Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/arch/ia64/kernel/unaligned.c b/arch/ia64/kernel/unaligned.c
new file mode 100644
index 0000000..43b45b6
--- /dev/null
+++ b/arch/ia64/kernel/unaligned.c
@@ -0,0 +1,1521 @@
+/*
+ * Architecture-specific unaligned trap handling.
+ *
+ * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
+ *	Stephane Eranian <eranian@hpl.hp.com>
+ *	David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * 2002/12/09   Fix rotating register handling (off-by-1 error, missing fr-rotation).  Fix
+ *		get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
+ *		stacked register returns an undefined value; it does NOT trigger a
+ *		"rsvd register fault").
+ * 2001/10/11	Fix unaligned access to rotating registers in s/w pipelined loops.
+ * 2001/08/13	Correct size of extended floats (float_fsz) from 16 to 10 bytes.
+ * 2001/01/17	Add support emulation of unaligned kernel accesses.
+ */
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/smp_lock.h>
+#include <linux/tty.h>
+
+#include <asm/intrinsics.h>
+#include <asm/processor.h>
+#include <asm/rse.h>
+#include <asm/uaccess.h>
+#include <asm/unaligned.h>
+
+extern void die_if_kernel(char *str, struct pt_regs *regs, long err) __attribute__ ((noreturn));
+
+#undef DEBUG_UNALIGNED_TRAP
+
+#ifdef DEBUG_UNALIGNED_TRAP
+# define DPRINT(a...)	do { printk("%s %u: ", __FUNCTION__, __LINE__); printk (a); } while (0)
+# define DDUMP(str,vp,len)	dump(str, vp, len)
+
+static void
+dump (const char *str, void *vp, size_t len)
+{
+	unsigned char *cp = vp;
+	int i;
+
+	printk("%s", str);
+	for (i = 0; i < len; ++i)
+		printk (" %02x", *cp++);
+	printk("\n");
+}
+#else
+# define DPRINT(a...)
+# define DDUMP(str,vp,len)
+#endif
+
+#define IA64_FIRST_STACKED_GR	32
+#define IA64_FIRST_ROTATING_FR	32
+#define SIGN_EXT9		0xffffffffffffff00ul
+
+/*
+ * For M-unit:
+ *
+ *  opcode |   m  |   x6    |
+ * --------|------|---------|
+ * [40-37] | [36] | [35:30] |
+ * --------|------|---------|
+ *     4   |   1  |    6    | = 11 bits
+ * --------------------------
+ * However bits [31:30] are not directly useful to distinguish between
+ * load/store so we can use [35:32] instead, which gives the following
+ * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
+ * checking the m-bit until later in the load/store emulation.
+ */
+#define IA64_OPCODE_MASK	0x1ef
+#define IA64_OPCODE_SHIFT	32
+
+/*
+ * Table C-28 Integer Load/Store
+ *
+ * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
+ *
+ * ld8.fill, st8.fill  MUST be aligned because the RNATs are based on
+ * the address (bits [8:3]), so we must failed.
+ */
+#define LD_OP            0x080
+#define LDS_OP           0x081
+#define LDA_OP           0x082
+#define LDSA_OP          0x083
+#define LDBIAS_OP        0x084
+#define LDACQ_OP         0x085
+/* 0x086, 0x087 are not relevant */
+#define LDCCLR_OP        0x088
+#define LDCNC_OP         0x089
+#define LDCCLRACQ_OP     0x08a
+#define ST_OP            0x08c
+#define STREL_OP         0x08d
+/* 0x08e,0x8f are not relevant */
+
+/*
+ * Table C-29 Integer Load +Reg
+ *
+ * we use the ld->m (bit [36:36]) field to determine whether or not we have
+ * a load/store of this form.
+ */
+
+/*
+ * Table C-30 Integer Load/Store +Imm
+ *
+ * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
+ *
+ * ld8.fill, st8.fill  must be aligned because the Nat register are based on
+ * the address, so we must fail and the program must be fixed.
+ */
+#define LD_IMM_OP            0x0a0
+#define LDS_IMM_OP           0x0a1
+#define LDA_IMM_OP           0x0a2
+#define LDSA_IMM_OP          0x0a3
+#define LDBIAS_IMM_OP        0x0a4
+#define LDACQ_IMM_OP         0x0a5
+/* 0x0a6, 0xa7 are not relevant */
+#define LDCCLR_IMM_OP        0x0a8
+#define LDCNC_IMM_OP         0x0a9
+#define LDCCLRACQ_IMM_OP     0x0aa
+#define ST_IMM_OP            0x0ac
+#define STREL_IMM_OP         0x0ad
+/* 0x0ae,0xaf are not relevant */
+
+/*
+ * Table C-32 Floating-point Load/Store
+ */
+#define LDF_OP           0x0c0
+#define LDFS_OP          0x0c1
+#define LDFA_OP          0x0c2
+#define LDFSA_OP         0x0c3
+/* 0x0c6 is irrelevant */
+#define LDFCCLR_OP       0x0c8
+#define LDFCNC_OP        0x0c9
+/* 0x0cb is irrelevant  */
+#define STF_OP           0x0cc
+
+/*
+ * Table C-33 Floating-point Load +Reg
+ *
+ * we use the ld->m (bit [36:36]) field to determine whether or not we have
+ * a load/store of this form.
