blob: 6f3d6e240c611d65fe8e8d8cbe3722a4ebe8117c [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
Linus Torvalds1da177e2005-04-16 15:20:36 -070089#include <linux/slab.h>
90#include <linux/mm.h>
Randy Dunlapc9cf5522006-06-27 02:53:52 -070091#include <linux/poison.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070092#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080097#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070098#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700105#include <linux/string.h>
Andrew Morton138ae662006-12-06 20:36:41 -0800106#include <linux/uaccess.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700107#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800108#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800109#include <linux/mutex.h>
Akinobu Mita8a8b6502006-12-08 02:39:44 -0800110#include <linux/fault-inject.h>
Ingo Molnare7eebaf2006-06-27 02:54:55 -0700111#include <linux/rtmutex.h>
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800112#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700113
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
Christoph Lameter50953fe2007-05-06 14:50:16 -0700119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
David Woodhouseb46b8f12007-05-08 00:22:59 -0700151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700154 */
David Woodhouseb46b8f12007-05-08 00:22:59 -0700155#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
Christoph Lameter50953fe2007-05-06 14:50:16 -0700175# define CREATE_MASK (SLAB_RED_ZONE | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800177 SLAB_CACHE_DMA | \
Christoph Lameter5af60832007-05-06 14:49:56 -0700178 SLAB_STORE_USER | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Christoph Lameter5af60832007-05-06 14:49:56 -0700183 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700207typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212
Linus Torvalds1da177e2005-04-16 15:20:36 -0700213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800246 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800247 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249};
250
251/*
252 * struct array_cache
253 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700268 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275};
276
Andrew Mortona737b3e2006-03-22 00:08:11 -0800277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800284 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285};
286
287/*
Christoph Lametere498be72005-09-09 13:03:32 -0700288 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 */
290struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800295 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800296 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302};
303
Christoph Lametere498be72005-09-09 13:03:32 -0700304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700312
Christoph Lametered11d9e2006-06-30 01:55:45 -0700313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -0700317static int enable_cpucache(struct kmem_cache *cachep);
David Howells65f27f32006-11-22 14:55:48 +0000318static void cache_reap(struct work_struct *unused);
Christoph Lametered11d9e2006-06-30 01:55:45 -0700319
Christoph Lametere498be72005-09-09 13:03:32 -0700320/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700323 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700324static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700325{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800326 extern void __bad_size(void);
327
Christoph Lametere498be72005-09-09 13:03:32 -0700328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800338 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700339 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800340 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700341 return 0;
342}
343
Ingo Molnare0a42722006-06-23 02:03:46 -0700344static int slab_early_init = 1;
345
Christoph Lametere498be72005-09-09 13:03:32 -0700346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
Pekka Enberg5295a742006-02-01 03:05:48 -0800349static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800356 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
Andrew Mortona737b3e2006-03-22 00:08:11 -0800362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700366 } while (0)
367
Andrew Mortona737b3e2006-03-22 00:08:11 -0800368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374
375/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800376 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 *
378 * manages a cache.
379 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800380
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800381struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800383 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800384/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800388
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800389 unsigned int buffer_size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800390 u32 reciprocal_buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800391/* 3) touched by every alloc & free from the backend */
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800392
Andrew Mortona737b3e2006-03-22 00:08:11 -0800393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700395
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800396/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700397 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800398 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700399
400 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800401 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402
Andrew Mortona737b3e2006-03-22 00:08:11 -0800403 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800404 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800405 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800406 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800407 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408
409 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411
412 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800415/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800416 const char *name;
417 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700418
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800419/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700420#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
424 unsigned long grown;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700430 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800431 atomic_t allochit;
432 atomic_t allocmiss;
433 atomic_t freehit;
434 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700435#endif
436#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800437 /*
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
442 */
443 int obj_offset;
444 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445#endif
Eric Dumazet8da34302007-05-06 14:49:29 -0700446 /*
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
452 */
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 /*
455 * Do not add fields after nodelists[]
456 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457};
458
459#define CFLGS_OFF_SLAB (0x80000000UL)
460#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461
462#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800463/*
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700466 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100467 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700468 * which could lock up otherwise freeable slabs.
469 */
470#define REAPTIMEOUT_CPUC (2*HZ)
471#define REAPTIMEOUT_LIST3 (4*HZ)
472
473#if STATS
474#define STATS_INC_ACTIVE(x) ((x)->num_active++)
475#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477#define STATS_INC_GROWN(x) ((x)->grown++)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700478#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
Andrew Mortona737b3e2006-03-22 00:08:11 -0800479#define STATS_SET_HIGH(x) \
480 do { \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
483 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484#define STATS_INC_ERR(x) ((x)->errors++)
485#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700486#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700487#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800488#define STATS_SET_FREEABLE(x, i) \
489 do { \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
492 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497#else
498#define STATS_INC_ACTIVE(x) do { } while (0)
499#define STATS_DEC_ACTIVE(x) do { } while (0)
500#define STATS_INC_ALLOCED(x) do { } while (0)
501#define STATS_INC_GROWN(x) do { } while (0)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700502#define STATS_ADD_REAPED(x,y) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700503#define STATS_SET_HIGH(x) do { } while (0)
504#define STATS_INC_ERR(x) do { } while (0)
505#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700506#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700507#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800508#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509#define STATS_INC_ALLOCHIT(x) do { } while (0)
510#define STATS_INC_ALLOCMISS(x) do { } while (0)
511#define STATS_INC_FREEHIT(x) do { } while (0)
512#define STATS_INC_FREEMISS(x) do { } while (0)
513#endif
514
515#if DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516
Andrew Mortona737b3e2006-03-22 00:08:11 -0800517/*
518 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800530static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800532 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533}
534
Pekka Enberg343e0d72006-02-01 03:05:50 -0800535static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700536{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800537 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700538}
539
David Woodhouseb46b8f12007-05-08 00:22:59 -0700540static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541{
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
David Woodhouseb46b8f12007-05-08 00:22:59 -0700543 return (unsigned long long*) (objp + obj_offset(cachep) -
544 sizeof(unsigned long long));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700545}
546
David Woodhouseb46b8f12007-05-08 00:22:59 -0700547static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700548{
549 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
550 if (cachep->flags & SLAB_STORE_USER)
David Woodhouseb46b8f12007-05-08 00:22:59 -0700551 return (unsigned long long *)(objp + cachep->buffer_size -
552 sizeof(unsigned long long) -
553 BYTES_PER_WORD);
554 return (unsigned long long *) (objp + cachep->buffer_size -
555 sizeof(unsigned long long));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556}
557
Pekka Enberg343e0d72006-02-01 03:05:50 -0800558static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559{
560 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800561 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700562}
563
564#else
565
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800566#define obj_offset(x) 0
567#define obj_size(cachep) (cachep->buffer_size)
David Woodhouseb46b8f12007-05-08 00:22:59 -0700568#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
569#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
Linus Torvalds1da177e2005-04-16 15:20:36 -0700570#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
571
572#endif
573
574/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800575 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
576 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700577 */
578#if defined(CONFIG_LARGE_ALLOCS)
579#define MAX_OBJ_ORDER 13 /* up to 32Mb */
580#define MAX_GFP_ORDER 13 /* up to 32Mb */
581#elif defined(CONFIG_MMU)
582#define MAX_OBJ_ORDER 5 /* 32 pages */
583#define MAX_GFP_ORDER 5 /* 32 pages */
584#else
585#define MAX_OBJ_ORDER 8 /* up to 1Mb */
586#define MAX_GFP_ORDER 8 /* up to 1Mb */
587#endif
588
589/*
590 * Do not go above this order unless 0 objects fit into the slab.
591 */
592#define BREAK_GFP_ORDER_HI 1
593#define BREAK_GFP_ORDER_LO 0
594static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
595
Andrew Mortona737b3e2006-03-22 00:08:11 -0800596/*
597 * Functions for storing/retrieving the cachep and or slab from the page
598 * allocator. These are used to find the slab an obj belongs to. With kfree(),
599 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700600 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800601static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
602{
603 page->lru.next = (struct list_head *)cache;
604}
605
606static inline struct kmem_cache *page_get_cache(struct page *page)
607{
Christoph Lameterd85f3382007-05-06 14:49:39 -0700608 page = compound_head(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700609 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800610 return (struct kmem_cache *)page->lru.next;
611}
612
613static inline void page_set_slab(struct page *page, struct slab *slab)
614{
615 page->lru.prev = (struct list_head *)slab;
616}
617
618static inline struct slab *page_get_slab(struct page *page)
619{
Pekka Enbergddc2e812006-06-23 02:03:40 -0700620 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800621 return (struct slab *)page->lru.prev;
622}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800624static inline struct kmem_cache *virt_to_cache(const void *obj)
625{
Christoph Lameterb49af682007-05-06 14:49:41 -0700626 struct page *page = virt_to_head_page(obj);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800627 return page_get_cache(page);
628}
629
630static inline struct slab *virt_to_slab(const void *obj)
631{
Christoph Lameterb49af682007-05-06 14:49:41 -0700632 struct page *page = virt_to_head_page(obj);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800633 return page_get_slab(page);
634}
635
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800636static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
637 unsigned int idx)
638{
639 return slab->s_mem + cache->buffer_size * idx;
640}
641
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800642/*
643 * We want to avoid an expensive divide : (offset / cache->buffer_size)
644 * Using the fact that buffer_size is a constant for a particular cache,
645 * we can replace (offset / cache->buffer_size) by
646 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
647 */
648static inline unsigned int obj_to_index(const struct kmem_cache *cache,
649 const struct slab *slab, void *obj)
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800650{
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800651 u32 offset = (obj - slab->s_mem);
652 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800653}
654
Andrew Mortona737b3e2006-03-22 00:08:11 -0800655/*
656 * These are the default caches for kmalloc. Custom caches can have other sizes.
657 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700658struct cache_sizes malloc_sizes[] = {
659#define CACHE(x) { .cs_size = (x) },
660#include <linux/kmalloc_sizes.h>
661 CACHE(ULONG_MAX)
662#undef CACHE
663};
664EXPORT_SYMBOL(malloc_sizes);
665
666/* Must match cache_sizes above. Out of line to keep cache footprint low. */
667struct cache_names {
668 char *name;
669 char *name_dma;
670};
671
672static struct cache_names __initdata cache_names[] = {
673#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
674#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800675 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676#undef CACHE
677};
678
679static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800682 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700683
684/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800685static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800686 .batchcount = 1,
687 .limit = BOOT_CPUCACHE_ENTRIES,
688 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800689 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800690 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700691};
692
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700693#define BAD_ALIEN_MAGIC 0x01020304ul
694
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200695#ifdef CONFIG_LOCKDEP
696
697/*
698 * Slab sometimes uses the kmalloc slabs to store the slab headers
699 * for other slabs "off slab".
700 * The locking for this is tricky in that it nests within the locks
701 * of all other slabs in a few places; to deal with this special
702 * locking we put on-slab caches into a separate lock-class.
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700703 *
704 * We set lock class for alien array caches which are up during init.
705 * The lock annotation will be lost if all cpus of a node goes down and
706 * then comes back up during hotplug
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200707 */
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700708static struct lock_class_key on_slab_l3_key;
709static struct lock_class_key on_slab_alc_key;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200710
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700711static inline void init_lock_keys(void)
712
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200713{
714 int q;
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700715 struct cache_sizes *s = malloc_sizes;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200716
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700717 while (s->cs_size != ULONG_MAX) {
718 for_each_node(q) {
719 struct array_cache **alc;
720 int r;
721 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
722 if (!l3 || OFF_SLAB(s->cs_cachep))
723 continue;
724 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
725 alc = l3->alien;
726 /*
727 * FIXME: This check for BAD_ALIEN_MAGIC
728 * should go away when common slab code is taught to
729 * work even without alien caches.
730 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
731 * for alloc_alien_cache,
732 */
733 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
734 continue;
735 for_each_node(r) {
736 if (alc[r])
737 lockdep_set_class(&alc[r]->lock,
738 &on_slab_alc_key);
739 }
740 }
741 s++;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200742 }
743}
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200744#else
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700745static inline void init_lock_keys(void)
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200746{
747}
748#endif
749
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -0800750/*
751 * 1. Guard access to the cache-chain.
752 * 2. Protect sanity of cpu_online_map against cpu hotplug events
753 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800754static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700755static struct list_head cache_chain;
756
757/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758 * chicken and egg problem: delay the per-cpu array allocation
759 * until the general caches are up.
760 */
761static enum {
762 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700763 PARTIAL_AC,
764 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700765 FULL
766} g_cpucache_up;
767
Mike Kravetz39d24e62006-05-15 09:44:13 -0700768/*
769 * used by boot code to determine if it can use slab based allocator
770 */
771int slab_is_available(void)
772{
773 return g_cpucache_up == FULL;
774}
775
David Howells52bad642006-11-22 14:54:01 +0000776static DEFINE_PER_CPU(struct delayed_work, reap_work);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700777
Pekka Enberg343e0d72006-02-01 03:05:50 -0800778static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700779{
780 return cachep->array[smp_processor_id()];
781}
782
Andrew Mortona737b3e2006-03-22 00:08:11 -0800783static inline struct kmem_cache *__find_general_cachep(size_t size,
784 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700785{
786 struct cache_sizes *csizep = malloc_sizes;
787
788#if DEBUG
789 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800790 * kmem_cache_create(), or __kmalloc(), before
791 * the generic caches are initialized.
792 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700793 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700794#endif
795 while (size > csizep->cs_size)
796 csizep++;
797
798 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700799 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 * has cs_{dma,}cachep==NULL. Thus no special case
801 * for large kmalloc calls required.
802 */
Christoph Lameter4b51d662007-02-10 01:43:10 -0800803#ifdef CONFIG_ZONE_DMA
Linus Torvalds1da177e2005-04-16 15:20:36 -0700804 if (unlikely(gfpflags & GFP_DMA))
805 return csizep->cs_dmacachep;
Christoph Lameter4b51d662007-02-10 01:43:10 -0800806#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700807 return csizep->cs_cachep;
808}
809
Adrian Bunkb2213852006-09-25 23:31:02 -0700810static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700811{
812 return __find_general_cachep(size, gfpflags);
813}
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700814
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800815static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800817 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
818}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700819
Andrew Mortona737b3e2006-03-22 00:08:11 -0800820/*
821 * Calculate the number of objects and left-over bytes for a given buffer size.
822 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800823static void cache_estimate(unsigned long gfporder, size_t buffer_size,
824 size_t align, int flags, size_t *left_over,
825 unsigned int *num)
826{
827 int nr_objs;
828 size_t mgmt_size;
829 size_t slab_size = PAGE_SIZE << gfporder;
830
831 /*
832 * The slab management structure can be either off the slab or
833 * on it. For the latter case, the memory allocated for a
834 * slab is used for:
835 *
836 * - The struct slab
837 * - One kmem_bufctl_t for each object
838 * - Padding to respect alignment of @align
839 * - @buffer_size bytes for each object
840 *
841 * If the slab management structure is off the slab, then the
842 * alignment will already be calculated into the size. Because
843 * the slabs are all pages aligned, the objects will be at the
844 * correct alignment when allocated.
845 */
846 if (flags & CFLGS_OFF_SLAB) {
847 mgmt_size = 0;
848 nr_objs = slab_size / buffer_size;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852 } else {
853 /*
854 * Ignore padding for the initial guess. The padding
855 * is at most @align-1 bytes, and @buffer_size is at
856 * least @align. In the worst case, this result will
857 * be one greater than the number of objects that fit
858 * into the memory allocation when taking the padding
859 * into account.
860 */
861 nr_objs = (slab_size - sizeof(struct slab)) /
862 (buffer_size + sizeof(kmem_bufctl_t));
863
864 /*
865 * This calculated number will be either the right
866 * amount, or one greater than what we want.
