blob: ae440b5ba60e4e6668197521b13266ca9b3099e0 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
Linus Torvalds1da177e2005-04-16 15:20:36 -070089#include <linux/slab.h>
90#include <linux/mm.h>
Randy Dunlapc9cf5522006-06-27 02:53:52 -070091#include <linux/poison.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070092#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080097#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070098#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700105#include <linux/string.h>
Andrew Morton138ae662006-12-06 20:36:41 -0800106#include <linux/uaccess.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700107#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800108#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800109#include <linux/mutex.h>
Akinobu Mita8a8b6502006-12-08 02:39:44 -0800110#include <linux/fault-inject.h>
Ingo Molnare7eebaf2006-06-27 02:54:55 -0700111#include <linux/rtmutex.h>
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800112#include <linux/reciprocal_div.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700113
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 */
128
129#ifdef CONFIG_DEBUG_SLAB
130#define DEBUG 1
131#define STATS 1
132#define FORCED_DEBUG 1
133#else
134#define DEBUG 0
135#define STATS 0
136#define FORCED_DEBUG 0
137#endif
138
Linus Torvalds1da177e2005-04-16 15:20:36 -0700139/* Shouldn't this be in a header file somewhere? */
140#define BYTES_PER_WORD sizeof(void *)
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
154 */
155#define ARCH_KMALLOC_MINALIGN 0
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
175# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800177 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700207typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212
Linus Torvalds1da177e2005-04-16 15:20:36 -0700213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800246 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800247 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249};
250
251/*
252 * struct array_cache
253 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700268 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275};
276
Andrew Mortona737b3e2006-03-22 00:08:11 -0800277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800284 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285};
286
287/*
Christoph Lametere498be72005-09-09 13:03:32 -0700288 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 */
290struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800295 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800296 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302};
303
Christoph Lametere498be72005-09-09 13:03:32 -0700304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700312
Christoph Lametered11d9e2006-06-30 01:55:45 -0700313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -0700317static int enable_cpucache(struct kmem_cache *cachep);
David Howells65f27f32006-11-22 14:55:48 +0000318static void cache_reap(struct work_struct *unused);
Christoph Lametered11d9e2006-06-30 01:55:45 -0700319
Christoph Lametere498be72005-09-09 13:03:32 -0700320/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700323 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700324static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700325{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800326 extern void __bad_size(void);
327
Christoph Lametere498be72005-09-09 13:03:32 -0700328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800338 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700339 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800340 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700341 return 0;
342}
343
Ingo Molnare0a42722006-06-23 02:03:46 -0700344static int slab_early_init = 1;
345
Christoph Lametere498be72005-09-09 13:03:32 -0700346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
348
Pekka Enberg5295a742006-02-01 03:05:48 -0800349static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800356 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
Andrew Mortona737b3e2006-03-22 00:08:11 -0800362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700366 } while (0)
367
Andrew Mortona737b3e2006-03-22 00:08:11 -0800368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374
375/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800376 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 *
378 * manages a cache.
379 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800380
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800381struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800383 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800384/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800388
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800389 unsigned int buffer_size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800390 u32 reciprocal_buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800391/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800392 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800393
Andrew Mortona737b3e2006-03-22 00:08:11 -0800394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800397/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800399 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700400
401 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800402 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700403
Andrew Mortona737b3e2006-03-22 00:08:11 -0800404 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800405 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800406 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800407 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800408 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700409
410 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800411 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700412
413 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800414 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800416/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800417 const char *name;
418 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800420/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700421#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800422 unsigned long num_active;
423 unsigned long num_allocations;
424 unsigned long high_mark;
425 unsigned long grown;
426 unsigned long reaped;
427 unsigned long errors;
428 unsigned long max_freeable;
429 unsigned long node_allocs;
430 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700431 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800432 atomic_t allochit;
433 atomic_t allocmiss;
434 atomic_t freehit;
435 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700436#endif
437#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800438 /*
439 * If debugging is enabled, then the allocator can add additional
440 * fields and/or padding to every object. buffer_size contains the total
441 * object size including these internal fields, the following two
442 * variables contain the offset to the user object and its size.
443 */
444 int obj_offset;
445 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700446#endif
447};
448
449#define CFLGS_OFF_SLAB (0x80000000UL)
450#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
451
452#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800453/*
454 * Optimization question: fewer reaps means less probability for unnessary
455 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100457 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 * which could lock up otherwise freeable slabs.
459 */
460#define REAPTIMEOUT_CPUC (2*HZ)
461#define REAPTIMEOUT_LIST3 (4*HZ)
462
463#if STATS
464#define STATS_INC_ACTIVE(x) ((x)->num_active++)
465#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
466#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
467#define STATS_INC_GROWN(x) ((x)->grown++)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700468#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
Andrew Mortona737b3e2006-03-22 00:08:11 -0800469#define STATS_SET_HIGH(x) \
470 do { \
471 if ((x)->num_active > (x)->high_mark) \
472 (x)->high_mark = (x)->num_active; \
473 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474#define STATS_INC_ERR(x) ((x)->errors++)
475#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700476#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700477#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800478#define STATS_SET_FREEABLE(x, i) \
479 do { \
480 if ((x)->max_freeable < i) \
481 (x)->max_freeable = i; \
482 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700483#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
484#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
485#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
486#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
487#else
488#define STATS_INC_ACTIVE(x) do { } while (0)
489#define STATS_DEC_ACTIVE(x) do { } while (0)
490#define STATS_INC_ALLOCED(x) do { } while (0)
491#define STATS_INC_GROWN(x) do { } while (0)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700492#define STATS_ADD_REAPED(x,y) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493#define STATS_SET_HIGH(x) do { } while (0)
494#define STATS_INC_ERR(x) do { } while (0)
495#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700496#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700497#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800498#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700499#define STATS_INC_ALLOCHIT(x) do { } while (0)
500#define STATS_INC_ALLOCMISS(x) do { } while (0)
501#define STATS_INC_FREEHIT(x) do { } while (0)
502#define STATS_INC_FREEMISS(x) do { } while (0)
503#endif
504
505#if DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506
Andrew Mortona737b3e2006-03-22 00:08:11 -0800507/*
508 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800510 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700511 * the end of an object is aligned with the end of the real
512 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800515 * cachep->obj_offset: The real object.
