
| 996 | ia64_ldf_fill(6, init); |
| 997 | ia64_stop(); |
| 998 | ia64_stfs(final, 6); |
| 999 | } |
| 1000 | |
| 1001 | static inline void |
| 1002 | float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final) |
| 1003 | { |
| 1004 | ia64_ldf_fill(6, init); |
| 1005 | ia64_stop(); |
| 1006 | ia64_stfd(final, 6); |
| 1007 | } |
| 1008 | |
| 1009 | static int |
| 1010 | emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs) |
| 1011 | { |
| 1012 | struct ia64_fpreg fpr_init[2]; |
| 1013 | struct ia64_fpreg fpr_final[2]; |
| 1014 | unsigned long len = float_fsz[ld.x6_sz]; |
| 1015 | |
| 1016 | /* |
| 1017 | * fr0 & fr1 don't need to be checked because Illegal Instruction faults have |
| 1018 | * higher priority than unaligned faults. |
| 1019 | * |
| 1020 | * r0 cannot be found as the base as it would never generate an unaligned |
| 1021 | * reference. |
| 1022 | */ |
| 1023 | |
| 1024 | /* |
| 1025 | * make sure we get clean buffers |
| 1026 | */ |
| 1027 | memset(&fpr_init, 0, sizeof(fpr_init)); |
| 1028 | memset(&fpr_final, 0, sizeof(fpr_final)); |
| 1029 | |
| 1030 | /* |
| 1031 | * ldfpX.a: we don't try to emulate anything but we must |
| 1032 | * invalidate the ALAT entry and execute updates, if any. |
| 1033 | */ |
| 1034 | if (ld.x6_op != 0x2) { |
| 1035 | /* |
| 1036 | * This assumes little-endian byte-order. Note that there is no "ldfpe" |
| 1037 | * instruction: |
| 1038 | */ |
| 1039 | if (copy_from_user(&fpr_init[0], (void __user *) ifa, len) |
| 1040 | || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len)) |
| 1041 | return -1; |
| 1042 | |
| 1043 | DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz); |
| 1044 | DDUMP("frp_init =", &fpr_init, 2*len); |
| 1045 | /* |
| 1046 | * XXX fixme |
| 1047 | * Could optimize inlines by using ldfpX & 2 spills |
| 1048 | */ |
| 1049 | switch( ld.x6_sz ) { |
| 1050 | case 0: |
| 1051 | mem2float_extended(&fpr_init[0], &fpr_final[0]); |
| 1052 | mem2float_extended(&fpr_init[1], &fpr_final[1]); |
| 1053 | break; |
| 1054 | case 1: |
| 1055 | mem2float_integer(&fpr_init[0], &fpr_final[0]); |
| 1056 | mem2float_integer(&fpr_init[1], &fpr_final[1]); |
| 1057 | break; |
| 1058 | case 2: |
| 1059 | mem2float_single(&fpr_init[0], &fpr_final[0]); |
| 1060 | mem2float_single(&fpr_init[1], &fpr_final[1]); |
| 1061 | break; |
| 1062 | case 3: |
| 1063 | mem2float_double(&fpr_init[0], &fpr_final[0]); |
| 1064 | mem2float_double(&fpr_init[1], &fpr_final[1]); |
| 1065 | break; |
| 1066 | } |
| 1067 | DDUMP("fpr_final =", &fpr_final, 2*len); |
| 1068 | /* |
| 1069 | * XXX fixme |
| 1070 | * |
| 1071 | * A possible optimization would be to drop fpr_final and directly |
| 1072 | * use the storage from the saved context i.e., the actual final |
| 1073 | * destination (pt_regs, switch_stack or thread structure). |
| 1074 | */ |
| 1075 | setfpreg(ld.r1, &fpr_final[0], regs); |
| 1076 | setfpreg(ld.imm, &fpr_final[1], regs); |
| 1077 | } |
| 1078 | |
| 1079 | /* |
| 1080 | * Check for updates: only immediate updates are available for this |