+ */
+
+/*
+ * Table C-34 Floating-point Load/Store +Imm
+ */
+#define LDF_IMM_OP       0x0e0
+#define LDFS_IMM_OP      0x0e1
+#define LDFA_IMM_OP      0x0e2
+#define LDFSA_IMM_OP     0x0e3
+/* 0x0e6 is irrelevant */
+#define LDFCCLR_IMM_OP   0x0e8
+#define LDFCNC_IMM_OP    0x0e9
+#define STF_IMM_OP       0x0ec
+
+typedef struct {
+	unsigned long	 qp:6;	/* [0:5]   */
+	unsigned long    r1:7;	/* [6:12]  */
+	unsigned long   imm:7;	/* [13:19] */
+	unsigned long    r3:7;	/* [20:26] */
+	unsigned long     x:1;  /* [27:27] */
+	unsigned long  hint:2;	/* [28:29] */
+	unsigned long x6_sz:2;	/* [30:31] */
+	unsigned long x6_op:4;	/* [32:35], x6 = x6_sz|x6_op */
+	unsigned long     m:1;	/* [36:36] */
+	unsigned long    op:4;	/* [37:40] */
+	unsigned long   pad:23; /* [41:63] */
+} load_store_t;
+
+
+typedef enum {
+	UPD_IMMEDIATE,	/* ldXZ r1=[r3],imm(9) */
+	UPD_REG		/* ldXZ r1=[r3],r2     */
+} update_t;
+
+/*
+ * We use tables to keep track of the offsets of registers in the saved state.
+ * This way we save having big switch/case statements.
+ *
+ * We use bit 0 to indicate switch_stack or pt_regs.
+ * The offset is simply shifted by 1 bit.
+ * A 2-byte value should be enough to hold any kind of offset
+ *
+ * In case the calling convention changes (and thus pt_regs/switch_stack)
+ * simply use RSW instead of RPT or vice-versa.
+ */
+
+#define RPO(x)	((size_t) &((struct pt_regs *)0)->x)
+#define RSO(x)	((size_t) &((struct switch_stack *)0)->x)
+
+#define RPT(x)		(RPO(x) << 1)
+#define RSW(x)		(1| RSO(x)<<1)
+
+#define GR_OFFS(x)	(gr_info[x]>>1)
+#define GR_IN_SW(x)	(gr_info[x] & 0x1)
+
+#define FR_OFFS(x)	(fr_info[x]>>1)
+#define FR_IN_SW(x)	(fr_info[x] & 0x1)
+
+static u16 gr_info[32]={
+	0,			/* r0 is read-only : WE SHOULD NEVER GET THIS */
+
+	RPT(r1), RPT(r2), RPT(r3),
+
+	RSW(r4), RSW(r5), RSW(r6), RSW(r7),
+
+	RPT(r8), RPT(r9), RPT(r10), RPT(r11),
+	RPT(r12), RPT(r13), RPT(r14), RPT(r15),
+
+	RPT(r16), RPT(r17), RPT(r18), RPT(r19),
+	RPT(r20), RPT(r21), RPT(r22), RPT(r23),
+	RPT(r24), RPT(r25), RPT(r26), RPT(r27),
+	RPT(r28), RPT(r29), RPT(r30), RPT(r31)
+};
+
+static u16 fr_info[32]={
+	0,			/* constant : WE SHOULD NEVER GET THIS */
+	0,			/* constant : WE SHOULD NEVER GET THIS */
+
+	RSW(f2), RSW(f3), RSW(f4), RSW(f5),
+
+	RPT(f6), RPT(f7), RPT(f8), RPT(f9),
+	RPT(f10), RPT(f11),
+
+	RSW(f12), RSW(f13), RSW(f14),
+	RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
+	RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
+	RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
+	RSW(f30), RSW(f31)
+};
+
+/* Invalidate ALAT entry for integer register REGNO.  */
+static void
+invala_gr (int regno)
+{
+#	define F(reg)	case reg: ia64_invala_gr(reg); break
+
+	switch (regno) {
+		F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
+		F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
+		F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
+		F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
+		F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
+		F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
+		F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
+		F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
+		F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
+		F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
+		F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
+		F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
+		F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
+		F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
+		F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
+		F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
+	}
+#	undef F
+}
+
+/* Invalidate ALAT entry for floating-point register REGNO.  */
+static void
+invala_fr (int regno)
+{
+#	define F(reg)	case reg: ia64_invala_fr(reg); break
+
+	switch (regno) {
+		F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
+		F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
+		F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
+		F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
+		F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
+		F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
+		F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
+		F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
+		F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
+		F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
+		F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
+		F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
+		F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
+		F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
+		F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
+		F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
+	}
+#	undef F
+}
+
+static inline unsigned long
+rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
+{
+	reg += rrb;
+	if (reg >= sor)
+		reg -= sor;
+	return reg;
+}
+
+static void
+set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
+{
+	struct switch_stack *sw = (struct switch_stack *) regs - 1;
+	unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
+	unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
+	unsigned long rnats, nat_mask;
+	unsigned long on_kbs;
+	long sof = (regs->cr_ifs) & 0x7f;
+	long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
+	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
+	long ridx = r1 - 32;
+
+	if (ridx >= sof) {
+		/* this should never happen, as the "rsvd register fault" has higher priority */
+		DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
+		return;
+	}
+
+	if (ridx < sor)
+		ridx = rotate_reg(sor, rrb_gr, ridx);
+
+	DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
+	       r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
+
+	on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
+	addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
+	if (addr >= kbs) {
+		/* the register is on the kernel backing store: easy... */
+		rnat_addr = ia64_rse_rnat_addr(addr);
+		if ((unsigned long) rnat_addr >= sw->ar_bspstore)
+			rnat_addr = &sw->ar_rnat;
+		nat_mask = 1UL << ia64_rse_slot_num(addr);
+
+		*addr = val;
+		if (nat)
+			*rnat_addr |=  nat_mask;
+		else
+			*rnat_addr &= ~nat_mask;
+		return;
+	}
+
+	if (!user_stack(current, regs)) {
+		DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
+		return;
+	}
+