516 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800517 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
518 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800520static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800522 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700523}
524
Pekka Enberg343e0d72006-02-01 03:05:50 -0800525static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800527 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700528}
529
Pekka Enberg343e0d72006-02-01 03:05:50 -0800530static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531{
532 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800533 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700534}
535
Pekka Enberg343e0d72006-02-01 03:05:50 -0800536static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700537{
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800540 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800541 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800542 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700543}
544
Pekka Enberg343e0d72006-02-01 03:05:50 -0800545static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700546{
547 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800548 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700549}
550
551#else
552
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800553#define obj_offset(x) 0
554#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700555#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
556#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
557#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
558
559#endif
560
561/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800562 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
563 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700564 */
565#if defined(CONFIG_LARGE_ALLOCS)
566#define MAX_OBJ_ORDER 13 /* up to 32Mb */
567#define MAX_GFP_ORDER 13 /* up to 32Mb */
568#elif defined(CONFIG_MMU)
569#define MAX_OBJ_ORDER 5 /* 32 pages */
570#define MAX_GFP_ORDER 5 /* 32 pages */
571#else
572#define MAX_OBJ_ORDER 8 /* up to 1Mb */
573#define MAX_GFP_ORDER 8 /* up to 1Mb */
574#endif
575
576/*
577 * Do not go above this order unless 0 objects fit into the slab.
578 */
579#define BREAK_GFP_ORDER_HI 1
580#define BREAK_GFP_ORDER_LO 0
581static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582
Andrew Mortona737b3e2006-03-22 00:08:11 -0800583/*
584 * Functions for storing/retrieving the cachep and or slab from the page
585 * allocator. These are used to find the slab an obj belongs to. With kfree(),
586 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700587 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800588static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
589{
590 page->lru.next = (struct list_head *)cache;
591}
592
593static inline struct kmem_cache *page_get_cache(struct page *page)
594{
Nick Piggin84097512006-03-22 00:08:34 -0800595 if (unlikely(PageCompound(page)))
596 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700597 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800598 return (struct kmem_cache *)page->lru.next;
599}
600
601static inline void page_set_slab(struct page *page, struct slab *slab)
602{
603 page->lru.prev = (struct list_head *)slab;
604}
605
606static inline struct slab *page_get_slab(struct page *page)
607{
Nick Piggin84097512006-03-22 00:08:34 -0800608 if (unlikely(PageCompound(page)))
609 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700610 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800611 return (struct slab *)page->lru.prev;
612}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700613
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800614static inline struct kmem_cache *virt_to_cache(const void *obj)
615{
616 struct page *page = virt_to_page(obj);
617 return page_get_cache(page);
618}
619
620static inline struct slab *virt_to_slab(const void *obj)
621{
622 struct page *page = virt_to_page(obj);
623 return page_get_slab(page);
624}
625
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800626static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
627 unsigned int idx)
628{
629 return slab->s_mem + cache->buffer_size * idx;
630}
631
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800632/*
633 * We want to avoid an expensive divide : (offset / cache->buffer_size)
634 * Using the fact that buffer_size is a constant for a particular cache,
635 * we can replace (offset / cache->buffer_size) by
636 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
637 */
638static inline unsigned int obj_to_index(const struct kmem_cache *cache,
639 const struct slab *slab, void *obj)
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800640{
Eric Dumazet6a2d7a92006-12-13 00:34:27 -0800641 u32 offset = (obj - slab->s_mem);
642 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800643}
644
Andrew Mortona737b3e2006-03-22 00:08:11 -0800645/*
646 * These are the default caches for kmalloc. Custom caches can have other sizes.
647 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648struct cache_sizes malloc_sizes[] = {
649#define CACHE(x) { .cs_size = (x) },
650#include <linux/kmalloc_sizes.h>
651 CACHE(ULONG_MAX)
652#undef CACHE
653};
654EXPORT_SYMBOL(malloc_sizes);
655
656/* Must match cache_sizes above. Out of line to keep cache footprint low. */
657struct cache_names {
658 char *name;
659 char *name_dma;
660};
661
662static struct cache_names __initdata cache_names[] = {
663#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
664#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800665 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700666#undef CACHE
667};
668
669static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800670 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700671static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800672 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673
674/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800675static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800676 .batchcount = 1,
677 .limit = BOOT_CPUCACHE_ENTRIES,
678 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800679 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800680 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800682 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700683#endif
684};
685
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700686#define BAD_ALIEN_MAGIC 0x01020304ul
687
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200688#ifdef CONFIG_LOCKDEP
689
690/*
691 * Slab sometimes uses the kmalloc slabs to store the slab headers
692 * for other slabs "off slab".
693 * The locking for this is tricky in that it nests within the locks
694 * of all other slabs in a few places; to deal with this special
695 * locking we put on-slab caches into a separate lock-class.
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700696 *
697 * We set lock class for alien array caches which are up during init.
698 * The lock annotation will be lost if all cpus of a node goes down and
699 * then comes back up during hotplug
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200700 */
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700701static struct lock_class_key on_slab_l3_key;
702static struct lock_class_key on_slab_alc_key;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200703
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700704static inline void init_lock_keys(void)
705
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200706{
707 int q;
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700708 struct cache_sizes *s = malloc_sizes;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200709
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700710 while (s->cs_size != ULONG_MAX) {
711 for_each_node(q) {
712 struct array_cache **alc;
713 int r;
714 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
715 if (!l3 || OFF_SLAB(s->cs_cachep))
716 continue;
717 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
718 alc = l3->alien;
719 /*
720 * FIXME: This check for BAD_ALIEN_MAGIC
721 * should go away when common slab code is taught to
722 * work even without alien caches.
723 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
724 * for alloc_alien_cache,
725 */
726 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
727 continue;
728 for_each_node(r) {
729 if (alc[r])
730 lockdep_set_class(&alc[r]->lock,
731 &on_slab_alc_key);
732 }
733 }
734 s++;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200735 }
736}
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200737#else
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700738static inline void init_lock_keys(void)
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200739{
740}
741#endif
742
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -0800743/*
744 * 1. Guard access to the cache-chain.
745 * 2. Protect sanity of cpu_online_map against cpu hotplug events
746 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800747static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700748static struct list_head cache_chain;
749
750/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700751 * chicken and egg problem: delay the per-cpu array allocation
752 * until the general caches are up.