867 */
868 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869 > slab_size)
870 nr_objs--;
871
872 if (nr_objs > SLAB_LIMIT)
873 nr_objs = SLAB_LIMIT;
874
875 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700876 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800877 *num = nr_objs;
878 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700879}
880
881#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
882
Andrew Mortona737b3e2006-03-22 00:08:11 -0800883static void __slab_error(const char *function, struct kmem_cache *cachep,
884 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885{
886 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800887 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700888 dump_stack();
889}
890
Paul Menage3395ee02006-12-06 20:32:16 -0800891/*
892 * By default on NUMA we use alien caches to stage the freeing of
893 * objects allocated from other nodes. This causes massive memory
894 * inefficiencies when using fake NUMA setup to split memory into a
895 * large number of small nodes, so it can be disabled on the command
896 * line
897 */
898
899static int use_alien_caches __read_mostly = 1;
900static int __init noaliencache_setup(char *s)
901{
902 use_alien_caches = 0;
903 return 1;
904}
905__setup("noaliencache", noaliencache_setup);
906
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800907#ifdef CONFIG_NUMA
908/*
909 * Special reaping functions for NUMA systems called from cache_reap().
910 * These take care of doing round robin flushing of alien caches (containing
911 * objects freed on different nodes from which they were allocated) and the
912 * flushing of remote pcps by calling drain_node_pages.
913 */
914static DEFINE_PER_CPU(unsigned long, reap_node);
915
916static void init_reap_node(int cpu)
917{
918 int node;
919
920 node = next_node(cpu_to_node(cpu), node_online_map);
921 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800922 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800923
Daniel Yeisley7f6b8872006-11-02 22:07:14 -0800924 per_cpu(reap_node, cpu) = node;
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800925}
926
927static void next_reap_node(void)
928{
929 int node = __get_cpu_var(reap_node);
930
931 /*
932 * Also drain per cpu pages on remote zones
933 */
934 if (node != numa_node_id())
935 drain_node_pages(node);
936
937 node = next_node(node, node_online_map);
938 if (unlikely(node >= MAX_NUMNODES))
939 node = first_node(node_online_map);
940 __get_cpu_var(reap_node) = node;
941}
942
943#else
944#define init_reap_node(cpu) do { } while (0)
945#define next_reap_node(void) do { } while (0)
946#endif
947
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948/*
949 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
950 * via the workqueue/eventd.
951 * Add the CPU number into the expiration time to minimize the possibility of
952 * the CPUs getting into lockstep and contending for the global cache chain
953 * lock.
954 */
955static void __devinit start_cpu_timer(int cpu)
956{
David Howells52bad642006-11-22 14:54:01 +0000957 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700958
959 /*
960 * When this gets called from do_initcalls via cpucache_init(),
961 * init_workqueues() has already run, so keventd will be setup
962 * at that time.
963 */
David Howells52bad642006-11-22 14:54:01 +0000964 if (keventd_up() && reap_work->work.func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800965 init_reap_node(cpu);
David Howells65f27f32006-11-22 14:55:48 +0000966 INIT_DELAYED_WORK(reap_work, cache_reap);
Arjan van de Ven2b284212006-12-10 02:21:28 -0800967 schedule_delayed_work_on(cpu, reap_work,
968 __round_jiffies_relative(HZ, cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969 }
970}
971
Christoph Lametere498be72005-09-09 13:03:32 -0700972static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800973 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700974{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800975 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700976 struct array_cache *nc = NULL;
977
Christoph Lametere498be72005-09-09 13:03:32 -0700978 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700979 if (nc) {
980 nc->avail = 0;
981 nc->limit = entries;
982 nc->batchcount = batchcount;
983 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700984 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700985 }
986 return nc;
987}
988
Christoph Lameter3ded1752006-03-25 03:06:44 -0800989/*
990 * Transfer objects in one arraycache to another.
991 * Locking must be handled by the caller.
992 *
993 * Return the number of entries transferred.
994 */
995static int transfer_objects(struct array_cache *to,
996 struct array_cache *from, unsigned int max)
997{
998 /* Figure out how many entries to transfer */
999 int nr = min(min(from->avail, max), to->limit - to->avail);
1000
1001 if (!nr)
1002 return 0;
1003
1004 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1005 sizeof(void *) *nr);
1006
1007 from->avail -= nr;
1008 to->avail += nr;
1009 to->touched = 1;
1010 return nr;
1011}
1012
Christoph Lameter765c4502006-09-27 01:50:08 -07001013#ifndef CONFIG_NUMA
1014
1015#define drain_alien_cache(cachep, alien) do { } while (0)
1016#define reap_alien(cachep, l3) do { } while (0)
1017
1018static inline struct array_cache **alloc_alien_cache(int node, int limit)
1019{
1020 return (struct array_cache **)BAD_ALIEN_MAGIC;
1021}
1022
1023static inline void free_alien_cache(struct array_cache **ac_ptr)
1024{
1025}
1026
1027static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1028{
1029 return 0;
1030}
1031
1032static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1033 gfp_t flags)
1034{
1035 return NULL;
1036}
1037
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001038static inline void *____cache_alloc_node(struct kmem_cache *cachep,
Christoph Lameter765c4502006-09-27 01:50:08 -07001039 gfp_t flags, int nodeid)
1040{
1041 return NULL;
1042}
1043
1044#else /* CONFIG_NUMA */
1045
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001046static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -08001047static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -08001048
Pekka Enberg5295a742006-02-01 03:05:48 -08001049static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -07001050{
1051 struct array_cache **ac_ptr;
Christoph Lameter8ef82862007-02-20 13:57:52 -08001052 int memsize = sizeof(void *) * nr_node_ids;
Christoph Lametere498be72005-09-09 13:03:32 -07001053 int i;
1054
1055 if (limit > 1)
1056 limit = 12;
1057 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1058 if (ac_ptr) {
1059 for_each_node(i) {
1060 if (i == node || !node_online(i)) {
1061 ac_ptr[i] = NULL;
1062 continue;
1063 }
1064 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1065 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001066 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -07001067 kfree(ac_ptr[i]);
1068 kfree(ac_ptr);
1069 return NULL;
1070 }
1071 }
1072 }
1073 return ac_ptr;
1074}
1075
Pekka Enberg5295a742006-02-01 03:05:48 -08001076static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -07001077{
1078 int i;
1079
1080 if (!ac_ptr)
1081 return;
Christoph Lametere498be72005-09-09 13:03:32 -07001082 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001083 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07001084 kfree(ac_ptr);
1085}
1086
Pekka Enberg343e0d72006-02-01 03:05:50 -08001087static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -08001088 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07001089{
1090 struct kmem_list3 *rl3 = cachep->nodelists[node];
1091
1092 if (ac->avail) {
1093 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -08001094 /*
1095 * Stuff objects into the remote nodes shared array first.
1096 * That way we could avoid the overhead of putting the objects
1097 * into the free lists and getting them back later.
1098 */
shin, jacob693f7d32006-04-28 10:54:37 -05001099 if (rl3->shared)
1100 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -08001101
Christoph Lameterff694162005-09-22 21:44:02 -07001102 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001103 ac->avail = 0;
1104 spin_unlock(&rl3->list_lock);
1105 }
1106}
1107
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001108/*
1109 * Called from cache_reap() to regularly drain alien caches round robin.
1110 */
1111static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1112{
1113 int node = __get_cpu_var(reap_node);
1114
1115 if (l3->alien) {
1116 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001117
1118 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001119 __drain_alien_cache(cachep, ac, node);
1120 spin_unlock_irq(&ac->lock);
1121 }
1122 }
1123}
1124
Andrew Mortona737b3e2006-03-22 00:08:11 -08001125static void drain_alien_cache(struct kmem_cache *cachep,
1126 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001127{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001128 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001129 struct array_cache *ac;
1130 unsigned long flags;
1131
1132 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001133 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001134 if (ac) {
1135 spin_lock_irqsave(&ac->lock, flags);
1136 __drain_alien_cache(cachep, ac, i);
1137 spin_unlock_irqrestore(&ac->lock, flags);
1138 }
1139 }
1140}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001141
Ingo Molnar873623d2006-07-13 14:44:38 +02001142static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001143{
1144 struct slab *slabp = virt_to_slab(objp);
1145 int nodeid = slabp->nodeid;
1146 struct kmem_list3 *l3;
1147 struct array_cache *alien = NULL;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001148 int node;
1149
1150 node = numa_node_id();
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001151
1152 /*
1153 * Make sure we are not freeing a object from another node to the array
1154 * cache on this cpu.
1155 */
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001156 if (likely(slabp->nodeid == node))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001157 return 0;
1158
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001159 l3 = cachep->nodelists[node];
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001160 STATS_INC_NODEFREES(cachep);
1161 if (l3->alien && l3->alien[nodeid]) {
1162 alien = l3->alien[nodeid];
Ingo Molnar873623d2006-07-13 14:44:38 +02001163 spin_lock(&alien->lock);
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001164 if (unlikely(alien->avail == alien->limit)) {
1165 STATS_INC_ACOVERFLOW(cachep);
1166 __drain_alien_cache(cachep, alien, nodeid);
1167 }
1168 alien->entry[alien->avail++] = objp;
1169 spin_unlock(&alien->lock);
1170 } else {
1171 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1172 free_block(cachep, &objp, 1, nodeid);
1173 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1174 }
1175 return 1;
1176}
Christoph Lametere498be72005-09-09 13:03:32 -07001177#endif
1178
Chandra Seetharaman8c78f302006-07-30 03:03:35 -07001179static int __cpuinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001180 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001181{
1182 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001183 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001184 struct kmem_list3 *l3 = NULL;
1185 int node = cpu_to_node(cpu);
1186 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001187
1188 switch (action) {
Heiko Carstens38c3bd92007-05-09 02:34:05 -07001189 case CPU_LOCK_ACQUIRE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001190 mutex_lock(&cache_chain_mutex);
Heiko Carstens38c3bd92007-05-09 02:34:05 -07001191 break;
1192 case CPU_UP_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001193 case CPU_UP_PREPARE_FROZEN:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001194 /*
1195 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001196 * alloc_arraycache's are going to use this list.
1197 * kmalloc_node allows us to add the slab to the right
1198 * kmem_list3 and not this cpu's kmem_list3
1199 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200
Christoph Lametere498be72005-09-09 13:03:32 -07001201 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001202 /*
1203 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001204 * begin anything. Make sure some other cpu on this
1205 * node has not already allocated this
1206 */
1207 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001208 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1209 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001210 goto bad;
1211 kmem_list3_init(l3);
1212 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001213 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001214
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001215 /*
1216 * The l3s don't come and go as CPUs come and
1217 * go. cache_chain_mutex is sufficient
1218 * protection here.
1219 */
Christoph Lametere498be72005-09-09 13:03:32 -07001220 cachep->nodelists[node] = l3;
1221 }
1222
1223 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1224 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001225 (1 + nr_cpus_node(node)) *
1226 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001227 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1228 }
1229
Andrew Mortona737b3e2006-03-22 00:08:11 -08001230 /*
1231 * Now we can go ahead with allocating the shared arrays and
1232 * array caches
1233 */
Christoph Lametere498be72005-09-09 13:03:32 -07001234 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001235 struct array_cache *nc;
Eric Dumazet63109842007-05-06 14:49:28 -07001236 struct array_cache *shared = NULL;
Paul Menage3395ee02006-12-06 20:32:16 -08001237 struct array_cache **alien = NULL;
Tobias Klausercd105df2006-01-08 01:00:59 -08001238
Christoph Lametere498be72005-09-09 13:03:32 -07001239 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001240 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001241 if (!nc)
1242 goto bad;
Eric Dumazet63109842007-05-06 14:49:28 -07001243 if (cachep->shared) {
1244 shared = alloc_arraycache(node,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001245 cachep->shared * cachep->batchcount,
1246 0xbaadf00d);
Eric Dumazet63109842007-05-06 14:49:28 -07001247 if (!shared)
1248 goto bad;
1249 }
Paul Menage3395ee02006-12-06 20:32:16 -08001250 if (use_alien_caches) {
1251 alien = alloc_alien_cache(node, cachep->limit);
1252 if (!alien)
1253 goto bad;
1254 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001255 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001256 l3 = cachep->nodelists[node];
1257 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001258
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001259 spin_lock_irq(&l3->list_lock);
1260 if (!l3->shared) {
1261 /*
1262 * We are serialised from CPU_DEAD or
1263 * CPU_UP_CANCELLED by the cpucontrol lock
1264 */
1265 l3->shared = shared;
1266 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001267 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001268#ifdef CONFIG_NUMA
1269 if (!l3->alien) {
1270 l3->alien = alien;
1271 alien = NULL;
1272 }
1273#endif
1274 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001275 kfree(shared);
1276 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001277 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001278 break;
1279 case CPU_ONLINE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001280 case CPU_ONLINE_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001281 start_cpu_timer(cpu);
1282 break;
1283#ifdef CONFIG_HOTPLUG_CPU
Christoph Lameter5830c592007-05-09 02:34:22 -07001284 case CPU_DOWN_PREPARE:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001285 case CPU_DOWN_PREPARE_FROZEN:
Christoph Lameter5830c592007-05-09 02:34:22 -07001286 /*
1287 * Shutdown cache reaper. Note that the cache_chain_mutex is
1288 * held so that if cache_reap() is invoked it cannot do
1289 * anything expensive but will only modify reap_work
1290 * and reschedule the timer.
1291 */
1292 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1293 /* Now the cache_reaper is guaranteed to be not running. */
1294 per_cpu(reap_work, cpu).work.func = NULL;
1295 break;
1296 case CPU_DOWN_FAILED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001297 case CPU_DOWN_FAILED_FROZEN:
Christoph Lameter5830c592007-05-09 02:34:22 -07001298 start_cpu_timer(cpu);
1299 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001300 case CPU_DEAD:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001301 case CPU_DEAD_FROZEN:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001302 /*
1303 * Even if all the cpus of a node are down, we don't free the
1304 * kmem_list3 of any cache. This to avoid a race between
1305 * cpu_down, and a kmalloc allocation from another cpu for
1306 * memory from the node of the cpu going down. The list3
1307 * structure is usually allocated from kmem_cache_create() and
1308 * gets destroyed at kmem_cache_destroy().
1309 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310 /* fall thru */
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001311#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001312 case CPU_UP_CANCELED:
Rafael J. Wysocki8bb78442007-05-09 02:35:10 -07001313 case CPU_UP_CANCELED_FROZEN:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001314 list_for_each_entry(cachep, &cache_chain, next) {
1315 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001316 struct array_cache *shared;
1317 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001318 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001319
Christoph Lametere498be72005-09-09 13:03:32 -07001320 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001321 /* cpu is dead; no one can alloc from it. */
1322 nc = cachep->array[cpu];
1323 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001324 l3 = cachep->nodelists[node];
1325
1326 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001327 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001328
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001329 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001330
1331 /* Free limit for this kmem_list3 */
1332 l3->free_limit -= cachep->batchcount;
1333 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001334 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001335
1336 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001337 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001338 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001339 }
Christoph Lametere498be72005-09-09 13:03:32 -07001340
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001341 shared = l3->shared;
1342 if (shared) {
Eric Dumazet63109842007-05-06 14:49:28 -07001343 free_block(cachep, shared->entry,
1344 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001345 l3->shared = NULL;
1346 }
Christoph Lametere498be72005-09-09 13:03:32 -07001347
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001348 alien = l3->alien;
1349 l3->alien = NULL;
1350
1351 spin_unlock_irq(&l3->list_lock);
1352
1353 kfree(shared);
1354 if (alien) {
1355 drain_alien_cache(cachep, alien);
1356 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001357 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001358free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001359 kfree(nc);
1360 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001361 /*
1362 * In the previous loop, all the objects were freed to
1363 * the respective cache's slabs, now we can go ahead and
1364 * shrink each nodelist to its limit.