+	bspstore = (unsigned long *)regs->ar_bspstore;
+	ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
+	bsp     = ia64_rse_skip_regs(ubs_end, -sof);
+	addr    = ia64_rse_skip_regs(bsp, ridx);
+
+	DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
+
+	ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
+
+	rnat_addr = ia64_rse_rnat_addr(addr);
+
+	ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
+	DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
+	       (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
+
+	nat_mask = 1UL << ia64_rse_slot_num(addr);
+	if (nat)
+		rnats |=  nat_mask;
+	else
+		rnats &= ~nat_mask;
+	ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
+
+	DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
+}
+
+
+static void
+get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
+{
+	struct switch_stack *sw = (struct switch_stack *) regs - 1;
+	unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
+	unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
+	unsigned long rnats, nat_mask;
+	unsigned long on_kbs;
+	long sof = (regs->cr_ifs) & 0x7f;
+	long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
+	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
+	long ridx = r1 - 32;
+
+	if (ridx >= sof) {
+		/* read of out-of-frame register returns an undefined value; 0 in our case.  */
+		DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
+		goto fail;
+	}
+
+	if (ridx < sor)
+		ridx = rotate_reg(sor, rrb_gr, ridx);
+
+	DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
+	       r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
+
+	on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
+	addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
+	if (addr >= kbs) {
+		/* the register is on the kernel backing store: easy... */
+		*val = *addr;
+		if (nat) {
+			rnat_addr = ia64_rse_rnat_addr(addr);
+			if ((unsigned long) rnat_addr >= sw->ar_bspstore)
+				rnat_addr = &sw->ar_rnat;
+			nat_mask = 1UL << ia64_rse_slot_num(addr);
+			*nat = (*rnat_addr & nat_mask) != 0;
+		}
+		return;
+	}
+
+	if (!user_stack(current, regs)) {
+		DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
+		goto fail;
+	}
+
+	bspstore = (unsigned long *)regs->ar_bspstore;
+	ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
+	bsp     = ia64_rse_skip_regs(ubs_end, -sof);
+	addr    = ia64_rse_skip_regs(bsp, ridx);
+
+	DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
+
+	ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
+
+	if (nat) {
+		rnat_addr = ia64_rse_rnat_addr(addr);
+		nat_mask = 1UL << ia64_rse_slot_num(addr);
+
+		DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
+
+		ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
+		*nat = (rnats & nat_mask) != 0;
+	}
+	return;
+
+  fail:
+	*val = 0;
+	if (nat)
+		*nat = 0;
+	return;
+}
+
+
+static void
+setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
+{
+	struct switch_stack *sw = (struct switch_stack *) regs - 1;
+	unsigned long addr;
+	unsigned long bitmask;
+	unsigned long *unat;
+
+	/*
+	 * First takes care of stacked registers
+	 */
+	if (regnum >= IA64_FIRST_STACKED_GR) {
+		set_rse_reg(regs, regnum, val, nat);
+		return;
+	}
+
+	/*
+	 * Using r0 as a target raises a General Exception fault which has higher priority
+	 * than the Unaligned Reference fault.
+	 */
+
+	/*
+	 * Now look at registers in [0-31] range and init correct UNAT
+	 */
+	if (GR_IN_SW(regnum)) {
+		addr = (unsigned long)sw;
+		unat = &sw->ar_unat;
+	} else {
+		addr = (unsigned long)regs;
+		unat = &sw->caller_unat;
+	}
+	DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
+	       addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
+	/*
+	 * add offset from base of struct
+	 * and do it !
+	 */
+	addr += GR_OFFS(regnum);
+
+	*(unsigned long *)addr = val;
+
+	/*
+	 * We need to clear the corresponding UNAT bit to fully emulate the load
+	 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
+	 */
+	bitmask   = 1UL << (addr >> 3 & 0x3f);
+	DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
+	if (nat) {
+		*unat |= bitmask;
+	} else {
+		*unat &= ~bitmask;
+	}
+	DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
+}
+
+/*
+ * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
+ * range from 32-127, result is in the range from 0-95.
+ */
+static inline unsigned long
+fph_index (struct pt_regs *regs, long regnum)
+{
+	unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
+	return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
+}
+
+static void
+setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
+{
+	struct switch_stack *sw = (struct switch_stack *)regs - 1;
+	unsigned long addr;
+
+	/*
+	 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
+	 * Fault. Thus, when we get here, we know the partition is enabled.
+	 * To update f32-f127, there are three choices:
+	 *
+	 *	(1) save f32-f127 to thread.fph and update the values there
+	 *	(2) use a gigantic switch statement to directly access the registers
+	 *	(3) generate code on the fly to update the desired register
+	 *
+	 * For now, we are using approach (1).
+	 */
+	if (regnum >= IA64_FIRST_ROTATING_FR) {
+		ia64_sync_fph(current);
+		current->thread.fph[fph_index(regs, regnum)] = *fpval;
+	} else {
+		/*
+		 * pt_regs or switch_stack ?
+		 */
+		if (FR_IN_SW(regnum)) {
+			addr = (unsigned long)sw;
+		} else {
+			addr = (unsigned long)regs;
+		}
+
+		DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
+
+		addr += FR_OFFS(regnum);
+		*(struct ia64_fpreg *)addr = *fpval;
+
+		/*
+		 * mark the low partition as being used now
+		 *
+		 * It is highly unlikely that this bit is not already set, but
+		 * let's do it for safety.
+		 */
+		regs->cr_ipsr |= IA64_PSR_MFL;
+	}
+}
+
+/*
+ * Those 2 inline functions generate the spilled versions of the constant floating point
+ * registers which can be used with stfX
+ */
+static inline void
+float_spill_f0 (struct ia64_fpreg *final)
+{
+	ia64_stf_spill(final, 0);
+}
+
+static inline void
+float_spill_f1 (struct ia64_fpreg *final)
+{
+	ia64_stf_spill(final, 1);
+}
+
+static void
+getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
+{
+	struct switch_stack *sw = (struct switch_stack *) regs - 1;
+	unsigned long addr;
+
+	/*
+	 * From EAS-2.5: FPDisableFault has higher priority than
+	 * Unaligned Fault. Thus, when we get here, we know the partition is
+	 * enabled.