753 */
754static enum {
755 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700756 PARTIAL_AC,
757 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758 FULL
759} g_cpucache_up;
760
Mike Kravetz39d24e62006-05-15 09:44:13 -0700761/*
762 * used by boot code to determine if it can use slab based allocator
763 */
764int slab_is_available(void)
765{
766 return g_cpucache_up == FULL;
767}
768
David Howells52bad642006-11-22 14:54:01 +0000769static DEFINE_PER_CPU(struct delayed_work, reap_work);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770
Pekka Enberg343e0d72006-02-01 03:05:50 -0800771static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700772{
773 return cachep->array[smp_processor_id()];
774}
775
Andrew Mortona737b3e2006-03-22 00:08:11 -0800776static inline struct kmem_cache *__find_general_cachep(size_t size,
777 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700778{
779 struct cache_sizes *csizep = malloc_sizes;
780
781#if DEBUG
782 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800783 * kmem_cache_create(), or __kmalloc(), before
784 * the generic caches are initialized.
785 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700786 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700787#endif
788 while (size > csizep->cs_size)
789 csizep++;
790
791 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700792 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700793 * has cs_{dma,}cachep==NULL. Thus no special case
794 * for large kmalloc calls required.
795 */
Christoph Lameter4b51d662007-02-10 01:43:10 -0800796#ifdef CONFIG_ZONE_DMA
Linus Torvalds1da177e2005-04-16 15:20:36 -0700797 if (unlikely(gfpflags & GFP_DMA))
798 return csizep->cs_dmacachep;
Christoph Lameter4b51d662007-02-10 01:43:10 -0800799#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 return csizep->cs_cachep;
801}
802
Adrian Bunkb2213852006-09-25 23:31:02 -0700803static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700804{
805 return __find_general_cachep(size, gfpflags);
806}
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700807
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800808static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700809{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800810 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
811}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700812
Andrew Mortona737b3e2006-03-22 00:08:11 -0800813/*
814 * Calculate the number of objects and left-over bytes for a given buffer size.
815 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800816static void cache_estimate(unsigned long gfporder, size_t buffer_size,
817 size_t align, int flags, size_t *left_over,
818 unsigned int *num)
819{
820 int nr_objs;
821 size_t mgmt_size;
822 size_t slab_size = PAGE_SIZE << gfporder;
823
824 /*
825 * The slab management structure can be either off the slab or
826 * on it. For the latter case, the memory allocated for a
827 * slab is used for:
828 *
829 * - The struct slab
830 * - One kmem_bufctl_t for each object
831 * - Padding to respect alignment of @align
832 * - @buffer_size bytes for each object
833 *
834 * If the slab management structure is off the slab, then the
835 * alignment will already be calculated into the size. Because
836 * the slabs are all pages aligned, the objects will be at the
837 * correct alignment when allocated.
838 */
839 if (flags & CFLGS_OFF_SLAB) {
840 mgmt_size = 0;
841 nr_objs = slab_size / buffer_size;
842
843 if (nr_objs > SLAB_LIMIT)
844 nr_objs = SLAB_LIMIT;
845 } else {
846 /*
847 * Ignore padding for the initial guess. The padding
848 * is at most @align-1 bytes, and @buffer_size is at
849 * least @align. In the worst case, this result will
850 * be one greater than the number of objects that fit
851 * into the memory allocation when taking the padding
852 * into account.
853 */
854 nr_objs = (slab_size - sizeof(struct slab)) /
855 (buffer_size + sizeof(kmem_bufctl_t));
856
857 /*
858 * This calculated number will be either the right
859 * amount, or one greater than what we want.
860 */
861 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
862 > slab_size)
863 nr_objs--;
864
865 if (nr_objs > SLAB_LIMIT)
866 nr_objs = SLAB_LIMIT;
867
868 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700869 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800870 *num = nr_objs;
871 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700872}
873
874#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
875
Andrew Mortona737b3e2006-03-22 00:08:11 -0800876static void __slab_error(const char *function, struct kmem_cache *cachep,
877 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878{
879 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800880 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700881 dump_stack();
882}
883
Paul Menage3395ee02006-12-06 20:32:16 -0800884/*
885 * By default on NUMA we use alien caches to stage the freeing of
886 * objects allocated from other nodes. This causes massive memory
887 * inefficiencies when using fake NUMA setup to split memory into a
888 * large number of small nodes, so it can be disabled on the command
889 * line
890 */
891
892static int use_alien_caches __read_mostly = 1;
893static int __init noaliencache_setup(char *s)
894{
895 use_alien_caches = 0;
896 return 1;
897}
898__setup("noaliencache", noaliencache_setup);
899
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800900#ifdef CONFIG_NUMA
901/*
902 * Special reaping functions for NUMA systems called from cache_reap().
903 * These take care of doing round robin flushing of alien caches (containing
904 * objects freed on different nodes from which they were allocated) and the
905 * flushing of remote pcps by calling drain_node_pages.
906 */
907static DEFINE_PER_CPU(unsigned long, reap_node);
908
909static void init_reap_node(int cpu)
910{
911 int node;
912
913 node = next_node(cpu_to_node(cpu), node_online_map);
914 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800915 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800916
Daniel Yeisley7f6b8872006-11-02 22:07:14 -0800917 per_cpu(reap_node, cpu) = node;
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800918}
919
920static void next_reap_node(void)
921{
922 int node = __get_cpu_var(reap_node);
923
924 /*
925 * Also drain per cpu pages on remote zones
926 */
927 if (node != numa_node_id())
928 drain_node_pages(node);
929
930 node = next_node(node, node_online_map);
931 if (unlikely(node >= MAX_NUMNODES))
932 node = first_node(node_online_map);
933 __get_cpu_var(reap_node) = node;
934}
935
936#else
937#define init_reap_node(cpu) do { } while (0)
938#define next_reap_node(void) do { } while (0)
939#endif
940
Linus Torvalds1da177e2005-04-16 15:20:36 -0700941/*
942 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
943 * via the workqueue/eventd.
944 * Add the CPU number into the expiration time to minimize the possibility of
945 * the CPUs getting into lockstep and contending for the global cache chain
946 * lock.
947 */
948static void __devinit start_cpu_timer(int cpu)
949{
David Howells52bad642006-11-22 14:54:01 +0000950 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700951
952 /*
953 * When this gets called from do_initcalls via cpucache_init(),
954 * init_workqueues() has already run, so keventd will be setup
955 * at that time.