1365 */
1366 list_for_each_entry(cachep, &cache_chain, next) {
1367 l3 = cachep->nodelists[node];
1368 if (!l3)
1369 continue;
Christoph Lametered11d9e2006-06-30 01:55:45 -07001370 drain_freelist(cachep, l3, l3->free_objects);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001371 }
Heiko Carstens38c3bd92007-05-09 02:34:05 -07001372 break;
1373 case CPU_LOCK_RELEASE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001374 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001376 }
1377 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001378bad:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379 return NOTIFY_BAD;
1380}
1381
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001382static struct notifier_block __cpuinitdata cpucache_notifier = {
1383 &cpuup_callback, NULL, 0
1384};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385
Christoph Lametere498be72005-09-09 13:03:32 -07001386/*
1387 * swap the static kmem_list3 with kmalloced memory
1388 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001389static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1390 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001391{
1392 struct kmem_list3 *ptr;
1393
Christoph Lametere498be72005-09-09 13:03:32 -07001394 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1395 BUG_ON(!ptr);
1396
1397 local_irq_disable();
1398 memcpy(ptr, list, sizeof(struct kmem_list3));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001399 /*
1400 * Do not assume that spinlocks can be initialized via memcpy:
1401 */
1402 spin_lock_init(&ptr->list_lock);
1403
Christoph Lametere498be72005-09-09 13:03:32 -07001404 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1405 cachep->nodelists[nodeid] = ptr;
1406 local_irq_enable();
1407}
1408
Andrew Mortona737b3e2006-03-22 00:08:11 -08001409/*
1410 * Initialisation. Called after the page allocator have been initialised and
1411 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001412 */
1413void __init kmem_cache_init(void)
1414{
1415 size_t left_over;
1416 struct cache_sizes *sizes;
1417 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001418 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001419 int order;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001420 int node;
Christoph Lametere498be72005-09-09 13:03:32 -07001421
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001422 if (num_possible_nodes() == 1)
1423 use_alien_caches = 0;
1424
Christoph Lametere498be72005-09-09 13:03:32 -07001425 for (i = 0; i < NUM_INIT_LISTS; i++) {
1426 kmem_list3_init(&initkmem_list3[i]);
1427 if (i < MAX_NUMNODES)
1428 cache_cache.nodelists[i] = NULL;
1429 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001430
1431 /*
1432 * Fragmentation resistance on low memory - only use bigger
1433 * page orders on machines with more than 32MB of memory.
1434 */
1435 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1436 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1437
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438 /* Bootstrap is tricky, because several objects are allocated
1439 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001440 * 1) initialize the cache_cache cache: it contains the struct
1441 * kmem_cache structures of all caches, except cache_cache itself:
1442 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001443 * Initially an __init data area is used for the head array and the
1444 * kmem_list3 structures, it's replaced with a kmalloc allocated
1445 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001447 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001448 * An __init data area is used for the head array.
1449 * 3) Create the remaining kmalloc caches, with minimally sized
1450 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451 * 4) Replace the __init data head arrays for cache_cache and the first
1452 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001453 * 5) Replace the __init data for kmem_list3 for cache_cache and
1454 * the other cache's with kmalloc allocated memory.
1455 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001456 */
1457
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001458 node = numa_node_id();
1459
Linus Torvalds1da177e2005-04-16 15:20:36 -07001460 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461 INIT_LIST_HEAD(&cache_chain);
1462 list_add(&cache_cache.next, &cache_chain);
1463 cache_cache.colour_off = cache_line_size();
1464 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001465 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001466
Eric Dumazet8da34302007-05-06 14:49:29 -07001467 /*
1468 * struct kmem_cache size depends on nr_node_ids, which
1469 * can be less than MAX_NUMNODES.
1470 */
1471 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1472 nr_node_ids * sizeof(struct kmem_list3 *);
1473#if DEBUG
1474 cache_cache.obj_size = cache_cache.buffer_size;
1475#endif
Andrew Mortona737b3e2006-03-22 00:08:11 -08001476 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1477 cache_line_size());
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08001478 cache_cache.reciprocal_buffer_size =
1479 reciprocal_value(cache_cache.buffer_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001480
Jack Steiner07ed76b2006-03-07 21:55:46 -08001481 for (order = 0; order < MAX_ORDER; order++) {
1482 cache_estimate(order, cache_cache.buffer_size,
1483 cache_line_size(), 0, &left_over, &cache_cache.num);
1484 if (cache_cache.num)
1485 break;
1486 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001487 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001488 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001489 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001490 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1491 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001492
1493 /* 2+3) create the kmalloc caches */
1494 sizes = malloc_sizes;
1495 names = cache_names;
1496
Andrew Mortona737b3e2006-03-22 00:08:11 -08001497 /*
1498 * Initialize the caches that provide memory for the array cache and the
1499 * kmem_list3 structures first. Without this, further allocations will
1500 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001501 */
1502
1503 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001504 sizes[INDEX_AC].cs_size,
1505 ARCH_KMALLOC_MINALIGN,
1506 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1507 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001508
Andrew Mortona737b3e2006-03-22 00:08:11 -08001509 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001510 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001511 kmem_cache_create(names[INDEX_L3].name,
1512 sizes[INDEX_L3].cs_size,
1513 ARCH_KMALLOC_MINALIGN,
1514 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1515 NULL, NULL);
1516 }
Christoph Lametere498be72005-09-09 13:03:32 -07001517
Ingo Molnare0a42722006-06-23 02:03:46 -07001518 slab_early_init = 0;
1519
Linus Torvalds1da177e2005-04-16 15:20:36 -07001520 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001521 /*
1522 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001523 * This should be particularly beneficial on SMP boxes, as it
1524 * eliminates "false sharing".
1525 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001526 * allow tighter packing of the smaller caches.
1527 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001528 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001529 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001530 sizes->cs_size,
1531 ARCH_KMALLOC_MINALIGN,
1532 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1533 NULL, NULL);
1534 }
Christoph Lameter4b51d662007-02-10 01:43:10 -08001535#ifdef CONFIG_ZONE_DMA
1536 sizes->cs_dmacachep = kmem_cache_create(
1537 names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001538 sizes->cs_size,
1539 ARCH_KMALLOC_MINALIGN,
1540 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1541 SLAB_PANIC,
1542 NULL, NULL);
Christoph Lameter4b51d662007-02-10 01:43:10 -08001543#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001544 sizes++;
1545 names++;
1546 }
1547 /* 4) Replace the bootstrap head arrays */
1548 {
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001549 struct array_cache *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001550
Linus Torvalds1da177e2005-04-16 15:20:36 -07001551 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001552
Linus Torvalds1da177e2005-04-16 15:20:36 -07001553 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001554 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1555 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001556 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001557 /*
1558 * Do not assume that spinlocks can be initialized via memcpy:
1559 */
1560 spin_lock_init(&ptr->lock);
1561
Linus Torvalds1da177e2005-04-16 15:20:36 -07001562 cache_cache.array[smp_processor_id()] = ptr;
1563 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001564
Linus Torvalds1da177e2005-04-16 15:20:36 -07001565 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001566
Linus Torvalds1da177e2005-04-16 15:20:36 -07001567 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001568 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001569 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001570 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001571 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001572 /*
1573 * Do not assume that spinlocks can be initialized via memcpy:
1574 */
1575 spin_lock_init(&ptr->lock);
1576
Christoph Lametere498be72005-09-09 13:03:32 -07001577 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001578 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001579 local_irq_enable();
1580 }
Christoph Lametere498be72005-09-09 13:03:32 -07001581 /* 5) Replace the bootstrap kmem_list3's */
1582 {
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001583 int nid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001584
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001585 /* Replace the static kmem_list3 structures for the boot cpu */
1586 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1587
1588 for_each_online_node(nid) {
Christoph Lametere498be72005-09-09 13:03:32 -07001589 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001590 &initkmem_list3[SIZE_AC + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001591
1592 if (INDEX_AC != INDEX_L3) {
1593 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001594 &initkmem_list3[SIZE_L3 + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001595 }
1596 }
1597 }
1598
1599 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001600 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001601 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001602 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001603 list_for_each_entry(cachep, &cache_chain, next)
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001604 if (enable_cpucache(cachep))
1605 BUG();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001606 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001607 }
1608
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -07001609 /* Annotate slab for lockdep -- annotate the malloc caches */
1610 init_lock_keys();
1611
1612
Linus Torvalds1da177e2005-04-16 15:20:36 -07001613 /* Done! */
1614 g_cpucache_up = FULL;
1615
Andrew Mortona737b3e2006-03-22 00:08:11 -08001616 /*
1617 * Register a cpu startup notifier callback that initializes
1618 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001619 */
1620 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001621
Andrew Mortona737b3e2006-03-22 00:08:11 -08001622 /*
1623 * The reap timers are started later, with a module init call: That part
1624 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001625 */
1626}
1627
1628static int __init cpucache_init(void)
1629{
1630 int cpu;
1631
Andrew Mortona737b3e2006-03-22 00:08:11 -08001632 /*
1633 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001634 */
Christoph Lametere498be72005-09-09 13:03:32 -07001635 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001636 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637 return 0;
1638}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001639__initcall(cpucache_init);
1640
1641/*
1642 * Interface to system's page allocator. No need to hold the cache-lock.
1643 *
1644 * If we requested dmaable memory, we will get it. Even if we
1645 * did not request dmaable memory, we might get it, but that
1646 * would be relatively rare and ignorable.
1647 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001648static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649{
1650 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001651 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652 int i;
1653
Luke Yangd6fef9d2006-04-10 22:52:56 -07001654#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001655 /*
1656 * Nommu uses slab's for process anonymous memory allocations, and thus
1657 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001658 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001659 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001660#endif
Christoph Lameter765c4502006-09-27 01:50:08 -07001661
Christoph Lameter3c517a62006-12-06 20:33:29 -08001662 flags |= cachep->gfpflags;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001663
1664 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001665 if (!page)
1666 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001667
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001668 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001669 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Lameter972d1a72006-09-25 23:31:51 -07001670 add_zone_page_state(page_zone(page),
1671 NR_SLAB_RECLAIMABLE, nr_pages);
1672 else
1673 add_zone_page_state(page_zone(page),
1674 NR_SLAB_UNRECLAIMABLE, nr_pages);
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001675 for (i = 0; i < nr_pages; i++)
1676 __SetPageSlab(page + i);
1677 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001678}
1679
1680/*
1681 * Interface to system's page release.
1682 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001683static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001685 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001686 struct page *page = virt_to_page(addr);
1687 const unsigned long nr_freed = i;
1688
Christoph Lameter972d1a72006-09-25 23:31:51 -07001689 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1690 sub_zone_page_state(page_zone(page),
1691 NR_SLAB_RECLAIMABLE, nr_freed);
1692 else
1693 sub_zone_page_state(page_zone(page),
1694 NR_SLAB_UNRECLAIMABLE, nr_freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001695 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001696 BUG_ON(!PageSlab(page));
1697 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001698 page++;
1699 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001700 if (current->reclaim_state)
1701 current->reclaim_state->reclaimed_slab += nr_freed;
1702 free_pages((unsigned long)addr, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703}
1704
1705static void kmem_rcu_free(struct rcu_head *head)
1706{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001707 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001708 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001709
1710 kmem_freepages(cachep, slab_rcu->addr);
1711 if (OFF_SLAB(cachep))
1712 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1713}
1714
1715#if DEBUG
1716
1717#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001718static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001719 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001720{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001721 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001722
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001723 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001724
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001725 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001726 return;
1727
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001728 *addr++ = 0x12345678;
1729 *addr++ = caller;
1730 *addr++ = smp_processor_id();
1731 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732 {
1733 unsigned long *sptr = &caller;
1734 unsigned long svalue;
1735
1736 while (!kstack_end(sptr)) {
1737 svalue = *sptr++;
1738 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001739 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001740 size -= sizeof(unsigned long);
1741 if (size <= sizeof(unsigned long))
1742 break;
1743 }
1744 }
1745
1746 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001747 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001748}
1749#endif
1750
Pekka Enberg343e0d72006-02-01 03:05:50 -08001751static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001752{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001753 int size = obj_size(cachep);
1754 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755
1756 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001757 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001758}
1759
1760static void dump_line(char *data, int offset, int limit)
1761{
1762 int i;
Dave Jonesaa83aa42006-09-29 01:59:51 -07001763 unsigned char error = 0;
1764 int bad_count = 0;
1765
Linus Torvalds1da177e2005-04-16 15:20:36 -07001766 printk(KERN_ERR "%03x:", offset);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001767 for (i = 0; i < limit; i++) {
1768 if (data[offset + i] != POISON_FREE) {
1769 error = data[offset + i];
1770 bad_count++;
1771 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001772 printk(" %02x", (unsigned char)data[offset + i]);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001773 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 printk("\n");
Dave Jonesaa83aa42006-09-29 01:59:51 -07001775
1776 if (bad_count == 1) {
1777 error ^= POISON_FREE;
1778 if (!(error & (error - 1))) {
1779 printk(KERN_ERR "Single bit error detected. Probably "
1780 "bad RAM.\n");
1781#ifdef CONFIG_X86
1782 printk(KERN_ERR "Run memtest86+ or a similar memory "
1783 "test tool.\n");
1784#else
1785 printk(KERN_ERR "Run a memory test tool.\n");
1786#endif
1787 }
1788 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001789}
1790#endif
1791
1792#if DEBUG
1793
Pekka Enberg343e0d72006-02-01 03:05:50 -08001794static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795{
1796 int i, size;
1797 char *realobj;
1798
1799 if (cachep->flags & SLAB_RED_ZONE) {
David Woodhouseb46b8f12007-05-08 00:22:59 -07001800 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001801 *dbg_redzone1(cachep, objp),
1802 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001803 }
1804
1805 if (cachep->flags & SLAB_STORE_USER) {
1806 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001807 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001808 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001809 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810 printk("\n");
1811 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001812 realobj = (char *)objp + obj_offset(cachep);
1813 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001814 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815 int limit;
1816 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001817 if (i + limit > size)
1818 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001819 dump_line(realobj, i, limit);
1820 }
1821}
1822
Pekka Enberg343e0d72006-02-01 03:05:50 -08001823static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001824{
1825 char *realobj;
1826 int size, i;
1827 int lines = 0;
1828
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001829 realobj = (char *)objp + obj_offset(cachep);
1830 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001831
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001832 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001833 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001834 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001835 exp = POISON_END;
1836 if (realobj[i] != exp) {
1837 int limit;
1838 /* Mismatch ! */
1839 /* Print header */
1840 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001841 printk(KERN_ERR
David Howellse94a40c2007-04-02 23:46:28 +01001842 "Slab corruption: %s start=%p, len=%d\n",
1843 cachep->name, realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001844 print_objinfo(cachep, objp, 0);
1845 }
1846 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001847 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001848 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001849 if (i + limit > size)
1850 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851 dump_line(realobj, i, limit);
1852 i += 16;
1853 lines++;
1854 /* Limit to 5 lines */
1855 if (lines > 5)
1856 break;
1857 }
1858 }
1859 if (lines != 0) {
1860 /* Print some data about the neighboring objects, if they
1861 * exist:
1862 */
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08001863 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001864 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001865
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001866 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001867 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001868 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001869 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001870 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001871 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001872 print_objinfo(cachep, objp, 2);
1873 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001874 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001875 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001876 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001878 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001879 print_objinfo(cachep, objp, 2);
1880 }
1881 }
1882}
1883#endif
1884
Linus Torvalds1da177e2005-04-16 15:20:36 -07001885#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001886/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001887 * slab_destroy_objs - destroy a slab and its objects
1888 * @cachep: cache pointer being destroyed
1889 * @slabp: slab pointer being destroyed
1890 *
1891 * Call the registered destructor for each object in a slab that is being
1892 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001893 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001894static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001895{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001896 int i;
1897 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001898 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899
1900 if (cachep->flags & SLAB_POISON) {
1901#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001902 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1903 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001904 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001905 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001906 else
1907 check_poison_obj(cachep, objp);
1908#else
1909 check_poison_obj(cachep, objp);
1910#endif
1911 }
1912 if (cachep->flags & SLAB_RED_ZONE) {
1913 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1914 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001915 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001916 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1917 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001918 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001919 }
1920 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001921 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001922 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001923}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001924#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001925static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001926{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001927 if (cachep->dtor) {
1928 int i;
1929 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001930 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001931 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001932 }
1933 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001934}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001935#endif
1936
Randy Dunlap911851e2006-03-22 00:08:14 -08001937/**
1938 * slab_destroy - destroy and release all objects in a slab
1939 * @cachep: cache pointer being destroyed
1940 * @slabp: slab pointer being destroyed
1941 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001942 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001943 * Before calling the slab must have been unlinked from the cache. The
1944 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001945 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001946static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001947{
1948 void *addr = slabp->s_mem - slabp->colouroff;
1949
1950 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001951 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1952 struct slab_rcu *slab_rcu;
1953
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001954 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001955 slab_rcu->cachep = cachep;
1956 slab_rcu->addr = addr;
1957 call_rcu(&slab_rcu->head, kmem_rcu_free);
1958 } else {
1959 kmem_freepages(cachep, addr);
Ingo Molnar873623d2006-07-13 14:44:38 +02001960 if (OFF_SLAB(cachep))
1961 kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001962 }
1963}
1964
Andrew Mortona737b3e2006-03-22 00:08:11 -08001965/*
1966 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1967 * size of kmem_list3.