+	 *
+	 * When regnum > 31, the register is still live and we need to force a save
+	 * to current->thread.fph to get access to it.  See discussion in setfpreg()
+	 * for reasons and other ways of doing this.
+	 */
+	if (regnum >= IA64_FIRST_ROTATING_FR) {
+		ia64_flush_fph(current);
+		*fpval = current->thread.fph[fph_index(regs, regnum)];
+	} else {
+		/*
+		 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
+		 * not saved, we must generate their spilled form on the fly
+		 */
+		switch(regnum) {
+		case 0:
+			float_spill_f0(fpval);
+			break;
+		case 1:
+			float_spill_f1(fpval);
+			break;
+		default:
+			/*
+			 * pt_regs or switch_stack ?
+			 */
+			addr =  FR_IN_SW(regnum) ? (unsigned long)sw
+						 : (unsigned long)regs;
+
+			DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
+			       FR_IN_SW(regnum), addr, FR_OFFS(regnum));
+
+			addr  += FR_OFFS(regnum);
+			*fpval = *(struct ia64_fpreg *)addr;
+		}
+	}
+}
+
+
+static void
+getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
+{
+	struct switch_stack *sw = (struct switch_stack *) regs - 1;
+	unsigned long addr, *unat;
+
+	if (regnum >= IA64_FIRST_STACKED_GR) {
+		get_rse_reg(regs, regnum, val, nat);
+		return;
+	}
+
+	/*
+	 * take care of r0 (read-only always evaluate to 0)
+	 */
+	if (regnum == 0) {
+		*val = 0;
+		if (nat)
+			*nat = 0;
+		return;
+	}
+
+	/*
+	 * Now look at registers in [0-31] range and init correct UNAT
+	 */
+	if (GR_IN_SW(regnum)) {
+		addr = (unsigned long)sw;
+		unat = &sw->ar_unat;
+	} else {
+		addr = (unsigned long)regs;
+		unat = &sw->caller_unat;
+	}
+
+	DPRINT("addr_base=%lx offset=0x%x\n", addr,  GR_OFFS(regnum));
+
+	addr += GR_OFFS(regnum);
+
+	*val  = *(unsigned long *)addr;
+
+	/*
+	 * do it only when requested
+	 */
+	if (nat)
+		*nat  = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
+}
+
+static void
+emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
+{
+	/*
+	 * IMPORTANT:
+	 * Given the way we handle unaligned speculative loads, we should
+	 * not get to this point in the code but we keep this sanity check,
+	 * just in case.
+	 */
+	if (ld.x6_op == 1 || ld.x6_op == 3) {
+		printk(KERN_ERR "%s: register update on speculative load, error\n", __FUNCTION__);
+		die_if_kernel("unaligned reference on speculative load with register update\n",
+			      regs, 30);
+	}
+
+
+	/*
+	 * at this point, we know that the base register to update is valid i.e.,
+	 * it's not r0
+	 */
+	if (type == UPD_IMMEDIATE) {
+		unsigned long imm;
+
+		/*
+		 * Load +Imm: ldXZ r1=[r3],imm(9)
+		 *
+		 *
+		 * form imm9: [13:19] contain the first 7 bits
+		 */
+		imm = ld.x << 7 | ld.imm;
+
+		/*
+		 * sign extend (1+8bits) if m set
+		 */
+		if (ld.m) imm |= SIGN_EXT9;
+
+		/*
+		 * ifa == r3 and we know that the NaT bit on r3 was clear so
+		 * we can directly use ifa.
+		 */
+		ifa += imm;
+
+		setreg(ld.r3, ifa, 0, regs);
+
+		DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
+
+	} else if (ld.m) {
+		unsigned long r2;
+		int nat_r2;
+
+		/*
+		 * Load +Reg Opcode: ldXZ r1=[r3],r2
+		 *
+		 * Note: that we update r3 even in the case of ldfX.a
+		 * (where the load does not happen)
+		 *
+		 * The way the load algorithm works, we know that r3 does not
+		 * have its NaT bit set (would have gotten NaT consumption
+		 * before getting the unaligned fault). So we can use ifa
+		 * which equals r3 at this point.
+		 *
+		 * IMPORTANT:
+		 * The above statement holds ONLY because we know that we
+		 * never reach this code when trying to do a ldX.s.
+		 * If we ever make it to here on an ldfX.s then
+		 */
+		getreg(ld.imm, &r2, &nat_r2, regs);
+
+		ifa += r2;
+
+		/*
+		 * propagate Nat r2 -> r3
+		 */
+		setreg(ld.r3, ifa, nat_r2, regs);
+
+		DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
+	}
+}
+
+
+static int
+emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
+{
+	unsigned int len = 1 << ld.x6_sz;
+	unsigned long val = 0;
+
+	/*
+	 * r0, as target, doesn't need to be checked because Illegal Instruction
+	 * faults have higher priority than unaligned faults.
+	 *
+	 * r0 cannot be found as the base as it would never generate an
+	 * unaligned reference.
+	 */
+
+	/*
+	 * ldX.a we will emulate load and also invalidate the ALAT entry.
+	 * See comment below for explanation on how we handle ldX.a
+	 */
+
+	if (len != 2 && len != 4 && len != 8) {
+		DPRINT("unknown size: x6=%d\n", ld.x6_sz);
+		return -1;
+	}
+	/* this assumes little-endian byte-order: */
+	if (copy_from_user(&val, (void __user *) ifa, len))
+		return -1;
+	setreg(ld.r1, val, 0, regs);
+
+	/*
+	 * check for updates on any kind of loads
+	 */
+	if (ld.op == 0x5 || ld.m)
+		emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
+
+	/*
+	 * handling of various loads (based on EAS2.4):
+	 *
+	 * ldX.acq (ordered load):
+	 *	- acquire semantics would have been used, so force fence instead.