956 */
David Howells52bad642006-11-22 14:54:01 +0000957 if (keventd_up() && reap_work->work.func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800958 init_reap_node(cpu);
David Howells65f27f32006-11-22 14:55:48 +0000959 INIT_DELAYED_WORK(reap_work, cache_reap);
Arjan van de Ven2b284212006-12-10 02:21:28 -0800960 schedule_delayed_work_on(cpu, reap_work,
961 __round_jiffies_relative(HZ, cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700962 }
963}
964
Christoph Lametere498be72005-09-09 13:03:32 -0700965static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800966 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700967{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800968 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969 struct array_cache *nc = NULL;
970
Christoph Lametere498be72005-09-09 13:03:32 -0700971 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972 if (nc) {
973 nc->avail = 0;
974 nc->limit = entries;
975 nc->batchcount = batchcount;
976 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700977 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700978 }
979 return nc;
980}
981
Christoph Lameter3ded1752006-03-25 03:06:44 -0800982/*
983 * Transfer objects in one arraycache to another.
984 * Locking must be handled by the caller.
985 *
986 * Return the number of entries transferred.
987 */
988static int transfer_objects(struct array_cache *to,
989 struct array_cache *from, unsigned int max)
990{
991 /* Figure out how many entries to transfer */
992 int nr = min(min(from->avail, max), to->limit - to->avail);
993
994 if (!nr)
995 return 0;
996
997 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
998 sizeof(void *) *nr);
999
1000 from->avail -= nr;
1001 to->avail += nr;
1002 to->touched = 1;
1003 return nr;
1004}
1005
Christoph Lameter765c4502006-09-27 01:50:08 -07001006#ifndef CONFIG_NUMA
1007
1008#define drain_alien_cache(cachep, alien) do { } while (0)
1009#define reap_alien(cachep, l3) do { } while (0)
1010
1011static inline struct array_cache **alloc_alien_cache(int node, int limit)
1012{
1013 return (struct array_cache **)BAD_ALIEN_MAGIC;
1014}
1015
1016static inline void free_alien_cache(struct array_cache **ac_ptr)
1017{
1018}
1019
1020static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1021{
1022 return 0;
1023}
1024
1025static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1026 gfp_t flags)
1027{
1028 return NULL;
1029}
1030
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001031static inline void *____cache_alloc_node(struct kmem_cache *cachep,
Christoph Lameter765c4502006-09-27 01:50:08 -07001032 gfp_t flags, int nodeid)
1033{
1034 return NULL;
1035}
1036
1037#else /* CONFIG_NUMA */
1038
Christoph Hellwig8b98c162006-12-06 20:32:30 -08001039static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -08001040static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -08001041
Pekka Enberg5295a742006-02-01 03:05:48 -08001042static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -07001043{
1044 struct array_cache **ac_ptr;
Christoph Lameter8ef82862007-02-20 13:57:52 -08001045 int memsize = sizeof(void *) * nr_node_ids;
Christoph Lametere498be72005-09-09 13:03:32 -07001046 int i;
1047
1048 if (limit > 1)
1049 limit = 12;
1050 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1051 if (ac_ptr) {
1052 for_each_node(i) {
1053 if (i == node || !node_online(i)) {
1054 ac_ptr[i] = NULL;
1055 continue;
1056 }
1057 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1058 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001059 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -07001060 kfree(ac_ptr[i]);
1061 kfree(ac_ptr);
1062 return NULL;
1063 }
1064 }
1065 }
1066 return ac_ptr;
1067}
1068
Pekka Enberg5295a742006-02-01 03:05:48 -08001069static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -07001070{
1071 int i;
1072
1073 if (!ac_ptr)
1074 return;
Christoph Lametere498be72005-09-09 13:03:32 -07001075 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001076 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07001077 kfree(ac_ptr);
1078}
1079
Pekka Enberg343e0d72006-02-01 03:05:50 -08001080static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -08001081 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07001082{
1083 struct kmem_list3 *rl3 = cachep->nodelists[node];
1084
1085 if (ac->avail) {
1086 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -08001087 /*
1088 * Stuff objects into the remote nodes shared array first.
1089 * That way we could avoid the overhead of putting the objects
1090 * into the free lists and getting them back later.
1091 */
shin, jacob693f7d32006-04-28 10:54:37 -05001092 if (rl3->shared)
1093 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -08001094
Christoph Lameterff694162005-09-22 21:44:02 -07001095 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001096 ac->avail = 0;
1097 spin_unlock(&rl3->list_lock);
1098 }
1099}
1100
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001101/*
1102 * Called from cache_reap() to regularly drain alien caches round robin.
1103 */
1104static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1105{
1106 int node = __get_cpu_var(reap_node);
1107
1108 if (l3->alien) {
1109 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001110
1111 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001112 __drain_alien_cache(cachep, ac, node);
1113 spin_unlock_irq(&ac->lock);
1114 }
1115 }
1116}
1117
Andrew Mortona737b3e2006-03-22 00:08:11 -08001118static void drain_alien_cache(struct kmem_cache *cachep,
1119 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001120{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001121 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001122 struct array_cache *ac;
1123 unsigned long flags;
1124
1125 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001126 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001127 if (ac) {
1128 spin_lock_irqsave(&ac->lock, flags);
1129 __drain_alien_cache(cachep, ac, i);
1130 spin_unlock_irqrestore(&ac->lock, flags);
1131 }
1132 }
1133}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001134
Ingo Molnar873623d2006-07-13 14:44:38 +02001135static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001136{
1137 struct slab *slabp = virt_to_slab(objp);
1138 int nodeid = slabp->nodeid;
1139 struct kmem_list3 *l3;
1140 struct array_cache *alien = NULL;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001141 int node;
1142
1143 node = numa_node_id();
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001144
1145 /*
1146 * Make sure we are not freeing a object from another node to the array
1147 * cache on this cpu.