1968 */
Andrew Mortona3a02be2007-05-06 14:49:31 -07001969static void __init set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001970{
1971 int node;
1972
1973 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001974 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001975 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001976 REAPTIMEOUT_LIST3 +
1977 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001978 }
1979}
1980
Christoph Lameter117f6eb2006-09-25 23:31:37 -07001981static void __kmem_cache_destroy(struct kmem_cache *cachep)
1982{
1983 int i;
1984 struct kmem_list3 *l3;
1985
1986 for_each_online_cpu(i)
1987 kfree(cachep->array[i]);
1988
1989 /* NUMA: free the list3 structures */
1990 for_each_online_node(i) {
1991 l3 = cachep->nodelists[i];
1992 if (l3) {
1993 kfree(l3->shared);
1994 free_alien_cache(l3->alien);
1995 kfree(l3);
1996 }
1997 }
1998 kmem_cache_free(&cache_cache, cachep);
1999}
2000
2001
Linus Torvalds1da177e2005-04-16 15:20:36 -07002002/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08002003 * calculate_slab_order - calculate size (page order) of slabs
2004 * @cachep: pointer to the cache that is being created
2005 * @size: size of objects to be created in this cache.
2006 * @align: required alignment for the objects.
2007 * @flags: slab allocation flags
2008 *
2009 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002010 *
2011 * This could be made much more intelligent. For now, try to avoid using
2012 * high order pages for slabs. When the gfp() functions are more friendly
2013 * towards high-order requests, this should be changed.
2014 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002015static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08002016 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002017{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02002018 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002019 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002020 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002021
Andrew Mortona737b3e2006-03-22 00:08:11 -08002022 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002023 unsigned int num;
2024 size_t remainder;
2025
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002026 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002027 if (!num)
2028 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002029
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02002030 if (flags & CFLGS_OFF_SLAB) {
2031 /*
2032 * Max number of objs-per-slab for caches which
2033 * use off-slab slabs. Needed to avoid a possible
2034 * looping condition in cache_grow().
2035 */
2036 offslab_limit = size - sizeof(struct slab);
2037 offslab_limit /= sizeof(kmem_bufctl_t);
2038
2039 if (num > offslab_limit)
2040 break;
2041 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002042
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002043 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002044 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002045 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002046 left_over = remainder;
2047
2048 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002049 * A VFS-reclaimable slab tends to have most allocations
2050 * as GFP_NOFS and we really don't want to have to be allocating
2051 * higher-order pages when we are unable to shrink dcache.
2052 */
2053 if (flags & SLAB_RECLAIM_ACCOUNT)
2054 break;
2055
2056 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002057 * Large number of objects is good, but very large slabs are
2058 * currently bad for the gfp()s.
2059 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002060 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002061 break;
2062
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002063 /*
2064 * Acceptable internal fragmentation?
2065 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002066 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002067 break;
2068 }
2069 return left_over;
2070}
2071
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002072static int setup_cpu_cache(struct kmem_cache *cachep)
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002073{
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002074 if (g_cpucache_up == FULL)
2075 return enable_cpucache(cachep);
2076
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002077 if (g_cpucache_up == NONE) {
2078 /*
2079 * Note: the first kmem_cache_create must create the cache
2080 * that's used by kmalloc(24), otherwise the creation of
2081 * further caches will BUG().
2082 */
2083 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2084
2085 /*
2086 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2087 * the first cache, then we need to set up all its list3s,
2088 * otherwise the creation of further caches will BUG().
2089 */
2090 set_up_list3s(cachep, SIZE_AC);
2091 if (INDEX_AC == INDEX_L3)
2092 g_cpucache_up = PARTIAL_L3;
2093 else
2094 g_cpucache_up = PARTIAL_AC;
2095 } else {
2096 cachep->array[smp_processor_id()] =
2097 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2098
2099 if (g_cpucache_up == PARTIAL_AC) {
2100 set_up_list3s(cachep, SIZE_L3);
2101 g_cpucache_up = PARTIAL_L3;
2102 } else {
2103 int node;
2104 for_each_online_node(node) {
2105 cachep->nodelists[node] =
2106 kmalloc_node(sizeof(struct kmem_list3),
2107 GFP_KERNEL, node);
2108 BUG_ON(!cachep->nodelists[node]);
2109 kmem_list3_init(cachep->nodelists[node]);
2110 }
2111 }
2112 }
2113 cachep->nodelists[numa_node_id()]->next_reap =
2114 jiffies + REAPTIMEOUT_LIST3 +
2115 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2116
2117 cpu_cache_get(cachep)->avail = 0;
2118 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2119 cpu_cache_get(cachep)->batchcount = 1;
2120 cpu_cache_get(cachep)->touched = 0;
2121 cachep->batchcount = 1;
2122 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002123 return 0;
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002124}
2125
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002126/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002127 * kmem_cache_create - Create a cache.
2128 * @name: A string which is used in /proc/slabinfo to identify this cache.
2129 * @size: The size of objects to be created in this cache.
2130 * @align: The required alignment for the objects.
2131 * @flags: SLAB flags
2132 * @ctor: A constructor for the objects.
2133 * @dtor: A destructor for the objects.
2134 *
2135 * Returns a ptr to the cache on success, NULL on failure.
2136 * Cannot be called within a int, but can be interrupted.
2137 * The @ctor is run when new pages are allocated by the cache
2138 * and the @dtor is run before the pages are handed back.
2139 *
2140 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08002141 * the module calling this has to destroy the cache before getting unloaded.
2142 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002143 * The flags are
2144 *
2145 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2146 * to catch references to uninitialised memory.
2147 *
2148 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2149 * for buffer overruns.
2150 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002151 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2152 * cacheline. This can be beneficial if you're counting cycles as closely
2153 * as davem.
2154 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002155struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002156kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08002157 unsigned long flags,
2158 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08002159 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160{
2161 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002162 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002163
2164 /*
2165 * Sanity checks... these are all serious usage bugs.
2166 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002167 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002168 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002169 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2170 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002171 BUG();
2172 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002173
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002174 /*
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002175 * We use cache_chain_mutex to ensure a consistent view of
2176 * cpu_online_map as well. Please see cpuup_callback
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002177 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002178 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002179
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002180 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002181 char tmp;
2182 int res;
2183
2184 /*
2185 * This happens when the module gets unloaded and doesn't
2186 * destroy its slab cache and no-one else reuses the vmalloc
2187 * area of the module. Print a warning.
2188 */
Andrew Morton138ae662006-12-06 20:36:41 -08002189 res = probe_kernel_address(pc->name, tmp);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002190 if (res) {
matzeb4169522007-05-06 14:49:52 -07002191 printk(KERN_ERR
2192 "SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002193 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002194 continue;
2195 }
2196
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002197 if (!strcmp(pc->name, name)) {
matzeb4169522007-05-06 14:49:52 -07002198 printk(KERN_ERR
2199 "kmem_cache_create: duplicate cache %s\n", name);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002200 dump_stack();
2201 goto oops;
2202 }
2203 }
2204
Linus Torvalds1da177e2005-04-16 15:20:36 -07002205#if DEBUG
2206 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002207#if FORCED_DEBUG
2208 /*
2209 * Enable redzoning and last user accounting, except for caches with
2210 * large objects, if the increased size would increase the object size
2211 * above the next power of two: caches with object sizes just above a
2212 * power of two have a significant amount of internal fragmentation.
2213 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002214 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002215 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002216 if (!(flags & SLAB_DESTROY_BY_RCU))
2217 flags |= SLAB_POISON;
2218#endif
2219 if (flags & SLAB_DESTROY_BY_RCU)
2220 BUG_ON(flags & SLAB_POISON);
2221#endif
2222 if (flags & SLAB_DESTROY_BY_RCU)
2223 BUG_ON(dtor);
2224
2225 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002226 * Always checks flags, a caller might be expecting debug support which
2227 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002228 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002229 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002230
Andrew Mortona737b3e2006-03-22 00:08:11 -08002231 /*
2232 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002233 * unaligned accesses for some archs when redzoning is used, and makes
2234 * sure any on-slab bufctl's are also correctly aligned.
2235 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002236 if (size & (BYTES_PER_WORD - 1)) {
2237 size += (BYTES_PER_WORD - 1);
2238 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002239 }
2240
Andrew Mortona737b3e2006-03-22 00:08:11 -08002241 /* calculate the final buffer alignment: */
2242
Linus Torvalds1da177e2005-04-16 15:20:36 -07002243 /* 1) arch recommendation: can be overridden for debug */
2244 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002245 /*
2246 * Default alignment: as specified by the arch code. Except if
2247 * an object is really small, then squeeze multiple objects into
2248 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002249 */
2250 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002251 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002252 ralign /= 2;
2253 } else {
2254 ralign = BYTES_PER_WORD;
2255 }
Pekka Enbergca5f9702006-09-25 23:31:25 -07002256
2257 /*
2258 * Redzoning and user store require word alignment. Note this will be
2259 * overridden by architecture or caller mandated alignment if either
2260 * is greater than BYTES_PER_WORD.
2261 */
2262 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
David Woodhouseb46b8f12007-05-08 00:22:59 -07002263 ralign = __alignof__(unsigned long long);
Pekka Enbergca5f9702006-09-25 23:31:25 -07002264
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002265 /* 2) arch mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002266 if (ralign < ARCH_SLAB_MINALIGN) {
2267 ralign = ARCH_SLAB_MINALIGN;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002269 /* 3) caller mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002270 if (ralign < align) {
2271 ralign = align;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002272 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002273 /* disable debug if necessary */
David Woodhouseb46b8f12007-05-08 00:22:59 -07002274 if (ralign > __alignof__(unsigned long long))
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002275 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002276 /*
Pekka Enbergca5f9702006-09-25 23:31:25 -07002277 * 4) Store it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278 */
2279 align = ralign;
2280
2281 /* Get cache's description obj. */
Christoph Lametere94b1762006-12-06 20:33:17 -08002282 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002283 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002284 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002285
2286#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002287 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288
Pekka Enbergca5f9702006-09-25 23:31:25 -07002289 /*
2290 * Both debugging options require word-alignment which is calculated
2291 * into align above.
2292 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002293 if (flags & SLAB_RED_ZONE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002294 /* add space for red zone words */
David Woodhouseb46b8f12007-05-08 00:22:59 -07002295 cachep->obj_offset += sizeof(unsigned long long);
2296 size += 2 * sizeof(unsigned long long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002297 }
2298 if (flags & SLAB_STORE_USER) {
Pekka Enbergca5f9702006-09-25 23:31:25 -07002299 /* user store requires one word storage behind the end of
2300 * the real object.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002301 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002302 size += BYTES_PER_WORD;
2303 }
2304#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002305 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002306 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2307 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002308 size = PAGE_SIZE;
2309 }
2310#endif
2311#endif
2312
Ingo Molnare0a42722006-06-23 02:03:46 -07002313 /*
2314 * Determine if the slab management is 'on' or 'off' slab.
2315 * (bootstrapping cannot cope with offslab caches so don't do
2316 * it too early on.)
2317 */
2318 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002319 /*
2320 * Size is large, assume best to place the slab management obj
2321 * off-slab (should allow better packing of objs).
2322 */
2323 flags |= CFLGS_OFF_SLAB;
2324
2325 size = ALIGN(size, align);
2326
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002327 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002328
2329 if (!cachep->num) {
matzeb4169522007-05-06 14:49:52 -07002330 printk(KERN_ERR
2331 "kmem_cache_create: couldn't create cache %s.\n", name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332 kmem_cache_free(&cache_cache, cachep);
2333 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002334 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002335 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002336 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2337 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002338
2339 /*
2340 * If the slab has been placed off-slab, and we have enough space then
2341 * move it on-slab. This is at the expense of any extra colouring.
2342 */
2343 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2344 flags &= ~CFLGS_OFF_SLAB;
2345 left_over -= slab_size;
2346 }
2347
2348 if (flags & CFLGS_OFF_SLAB) {
2349 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002350 slab_size =
2351 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002352 }
2353
2354 cachep->colour_off = cache_line_size();
2355 /* Offset must be a multiple of the alignment. */
2356 if (cachep->colour_off < align)
2357 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002358 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002359 cachep->slab_size = slab_size;
2360 cachep->flags = flags;
2361 cachep->gfpflags = 0;
Christoph Lameter4b51d662007-02-10 01:43:10 -08002362 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002363 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002364 cachep->buffer_size = size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08002365 cachep->reciprocal_buffer_size = reciprocal_value(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002366
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002367 if (flags & CFLGS_OFF_SLAB) {
Victor Fuscob2d55072005-09-10 00:26:36 -07002368 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002369 /*
2370 * This is a possibility for one of the malloc_sizes caches.
2371 * But since we go off slab only for object size greater than
2372 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2373 * this should not happen at all.
2374 * But leave a BUG_ON for some lucky dude.
2375 */
2376 BUG_ON(!cachep->slabp_cache);
2377 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002378 cachep->ctor = ctor;
2379 cachep->dtor = dtor;
2380 cachep->name = name;
2381
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002382 if (setup_cpu_cache(cachep)) {
2383 __kmem_cache_destroy(cachep);
2384 cachep = NULL;
2385 goto oops;
2386 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002387
Linus Torvalds1da177e2005-04-16 15:20:36 -07002388 /* cache setup completed, link it into the list */
2389 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002390oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002391 if (!cachep && (flags & SLAB_PANIC))
2392 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002393 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002394 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002395 return cachep;
2396}
2397EXPORT_SYMBOL(kmem_cache_create);
2398
2399#if DEBUG
2400static void check_irq_off(void)
2401{
2402 BUG_ON(!irqs_disabled());
2403}
2404
2405static void check_irq_on(void)
2406{
2407 BUG_ON(irqs_disabled());
2408}
2409
Pekka Enberg343e0d72006-02-01 03:05:50 -08002410static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002411{
2412#ifdef CONFIG_SMP
2413 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002414 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002415#endif
2416}
Christoph Lametere498be72005-09-09 13:03:32 -07002417
Pekka Enberg343e0d72006-02-01 03:05:50 -08002418static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002419{
2420#ifdef CONFIG_SMP
2421 check_irq_off();
2422 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2423#endif
2424}
2425
Linus Torvalds1da177e2005-04-16 15:20:36 -07002426#else
2427#define check_irq_off() do { } while(0)
2428#define check_irq_on() do { } while(0)
2429#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002430#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002431#endif
2432
Christoph Lameteraab22072006-03-22 00:09:06 -08002433static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2434 struct array_cache *ac,
2435 int force, int node);
2436
Linus Torvalds1da177e2005-04-16 15:20:36 -07002437static void do_drain(void *arg)
2438{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002439 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002440 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002441 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002442
2443 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002444 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002445 spin_lock(&cachep->nodelists[node]->list_lock);
2446 free_block(cachep, ac->entry, ac->avail, node);
2447 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002448 ac->avail = 0;
2449}
2450
Pekka Enberg343e0d72006-02-01 03:05:50 -08002451static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002452{
Christoph Lametere498be72005-09-09 13:03:32 -07002453 struct kmem_list3 *l3;
2454 int node;
2455
Andrew Mortona07fa392006-03-22 00:08:17 -08002456 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002457 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002458 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002459 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002460 if (l3 && l3->alien)
2461 drain_alien_cache(cachep, l3->alien);
2462 }
2463
2464 for_each_online_node(node) {
2465 l3 = cachep->nodelists[node];
2466 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002467 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002468 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002469}
2470
Christoph Lametered11d9e2006-06-30 01:55:45 -07002471/*
2472 * Remove slabs from the list of free slabs.