+	 *
+	 * ldX.c.clr (check load and clear):
+	 *	- if we get to this handler, it's because the entry was not in the ALAT.
+	 *	  Therefore the operation reverts to a normal load
+	 *
+	 * ldX.c.nc (check load no clear):
+	 *	- same as previous one
+	 *
+	 * ldX.c.clr.acq (ordered check load and clear):
+	 *	- same as above for c.clr part. The load needs to have acquire semantics. So
+	 *	  we use the fence semantics which is stronger and thus ensures correctness.
+	 *
+	 * ldX.a (advanced load):
+	 *	- suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
+	 *	  address doesn't match requested size alignment. This means that we would
+	 *	  possibly need more than one load to get the result.
+	 *
+	 *	  The load part can be handled just like a normal load, however the difficult
+	 *	  part is to get the right thing into the ALAT. The critical piece of information
+	 *	  in the base address of the load & size. To do that, a ld.a must be executed,
+	 *	  clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
+	 *	  if we use the same target register, we will be okay for the check.a instruction.
+	 *	  If we look at the store, basically a stX [r3]=r1 checks the ALAT  for any entry
+	 *	  which would overlap within [r3,r3+X] (the size of the load was store in the
+	 *	  ALAT). If such an entry is found the entry is invalidated. But this is not good
+	 *	  enough, take the following example:
+	 *		r3=3
+	 *		ld4.a r1=[r3]
+	 *
+	 *	  Could be emulated by doing:
+	 *		ld1.a r1=[r3],1
+	 *		store to temporary;
+	 *		ld1.a r1=[r3],1
+	 *		store & shift to temporary;
+	 *		ld1.a r1=[r3],1
+	 *		store & shift to temporary;
+	 *		ld1.a r1=[r3]
+	 *		store & shift to temporary;
+	 *		r1=temporary
+	 *
+	 *	  So in this case, you would get the right value is r1 but the wrong info in
+	 *	  the ALAT.  Notice that you could do it in reverse to finish with address 3
+	 *	  but you would still get the size wrong.  To get the size right, one needs to
+	 *	  execute exactly the same kind of load. You could do it from a aligned
+	 *	  temporary location, but you would get the address wrong.
+	 *
+	 *	  So no matter what, it is not possible to emulate an advanced load
+	 *	  correctly. But is that really critical ?
+	 *
+	 *	  We will always convert ld.a into a normal load with ALAT invalidated.  This
+	 *	  will enable compiler to do optimization where certain code path after ld.a
+	 *	  is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
+	 *
+	 *	  If there is a store after the advanced load, one must either do a ld.c.* or
+	 *	  chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
+	 *	  entry found in ALAT), and that's perfectly ok because:
+	 *
+	 *		- ld.c.*, if the entry is not present a  normal load is executed
+	 *		- chk.a.*, if the entry is not present, execution jumps to recovery code
+	 *
+	 *	  In either case, the load can be potentially retried in another form.
+	 *
+	 *	  ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
+	 *	  up a stale entry later). The register base update MUST also be performed.
+	 */
+
+	/*
+	 * when the load has the .acq completer then
+	 * use ordering fence.
+	 */
+	if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
+		mb();
+
+	/*
+	 * invalidate ALAT entry in case of advanced load
+	 */
+	if (ld.x6_op == 0x2)
+		invala_gr(ld.r1);
+
+	return 0;
+}
+
+static int
+emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
+{
+	unsigned long r2;
+	unsigned int len = 1 << ld.x6_sz;
+
+	/*
+	 * if we get to this handler, Nat bits on both r3 and r2 have already
+	 * been checked. so we don't need to do it
+	 *
+	 * extract the value to be stored
+	 */
+	getreg(ld.imm, &r2, NULL, regs);
+
+	/*
+	 * we rely on the macros in unaligned.h for now i.e.,
+	 * we let the compiler figure out how to read memory gracefully.
+	 *
+	 * We need this switch/case because the way the inline function
+	 * works. The code is optimized by the compiler and looks like
+	 * a single switch/case.
+	 */
+	DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
+
+	if (len != 2 && len != 4 && len != 8) {
+		DPRINT("unknown size: x6=%d\n", ld.x6_sz);
+		return -1;
+	}
+
+	/* this assumes little-endian byte-order: */
+	if (copy_to_user((void __user *) ifa, &r2, len))
+		return -1;
+
+	/*
+	 * stX [r3]=r2,imm(9)
+	 *
+	 * NOTE:
+	 * ld.r3 can never be r0, because r0 would not generate an
+	 * unaligned access.