| 1081 | * instruction. |
| 1082 | */ |
| 1083 | if (ld.m) { |
| 1084 | /* |
| 1085 | * the immediate is implicit given the ldsz of the operation: |
| 1086 | * single: 8 (2x4) and for all others it's 16 (2x8) |
| 1087 | */ |
| 1088 | ifa += len<<1; |
| 1089 | |
| 1090 | /* |
| 1091 | * IMPORTANT: |
| 1092 | * the fact that we force the NaT of r3 to zero is ONLY valid |
| 1093 | * as long as we don't come here with a ldfpX.s. |
| 1094 | * For this reason we keep this sanity check |
| 1095 | */ |
| 1096 | if (ld.x6_op == 1 || ld.x6_op == 3) |
| 1097 | printk(KERN_ERR "%s: register update on speculative load pair, error\n", |
| 1098 | __FUNCTION__); |
| 1099 | |
| 1100 | setreg(ld.r3, ifa, 0, regs); |
| 1101 | } |
| 1102 | |
| 1103 | /* |
| 1104 | * Invalidate ALAT entries, if any, for both registers. |
| 1105 | */ |
| 1106 | if (ld.x6_op == 0x2) { |
| 1107 | invala_fr(ld.r1); |
| 1108 | invala_fr(ld.imm); |
| 1109 | } |
| 1110 | return 0; |
| 1111 | } |
| 1112 | |
| 1113 | |
| 1114 | static int |
| 1115 | emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) |
| 1116 | { |
| 1117 | struct ia64_fpreg fpr_init; |
| 1118 | struct ia64_fpreg fpr_final; |
| 1119 | unsigned long len = float_fsz[ld.x6_sz]; |
| 1120 | |
| 1121 | /* |
| 1122 | * fr0 & fr1 don't need to be checked because Illegal Instruction |
| 1123 | * faults have higher priority than unaligned faults. |
| 1124 | * |
| 1125 | * r0 cannot be found as the base as it would never generate an |
| 1126 | * unaligned reference. |
| 1127 | */ |
| 1128 | |
| 1129 | /* |
| 1130 | * make sure we get clean buffers |
| 1131 | */ |
| 1132 | memset(&fpr_init,0, sizeof(fpr_init)); |
| 1133 | memset(&fpr_final,0, sizeof(fpr_final)); |
| 1134 | |
| 1135 | /* |
| 1136 | * ldfX.a we don't try to emulate anything but we must |
| 1137 | * invalidate the ALAT entry. |
| 1138 | * See comments in ldX for descriptions on how the various loads are handled. |
| 1139 | */ |
| 1140 | if (ld.x6_op != 0x2) { |
| 1141 | if (copy_from_user(&fpr_init, (void __user *) ifa, len)) |
| 1142 | return -1; |
| 1143 | |
| 1144 | DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); |
| 1145 | DDUMP("fpr_init =", &fpr_init, len); |
| 1146 | /* |
| 1147 | * we only do something for x6_op={0,8,9} |
| 1148 | */ |
| 1149 | switch( ld.x6_sz ) { |
| 1150 | case 0: |
| 1151 | mem2float_extended(&fpr_init, &fpr_final); |
| 1152 | break; |
| 1153 | case 1: |
| 1154 | mem2float_integer(&fpr_init, &fpr_final); |
| 1155 | break; |
| 1156 | case 2: |
| 1157 | mem2float_single(&fpr_init, &fpr_final); |
| 1158 | break; |
| 1159 | case 3: |
| 1160 | mem2float_double(&fpr_init, &fpr_final); |
| 1161 | break; |
| 1162 | } |
| 1163 | DDUMP("fpr_final =", &fpr_final, len); |
| 1164 | /* |
| 1165 | * XXX fixme |
| 1166 | * |
| 1167 | * A possible optimization would be to drop fpr_final and directly |
| 1168 | * use the storage from the saved context i.e., the actual final |
| 1169 | * destination (pt_regs, switch_stack or thread structure). |