1148 */
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001149 if (likely(slabp->nodeid == node))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001150 return 0;
1151
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001152 l3 = cachep->nodelists[node];
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001153 STATS_INC_NODEFREES(cachep);
1154 if (l3->alien && l3->alien[nodeid]) {
1155 alien = l3->alien[nodeid];
Ingo Molnar873623d2006-07-13 14:44:38 +02001156 spin_lock(&alien->lock);
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001157 if (unlikely(alien->avail == alien->limit)) {
1158 STATS_INC_ACOVERFLOW(cachep);
1159 __drain_alien_cache(cachep, alien, nodeid);
1160 }
1161 alien->entry[alien->avail++] = objp;
1162 spin_unlock(&alien->lock);
1163 } else {
1164 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1165 free_block(cachep, &objp, 1, nodeid);
1166 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1167 }
1168 return 1;
1169}
Christoph Lametere498be72005-09-09 13:03:32 -07001170#endif
1171
Chandra Seetharaman8c78f302006-07-30 03:03:35 -07001172static int __cpuinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001173 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001174{
1175 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001176 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001177 struct kmem_list3 *l3 = NULL;
1178 int node = cpu_to_node(cpu);
1179 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001180
1181 switch (action) {
1182 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001183 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001184 /*
1185 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001186 * alloc_arraycache's are going to use this list.
1187 * kmalloc_node allows us to add the slab to the right
1188 * kmem_list3 and not this cpu's kmem_list3
1189 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001190
Christoph Lametere498be72005-09-09 13:03:32 -07001191 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001192 /*
1193 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001194 * begin anything. Make sure some other cpu on this
1195 * node has not already allocated this
1196 */
1197 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001198 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1199 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001200 goto bad;
1201 kmem_list3_init(l3);
1202 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001203 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001204
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001205 /*
1206 * The l3s don't come and go as CPUs come and
1207 * go. cache_chain_mutex is sufficient
1208 * protection here.
1209 */
Christoph Lametere498be72005-09-09 13:03:32 -07001210 cachep->nodelists[node] = l3;
1211 }
1212
1213 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1214 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001215 (1 + nr_cpus_node(node)) *
1216 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001217 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1218 }
1219
Andrew Mortona737b3e2006-03-22 00:08:11 -08001220 /*
1221 * Now we can go ahead with allocating the shared arrays and
1222 * array caches
1223 */
Christoph Lametere498be72005-09-09 13:03:32 -07001224 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001225 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001226 struct array_cache *shared;
Paul Menage3395ee02006-12-06 20:32:16 -08001227 struct array_cache **alien = NULL;
Tobias Klausercd105df2006-01-08 01:00:59 -08001228
Christoph Lametere498be72005-09-09 13:03:32 -07001229 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001230 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001231 if (!nc)
1232 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001233 shared = alloc_arraycache(node,
1234 cachep->shared * cachep->batchcount,
1235 0xbaadf00d);
1236 if (!shared)
1237 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001238
Paul Menage3395ee02006-12-06 20:32:16 -08001239 if (use_alien_caches) {
1240 alien = alloc_alien_cache(node, cachep->limit);
1241 if (!alien)
1242 goto bad;
1243 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001244 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001245 l3 = cachep->nodelists[node];
1246 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001247
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001248 spin_lock_irq(&l3->list_lock);
1249 if (!l3->shared) {
1250 /*
1251 * We are serialised from CPU_DEAD or
1252 * CPU_UP_CANCELLED by the cpucontrol lock
1253 */
1254 l3->shared = shared;
1255 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001256 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001257#ifdef CONFIG_NUMA
1258 if (!l3->alien) {
1259 l3->alien = alien;
1260 alien = NULL;
1261 }
1262#endif
1263 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001264 kfree(shared);
1265 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001266 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001267 break;
1268 case CPU_ONLINE:
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001269 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001270 start_cpu_timer(cpu);
1271 break;
1272#ifdef CONFIG_HOTPLUG_CPU
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001273 case CPU_DOWN_PREPARE:
1274 mutex_lock(&cache_chain_mutex);
1275 break;
1276 case CPU_DOWN_FAILED:
1277 mutex_unlock(&cache_chain_mutex);
1278 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001279 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001280 /*
1281 * Even if all the cpus of a node are down, we don't free the
1282 * kmem_list3 of any cache. This to avoid a race between
1283 * cpu_down, and a kmalloc allocation from another cpu for
1284 * memory from the node of the cpu going down. The list3
1285 * structure is usually allocated from kmem_cache_create() and
1286 * gets destroyed at kmem_cache_destroy().
1287 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288 /* fall thru */
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08001289#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001290 case CPU_UP_CANCELED:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001291 list_for_each_entry(cachep, &cache_chain, next) {
1292 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001293 struct array_cache *shared;
1294 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001295 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001296
Christoph Lametere498be72005-09-09 13:03:32 -07001297 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001298 /* cpu is dead; no one can alloc from it. */
1299 nc = cachep->array[cpu];
1300 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001301 l3 = cachep->nodelists[node];
1302
1303 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001304 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001305
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001306 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001307
1308 /* Free limit for this kmem_list3 */
1309 l3->free_limit -= cachep->batchcount;
1310 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001311 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001312
1313 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001314 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001315 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001316 }
Christoph Lametere498be72005-09-09 13:03:32 -07001317
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001318 shared = l3->shared;
1319 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001320 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001321 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001322 l3->shared = NULL;
1323 }
Christoph Lametere498be72005-09-09 13:03:32 -07001324
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001325 alien = l3->alien;
1326 l3->alien = NULL;
1327
1328 spin_unlock_irq(&l3->list_lock);
1329
1330 kfree(shared);
1331 if (alien) {
1332 drain_alien_cache(cachep, alien);
1333 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001334 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001335free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001336 kfree(nc);
1337 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001338 /*
1339 * In the previous loop, all the objects were freed to
1340 * the respective cache's slabs, now we can go ahead and
1341 * shrink each nodelist to its limit.