2473 * Specify the number of slabs to drain in tofree.
2474 *
2475 * Returns the actual number of slabs released.
2476 */
2477static int drain_freelist(struct kmem_cache *cache,
2478 struct kmem_list3 *l3, int tofree)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002479{
Christoph Lametered11d9e2006-06-30 01:55:45 -07002480 struct list_head *p;
2481 int nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002482 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002483
Christoph Lametered11d9e2006-06-30 01:55:45 -07002484 nr_freed = 0;
2485 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002486
Christoph Lametered11d9e2006-06-30 01:55:45 -07002487 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002488 p = l3->slabs_free.prev;
Christoph Lametered11d9e2006-06-30 01:55:45 -07002489 if (p == &l3->slabs_free) {
2490 spin_unlock_irq(&l3->list_lock);
2491 goto out;
2492 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002493
Christoph Lametered11d9e2006-06-30 01:55:45 -07002494 slabp = list_entry(p, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002495#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002496 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002497#endif
2498 list_del(&slabp->list);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002499 /*
2500 * Safe to drop the lock. The slab is no longer linked
2501 * to the cache.
2502 */
2503 l3->free_objects -= cache->num;
Christoph Lametere498be72005-09-09 13:03:32 -07002504 spin_unlock_irq(&l3->list_lock);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002505 slab_destroy(cache, slabp);
2506 nr_freed++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002507 }
Christoph Lametered11d9e2006-06-30 01:55:45 -07002508out:
2509 return nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002510}
2511
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002512/* Called with cache_chain_mutex held to protect against cpu hotplug */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002513static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002514{
2515 int ret = 0, i = 0;
2516 struct kmem_list3 *l3;
2517
2518 drain_cpu_caches(cachep);
2519
2520 check_irq_on();
2521 for_each_online_node(i) {
2522 l3 = cachep->nodelists[i];
Christoph Lametered11d9e2006-06-30 01:55:45 -07002523 if (!l3)
2524 continue;
2525
2526 drain_freelist(cachep, l3, l3->free_objects);
2527
2528 ret += !list_empty(&l3->slabs_full) ||
2529 !list_empty(&l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002530 }
2531 return (ret ? 1 : 0);
2532}
2533
Linus Torvalds1da177e2005-04-16 15:20:36 -07002534/**
2535 * kmem_cache_shrink - Shrink a cache.
2536 * @cachep: The cache to shrink.
2537 *
2538 * Releases as many slabs as possible for a cache.
2539 * To help debugging, a zero exit status indicates all slabs were released.
2540 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002541int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002542{
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002543 int ret;
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002544 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002545
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002546 mutex_lock(&cache_chain_mutex);
2547 ret = __cache_shrink(cachep);
2548 mutex_unlock(&cache_chain_mutex);
2549 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002550}
2551EXPORT_SYMBOL(kmem_cache_shrink);
2552
2553/**
2554 * kmem_cache_destroy - delete a cache
2555 * @cachep: the cache to destroy
2556 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08002557 * Remove a &struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002558 *
2559 * It is expected this function will be called by a module when it is
2560 * unloaded. This will remove the cache completely, and avoid a duplicate
2561 * cache being allocated each time a module is loaded and unloaded, if the
2562 * module doesn't have persistent in-kernel storage across loads and unloads.
2563 *
2564 * The cache must be empty before calling this function.
2565 *
2566 * The caller must guarantee that noone will allocate memory from the cache
2567 * during the kmem_cache_destroy().
2568 */
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002569void kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002570{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002571 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002572
Linus Torvalds1da177e2005-04-16 15:20:36 -07002573 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002574 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002575 /*
2576 * the chain is never empty, cache_cache is never destroyed
2577 */
2578 list_del(&cachep->next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002579 if (__cache_shrink(cachep)) {
2580 slab_error(cachep, "Can't free all objects");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002581 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002582 mutex_unlock(&cache_chain_mutex);
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002583 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584 }
2585
2586 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002587 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002588
Christoph Lameter117f6eb2006-09-25 23:31:37 -07002589 __kmem_cache_destroy(cachep);
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002590 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002591}
2592EXPORT_SYMBOL(kmem_cache_destroy);
2593
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002594/*
2595 * Get the memory for a slab management obj.
2596 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2597 * always come from malloc_sizes caches. The slab descriptor cannot
2598 * come from the same cache which is getting created because,
2599 * when we are searching for an appropriate cache for these
2600 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2601 * If we are creating a malloc_sizes cache here it would not be visible to
2602 * kmem_find_general_cachep till the initialization is complete.
2603 * Hence we cannot have slabp_cache same as the original cache.
2604 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002605static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002606 int colour_off, gfp_t local_flags,
2607 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002608{
2609 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002610
Linus Torvalds1da177e2005-04-16 15:20:36 -07002611 if (OFF_SLAB(cachep)) {
2612 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002613 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
Christoph Lameter3c517a62006-12-06 20:33:29 -08002614 local_flags & ~GFP_THISNODE, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002615 if (!slabp)
2616 return NULL;
2617 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002618 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002619 colour_off += cachep->slab_size;
2620 }
2621 slabp->inuse = 0;
2622 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002623 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002624 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002625 return slabp;
2626}
2627
2628static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2629{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002630 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002631}
2632
Pekka Enberg343e0d72006-02-01 03:05:50 -08002633static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002634 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002635{
2636 int i;
2637
2638 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002639 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002640#if DEBUG
2641 /* need to poison the objs? */
2642 if (cachep->flags & SLAB_POISON)
2643 poison_obj(cachep, objp, POISON_FREE);
2644 if (cachep->flags & SLAB_STORE_USER)
2645 *dbg_userword(cachep, objp) = NULL;
2646
2647 if (cachep->flags & SLAB_RED_ZONE) {
2648 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2649 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2650 }
2651 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002652 * Constructors are not allowed to allocate memory from the same
2653 * cache which they are a constructor for. Otherwise, deadlock.
2654 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002655 */
2656 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002657 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002658 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002659
2660 if (cachep->flags & SLAB_RED_ZONE) {
2661 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2662 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002663 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002664 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2665 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002666 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002667 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002668 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2669 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002670 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002671 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002672#else
2673 if (cachep->ctor)
2674 cachep->ctor(objp, cachep, ctor_flags);
2675#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002676 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002677 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002678 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002679 slabp->free = 0;
2680}
2681
Pekka Enberg343e0d72006-02-01 03:05:50 -08002682static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002683{
Christoph Lameter4b51d662007-02-10 01:43:10 -08002684 if (CONFIG_ZONE_DMA_FLAG) {
2685 if (flags & GFP_DMA)
2686 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2687 else
2688 BUG_ON(cachep->gfpflags & GFP_DMA);
2689 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002690}
2691
Andrew Mortona737b3e2006-03-22 00:08:11 -08002692static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2693 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002694{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002695 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002696 kmem_bufctl_t next;
2697
2698 slabp->inuse++;
2699 next = slab_bufctl(slabp)[slabp->free];
2700#if DEBUG
2701 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2702 WARN_ON(slabp->nodeid != nodeid);
2703#endif
2704 slabp->free = next;
2705
2706 return objp;
2707}
2708
Andrew Mortona737b3e2006-03-22 00:08:11 -08002709static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2710 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002711{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002712 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002713
2714#if DEBUG
2715 /* Verify that the slab belongs to the intended node */
2716 WARN_ON(slabp->nodeid != nodeid);
2717
Al Viro871751e2006-03-25 03:06:39 -08002718 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002719 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002720 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002721 BUG();
2722 }
2723#endif
2724 slab_bufctl(slabp)[objnr] = slabp->free;
2725 slabp->free = objnr;
2726 slabp->inuse--;
2727}
2728
Pekka Enberg47768742006-06-23 02:03:07 -07002729/*
2730 * Map pages beginning at addr to the given cache and slab. This is required
2731 * for the slab allocator to be able to lookup the cache and slab of a
2732 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2733 */
2734static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2735 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736{
Pekka Enberg47768742006-06-23 02:03:07 -07002737 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738 struct page *page;
2739
Pekka Enberg47768742006-06-23 02:03:07 -07002740 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002741
Pekka Enberg47768742006-06-23 02:03:07 -07002742 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002743 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002744 nr_pages <<= cache->gfporder;
2745
Linus Torvalds1da177e2005-04-16 15:20:36 -07002746 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002747 page_set_cache(page, cache);
2748 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002749 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002750 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002751}
2752
2753/*
2754 * Grow (by 1) the number of slabs within a cache. This is called by
2755 * kmem_cache_alloc() when there are no active objs left in a cache.
2756 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002757static int cache_grow(struct kmem_cache *cachep,
2758 gfp_t flags, int nodeid, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002759{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002760 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002761 size_t offset;
2762 gfp_t local_flags;
2763 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002764 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002765
Andrew Mortona737b3e2006-03-22 00:08:11 -08002766 /*
2767 * Be lazy and only check for valid flags here, keeping it out of the
2768 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002769 */
Christoph Lametercfce6602007-05-06 14:50:17 -07002770 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002771
2772 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Christoph Lametera06d72c2006-12-06 20:33:12 -08002773 local_flags = (flags & GFP_LEVEL_MASK);
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002774 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002775 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002776 l3 = cachep->nodelists[nodeid];
2777 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002778
2779 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002780 offset = l3->colour_next;
2781 l3->colour_next++;
2782 if (l3->colour_next >= cachep->colour)
2783 l3->colour_next = 0;
2784 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002785
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002786 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002787
2788 if (local_flags & __GFP_WAIT)
2789 local_irq_enable();
2790
2791 /*
2792 * The test for missing atomic flag is performed here, rather than
2793 * the more obvious place, simply to reduce the critical path length
2794 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2795 * will eventually be caught here (where it matters).
2796 */
2797 kmem_flagcheck(cachep, flags);
2798
Andrew Mortona737b3e2006-03-22 00:08:11 -08002799 /*
2800 * Get mem for the objs. Attempt to allocate a physical page from
2801 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002802 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002803 if (!objp)
2804 objp = kmem_getpages(cachep, flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002805 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002806 goto failed;
2807
2808 /* Get slab management. */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002809 slabp = alloc_slabmgmt(cachep, objp, offset,
2810 local_flags & ~GFP_THISNODE, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002811 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002812 goto opps1;
2813
Christoph Lametere498be72005-09-09 13:03:32 -07002814 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002815 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002816
2817 cache_init_objs(cachep, slabp, ctor_flags);
2818
2819 if (local_flags & __GFP_WAIT)
2820 local_irq_disable();
2821 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002822 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002823
2824 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002825 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002827 l3->free_objects += cachep->num;
2828 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002829 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002830opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002832failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002833 if (local_flags & __GFP_WAIT)
2834 local_irq_disable();
2835 return 0;
2836}
2837
2838#if DEBUG
2839
2840/*
2841 * Perform extra freeing checks:
2842 * - detect bad pointers.
2843 * - POISON/RED_ZONE checking
2844 * - destructor calls, for caches with POISON+dtor
2845 */
2846static void kfree_debugcheck(const void *objp)
2847{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002848 if (!virt_addr_valid(objp)) {
2849 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002850 (unsigned long)objp);
2851 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002852 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002853}
2854
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002855static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2856{
David Woodhouseb46b8f12007-05-08 00:22:59 -07002857 unsigned long long redzone1, redzone2;
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002858
2859 redzone1 = *dbg_redzone1(cache, obj);
2860 redzone2 = *dbg_redzone2(cache, obj);
2861
2862 /*
2863 * Redzone is ok.
2864 */
2865 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2866 return;
2867
2868 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2869 slab_error(cache, "double free detected");
2870 else
2871 slab_error(cache, "memory outside object was overwritten");
2872
David Woodhouseb46b8f12007-05-08 00:22:59 -07002873 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002874 obj, redzone1, redzone2);
2875}
2876
Pekka Enberg343e0d72006-02-01 03:05:50 -08002877static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002878 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002879{
2880 struct page *page;
2881 unsigned int objnr;
2882 struct slab *slabp;
2883
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002884 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002885 kfree_debugcheck(objp);
Christoph Lameterb49af682007-05-06 14:49:41 -07002886 page = virt_to_head_page(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002887
Pekka Enberg065d41c2005-11-13 16:06:46 -08002888 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002889
2890 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002891 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002892 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2893 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2894 }
2895 if (cachep->flags & SLAB_STORE_USER)
2896 *dbg_userword(cachep, objp) = caller;
2897
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002898 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002899
2900 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002901 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002902
Linus Torvalds1da177e2005-04-16 15:20:36 -07002903 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2904 /* we want to cache poison the object,
2905 * call the destruction callback
2906 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002907 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908 }
Al Viro871751e2006-03-25 03:06:39 -08002909#ifdef CONFIG_DEBUG_SLAB_LEAK
2910 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2911#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002912 if (cachep->flags & SLAB_POISON) {
2913#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002914 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002915 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002916 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002917 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002918 } else {
2919 poison_obj(cachep, objp, POISON_FREE);
2920 }
2921#else
2922 poison_obj(cachep, objp, POISON_FREE);
2923#endif
2924 }
2925 return objp;
2926}
2927
Pekka Enberg343e0d72006-02-01 03:05:50 -08002928static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002929{
2930 kmem_bufctl_t i;
2931 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002932
Linus Torvalds1da177e2005-04-16 15:20:36 -07002933 /* Check slab's freelist to see if this obj is there. */
2934 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2935 entries++;
2936 if (entries > cachep->num || i >= cachep->num)
2937 goto bad;
2938 }
2939 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002940bad:
2941 printk(KERN_ERR "slab: Internal list corruption detected in "
2942 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2943 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002944 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002945 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002946 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002947 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002948 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002949 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002950 }
2951 printk("\n");
2952 BUG();
2953 }
2954}
2955#else
2956#define kfree_debugcheck(x) do { } while(0)
2957#define cache_free_debugcheck(x,objp,z) (objp)
2958#define check_slabp(x,y) do { } while(0)
2959#endif
2960
Pekka Enberg343e0d72006-02-01 03:05:50 -08002961static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002962{
2963 int batchcount;
2964 struct kmem_list3 *l3;
2965 struct array_cache *ac;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002966 int node;
2967
2968 node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002969
2970 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002971 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002972retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002973 batchcount = ac->batchcount;
2974 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002975 /*
2976 * If there was little recent activity on this cache, then
2977 * perform only a partial refill. Otherwise we could generate
2978 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002979 */
2980 batchcount = BATCHREFILL_LIMIT;
2981 }
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002982 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002983
Christoph Lametere498be72005-09-09 13:03:32 -07002984 BUG_ON(ac->avail > 0 || !l3);
2985 spin_lock(&l3->list_lock);
2986
Christoph Lameter3ded1752006-03-25 03:06:44 -08002987 /* See if we can refill from the shared array */
2988 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2989 goto alloc_done;
2990
Linus Torvalds1da177e2005-04-16 15:20:36 -07002991 while (batchcount > 0) {
2992 struct list_head *entry;
2993 struct slab *slabp;
2994 /* Get slab alloc is to come from. */
2995 entry = l3->slabs_partial.next;
2996 if (entry == &l3->slabs_partial) {
2997 l3->free_touched = 1;
2998 entry = l3->slabs_free.next;
2999 if (entry == &l3->slabs_free)
3000 goto must_grow;
3001 }
3002
3003 slabp = list_entry(entry, struct slab, list);
3004 check_slabp(cachep, slabp);
3005 check_spinlock_acquired(cachep);
Pekka Enberg714b81712007-05-06 14:49:03 -07003006
3007 /*
3008 * The slab was either on partial or free list so
3009 * there must be at least one object available for
3010 * allocation.