| 1170 | */ |
| 1171 | setfpreg(ld.r1, &fpr_final, regs); |
| 1172 | } |
| 1173 | |
| 1174 | /* |
| 1175 | * check for updates on any loads |
| 1176 | */ |
| 1177 | if (ld.op == 0x7 || ld.m) |
| 1178 | emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); |
| 1179 | |
| 1180 | /* |
| 1181 | * invalidate ALAT entry in case of advanced floating point loads |
| 1182 | */ |
| 1183 | if (ld.x6_op == 0x2) |
| 1184 | invala_fr(ld.r1); |
| 1185 | |
| 1186 | return 0; |
| 1187 | } |
| 1188 | |
| 1189 | |
| 1190 | static int |
| 1191 | emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) |
| 1192 | { |
| 1193 | struct ia64_fpreg fpr_init; |
| 1194 | struct ia64_fpreg fpr_final; |
| 1195 | unsigned long len = float_fsz[ld.x6_sz]; |
| 1196 | |
| 1197 | /* |
| 1198 | * make sure we get clean buffers |
| 1199 | */ |
| 1200 | memset(&fpr_init,0, sizeof(fpr_init)); |
| 1201 | memset(&fpr_final,0, sizeof(fpr_final)); |
| 1202 | |
| 1203 | /* |
| 1204 | * if we get to this handler, Nat bits on both r3 and r2 have already |
| 1205 | * been checked. so we don't need to do it |
| 1206 | * |
| 1207 | * extract the value to be stored |
| 1208 | */ |
| 1209 | getfpreg(ld.imm, &fpr_init, regs); |
| 1210 | /* |
| 1211 | * during this step, we extract the spilled registers from the saved |
| 1212 | * context i.e., we refill. Then we store (no spill) to temporary |
| 1213 | * aligned location |
| 1214 | */ |
| 1215 | switch( ld.x6_sz ) { |
| 1216 | case 0: |
| 1217 | float2mem_extended(&fpr_init, &fpr_final); |
| 1218 | break; |
| 1219 | case 1: |
| 1220 | float2mem_integer(&fpr_init, &fpr_final); |
| 1221 | break; |
| 1222 | case 2: |
| 1223 | float2mem_single(&fpr_init, &fpr_final); |
| 1224 | break; |
| 1225 | case 3: |
| 1226 | float2mem_double(&fpr_init, &fpr_final); |
| 1227 | break; |
| 1228 | } |
| 1229 | DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); |
| 1230 | DDUMP("fpr_init =", &fpr_init, len); |
| 1231 | DDUMP("fpr_final =", &fpr_final, len); |
| 1232 | |
| 1233 | if (copy_to_user((void __user *) ifa, &fpr_final, len)) |
| 1234 | return -1; |
| 1235 | |
| 1236 | /* |
| 1237 | * stfX [r3]=r2,imm(9) |
| 1238 | * |
| 1239 | * NOTE: |
| 1240 | * ld.r3 can never be r0, because r0 would not generate an |
| 1241 | * unaligned access. |
| 1242 | */ |
| 1243 | if (ld.op == 0x7) { |
| 1244 | unsigned long imm; |
| 1245 | |
| 1246 | /* |
| 1247 | * form imm9: [12:6] contain first 7bits |
| 1248 | */ |
| 1249 | imm = ld.x << 7 | ld.r1; |
| 1250 | /* |
| 1251 | * sign extend (8bits) if m set |
| 1252 | */ |
| 1253 | if (ld.m) |
| 1254 | imm |= SIGN_EXT9; |
| 1255 | /* |
| 1256 | * ifa == r3 (NaT is necessarily cleared) |
| 1257 | */ |
| 1258 | ifa += imm; |
| 1259 | |
| 1260 | DPRINT("imm=%lx r3=%lx\n", imm, ifa); |
| 1261 | |
| 1262 | setreg(ld.r3, ifa, 0, regs); |
| 1263 | } |
| 1264 | /* |
| 1265 | * we don't have alat_invalidate_multiple() so we need |
| 1266 | * to do the complete flush :-<< |
| 1267 | */ |
| 1268 | ia64_invala(); |
| 1269 | |
| 1270 | return 0; |
| 1271 | } |