1342 */
1343 list_for_each_entry(cachep, &cache_chain, next) {
1344 l3 = cachep->nodelists[node];
1345 if (!l3)
1346 continue;
Christoph Lametered11d9e2006-06-30 01:55:45 -07001347 drain_freelist(cachep, l3, l3->free_objects);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001348 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001349 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001350 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351 }
1352 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001353bad:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001354 return NOTIFY_BAD;
1355}
1356
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001357static struct notifier_block __cpuinitdata cpucache_notifier = {
1358 &cpuup_callback, NULL, 0
1359};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360
Christoph Lametere498be72005-09-09 13:03:32 -07001361/*
1362 * swap the static kmem_list3 with kmalloced memory
1363 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001364static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1365 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001366{
1367 struct kmem_list3 *ptr;
1368
Christoph Lametere498be72005-09-09 13:03:32 -07001369 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1370 BUG_ON(!ptr);
1371
1372 local_irq_disable();
1373 memcpy(ptr, list, sizeof(struct kmem_list3));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001374 /*
1375 * Do not assume that spinlocks can be initialized via memcpy:
1376 */
1377 spin_lock_init(&ptr->list_lock);
1378
Christoph Lametere498be72005-09-09 13:03:32 -07001379 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1380 cachep->nodelists[nodeid] = ptr;
1381 local_irq_enable();
1382}
1383
Andrew Mortona737b3e2006-03-22 00:08:11 -08001384/*
1385 * Initialisation. Called after the page allocator have been initialised and
1386 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387 */
1388void __init kmem_cache_init(void)
1389{
1390 size_t left_over;
1391 struct cache_sizes *sizes;
1392 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001393 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001394 int order;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001395 int node;
Christoph Lametere498be72005-09-09 13:03:32 -07001396
Siddha, Suresh B62918a02007-05-02 19:27:18 +02001397 if (num_possible_nodes() == 1)
1398 use_alien_caches = 0;
1399
Christoph Lametere498be72005-09-09 13:03:32 -07001400 for (i = 0; i < NUM_INIT_LISTS; i++) {
1401 kmem_list3_init(&initkmem_list3[i]);
1402 if (i < MAX_NUMNODES)
1403 cache_cache.nodelists[i] = NULL;
1404 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001405
1406 /*
1407 * Fragmentation resistance on low memory - only use bigger
1408 * page orders on machines with more than 32MB of memory.
1409 */
1410 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1411 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1412
Linus Torvalds1da177e2005-04-16 15:20:36 -07001413 /* Bootstrap is tricky, because several objects are allocated
1414 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001415 * 1) initialize the cache_cache cache: it contains the struct
1416 * kmem_cache structures of all caches, except cache_cache itself:
1417 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001418 * Initially an __init data area is used for the head array and the
1419 * kmem_list3 structures, it's replaced with a kmalloc allocated
1420 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001421 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001422 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001423 * An __init data area is used for the head array.
1424 * 3) Create the remaining kmalloc caches, with minimally sized
1425 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426 * 4) Replace the __init data head arrays for cache_cache and the first
1427 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001428 * 5) Replace the __init data for kmem_list3 for cache_cache and
1429 * the other cache's with kmalloc allocated memory.
1430 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431 */
1432
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001433 node = numa_node_id();
1434
Linus Torvalds1da177e2005-04-16 15:20:36 -07001435 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436 INIT_LIST_HEAD(&cache_chain);
1437 list_add(&cache_cache.next, &cache_chain);
1438 cache_cache.colour_off = cache_line_size();
1439 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001440 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441
Andrew Mortona737b3e2006-03-22 00:08:11 -08001442 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1443 cache_line_size());
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08001444 cache_cache.reciprocal_buffer_size =
1445 reciprocal_value(cache_cache.buffer_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446
Jack Steiner07ed76b2006-03-07 21:55:46 -08001447 for (order = 0; order < MAX_ORDER; order++) {
1448 cache_estimate(order, cache_cache.buffer_size,
1449 cache_line_size(), 0, &left_over, &cache_cache.num);
1450 if (cache_cache.num)
1451 break;
1452 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001453 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001454 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001455 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001456 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1457 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001458
1459 /* 2+3) create the kmalloc caches */
1460 sizes = malloc_sizes;
1461 names = cache_names;
1462
Andrew Mortona737b3e2006-03-22 00:08:11 -08001463 /*
1464 * Initialize the caches that provide memory for the array cache and the
1465 * kmem_list3 structures first. Without this, further allocations will
1466 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001467 */
1468
1469 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001470 sizes[INDEX_AC].cs_size,
1471 ARCH_KMALLOC_MINALIGN,
1472 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1473 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001474
Andrew Mortona737b3e2006-03-22 00:08:11 -08001475 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001476 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001477 kmem_cache_create(names[INDEX_L3].name,
1478 sizes[INDEX_L3].cs_size,
1479 ARCH_KMALLOC_MINALIGN,
1480 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1481 NULL, NULL);
1482 }
Christoph Lametere498be72005-09-09 13:03:32 -07001483
Ingo Molnare0a42722006-06-23 02:03:46 -07001484 slab_early_init = 0;
1485
Linus Torvalds1da177e2005-04-16 15:20:36 -07001486 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001487 /*
1488 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001489 * This should be particularly beneficial on SMP boxes, as it
1490 * eliminates "false sharing".
1491 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001492 * allow tighter packing of the smaller caches.