3011 */
3012 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3013
Linus Torvalds1da177e2005-04-16 15:20:36 -07003014 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003015 STATS_INC_ALLOCED(cachep);
3016 STATS_INC_ACTIVE(cachep);
3017 STATS_SET_HIGH(cachep);
3018
Matthew Dobson78d382d2006-02-01 03:05:47 -08003019 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07003020 node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003021 }
3022 check_slabp(cachep, slabp);
3023
3024 /* move slabp to correct slabp list: */
3025 list_del(&slabp->list);
3026 if (slabp->free == BUFCTL_END)
3027 list_add(&slabp->list, &l3->slabs_full);
3028 else
3029 list_add(&slabp->list, &l3->slabs_partial);
3030 }
3031
Andrew Mortona737b3e2006-03-22 00:08:11 -08003032must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003033 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003034alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07003035 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003036
3037 if (unlikely(!ac->avail)) {
3038 int x;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003039 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07003040
Andrew Mortona737b3e2006-03-22 00:08:11 -08003041 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003042 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003043 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003044 return NULL;
3045
Andrew Mortona737b3e2006-03-22 00:08:11 -08003046 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003047 goto retry;
3048 }
3049 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003050 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003051}
3052
Andrew Mortona737b3e2006-03-22 00:08:11 -08003053static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3054 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003055{
3056 might_sleep_if(flags & __GFP_WAIT);
3057#if DEBUG
3058 kmem_flagcheck(cachep, flags);
3059#endif
3060}
3061
3062#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003063static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3064 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003065{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003066 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003067 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003068 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003069#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003070 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003071 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003072 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003073 else
3074 check_poison_obj(cachep, objp);
3075#else
3076 check_poison_obj(cachep, objp);
3077#endif
3078 poison_obj(cachep, objp, POISON_INUSE);
3079 }
3080 if (cachep->flags & SLAB_STORE_USER)
3081 *dbg_userword(cachep, objp) = caller;
3082
3083 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003084 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3085 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3086 slab_error(cachep, "double free, or memory outside"
3087 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003088 printk(KERN_ERR
David Woodhouseb46b8f12007-05-08 00:22:59 -07003089 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08003090 objp, *dbg_redzone1(cachep, objp),
3091 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003092 }
3093 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3094 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3095 }
Al Viro871751e2006-03-25 03:06:39 -08003096#ifdef CONFIG_DEBUG_SLAB_LEAK
3097 {
3098 struct slab *slabp;
3099 unsigned objnr;
3100
Christoph Lameterb49af682007-05-06 14:49:41 -07003101 slabp = page_get_slab(virt_to_head_page(objp));
Al Viro871751e2006-03-25 03:06:39 -08003102 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3103 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3104 }
3105#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003106 objp += obj_offset(cachep);
Christoph Lameter4f104932007-05-06 14:50:17 -07003107 if (cachep->ctor && cachep->flags & SLAB_POISON)
3108 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
Kevin Hilmana44b56d2006-12-06 20:32:11 -08003109#if ARCH_SLAB_MINALIGN
3110 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3111 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3112 objp, ARCH_SLAB_MINALIGN);
3113 }
3114#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003115 return objp;
3116}
3117#else
3118#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3119#endif
3120
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003121#ifdef CONFIG_FAILSLAB
3122
3123static struct failslab_attr {
3124
3125 struct fault_attr attr;
3126
3127 u32 ignore_gfp_wait;
3128#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3129 struct dentry *ignore_gfp_wait_file;
3130#endif
3131
3132} failslab = {
3133 .attr = FAULT_ATTR_INITIALIZER,
Don Mullis6b1b60f2006-12-08 02:39:53 -08003134 .ignore_gfp_wait = 1,
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003135};
3136
3137static int __init setup_failslab(char *str)
3138{
3139 return setup_fault_attr(&failslab.attr, str);
3140}
3141__setup("failslab=", setup_failslab);
3142
3143static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3144{
3145 if (cachep == &cache_cache)
3146 return 0;
3147 if (flags & __GFP_NOFAIL)
3148 return 0;
3149 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3150 return 0;
3151
3152 return should_fail(&failslab.attr, obj_size(cachep));
3153}
3154
3155#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3156
3157static int __init failslab_debugfs(void)
3158{
3159 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3160 struct dentry *dir;
3161 int err;
3162
Akinobu Mita824ebef2007-05-06 14:49:58 -07003163 err = init_fault_attr_dentries(&failslab.attr, "failslab");
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003164 if (err)
3165 return err;
3166 dir = failslab.attr.dentries.dir;
3167
3168 failslab.ignore_gfp_wait_file =
3169 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3170 &failslab.ignore_gfp_wait);
3171
3172 if (!failslab.ignore_gfp_wait_file) {
3173 err = -ENOMEM;
3174 debugfs_remove(failslab.ignore_gfp_wait_file);
3175 cleanup_fault_attr_dentries(&failslab.attr);
3176 }
3177
3178 return err;
3179}
3180
3181late_initcall(failslab_debugfs);
3182
3183#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3184
3185#else /* CONFIG_FAILSLAB */
3186
3187static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3188{
3189 return 0;
3190}
3191
3192#endif /* CONFIG_FAILSLAB */
3193
Pekka Enberg343e0d72006-02-01 03:05:50 -08003194static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003195{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003196 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003197 struct array_cache *ac;
3198
Alok N Kataria5c382302005-09-27 21:45:46 -07003199 check_irq_off();
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003200
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003201 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003202 if (likely(ac->avail)) {
3203 STATS_INC_ALLOCHIT(cachep);
3204 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003205 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003206 } else {
3207 STATS_INC_ALLOCMISS(cachep);
3208 objp = cache_alloc_refill(cachep, flags);
3209 }
Alok N Kataria5c382302005-09-27 21:45:46 -07003210 return objp;
3211}
3212
Christoph Lametere498be72005-09-09 13:03:32 -07003213#ifdef CONFIG_NUMA
3214/*
Paul Jacksonb2455392006-03-24 03:16:12 -08003215 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08003216 *
3217 * If we are in_interrupt, then process context, including cpusets and
3218 * mempolicy, may not apply and should not be used for allocation policy.
3219 */
3220static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3221{
3222 int nid_alloc, nid_here;
3223
Christoph Lameter765c4502006-09-27 01:50:08 -07003224 if (in_interrupt() || (flags & __GFP_THISNODE))
Paul Jacksonc61afb12006-03-24 03:16:08 -08003225 return NULL;
3226 nid_alloc = nid_here = numa_node_id();
3227 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3228 nid_alloc = cpuset_mem_spread_node();
3229 else if (current->mempolicy)
3230 nid_alloc = slab_node(current->mempolicy);
3231 if (nid_alloc != nid_here)
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003232 return ____cache_alloc_node(cachep, flags, nid_alloc);
Paul Jacksonc61afb12006-03-24 03:16:08 -08003233 return NULL;
3234}
3235
3236/*
Christoph Lameter765c4502006-09-27 01:50:08 -07003237 * Fallback function if there was no memory available and no objects on a
Christoph Lameter3c517a62006-12-06 20:33:29 -08003238 * certain node and fall back is permitted. First we scan all the
3239 * available nodelists for available objects. If that fails then we
3240 * perform an allocation without specifying a node. This allows the page
3241 * allocator to do its reclaim / fallback magic. We then insert the
3242 * slab into the proper nodelist and then allocate from it.
Christoph Lameter765c4502006-09-27 01:50:08 -07003243 */
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003244static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
Christoph Lameter765c4502006-09-27 01:50:08 -07003245{
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003246 struct zonelist *zonelist;
3247 gfp_t local_flags;
Christoph Lameter765c4502006-09-27 01:50:08 -07003248 struct zone **z;
3249 void *obj = NULL;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003250 int nid;
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003251
3252 if (flags & __GFP_THISNODE)
3253 return NULL;
3254
3255 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3256 ->node_zonelists[gfp_zone(flags)];
3257 local_flags = (flags & GFP_LEVEL_MASK);
Christoph Lameter765c4502006-09-27 01:50:08 -07003258
Christoph Lameter3c517a62006-12-06 20:33:29 -08003259retry:
3260 /*
3261 * Look through allowed nodes for objects available
3262 * from existing per node queues.
3263 */
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003264 for (z = zonelist->zones; *z && !obj; z++) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003265 nid = zone_to_nid(*z);
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003266
Paul Jackson02a0e532006-12-13 00:34:25 -08003267 if (cpuset_zone_allowed_hardwall(*z, flags) &&
Christoph Lameter3c517a62006-12-06 20:33:29 -08003268 cache->nodelists[nid] &&
3269 cache->nodelists[nid]->free_objects)
3270 obj = ____cache_alloc_node(cache,
3271 flags | GFP_THISNODE, nid);
3272 }
3273
Christoph Lametercfce6602007-05-06 14:50:17 -07003274 if (!obj) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003275 /*
3276 * This allocation will be performed within the constraints
3277 * of the current cpuset / memory policy requirements.
3278 * We may trigger various forms of reclaim on the allowed
3279 * set and go into memory reserves if necessary.
3280 */
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003281 if (local_flags & __GFP_WAIT)
3282 local_irq_enable();
3283 kmem_flagcheck(cache, flags);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003284 obj = kmem_getpages(cache, flags, -1);
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003285 if (local_flags & __GFP_WAIT)
3286 local_irq_disable();
Christoph Lameter3c517a62006-12-06 20:33:29 -08003287 if (obj) {
3288 /*
3289 * Insert into the appropriate per node queues
3290 */
3291 nid = page_to_nid(virt_to_page(obj));
3292 if (cache_grow(cache, flags, nid, obj)) {
3293 obj = ____cache_alloc_node(cache,
3294 flags | GFP_THISNODE, nid);
3295 if (!obj)
3296 /*
3297 * Another processor may allocate the
3298 * objects in the slab since we are
3299 * not holding any locks.
3300 */
3301 goto retry;
3302 } else {
Hugh Dickinsb6a60452007-01-05 16:36:36 -08003303 /* cache_grow already freed obj */
Christoph Lameter3c517a62006-12-06 20:33:29 -08003304 obj = NULL;
3305 }
3306 }
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003307 }
Christoph Lameter765c4502006-09-27 01:50:08 -07003308 return obj;
3309}
3310
3311/*
Christoph Lametere498be72005-09-09 13:03:32 -07003312 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07003313 */
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003314static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003315 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07003316{
3317 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003318 struct slab *slabp;
3319 struct kmem_list3 *l3;
3320 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003321 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003322
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003323 l3 = cachep->nodelists[nodeid];
3324 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003325
Andrew Mortona737b3e2006-03-22 00:08:11 -08003326retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003327 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003328 spin_lock(&l3->list_lock);
3329 entry = l3->slabs_partial.next;
3330 if (entry == &l3->slabs_partial) {
3331 l3->free_touched = 1;
3332 entry = l3->slabs_free.next;
3333 if (entry == &l3->slabs_free)
3334 goto must_grow;
3335 }
Christoph Lametere498be72005-09-09 13:03:32 -07003336
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003337 slabp = list_entry(entry, struct slab, list);
3338 check_spinlock_acquired_node(cachep, nodeid);
3339 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003340
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003341 STATS_INC_NODEALLOCS(cachep);
3342 STATS_INC_ACTIVE(cachep);
3343 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003344
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003345 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003346
Matthew Dobson78d382d2006-02-01 03:05:47 -08003347 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003348 check_slabp(cachep, slabp);
3349 l3->free_objects--;
3350 /* move slabp to correct slabp list: */
3351 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003352
Andrew Mortona737b3e2006-03-22 00:08:11 -08003353 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003354 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003355 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003356 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003357
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003358 spin_unlock(&l3->list_lock);
3359 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003360
Andrew Mortona737b3e2006-03-22 00:08:11 -08003361must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003362 spin_unlock(&l3->list_lock);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003363 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
Christoph Lameter765c4502006-09-27 01:50:08 -07003364 if (x)
3365 goto retry;
Christoph Lametere498be72005-09-09 13:03:32 -07003366
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003367 return fallback_alloc(cachep, flags);
Christoph Lameter765c4502006-09-27 01:50:08 -07003368
Andrew Mortona737b3e2006-03-22 00:08:11 -08003369done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003370 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003371}
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003372
3373/**
3374 * kmem_cache_alloc_node - Allocate an object on the specified node
3375 * @cachep: The cache to allocate from.
3376 * @flags: See kmalloc().
3377 * @nodeid: node number of the target node.
3378 * @caller: return address of caller, used for debug information
3379 *
3380 * Identical to kmem_cache_alloc but it will allocate memory on the given
3381 * node, which can improve the performance for cpu bound structures.
3382 *
3383 * Fallback to other node is possible if __GFP_THISNODE is not set.
3384 */
3385static __always_inline void *
3386__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3387 void *caller)
3388{
3389 unsigned long save_flags;
3390 void *ptr;
3391
Akinobu Mita824ebef2007-05-06 14:49:58 -07003392 if (should_failslab(cachep, flags))
3393 return NULL;
3394
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003395 cache_alloc_debugcheck_before(cachep, flags);
3396 local_irq_save(save_flags);
3397
3398 if (unlikely(nodeid == -1))
3399 nodeid = numa_node_id();
3400
3401 if (unlikely(!cachep->nodelists[nodeid])) {
3402 /* Node not bootstrapped yet */
3403 ptr = fallback_alloc(cachep, flags);
3404 goto out;
3405 }
3406
3407 if (nodeid == numa_node_id()) {
3408 /*
3409 * Use the locally cached objects if possible.
3410 * However ____cache_alloc does not allow fallback
3411 * to other nodes. It may fail while we still have
3412 * objects on other nodes available.
3413 */
3414 ptr = ____cache_alloc(cachep, flags);
3415 if (ptr)
3416 goto out;
3417 }
3418 /* ___cache_alloc_node can fall back to other nodes */
3419 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3420 out:
3421 local_irq_restore(save_flags);
3422 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3423
3424 return ptr;
3425}
3426
3427static __always_inline void *
3428__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3429{
3430 void *objp;
3431
3432 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3433 objp = alternate_node_alloc(cache, flags);
3434 if (objp)
3435 goto out;
3436 }
3437 objp = ____cache_alloc(cache, flags);
3438
3439 /*
3440 * We may just have run out of memory on the local node.