| 1272 | |
| 1273 | /* |
| 1274 | * Make sure we log the unaligned access, so that user/sysadmin can notice it and |
| 1275 | * eventually fix the program. However, we don't want to do that for every access so we |
| 1276 | * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be |
| 1277 | * either... |
| 1278 | */ |
| 1279 | static int |
| 1280 | within_logging_rate_limit (void) |
| 1281 | { |
| 1282 | static unsigned long count, last_time; |
| 1283 | |
| 1284 | if (jiffies - last_time > 5*HZ) |
| 1285 | count = 0; |
Jack Steiner | 79c83bd | 2006-01-24 16:32:11 -0600 | [diff] [blame^] | 1286 | if (count < 5) { |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1287 | last_time = jiffies; |
Jack Steiner | 79c83bd | 2006-01-24 16:32:11 -0600 | [diff] [blame^] | 1288 | count++; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1289 | return 1; |
| 1290 | } |
| 1291 | return 0; |
| 1292 | |
| 1293 | } |
| 1294 | |
| 1295 | void |
| 1296 | ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs) |
| 1297 | { |
| 1298 | struct ia64_psr *ipsr = ia64_psr(regs); |
| 1299 | mm_segment_t old_fs = get_fs(); |
| 1300 | unsigned long bundle[2]; |
| 1301 | unsigned long opcode; |
| 1302 | struct siginfo si; |
| 1303 | const struct exception_table_entry *eh = NULL; |
| 1304 | union { |
| 1305 | unsigned long l; |
| 1306 | load_store_t insn; |
| 1307 | } u; |
| 1308 | int ret = -1; |
| 1309 | |
| 1310 | if (ia64_psr(regs)->be) { |
| 1311 | /* we don't support big-endian accesses */ |
| 1312 | die_if_kernel("big-endian unaligned accesses are not supported", regs, 0); |
| 1313 | goto force_sigbus; |
| 1314 | } |
| 1315 | |
| 1316 | /* |
| 1317 | * Treat kernel accesses for which there is an exception handler entry the same as |
| 1318 | * user-level unaligned accesses. Otherwise, a clever program could trick this |
| 1319 | * handler into reading an arbitrary kernel addresses... |
| 1320 | */ |
| 1321 | if (!user_mode(regs)) |
| 1322 | eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri); |
| 1323 | if (user_mode(regs) || eh) { |
| 1324 | if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0) |
| 1325 | goto force_sigbus; |
| 1326 | |
| 1327 | if (!(current->thread.flags & IA64_THREAD_UAC_NOPRINT) |
| 1328 | && within_logging_rate_limit()) |
| 1329 | { |
| 1330 | char buf[200]; /* comm[] is at most 16 bytes... */ |
| 1331 | size_t len; |
| 1332 | |
| 1333 | len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, " |
| 1334 | "ip=0x%016lx\n\r", current->comm, current->pid, |
| 1335 | ifa, regs->cr_iip + ipsr->ri); |
| 1336 | /* |
| 1337 | * Don't call tty_write_message() if we're in the kernel; we might |
| 1338 | * be holding locks... |
| 1339 | */ |
| 1340 | if (user_mode(regs)) |
| 1341 | tty_write_message(current->signal->tty, buf); |
| 1342 | buf[len-1] = '\0'; /* drop '\r' */ |
| 1343 | printk(KERN_WARNING "%s", buf); /* watch for command names containing %s */ |
| 1344 | } |
| 1345 | } else { |
| 1346 | if (within_logging_rate_limit()) |