+	 */
+	if (ld.op == 0x5) {
+		unsigned long imm;
+
+		/*
+		 * form imm9: [12:6] contain first 7bits
+		 */
+		imm = ld.x << 7 | ld.r1;
+		/*
+		 * sign extend (8bits) if m set
+		 */
+		if (ld.m) imm |= SIGN_EXT9;
+		/*
+		 * ifa == r3 (NaT is necessarily cleared)
+		 */
+		ifa += imm;
+
+		DPRINT("imm=%lx r3=%lx\n", imm, ifa);
+
+		setreg(ld.r3, ifa, 0, regs);
+	}
+	/*
+	 * we don't have alat_invalidate_multiple() so we need
+	 * to do the complete flush :-<<
+	 */
+	ia64_invala();
+
+	/*
+	 * stX.rel: use fence instead of release
+	 */
+	if (ld.x6_op == 0xd)
+		mb();
+
+	return 0;
+}
+
+/*
+ * floating point operations sizes in bytes
+ */
+static const unsigned char float_fsz[4]={
+	10, /* extended precision (e) */
+	8,  /* integer (8)            */
+	4,  /* single precision (s)   */
+	8   /* double precision (d)   */
+};
+
+static inline void
+mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+	ia64_ldfe(6, init);
+	ia64_stop();
+	ia64_stf_spill(final, 6);
+}
+
+static inline void
+mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+	ia64_ldf8(6, init);
+	ia64_stop();
+	ia64_stf_spill(final, 6);
+}
+
+static inline void
+mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+	ia64_ldfs(6, init);
+	ia64_stop();
+	ia64_stf_spill(final, 6);
+}
+
+static inline void
+mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+	ia64_ldfd(6, init);
+	ia64_stop();
+	ia64_stf_spill(final, 6);
+}
+
+static inline void
+float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+	ia64_ldf_fill(6, init);
+	ia64_stop();
+	ia64_stfe(final, 6);
+}
+
+static inline void
+float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+	ia64_ldf_fill(6, init);
+	ia64_stop();
+	ia64_stf8(final, 6);
+}
+
+static inline void
+float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+	ia64_ldf_fill(6, init);
+	ia64_stop();
+	ia64_stfs(final, 6);
+}
+
+static inline void
+float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
+{
+	ia64_ldf_fill(6, init);
+	ia64_stop();
+	ia64_stfd(final, 6);
+}
+
+static int
+emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
+{
+	struct ia64_fpreg fpr_init[2];
+	struct ia64_fpreg fpr_final[2];
+	unsigned long len = float_fsz[ld.x6_sz];
+
+	/*
+	 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
+	 * higher priority than unaligned faults.
+	 *
+	 * r0 cannot be found as the base as it would never generate an unaligned
+	 * reference.
+	 */
+
+	/*
+	 * make sure we get clean buffers
+	 */
+	memset(&fpr_init, 0, sizeof(fpr_init));
+	memset(&fpr_final, 0, sizeof(fpr_final));
+
+	/*
+	 * ldfpX.a: we don't try to emulate anything but we must
+	 * invalidate the ALAT entry and execute updates, if any.
+	 */
+	if (ld.x6_op != 0x2) {
+		/*
+		 * This assumes little-endian byte-order.  Note that there is no "ldfpe"
+		 * instruction:
+		 */
+		if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
+		    || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
+			return -1;
+
+		DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
+		DDUMP("frp_init =", &fpr_init, 2*len);
+		/*
+		 * XXX fixme
+		 * Could optimize inlines by using ldfpX & 2 spills
+		 */
+		switch( ld.x6_sz ) {
+			case 0:
+				mem2float_extended(&fpr_init[0], &fpr_final[0]);
+				mem2float_extended(&fpr_init[1], &fpr_final[1]);
+				break;
+			case 1:
+				mem2float_integer(&fpr_init[0], &fpr_final[0]);
+				mem2float_integer(&fpr_init[1], &fpr_final[1]);
+				break;
+			case 2:
+				mem2float_single(&fpr_init[0], &fpr_final[0]);
+				mem2float_single(&fpr_init[1], &fpr_final[1]);
+				break;
+			case 3:
+				mem2float_double(&fpr_init[0], &fpr_final[0]);
+				mem2float_double(&fpr_init[1], &fpr_final[1]);
+				break;
+		}
+		DDUMP("fpr_final =", &fpr_final, 2*len);
+		/*
+		 * XXX fixme
+		 *
+		 * A possible optimization would be to drop fpr_final and directly
+		 * use the storage from the saved context i.e., the actual final
+		 * destination (pt_regs, switch_stack or thread structure).
+		 */
+		setfpreg(ld.r1, &fpr_final[0], regs);
+		setfpreg(ld.imm, &fpr_final[1], regs);
+	}
+
+	/*
+	 * Check for updates: only immediate updates are available for this
+	 * instruction.
+	 */
+	if (ld.m) {
+		/*
+		 * the immediate is implicit given the ldsz of the operation:
+		 * single: 8 (2x4) and for  all others it's 16 (2x8)
+		 */
+		ifa += len<<1;
+
+		/*
+		 * IMPORTANT:
+		 * the fact that we force the NaT of r3 to zero is ONLY valid
+		 * as long as we don't come here with a ldfpX.s.
+		 * For this reason we keep this sanity check
+		 */
+		if (ld.x6_op == 1 || ld.x6_op == 3)
+			printk(KERN_ERR "%s: register update on speculative load pair, error\n",
+			       __FUNCTION__);
+
+		setreg(ld.r3, ifa, 0, regs);
+	}
+
+	/*
+	 * Invalidate ALAT entries, if any, for both registers.
+	 */
+	if (ld.x6_op == 0x2) {
+		invala_fr(ld.r1);
+		invala_fr(ld.imm);
+	}
+	return 0;
+}
+
+
+static int
+emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
+{
+	struct ia64_fpreg fpr_init;
+	struct ia64_fpreg fpr_final;
+	unsigned long len = float_fsz[ld.x6_sz];
+
+	/*
+	 * fr0 & fr1 don't need to be checked because Illegal Instruction
+	 * faults have higher priority than unaligned faults.
+	 *
+	 * r0 cannot be found as the base as it would never generate an
+	 * unaligned reference.
+	 */
+
+	/*
+	 * make sure we get clean buffers
+	 */
+	memset(&fpr_init,0, sizeof(fpr_init));
+	memset(&fpr_final,0, sizeof(fpr_final));
+
+	/*
+	 * ldfX.a we don't try to emulate anything but we must
+	 * invalidate the ALAT entry.
+	 * See comments in ldX for descriptions on how the various loads are handled.