3441 * ____cache_alloc_node() knows how to locate memory on other nodes
3442 */
3443 if (!objp)
3444 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3445
3446 out:
3447 return objp;
3448}
3449#else
3450
3451static __always_inline void *
3452__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3453{
3454 return ____cache_alloc(cachep, flags);
3455}
3456
3457#endif /* CONFIG_NUMA */
3458
3459static __always_inline void *
3460__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3461{
3462 unsigned long save_flags;
3463 void *objp;
3464
Akinobu Mita824ebef2007-05-06 14:49:58 -07003465 if (should_failslab(cachep, flags))
3466 return NULL;
3467
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003468 cache_alloc_debugcheck_before(cachep, flags);
3469 local_irq_save(save_flags);
3470 objp = __do_cache_alloc(cachep, flags);
3471 local_irq_restore(save_flags);
3472 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3473 prefetchw(objp);
3474
3475 return objp;
3476}
Christoph Lametere498be72005-09-09 13:03:32 -07003477
3478/*
3479 * Caller needs to acquire correct kmem_list's list_lock
3480 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003481static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003482 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003483{
3484 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003485 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003486
3487 for (i = 0; i < nr_objects; i++) {
3488 void *objp = objpp[i];
3489 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003490
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003491 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003492 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003493 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003494 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003495 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003496 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003497 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003498 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003499 check_slabp(cachep, slabp);
3500
3501 /* fixup slab chains */
3502 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003503 if (l3->free_objects > l3->free_limit) {
3504 l3->free_objects -= cachep->num;
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07003505 /* No need to drop any previously held
3506 * lock here, even if we have a off-slab slab
3507 * descriptor it is guaranteed to come from
3508 * a different cache, refer to comments before
3509 * alloc_slabmgmt.
3510 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003511 slab_destroy(cachep, slabp);
3512 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003513 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003514 }
3515 } else {
3516 /* Unconditionally move a slab to the end of the
3517 * partial list on free - maximum time for the
3518 * other objects to be freed, too.
3519 */
Christoph Lametere498be72005-09-09 13:03:32 -07003520 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003521 }
3522 }
3523}
3524
Pekka Enberg343e0d72006-02-01 03:05:50 -08003525static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003526{
3527 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003528 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003529 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003530
3531 batchcount = ac->batchcount;
3532#if DEBUG
3533 BUG_ON(!batchcount || batchcount > ac->avail);
3534#endif
3535 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003536 l3 = cachep->nodelists[node];
Ingo Molnar873623d2006-07-13 14:44:38 +02003537 spin_lock(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003538 if (l3->shared) {
3539 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003540 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003541 if (max) {
3542 if (batchcount > max)
3543 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003544 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003545 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003546 shared_array->avail += batchcount;
3547 goto free_done;
3548 }
3549 }
3550
Christoph Lameterff694162005-09-22 21:44:02 -07003551 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003552free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553#if STATS
3554 {
3555 int i = 0;
3556 struct list_head *p;
3557
Christoph Lametere498be72005-09-09 13:03:32 -07003558 p = l3->slabs_free.next;
3559 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003560 struct slab *slabp;
3561
3562 slabp = list_entry(p, struct slab, list);
3563 BUG_ON(slabp->inuse);
3564
3565 i++;
3566 p = p->next;
3567 }
3568 STATS_SET_FREEABLE(cachep, i);
3569 }
3570#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003571 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003572 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003573 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003574}
3575
3576/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003577 * Release an obj back to its cache. If the obj has a constructed state, it must
3578 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003579 */
Ingo Molnar873623d2006-07-13 14:44:38 +02003580static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003581{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003582 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583
3584 check_irq_off();
3585 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3586
Siddha, Suresh B62918a02007-05-02 19:27:18 +02003587 if (use_alien_caches && cache_free_alien(cachep, objp))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003588 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003589
Linus Torvalds1da177e2005-04-16 15:20:36 -07003590 if (likely(ac->avail < ac->limit)) {
3591 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003592 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003593 return;
3594 } else {
3595 STATS_INC_FREEMISS(cachep);
3596 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003597 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003598 }
3599}
3600
3601/**
3602 * kmem_cache_alloc - Allocate an object
3603 * @cachep: The cache to allocate from.
3604 * @flags: See kmalloc().
3605 *
3606 * Allocate an object from this cache. The flags are only relevant
3607 * if the cache has no available objects.
3608 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003609void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003610{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003611 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003612}
3613EXPORT_SYMBOL(kmem_cache_alloc);
3614
3615/**
Rolf Eike Beerb8008b22006-07-30 03:04:04 -07003616 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003617 * @cache: The cache to allocate from.
3618 * @flags: See kmalloc().
3619 *
3620 * Allocate an object from this cache and set the allocated memory to zero.
3621 * The flags are only relevant if the cache has no available objects.
3622 */
3623void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3624{
3625 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3626 if (ret)
3627 memset(ret, 0, obj_size(cache));
3628 return ret;
3629}
3630EXPORT_SYMBOL(kmem_cache_zalloc);
3631
3632/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003633 * kmem_ptr_validate - check if an untrusted pointer might
3634 * be a slab entry.
3635 * @cachep: the cache we're checking against
3636 * @ptr: pointer to validate
3637 *
3638 * This verifies that the untrusted pointer looks sane:
3639 * it is _not_ a guarantee that the pointer is actually
3640 * part of the slab cache in question, but it at least
3641 * validates that the pointer can be dereferenced and
3642 * looks half-way sane.
3643 *
3644 * Currently only used for dentry validation.
3645 */
Christoph Lameterb7f869a22006-12-22 01:06:44 -08003646int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003647{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003648 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003649 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003650 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003651 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003652 struct page *page;
3653
3654 if (unlikely(addr < min_addr))
3655 goto out;
3656 if (unlikely(addr > (unsigned long)high_memory - size))
3657 goto out;
3658 if (unlikely(addr & align_mask))
3659 goto out;
3660 if (unlikely(!kern_addr_valid(addr)))
3661 goto out;
3662 if (unlikely(!kern_addr_valid(addr + size - 1)))
3663 goto out;
3664 page = virt_to_page(ptr);
3665 if (unlikely(!PageSlab(page)))
3666 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003667 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003668 goto out;
3669 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003670out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003671 return 0;
3672}
3673
3674#ifdef CONFIG_NUMA
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003675void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3676{
3677 return __cache_alloc_node(cachep, flags, nodeid,
3678 __builtin_return_address(0));
3679}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003680EXPORT_SYMBOL(kmem_cache_alloc_node);
3681
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003682static __always_inline void *
3683__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003684{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003685 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003686
3687 cachep = kmem_find_general_cachep(size, flags);
3688 if (unlikely(cachep == NULL))
3689 return NULL;
3690 return kmem_cache_alloc_node(cachep, flags, node);
3691}
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003692
3693#ifdef CONFIG_DEBUG_SLAB
3694void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695{
3696 return __do_kmalloc_node(size, flags, node,
3697 __builtin_return_address(0));
3698}
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003699EXPORT_SYMBOL(__kmalloc_node);
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003700
3701void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3702 int node, void *caller)
3703{
3704 return __do_kmalloc_node(size, flags, node, caller);
3705}
3706EXPORT_SYMBOL(__kmalloc_node_track_caller);
3707#else
3708void *__kmalloc_node(size_t size, gfp_t flags, int node)
3709{
3710 return __do_kmalloc_node(size, flags, node, NULL);
3711}
3712EXPORT_SYMBOL(__kmalloc_node);
3713#endif /* CONFIG_DEBUG_SLAB */
3714#endif /* CONFIG_NUMA */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003715
3716/**
Paul Drynoff800590f2006-06-23 02:03:48 -07003717 * __do_kmalloc - allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07003718 * @size: how many bytes of memory are required.
Paul Drynoff800590f2006-06-23 02:03:48 -07003719 * @flags: the type of memory to allocate (see kmalloc).
Randy Dunlap911851e2006-03-22 00:08:14 -08003720 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003721 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003722static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3723 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003724{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003725 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003726
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003727 /* If you want to save a few bytes .text space: replace
3728 * __ with kmem_.
3729 * Then kmalloc uses the uninlined functions instead of the inline
3730 * functions.
3731 */
3732 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003733 if (unlikely(cachep == NULL))
3734 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003735 return __cache_alloc(cachep, flags, caller);
3736}
3737
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003738
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003739#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003740void *__kmalloc(size_t size, gfp_t flags)
3741{
Al Viro871751e2006-03-25 03:06:39 -08003742 return __do_kmalloc(size, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003743}
3744EXPORT_SYMBOL(__kmalloc);
3745
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003746void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3747{
3748 return __do_kmalloc(size, flags, caller);
3749}
3750EXPORT_SYMBOL(__kmalloc_track_caller);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003751
3752#else
3753void *__kmalloc(size_t size, gfp_t flags)
3754{
3755 return __do_kmalloc(size, flags, NULL);
3756}
3757EXPORT_SYMBOL(__kmalloc);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003758#endif
3759
Linus Torvalds1da177e2005-04-16 15:20:36 -07003760/**
Pekka Enbergfd76bab2007-05-06 14:48:40 -07003761 * krealloc - reallocate memory. The contents will remain unchanged.
Pekka Enbergfd76bab2007-05-06 14:48:40 -07003762 * @p: object to reallocate memory for.
3763 * @new_size: how many bytes of memory are required.
3764 * @flags: the type of memory to allocate.
3765 *
3766 * The contents of the object pointed to are preserved up to the
3767 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3768 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3769 * %NULL pointer, the object pointed to is freed.
3770 */
3771void *krealloc(const void *p, size_t new_size, gfp_t flags)
3772{
3773 struct kmem_cache *cache, *new_cache;
3774 void *ret;
3775
3776 if (unlikely(!p))
3777 return kmalloc_track_caller(new_size, flags);
3778
3779 if (unlikely(!new_size)) {
3780 kfree(p);
3781 return NULL;
3782 }
3783
3784 cache = virt_to_cache(p);
3785 new_cache = __find_general_cachep(new_size, flags);
3786
3787 /*
3788 * If new size fits in the current cache, bail out.
3789 */
3790 if (likely(cache == new_cache))
3791 return (void *)p;
3792
3793 /*
3794 * We are on the slow-path here so do not use __cache_alloc
3795 * because it bloats kernel text.
3796 */
3797 ret = kmalloc_track_caller(new_size, flags);
3798 if (ret) {
3799 memcpy(ret, p, min(new_size, ksize(p)));
3800 kfree(p);
3801 }
3802 return ret;
3803}
3804EXPORT_SYMBOL(krealloc);
3805
3806/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003807 * kmem_cache_free - Deallocate an object
3808 * @cachep: The cache the allocation was from.
3809 * @objp: The previously allocated object.
3810 *
3811 * Free an object which was previously allocated from this
3812 * cache.
3813 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003814void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003815{
3816 unsigned long flags;
3817
Pekka Enbergddc2e812006-06-23 02:03:40 -07003818 BUG_ON(virt_to_cache(objp) != cachep);
3819
Linus Torvalds1da177e2005-04-16 15:20:36 -07003820 local_irq_save(flags);
Ingo Molnar898552c2007-02-10 01:44:57 -08003821 debug_check_no_locks_freed(objp, obj_size(cachep));
Ingo Molnar873623d2006-07-13 14:44:38 +02003822 __cache_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003823 local_irq_restore(flags);
3824}
3825EXPORT_SYMBOL(kmem_cache_free);
3826
3827/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003828 * kfree - free previously allocated memory
3829 * @objp: pointer returned by kmalloc.
3830 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003831 * If @objp is NULL, no operation is performed.
3832 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003833 * Don't free memory not originally allocated by kmalloc()
3834 * or you will run into trouble.
3835 */
3836void kfree(const void *objp)
3837{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003838 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003839 unsigned long flags;
3840
3841 if (unlikely(!objp))
3842 return;
3843 local_irq_save(flags);
3844 kfree_debugcheck(objp);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003845 c = virt_to_cache(objp);
Ingo Molnarf9b84042006-06-27 02:54:49 -07003846 debug_check_no_locks_freed(objp, obj_size(c));
Ingo Molnar873623d2006-07-13 14:44:38 +02003847 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003848 local_irq_restore(flags);
3849}
3850EXPORT_SYMBOL(kfree);
3851
Pekka Enberg343e0d72006-02-01 03:05:50 -08003852unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003853{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003854 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003855}
3856EXPORT_SYMBOL(kmem_cache_size);
3857
Pekka Enberg343e0d72006-02-01 03:05:50 -08003858const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003859{
3860 return cachep->name;
3861}
3862EXPORT_SYMBOL_GPL(kmem_cache_name);
3863
Christoph Lametere498be72005-09-09 13:03:32 -07003864/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003865 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003866 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003867static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003868{
3869 int node;
3870 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003871 struct array_cache *new_shared;
Paul Menage3395ee02006-12-06 20:32:16 -08003872 struct array_cache **new_alien = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003873
3874 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003875
Paul Menage3395ee02006-12-06 20:32:16 -08003876 if (use_alien_caches) {
3877 new_alien = alloc_alien_cache(node, cachep->limit);
3878 if (!new_alien)
3879 goto fail;
3880 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003881
Eric Dumazet63109842007-05-06 14:49:28 -07003882 new_shared = NULL;
3883 if (cachep->shared) {
3884 new_shared = alloc_arraycache(node,
Christoph Lameter0718dc22006-03-25 03:06:47 -08003885 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003886 0xbaadf00d);
Eric Dumazet63109842007-05-06 14:49:28 -07003887 if (!new_shared) {
3888 free_alien_cache(new_alien);
3889 goto fail;
3890 }
Christoph Lameter0718dc22006-03-25 03:06:47 -08003891 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003892
Andrew Mortona737b3e2006-03-22 00:08:11 -08003893 l3 = cachep->nodelists[node];
3894 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003895 struct array_cache *shared = l3->shared;
3896
Christoph Lametere498be72005-09-09 13:03:32 -07003897 spin_lock_irq(&l3->list_lock);
3898
Christoph Lametercafeb022006-03-25 03:06:46 -08003899 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003900 free_block(cachep, shared->entry,
3901 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003902
Christoph Lametercafeb022006-03-25 03:06:46 -08003903 l3->shared = new_shared;
3904 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003905 l3->alien = new_alien;
3906 new_alien = NULL;
3907 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003908 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003909 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003910 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003911 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003912 free_alien_cache(new_alien);
3913 continue;
3914 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003915 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003916 if (!l3) {
3917 free_alien_cache(new_alien);
3918 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003919 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003920 }
Christoph Lametere498be72005-09-09 13:03:32 -07003921
3922 kmem_list3_init(l3);
3923 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003924 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003925 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003926 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003927 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003928 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003929 cachep->nodelists[node] = l3;
3930 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003931 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003932
Andrew Mortona737b3e2006-03-22 00:08:11 -08003933fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003934 if (!cachep->next.next) {
3935 /* Cache is not active yet. Roll back what we did */
3936 node--;
3937 while (node >= 0) {
3938 if (cachep->nodelists[node]) {
3939 l3 = cachep->nodelists[node];
3940
3941 kfree(l3->shared);
3942 free_alien_cache(l3->alien);
3943 kfree(l3);
3944 cachep->nodelists[node] = NULL;
3945 }
3946 node--;
3947 }
3948 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003949 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003950}
3951
Linus Torvalds1da177e2005-04-16 15:20:36 -07003952struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003953 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003954 struct array_cache *new[NR_CPUS];
3955};
3956
3957static void do_ccupdate_local(void *info)
3958{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003959 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003960 struct array_cache *old;
3961
3962 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003963 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003964
Linus Torvalds1da177e2005-04-16 15:20:36 -07003965 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3966 new->new[smp_processor_id()] = old;
3967}
3968
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003969/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003970static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3971 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003972{
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003973 struct ccupdate_struct *new;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003974 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003975
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003976 new = kzalloc(sizeof(*new), GFP_KERNEL);
3977 if (!new)
3978 return -ENOMEM;
3979
Christoph Lametere498be72005-09-09 13:03:32 -07003980 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003981 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003982 batchcount);
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003983 if (!new->new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003984 for (i--; i >= 0; i--)
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003985 kfree(new->new[i]);
3986 kfree(new);
Christoph Lametere498be72005-09-09 13:03:32 -07003987 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003988 }
3989 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003990 new->cachep = cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003991
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003992 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003993
Linus Torvalds1da177e2005-04-16 15:20:36 -07003994 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003995 cachep->batchcount = batchcount;
3996 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003997 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003998
Christoph Lametere498be72005-09-09 13:03:32 -07003999 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004000 struct array_cache *ccold = new->new[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07004001 if (!ccold)
4002 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07004003 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07004004 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07004005 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004006 kfree(ccold);
4007 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004008 kfree(new);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004009 return alloc_kmemlist(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004010}
4011
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08004012/* Called with cache_chain_mutex held always */
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004013static int enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004014{
4015 int err;
4016 int limit, shared;
4017
Andrew Mortona737b3e2006-03-22 00:08:11 -08004018 /*
4019 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004020 * - create a LIFO ordering, i.e. return objects that are cache-warm
4021 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08004022 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07004023 * bufctl chains: array operations are cheaper.