1493 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001494 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001495 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001496 sizes->cs_size,
1497 ARCH_KMALLOC_MINALIGN,
1498 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1499 NULL, NULL);
1500 }
Christoph Lameter4b51d662007-02-10 01:43:10 -08001501#ifdef CONFIG_ZONE_DMA
1502 sizes->cs_dmacachep = kmem_cache_create(
1503 names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001504 sizes->cs_size,
1505 ARCH_KMALLOC_MINALIGN,
1506 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1507 SLAB_PANIC,
1508 NULL, NULL);
Christoph Lameter4b51d662007-02-10 01:43:10 -08001509#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001510 sizes++;
1511 names++;
1512 }
1513 /* 4) Replace the bootstrap head arrays */
1514 {
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001515 struct array_cache *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001516
Linus Torvalds1da177e2005-04-16 15:20:36 -07001517 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001518
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001520 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1521 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001522 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001523 /*
1524 * Do not assume that spinlocks can be initialized via memcpy:
1525 */
1526 spin_lock_init(&ptr->lock);
1527
Linus Torvalds1da177e2005-04-16 15:20:36 -07001528 cache_cache.array[smp_processor_id()] = ptr;
1529 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001530
Linus Torvalds1da177e2005-04-16 15:20:36 -07001531 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001532
Linus Torvalds1da177e2005-04-16 15:20:36 -07001533 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001534 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001535 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001536 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001537 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001538 /*
1539 * Do not assume that spinlocks can be initialized via memcpy:
1540 */
1541 spin_lock_init(&ptr->lock);
1542
Christoph Lametere498be72005-09-09 13:03:32 -07001543 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001544 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545 local_irq_enable();
1546 }
Christoph Lametere498be72005-09-09 13:03:32 -07001547 /* 5) Replace the bootstrap kmem_list3's */
1548 {
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001549 int nid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001550
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001551 /* Replace the static kmem_list3 structures for the boot cpu */
1552 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1553
1554 for_each_online_node(nid) {
Christoph Lametere498be72005-09-09 13:03:32 -07001555 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001556 &initkmem_list3[SIZE_AC + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001557
1558 if (INDEX_AC != INDEX_L3) {
1559 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07001560 &initkmem_list3[SIZE_L3 + nid], nid);
Christoph Lametere498be72005-09-09 13:03:32 -07001561 }
1562 }
1563 }
1564
1565 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001567 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001568 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001569 list_for_each_entry(cachep, &cache_chain, next)
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001570 if (enable_cpucache(cachep))
1571 BUG();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001572 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001573 }
1574
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -07001575 /* Annotate slab for lockdep -- annotate the malloc caches */
1576 init_lock_keys();
1577
1578
Linus Torvalds1da177e2005-04-16 15:20:36 -07001579 /* Done! */
1580 g_cpucache_up = FULL;
1581
Andrew Mortona737b3e2006-03-22 00:08:11 -08001582 /*
1583 * Register a cpu startup notifier callback that initializes
1584 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001585 */
1586 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001587
Andrew Mortona737b3e2006-03-22 00:08:11 -08001588 /*
1589 * The reap timers are started later, with a module init call: That part
1590 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001591 */
1592}
1593
1594static int __init cpucache_init(void)
1595{
1596 int cpu;
1597
Andrew Mortona737b3e2006-03-22 00:08:11 -08001598 /*
1599 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001600 */
Christoph Lametere498be72005-09-09 13:03:32 -07001601 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001602 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001603 return 0;
1604}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001605__initcall(cpucache_init);
1606
1607/*
1608 * Interface to system's page allocator. No need to hold the cache-lock.
1609 *
1610 * If we requested dmaable memory, we will get it. Even if we
1611 * did not request dmaable memory, we might get it, but that
1612 * would be relatively rare and ignorable.
1613 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001614static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001615{
1616 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001617 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618 int i;
1619
Luke Yangd6fef9d2006-04-10 22:52:56 -07001620#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001621 /*
1622 * Nommu uses slab's for process anonymous memory allocations, and thus
1623 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001624 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001625 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001626#endif
Christoph Lameter765c4502006-09-27 01:50:08 -07001627
Christoph Lameter3c517a62006-12-06 20:33:29 -08001628 flags |= cachep->gfpflags;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001629
1630 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631 if (!page)
1632 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001634 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001635 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Lameter972d1a72006-09-25 23:31:51 -07001636 add_zone_page_state(page_zone(page),
1637 NR_SLAB_RECLAIMABLE, nr_pages);
1638 else
1639 add_zone_page_state(page_zone(page),
1640 NR_SLAB_UNRECLAIMABLE, nr_pages);
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001641 for (i = 0; i < nr_pages; i++)
1642 __SetPageSlab(page + i);
1643 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001644}
1645
1646/*
1647 * Interface to system's page release.
1648 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001649static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001651 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652 struct page *page = virt_to_page(addr);
1653 const unsigned long nr_freed = i;
1654
Christoph Lameter972d1a72006-09-25 23:31:51 -07001655 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1656 sub_zone_page_state(page_zone(page),
1657 NR_SLAB_RECLAIMABLE, nr_freed);
1658 else
1659 sub_zone_page_state(page_zone(page),
1660 NR_SLAB_UNRECLAIMABLE, nr_freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001661 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001662 BUG_ON(!PageSlab(page));
1663 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664 page++;
1665 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001666 if (current->reclaim_state)
1667 current->reclaim_state->reclaimed_slab += nr_freed;
1668 free_pages((unsigned long)addr, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001669}
1670
1671static void kmem_rcu_free(struct rcu_head *head)
1672{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001673 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001674 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675
1676 kmem_freepages(cachep, slab_rcu->addr);
1677 if (OFF_SLAB(cachep))
1678 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1679}
1680
1681#if DEBUG
1682
1683#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001684static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001685 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001686{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001687 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001688
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001689 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001690
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001691 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001692 return;
1693
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001694 *addr++ = 0x12345678;
1695 *addr++ = caller;
1696 *addr++ = smp_processor_id();
1697 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001698 {
1699 unsigned long *sptr = &caller;
1700 unsigned long svalue;
1701
1702 while (!kstack_end(sptr)) {
1703 svalue = *sptr++;
1704 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001705 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001706 size -= sizeof(unsigned long);
1707 if (size <= sizeof(unsigned long))
1708 break;
1709 }
1710 }
1711
1712 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001713 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001714}
1715#endif
1716
Pekka Enberg343e0d72006-02-01 03:05:50 -08001717static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001718{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001719 int size = obj_size(cachep);
1720 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001721
1722 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001723 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001724}
1725
1726static void dump_line(char *data, int offset, int limit)
1727{
1728 int i;
Dave Jonesaa83aa42006-09-29 01:59:51 -07001729 unsigned char error = 0;
1730 int bad_count = 0;
1731
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732 printk(KERN_ERR "%03x:", offset);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001733 for (i = 0; i < limit; i++) {
1734 if (data[offset + i] != POISON_FREE) {
1735 error = data[offset + i];
1736 bad_count++;
1737 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001738 printk(" %02x", (unsigned char)data[offset + i]);
Dave Jonesaa83aa42006-09-29 01:59:51 -07001739 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001740 printk("\n");
Dave Jonesaa83aa42006-09-29 01:59:51 -07001741
1742 if (bad_count == 1) {
1743 error ^= POISON_FREE;
1744 if (!(error & (error - 1))) {
1745 printk(KERN_ERR "Single bit error detected. Probably "
1746 "bad RAM.\n");
1747#ifdef CONFIG_X86
1748 printk(KERN_ERR "Run memtest86+ or a similar memory "
1749 "test tool.\n");