| 1347 | printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n", |
| 1348 | ifa, regs->cr_iip + ipsr->ri); |
| 1349 | set_fs(KERNEL_DS); |
| 1350 | } |
| 1351 | |
| 1352 | DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n", |
| 1353 | regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it); |
| 1354 | |
| 1355 | if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16)) |
| 1356 | goto failure; |
| 1357 | |
| 1358 | /* |
| 1359 | * extract the instruction from the bundle given the slot number |
| 1360 | */ |
| 1361 | switch (ipsr->ri) { |
| 1362 | case 0: u.l = (bundle[0] >> 5); break; |
| 1363 | case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break; |
| 1364 | case 2: u.l = (bundle[1] >> 23); break; |
| 1365 | } |
| 1366 | opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK; |
| 1367 | |
| 1368 | DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d " |
| 1369 | "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm, |
| 1370 | u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op); |
| 1371 | |
| 1372 | /* |
| 1373 | * IMPORTANT: |
| 1374 | * Notice that the switch statement DOES not cover all possible instructions |
| 1375 | * that DO generate unaligned references. This is made on purpose because for some |
| 1376 | * instructions it DOES NOT make sense to try and emulate the access. Sometimes it |
| 1377 | * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e., |
| 1378 | * the program will get a signal and die: |
| 1379 | * |
| 1380 | * load/store: |
| 1381 | * - ldX.spill |
| 1382 | * - stX.spill |
| 1383 | * Reason: RNATs are based on addresses |
| 1384 | * - ld16 |
| 1385 | * - st16 |
| 1386 | * Reason: ld16 and st16 are supposed to occur in a single |
| 1387 | * memory op |
| 1388 | * |
| 1389 | * synchronization: |
| 1390 | * - cmpxchg |
| 1391 | * - fetchadd |
| 1392 | * - xchg |
| 1393 | * Reason: ATOMIC operations cannot be emulated properly using multiple |
| 1394 | * instructions. |
| 1395 | * |
| 1396 | * speculative loads: |
| 1397 | * - ldX.sZ |
| 1398 | * Reason: side effects, code must be ready to deal with failure so simpler |
| 1399 | * to let the load fail. |
| 1400 | * --------------------------------------------------------------------------------- |
| 1401 | * XXX fixme |
| 1402 | * |
| 1403 | * I would like to get rid of this switch case and do something |
| 1404 | * more elegant. |
| 1405 | */ |
| 1406 | switch (opcode) { |
| 1407 | case LDS_OP: |
| 1408 | case LDSA_OP: |
| 1409 | if (u.insn.x) |
| 1410 | /* oops, really a semaphore op (cmpxchg, etc) */ |
| 1411 | goto failure; |
| 1412 | /* no break */ |
| 1413 | case LDS_IMM_OP: |
| 1414 | case LDSA_IMM_OP: |
| 1415 | case LDFS_OP: |
| 1416 | case LDFSA_OP: |
| 1417 | case LDFS_IMM_OP: |
| 1418 | /* |
| 1419 | * The instruction will be retried with deferred exceptions turned on, and |
| 1420 | * we should get Nat bit installed |
| 1421 | * |
| 1422 | * IMPORTANT: When PSR_ED is set, the register & immediate update forms |
| 1423 | * are actually executed even though the operation failed. So we don't |