+	 */
+	if (ld.x6_op != 0x2) {
+		if (copy_from_user(&fpr_init, (void __user *) ifa, len))
+			return -1;
+
+		DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
+		DDUMP("fpr_init =", &fpr_init, len);
+		/*
+		 * we only do something for x6_op={0,8,9}
+		 */
+		switch( ld.x6_sz ) {
+			case 0:
+				mem2float_extended(&fpr_init, &fpr_final);
+				break;
+			case 1:
+				mem2float_integer(&fpr_init, &fpr_final);
+				break;
+			case 2:
+				mem2float_single(&fpr_init, &fpr_final);
+				break;
+			case 3:
+				mem2float_double(&fpr_init, &fpr_final);
+				break;
+		}
+		DDUMP("fpr_final =", &fpr_final, len);
+		/*
+		 * XXX fixme
+		 *
+		 * A possible optimization would be to drop fpr_final and directly
+		 * use the storage from the saved context i.e., the actual final
+		 * destination (pt_regs, switch_stack or thread structure).
+		 */
+		setfpreg(ld.r1, &fpr_final, regs);
+	}
+
+	/*
+	 * check for updates on any loads
+	 */
+	if (ld.op == 0x7 || ld.m)
+		emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
+
+	/*
+	 * invalidate ALAT entry in case of advanced floating point loads
+	 */
+	if (ld.x6_op == 0x2)
+		invala_fr(ld.r1);
+
+	return 0;
+}
+
+
+static int
+emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
+{
+	struct ia64_fpreg fpr_init;
+	struct ia64_fpreg fpr_final;
+	unsigned long len = float_fsz[ld.x6_sz];
+
+	/*
+	 * make sure we get clean buffers
+	 */
+	memset(&fpr_init,0, sizeof(fpr_init));
+	memset(&fpr_final,0, sizeof(fpr_final));
+
+	/*
+	 * if we get to this handler, Nat bits on both r3 and r2 have already
+	 * been checked. so we don't need to do it
+	 *
+	 * extract the value to be stored
+	 */
+	getfpreg(ld.imm, &fpr_init, regs);
+	/*
+	 * during this step, we extract the spilled registers from the saved
+	 * context i.e., we refill. Then we store (no spill) to temporary
+	 * aligned location
+	 */
+	switch( ld.x6_sz ) {
+		case 0:
+			float2mem_extended(&fpr_init, &fpr_final);
+			break;
+		case 1:
+			float2mem_integer(&fpr_init, &fpr_final);
+			break;
+		case 2:
+			float2mem_single(&fpr_init, &fpr_final);
+			break;
+		case 3:
+			float2mem_double(&fpr_init, &fpr_final);
+			break;
+	}
+	DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
+	DDUMP("fpr_init =", &fpr_init, len);
+	DDUMP("fpr_final =", &fpr_final, len);
+
+	if (copy_to_user((void __user *) ifa, &fpr_final, len))
+		return -1;
+
+	/*
+	 * stfX [r3]=r2,imm(9)
+	 *
+	 * NOTE:
+	 * ld.r3 can never be r0, because r0 would not generate an
+	 * unaligned access.
+	 */
+	if (ld.op == 0x7) {
+		unsigned long imm;
+
+		/*
+		 * form imm9: [12:6] contain first 7bits
+		 */
+		imm = ld.x << 7 | ld.r1;
+		/*
+		 * sign extend (8bits) if m set
+		 */
+		if (ld.m)
+			imm |= SIGN_EXT9;
+		/*
+		 * ifa == r3 (NaT is necessarily cleared)
+		 */
+		ifa += imm;
+
+		DPRINT("imm=%lx r3=%lx\n", imm, ifa);
+
+		setreg(ld.r3, ifa, 0, regs);
+	}
+	/*
+	 * we don't have alat_invalidate_multiple() so we need
+	 * to do the complete flush :-<<
+	 */
+	ia64_invala();
+
+	return 0;
+}
+
+/*
+ * Make sure we log the unaligned access, so that user/sysadmin can notice it and
+ * eventually fix the program.  However, we don't want to do that for every access so we
+ * pace it with jiffies.  This isn't really MP-safe, but it doesn't really have to be
+ * either...
+ */
+static int
+within_logging_rate_limit (void)
+{
+	static unsigned long count, last_time;
+
+	if (jiffies - last_time > 5*HZ)
+		count = 0;
+	if (++count < 5) {
+		last_time = jiffies;
+		return 1;
+	}
+	return 0;
+
+}
+
+void
+ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
+{
+	struct ia64_psr *ipsr = ia64_psr(regs);
+	mm_segment_t old_fs = get_fs();
+	unsigned long bundle[2];
+	unsigned long opcode;
+	struct siginfo si;
+	const struct exception_table_entry *eh = NULL;
+	union {
+		unsigned long l;
+		load_store_t insn;
+	} u;
+	int ret = -1;
+
+	if (ia64_psr(regs)->be) {
+		/* we don't support big-endian accesses */
+		die_if_kernel("big-endian unaligned accesses are not supported", regs, 0);
+		goto force_sigbus;
+	}
+
+	/*
+	 * Treat kernel accesses for which there is an exception handler entry the same as
+	 * user-level unaligned accesses.  Otherwise, a clever program could trick this
+	 * handler into reading an arbitrary kernel addresses...
+	 */
+	if (!user_mode(regs))
+		eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
+	if (user_mode(regs) || eh) {
+		if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
+			goto force_sigbus;
+
+		if (!(current->thread.flags & IA64_THREAD_UAC_NOPRINT)
+		    && within_logging_rate_limit())
+		{
+			char buf[200];	/* comm[] is at most 16 bytes... */
+			size_t len;
+
+			len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
+				      "ip=0x%016lx\n\r", current->comm, current->pid,
+				      ifa, regs->cr_iip + ipsr->ri);
+			/*
+			 * Don't call tty_write_message() if we're in the kernel; we might
+			 * be holding locks...