4024 * The numbers are guessed, we should auto-tune as described by
4025 * Bonwick.
4026 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004027 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004028 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004029 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004030 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004031 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004032 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004033 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004034 limit = 54;
4035 else
4036 limit = 120;
4037
Andrew Mortona737b3e2006-03-22 00:08:11 -08004038 /*
4039 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07004040 * allocation behaviour: Most allocs on one cpu, most free operations
4041 * on another cpu. For these cases, an efficient object passing between
4042 * cpus is necessary. This is provided by a shared array. The array
4043 * replaces Bonwick's magazine layer.
4044 * On uniprocessor, it's functionally equivalent (but less efficient)
4045 * to a larger limit. Thus disabled by default.
4046 */
4047 shared = 0;
Eric Dumazet364fbb22007-05-06 14:49:27 -07004048 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004049 shared = 8;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004050
4051#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08004052 /*
4053 * With debugging enabled, large batchcount lead to excessively long
4054 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07004055 */
4056 if (limit > 32)
4057 limit = 32;
4058#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004059 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004060 if (err)
4061 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004062 cachep->name, -err);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004063 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004064}
4065
Christoph Lameter1b552532006-03-22 00:09:07 -08004066/*
4067 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004068 * necessary. Note that the l3 listlock also protects the array_cache
4069 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08004070 */
4071void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4072 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004073{
4074 int tofree;
4075
Christoph Lameter1b552532006-03-22 00:09:07 -08004076 if (!ac || !ac->avail)
4077 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004078 if (ac->touched && !force) {
4079 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004080 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08004081 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004082 if (ac->avail) {
4083 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4084 if (tofree > ac->avail)
4085 tofree = (ac->avail + 1) / 2;
4086 free_block(cachep, ac->entry, tofree, node);
4087 ac->avail -= tofree;
4088 memmove(ac->entry, &(ac->entry[tofree]),
4089 sizeof(void *) * ac->avail);
4090 }
Christoph Lameter1b552532006-03-22 00:09:07 -08004091 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004092 }
4093}
4094
4095/**
4096 * cache_reap - Reclaim memory from caches.
Randy Dunlap05fb6bf2007-02-28 20:12:13 -08004097 * @w: work descriptor
Linus Torvalds1da177e2005-04-16 15:20:36 -07004098 *
4099 * Called from workqueue/eventd every few seconds.
4100 * Purpose:
4101 * - clear the per-cpu caches for this CPU.
4102 * - return freeable pages to the main free memory pool.
4103 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08004104 * If we cannot acquire the cache chain mutex then just give up - we'll try
4105 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004106 */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004107static void cache_reap(struct work_struct *w)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004108{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004109 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07004110 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08004111 int node = numa_node_id();
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004112 struct delayed_work *work =
4113 container_of(w, struct delayed_work, work);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004114
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004115 if (!mutex_trylock(&cache_chain_mutex))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004116 /* Give up. Setup the next iteration. */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004117 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004118
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004119 list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004120 check_irq_on();
4121
Christoph Lameter35386e32006-03-22 00:09:05 -08004122 /*
4123 * We only take the l3 lock if absolutely necessary and we
4124 * have established with reasonable certainty that
4125 * we can do some work if the lock was obtained.
4126 */
Christoph Lameteraab22072006-03-22 00:09:06 -08004127 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08004128
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004129 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004130
Christoph Lameteraab22072006-03-22 00:09:06 -08004131 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004132
Christoph Lameter35386e32006-03-22 00:09:05 -08004133 /*
4134 * These are racy checks but it does not matter
4135 * if we skip one check or scan twice.
4136 */
Christoph Lametere498be72005-09-09 13:03:32 -07004137 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08004138 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004139
Christoph Lametere498be72005-09-09 13:03:32 -07004140 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004141
Christoph Lameteraab22072006-03-22 00:09:06 -08004142 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004143
Christoph Lametered11d9e2006-06-30 01:55:45 -07004144 if (l3->free_touched)
Christoph Lametere498be72005-09-09 13:03:32 -07004145 l3->free_touched = 0;
Christoph Lametered11d9e2006-06-30 01:55:45 -07004146 else {
4147 int freed;
4148
4149 freed = drain_freelist(searchp, l3, (l3->free_limit +
4150 5 * searchp->num - 1) / (5 * searchp->num));
4151 STATS_ADD_REAPED(searchp, freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004152 }
Christoph Lameter35386e32006-03-22 00:09:05 -08004153next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004154 cond_resched();
4155 }
4156 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004157 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004158 next_reap_node();
Christoph Lameter2244b952006-06-30 01:55:33 -07004159 refresh_cpu_vm_stats(smp_processor_id());
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004160out:
Andrew Mortona737b3e2006-03-22 00:08:11 -08004161 /* Set up the next iteration */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004162 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004163}
4164
4165#ifdef CONFIG_PROC_FS
4166
Pekka Enberg85289f92006-01-08 01:00:36 -08004167static void print_slabinfo_header(struct seq_file *m)
4168{
4169 /*
4170 * Output format version, so at least we can change it
4171 * without _too_ many complaints.
4172 */
4173#if STATS
4174 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4175#else
4176 seq_puts(m, "slabinfo - version: 2.1\n");
4177#endif
4178 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4179 "<objperslab> <pagesperslab>");
4180 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4181 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4182#if STATS
4183 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004184 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08004185 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4186#endif
4187 seq_putc(m, '\n');
4188}
4189
Linus Torvalds1da177e2005-04-16 15:20:36 -07004190static void *s_start(struct seq_file *m, loff_t *pos)
4191{
4192 loff_t n = *pos;
4193 struct list_head *p;
4194
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004195 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08004196 if (!n)
4197 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004198 p = cache_chain.next;
4199 while (n--) {
4200 p = p->next;
4201 if (p == &cache_chain)
4202 return NULL;
4203 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08004204 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004205}
4206
4207static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4208{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004209 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004210 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08004211 return cachep->next.next == &cache_chain ?
4212 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004213}
4214
4215static void s_stop(struct seq_file *m, void *p)
4216{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004217 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004218}
4219
4220static int s_show(struct seq_file *m, void *p)
4221{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004222 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004223 struct slab *slabp;
4224 unsigned long active_objs;
4225 unsigned long num_objs;
4226 unsigned long active_slabs = 0;
4227 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004228 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004229 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07004230 int node;
4231 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004232
Linus Torvalds1da177e2005-04-16 15:20:36 -07004233 active_objs = 0;
4234 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004235 for_each_online_node(node) {
4236 l3 = cachep->nodelists[node];
4237 if (!l3)
4238 continue;
4239
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004240 check_irq_on();
4241 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07004242
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004243 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004244 if (slabp->inuse != cachep->num && !error)
4245 error = "slabs_full accounting error";
4246 active_objs += cachep->num;
4247 active_slabs++;
4248 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004249 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004250 if (slabp->inuse == cachep->num && !error)
4251 error = "slabs_partial inuse accounting error";
4252 if (!slabp->inuse && !error)
4253 error = "slabs_partial/inuse accounting error";
4254 active_objs += slabp->inuse;
4255 active_slabs++;
4256 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004257 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004258 if (slabp->inuse && !error)
4259 error = "slabs_free/inuse accounting error";
4260 num_slabs++;
4261 }
4262 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08004263 if (l3->shared)
4264 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07004265
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004266 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004267 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004268 num_slabs += active_slabs;
4269 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07004270 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004271 error = "free_objects accounting error";
4272
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004273 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004274 if (error)
4275 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4276
4277 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004278 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004279 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004280 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004281 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07004282 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004283 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004284#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004285 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004286 unsigned long high = cachep->high_mark;
4287 unsigned long allocs = cachep->num_allocations;
4288 unsigned long grown = cachep->grown;
4289 unsigned long reaped = cachep->reaped;
4290 unsigned long errors = cachep->errors;
4291 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004292 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07004293 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004294 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004295
Christoph Lametere498be72005-09-09 13:03:32 -07004296 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004297 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08004298 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004299 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004300 }
4301 /* cpu stats */
4302 {
4303 unsigned long allochit = atomic_read(&cachep->allochit);
4304 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4305 unsigned long freehit = atomic_read(&cachep->freehit);
4306 unsigned long freemiss = atomic_read(&cachep->freemiss);
4307
4308 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004309 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004310 }
4311#endif
4312 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004313 return 0;
4314}
4315
4316/*
4317 * slabinfo_op - iterator that generates /proc/slabinfo
4318 *
4319 * Output layout:
4320 * cache-name
4321 * num-active-objs
4322 * total-objs
4323 * object size
4324 * num-active-slabs
4325 * total-slabs
4326 * num-pages-per-slab
4327 * + further values on SMP and with statistics enabled
4328 */
4329
Helge Deller15ad7cd2006-12-06 20:40:36 -08004330const struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004331 .start = s_start,
4332 .next = s_next,
4333 .stop = s_stop,
4334 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004335};
4336
4337#define MAX_SLABINFO_WRITE 128
4338/**
4339 * slabinfo_write - Tuning for the slab allocator
4340 * @file: unused
4341 * @buffer: user buffer
4342 * @count: data length
4343 * @ppos: unused
4344 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004345ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4346 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004347{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004348 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004349 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004350 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004351
Linus Torvalds1da177e2005-04-16 15:20:36 -07004352 if (count > MAX_SLABINFO_WRITE)
4353 return -EINVAL;
4354 if (copy_from_user(&kbuf, buffer, count))
4355 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004356 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07004357
4358 tmp = strchr(kbuf, ' ');
4359 if (!tmp)
4360 return -EINVAL;
4361 *tmp = '\0';
4362 tmp++;
4363 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4364 return -EINVAL;
4365
4366 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004367 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004368 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004369 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004370 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08004371 if (limit < 1 || batchcount < 1 ||
4372 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07004373 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004374 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004375 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004376 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004377 }
4378 break;
4379 }
4380 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004381 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004382 if (res >= 0)
4383 res = count;
4384 return res;
4385}
Al Viro871751e2006-03-25 03:06:39 -08004386
4387#ifdef CONFIG_DEBUG_SLAB_LEAK
4388
4389static void *leaks_start(struct seq_file *m, loff_t *pos)
4390{
4391 loff_t n = *pos;
4392 struct list_head *p;
4393
4394 mutex_lock(&cache_chain_mutex);
4395 p = cache_chain.next;
4396 while (n--) {
4397 p = p->next;
4398 if (p == &cache_chain)
4399 return NULL;
4400 }
4401 return list_entry(p, struct kmem_cache, next);
4402}
4403
4404static inline int add_caller(unsigned long *n, unsigned long v)
4405{
4406 unsigned long *p;
4407 int l;
4408 if (!v)
4409 return 1;
4410 l = n[1];
4411 p = n + 2;
4412 while (l) {
4413 int i = l/2;
4414 unsigned long *q = p + 2 * i;
4415 if (*q == v) {
4416 q[1]++;
4417 return 1;
4418 }
4419 if (*q > v) {
4420 l = i;
4421 } else {
4422 p = q + 2;
4423 l -= i + 1;
4424 }
4425 }
4426 if (++n[1] == n[0])
4427 return 0;
4428 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4429 p[0] = v;
4430 p[1] = 1;
4431 return 1;
4432}
4433
4434static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4435{
4436 void *p;
4437 int i;
4438 if (n[0] == n[1])
4439 return;
4440 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4441 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4442 continue;
4443 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4444 return;
4445 }
4446}
4447
4448static void show_symbol(struct seq_file *m, unsigned long address)
4449{
4450#ifdef CONFIG_KALLSYMS
Al Viro871751e2006-03-25 03:06:39 -08004451 unsigned long offset, size;
Alexey Dobriyana5c43da2007-05-08 00:28:47 -07004452 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
Al Viro871751e2006-03-25 03:06:39 -08004453
Alexey Dobriyana5c43da2007-05-08 00:28:47 -07004454 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
Al Viro871751e2006-03-25 03:06:39 -08004455 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
Alexey Dobriyana5c43da2007-05-08 00:28:47 -07004456 if (modname[0])
Al Viro871751e2006-03-25 03:06:39 -08004457 seq_printf(m, " [%s]", modname);
4458 return;
4459 }
4460#endif
4461 seq_printf(m, "%p", (void *)address);
4462}
4463
4464static int leaks_show(struct seq_file *m, void *p)
4465{
4466 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004467 struct slab *slabp;
4468 struct kmem_list3 *l3;
4469 const char *name;
4470 unsigned long *n = m->private;
4471 int node;
4472 int i;
4473
4474 if (!(cachep->flags & SLAB_STORE_USER))
4475 return 0;
4476 if (!(cachep->flags & SLAB_RED_ZONE))
4477 return 0;
4478
4479 /* OK, we can do it */
4480
4481 n[1] = 0;
4482
4483 for_each_online_node(node) {
4484 l3 = cachep->nodelists[node];
4485 if (!l3)
4486 continue;
4487
4488 check_irq_on();
4489 spin_lock_irq(&l3->list_lock);
4490
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004491 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004492 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004493 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004494 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004495 spin_unlock_irq(&l3->list_lock);
4496 }
4497 name = cachep->name;
4498 if (n[0] == n[1]) {
4499 /* Increase the buffer size */
4500 mutex_unlock(&cache_chain_mutex);
4501 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4502 if (!m->private) {
4503 /* Too bad, we are really out */
4504 m->private = n;
4505 mutex_lock(&cache_chain_mutex);
4506 return -ENOMEM;
4507 }
4508 *(unsigned long *)m->private = n[0] * 2;
4509 kfree(n);
4510 mutex_lock(&cache_chain_mutex);
4511 /* Now make sure this entry will be retried */
4512 m->count = m->size;
4513 return 0;
4514 }
4515 for (i = 0; i < n[1]; i++) {
4516 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4517 show_symbol(m, n[2*i+2]);
4518 seq_putc(m, '\n');
4519 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004520
Al Viro871751e2006-03-25 03:06:39 -08004521 return 0;
4522}
4523
Helge Deller15ad7cd2006-12-06 20:40:36 -08004524const struct seq_operations slabstats_op = {
Al Viro871751e2006-03-25 03:06:39 -08004525 .start = leaks_start,
4526 .next = s_next,
4527 .stop = s_stop,
4528 .show = leaks_show,
4529};
4530#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004531#endif
4532
Manfred Spraul00e145b2005-09-03 15:55:07 -07004533/**
4534 * ksize - get the actual amount of memory allocated for a given object
4535 * @objp: Pointer to the object
4536 *
4537 * kmalloc may internally round up allocations and return more memory
4538 * than requested. ksize() can be used to determine the actual amount of
4539 * memory allocated. The caller may use this additional memory, even though
4540 * a smaller amount of memory was initially specified with the kmalloc call.
4541 * The caller must guarantee that objp points to a valid object previously
4542 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4543 * must not be freed during the duration of the call.
4544 */
Pekka Enbergfd76bab2007-05-06 14:48:40 -07004545size_t ksize(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004546{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004547 if (unlikely(objp == NULL))
4548 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004549
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08004550 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004551}