| 1424 | * need to take care of this. |
| 1425 | */ |
| 1426 | DPRINT("forcing PSR_ED\n"); |
| 1427 | regs->cr_ipsr |= IA64_PSR_ED; |
| 1428 | goto done; |
| 1429 | |
| 1430 | case LD_OP: |
| 1431 | case LDA_OP: |
| 1432 | case LDBIAS_OP: |
| 1433 | case LDACQ_OP: |
| 1434 | case LDCCLR_OP: |
| 1435 | case LDCNC_OP: |
| 1436 | case LDCCLRACQ_OP: |
| 1437 | if (u.insn.x) |
| 1438 | /* oops, really a semaphore op (cmpxchg, etc) */ |
| 1439 | goto failure; |
| 1440 | /* no break */ |
| 1441 | case LD_IMM_OP: |
| 1442 | case LDA_IMM_OP: |
| 1443 | case LDBIAS_IMM_OP: |
| 1444 | case LDACQ_IMM_OP: |
| 1445 | case LDCCLR_IMM_OP: |
| 1446 | case LDCNC_IMM_OP: |
| 1447 | case LDCCLRACQ_IMM_OP: |
| 1448 | ret = emulate_load_int(ifa, u.insn, regs); |
| 1449 | break; |
| 1450 | |
| 1451 | case ST_OP: |
| 1452 | case STREL_OP: |
| 1453 | if (u.insn.x) |
| 1454 | /* oops, really a semaphore op (cmpxchg, etc) */ |
| 1455 | goto failure; |
| 1456 | /* no break */ |
| 1457 | case ST_IMM_OP: |
| 1458 | case STREL_IMM_OP: |
| 1459 | ret = emulate_store_int(ifa, u.insn, regs); |
| 1460 | break; |
| 1461 | |
| 1462 | case LDF_OP: |
| 1463 | case LDFA_OP: |
| 1464 | case LDFCCLR_OP: |
| 1465 | case LDFCNC_OP: |
| 1466 | case LDF_IMM_OP: |
| 1467 | case LDFA_IMM_OP: |
| 1468 | case LDFCCLR_IMM_OP: |
| 1469 | case LDFCNC_IMM_OP: |
| 1470 | if (u.insn.x) |
| 1471 | ret = emulate_load_floatpair(ifa, u.insn, regs); |
| 1472 | else |
| 1473 | ret = emulate_load_float(ifa, u.insn, regs); |
| 1474 | break; |
| 1475 | |
| 1476 | case STF_OP: |
| 1477 | case STF_IMM_OP: |
| 1478 | ret = emulate_store_float(ifa, u.insn, regs); |
| 1479 | break; |
| 1480 | |
| 1481 | default: |
| 1482 | goto failure; |
| 1483 | } |
| 1484 | DPRINT("ret=%d\n", ret); |
| 1485 | if (ret) |
| 1486 | goto failure; |
| 1487 | |
| 1488 | if (ipsr->ri == 2) |
| 1489 | /* |
| 1490 | * given today's architecture this case is not likely to happen because a |
| 1491 | * memory access instruction (M) can never be in the last slot of a |
| 1492 | * bundle. But let's keep it for now. |
| 1493 | */ |
| 1494 | regs->cr_iip += 16; |
| 1495 | ipsr->ri = (ipsr->ri + 1) & 0x3; |
| 1496 | |
| 1497 | DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip); |
| 1498 | done: |
| 1499 | set_fs(old_fs); /* restore original address limit */ |
| 1500 | return; |
| 1501 | |
| 1502 | failure: |
| 1503 | /* something went wrong... */ |
| 1504 | if (!user_mode(regs)) { |
| 1505 | if (eh) { |
| 1506 | ia64_handle_exception(regs, eh); |
| 1507 | goto done; |
| 1508 | } |
| 1509 | die_if_kernel("error during unaligned kernel access\n", regs, ret); |
| 1510 | /* NOT_REACHED */ |
| 1511 | } |
| 1512 | force_sigbus: |
| 1513 | si.si_signo = SIGBUS; |
| 1514 | si.si_errno = 0; |
| 1515 | si.si_code = BUS_ADRALN; |
| 1516 | si.si_addr = (void __user *) ifa; |
| 1517 | si.si_flags = 0; |
| 1518 | si.si_isr = 0; |
| 1519 | si.si_imm = 0; |
| 1520 | force_sig_info(SIGBUS, &si, current); |
| 1521 | goto done; |
| 1522 | } |