+			 */
+			if (user_mode(regs))
+				tty_write_message(current->signal->tty, buf);
+			buf[len-1] = '\0';	/* drop '\r' */
+			printk(KERN_WARNING "%s", buf);	/* watch for command names containing %s */
+		}
+	} else {
+		if (within_logging_rate_limit())
+			printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
+			       ifa, regs->cr_iip + ipsr->ri);
+		set_fs(KERNEL_DS);
+	}
+
+	DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
+	       regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
+
+	if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
+		goto failure;
+
+	/*
+	 * extract the instruction from the bundle given the slot number
+	 */
+	switch (ipsr->ri) {
+	      case 0: u.l = (bundle[0] >>  5); break;
+	      case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
+	      case 2: u.l = (bundle[1] >> 23); break;
+	}
+	opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
+
+	DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
+	       "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
+	       u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
+
+	/*
+	 * IMPORTANT:
+	 * Notice that the switch statement DOES not cover all possible instructions
+	 * that DO generate unaligned references. This is made on purpose because for some
+	 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
+	 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
+	 * the program will get a signal and die:
+	 *
+	 *	load/store:
+	 *		- ldX.spill
+	 *		- stX.spill
+	 *	Reason: RNATs are based on addresses
+	 *		- ld16
+	 *		- st16
+	 *	Reason: ld16 and st16 are supposed to occur in a single
+	 *		memory op
+	 *
+	 *	synchronization:
+	 *		- cmpxchg
+	 *		- fetchadd
+	 *		- xchg
+	 *	Reason: ATOMIC operations cannot be emulated properly using multiple
+	 *	        instructions.
+	 *
+	 *	speculative loads:
+	 *		- ldX.sZ
+	 *	Reason: side effects, code must be ready to deal with failure so simpler
+	 *		to let the load fail.
+	 * ---------------------------------------------------------------------------------
+	 * XXX fixme
+	 *
+	 * I would like to get rid of this switch case and do something
+	 * more elegant.
+	 */
+	switch (opcode) {
+	      case LDS_OP:
+	      case LDSA_OP:
+		if (u.insn.x)
+			/* oops, really a semaphore op (cmpxchg, etc) */
+			goto failure;
+		/* no break */
+	      case LDS_IMM_OP:
+	      case LDSA_IMM_OP:
+	      case LDFS_OP:
+	      case LDFSA_OP:
+	      case LDFS_IMM_OP:
+		/*
+		 * The instruction will be retried with deferred exceptions turned on, and
+		 * we should get Nat bit installed
+		 *
+		 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
+		 * are actually executed even though the operation failed. So we don't
+		 * need to take care of this.
+		 */
+		DPRINT("forcing PSR_ED\n");
+		regs->cr_ipsr |= IA64_PSR_ED;
+		goto done;
+
+	      case LD_OP:
+	      case LDA_OP:
+	      case LDBIAS_OP:
+	      case LDACQ_OP:
+	      case LDCCLR_OP:
+	      case LDCNC_OP:
+	      case LDCCLRACQ_OP:
+		if (u.insn.x)
+			/* oops, really a semaphore op (cmpxchg, etc) */
+			goto failure;
+		/* no break */
+	      case LD_IMM_OP:
+	      case LDA_IMM_OP:
+	      case LDBIAS_IMM_OP:
+	      case LDACQ_IMM_OP:
+	      case LDCCLR_IMM_OP:
+	      case LDCNC_IMM_OP:
+	      case LDCCLRACQ_IMM_OP:
+		ret = emulate_load_int(ifa, u.insn, regs);
+		break;
+
+	      case ST_OP:
+	      case STREL_OP:
+		if (u.insn.x)
+			/* oops, really a semaphore op (cmpxchg, etc) */
+			goto failure;
+		/* no break */
+	      case ST_IMM_OP:
+	      case STREL_IMM_OP:
+		ret = emulate_store_int(ifa, u.insn, regs);
+		break;
+
+	      case LDF_OP:
+	      case LDFA_OP:
+	      case LDFCCLR_OP:
+	      case LDFCNC_OP:
+	      case LDF_IMM_OP:
+	      case LDFA_IMM_OP:
+	      case LDFCCLR_IMM_OP:
+	      case LDFCNC_IMM_OP:
+		if (u.insn.x)
+			ret = emulate_load_floatpair(ifa, u.insn, regs);
+		else
+			ret = emulate_load_float(ifa, u.insn, regs);
+		break;
+
+	      case STF_OP:
+	      case STF_IMM_OP:
+		ret = emulate_store_float(ifa, u.insn, regs);
+		break;
+
+	      default:
+		goto failure;
+	}
+	DPRINT("ret=%d\n", ret);
+	if (ret)
+		goto failure;
+
+	if (ipsr->ri == 2)
+		/*
+		 * given today's architecture this case is not likely to happen because a
+		 * memory access instruction (M) can never be in the last slot of a
+		 * bundle. But let's keep it for now.
+		 */
+		regs->cr_iip += 16;
+	ipsr->ri = (ipsr->ri + 1) & 0x3;
+
+	DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
+  done:
+	set_fs(old_fs);		/* restore original address limit */
+	return;
+
+  failure:
+	/* something went wrong... */
+	if (!user_mode(regs)) {
+		if (eh) {
+			ia64_handle_exception(regs, eh);
+			goto done;
+		}
+		die_if_kernel("error during unaligned kernel access\n", regs, ret);
+		/* NOT_REACHED */
+	}
+  force_sigbus:
+	si.si_signo = SIGBUS;
+	si.si_errno = 0;
+	si.si_code = BUS_ADRALN;
+	si.si_addr = (void __user *) ifa;
+	si.si_flags = 0;
+	si.si_isr = 0;
+	si.si_imm = 0;
+	force_sig_info(SIGBUS, &si, current);
+	goto done;
+}