1750#else
1751 printk(KERN_ERR "Run a memory test tool.\n");
1752#endif
1753 }
1754 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755}
1756#endif
1757
1758#if DEBUG
1759
Pekka Enberg343e0d72006-02-01 03:05:50 -08001760static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001761{
1762 int i, size;
1763 char *realobj;
1764
1765 if (cachep->flags & SLAB_RED_ZONE) {
1766 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001767 *dbg_redzone1(cachep, objp),
1768 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001769 }
1770
1771 if (cachep->flags & SLAB_STORE_USER) {
1772 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001773 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001775 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776 printk("\n");
1777 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001778 realobj = (char *)objp + obj_offset(cachep);
1779 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001780 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001781 int limit;
1782 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001783 if (i + limit > size)
1784 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001785 dump_line(realobj, i, limit);
1786 }
1787}
1788
Pekka Enberg343e0d72006-02-01 03:05:50 -08001789static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790{
1791 char *realobj;
1792 int size, i;
1793 int lines = 0;
1794
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001795 realobj = (char *)objp + obj_offset(cachep);
1796 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001798 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001799 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001800 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001801 exp = POISON_END;
1802 if (realobj[i] != exp) {
1803 int limit;
1804 /* Mismatch ! */
1805 /* Print header */
1806 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001807 printk(KERN_ERR
David Howellse94a40c2007-04-02 23:46:28 +01001808 "Slab corruption: %s start=%p, len=%d\n",
1809 cachep->name, realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810 print_objinfo(cachep, objp, 0);
1811 }
1812 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001813 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001815 if (i + limit > size)
1816 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001817 dump_line(realobj, i, limit);
1818 i += 16;
1819 lines++;
1820 /* Limit to 5 lines */
1821 if (lines > 5)
1822 break;
1823 }
1824 }
1825 if (lines != 0) {
1826 /* Print some data about the neighboring objects, if they
1827 * exist:
1828 */
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08001829 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001830 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001831
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001832 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001833 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001834 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001835 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001837 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001838 print_objinfo(cachep, objp, 2);
1839 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001840 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001841 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001842 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001843 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001844 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001845 print_objinfo(cachep, objp, 2);
1846 }
1847 }
1848}
1849#endif
1850
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001852/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001853 * slab_destroy_objs - destroy a slab and its objects
1854 * @cachep: cache pointer being destroyed
1855 * @slabp: slab pointer being destroyed
1856 *
1857 * Call the registered destructor for each object in a slab that is being
1858 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001859 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001860static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001861{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001862 int i;
1863 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001864 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001865
1866 if (cachep->flags & SLAB_POISON) {
1867#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001868 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1869 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001870 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001871 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001872 else
1873 check_poison_obj(cachep, objp);
1874#else
1875 check_poison_obj(cachep, objp);
1876#endif
1877 }
1878 if (cachep->flags & SLAB_RED_ZONE) {
1879 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1880 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001881 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001882 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1883 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001884 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001885 }
1886 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001887 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001888 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001889}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001890#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001891static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001892{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001893 if (cachep->dtor) {
1894 int i;
1895 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001896 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001897 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001898 }
1899 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001900}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901#endif
1902
Randy Dunlap911851e2006-03-22 00:08:14 -08001903/**
1904 * slab_destroy - destroy and release all objects in a slab
1905 * @cachep: cache pointer being destroyed
1906 * @slabp: slab pointer being destroyed
1907 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001908 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001909 * Before calling the slab must have been unlinked from the cache. The
1910 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001911 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001912static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001913{
1914 void *addr = slabp->s_mem - slabp->colouroff;
1915
1916 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001917 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1918 struct slab_rcu *slab_rcu;
1919
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001920 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001921 slab_rcu->cachep = cachep;
1922 slab_rcu->addr = addr;
1923 call_rcu(&slab_rcu->head, kmem_rcu_free);
1924 } else {
1925 kmem_freepages(cachep, addr);
Ingo Molnar873623d2006-07-13 14:44:38 +02001926 if (OFF_SLAB(cachep))
1927 kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001928 }
1929}
1930
Andrew Mortona737b3e2006-03-22 00:08:11 -08001931/*
1932 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1933 * size of kmem_list3.
1934 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001935static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001936{
1937 int node;
1938
1939 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001940 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001941 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001942 REAPTIMEOUT_LIST3 +
1943 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001944 }
1945}
1946
Christoph Lameter117f6eb2006-09-25 23:31:37 -07001947static void __kmem_cache_destroy(struct kmem_cache *cachep)
1948{
1949 int i;
1950 struct kmem_list3 *l3;
1951
1952 for_each_online_cpu(i)
1953 kfree(cachep->array[i]);
1954
1955 /* NUMA: free the list3 structures */
1956 for_each_online_node(i) {
1957 l3 = cachep->nodelists[i];
1958 if (l3) {
1959 kfree(l3->shared);
1960 free_alien_cache(l3->alien);
1961 kfree(l3);
1962 }
1963 }
1964 kmem_cache_free(&cache_cache, cachep);
1965}
1966
1967
Linus Torvalds1da177e2005-04-16 15:20:36 -07001968/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001969 * calculate_slab_order - calculate size (page order) of slabs
1970 * @cachep: pointer to the cache that is being created
1971 * @size: size of objects to be created in this cache.
1972 * @align: required alignment for the objects.
1973 * @flags: slab allocation flags
1974 *
1975 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001976 *
1977 * This could be made much more intelligent. For now, try to avoid using
1978 * high order pages for slabs. When the gfp() functions are more friendly
1979 * towards high-order requests, this should be changed.
1980 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001981static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001982 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001983{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001984 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001985 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001986 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001987
Andrew Mortona737b3e2006-03-22 00:08:11 -08001988 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001989 unsigned int num;
1990 size_t remainder;
1991
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001992 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001993 if (!num)
1994 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001995
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001996 if (flags & CFLGS_OFF_SLAB) {
1997 /*
1998 * Max number of objs-per-slab for caches which
1999 * use off-slab slabs. Needed to avoid a possible
2000 * looping condition in cache_grow().
2001 */
2002 offslab_limit = size - sizeof(struct slab);
2003 offslab_limit /= sizeof(kmem_bufctl_t);
2004
2005 if (num > offslab_limit)
2006 break;
2007 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002008
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002009 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002010 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002011 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002012 left_over = remainder;
2013
2014 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002015 * A VFS-reclaimable slab tends to have most allocations
2016 * as GFP_NOFS and we really don't want to have to be allocating
2017 * higher-order pages when we are unable to shrink dcache.
2018 */
2019 if (flags & SLAB_RECLAIM_ACCOUNT)
2020 break;
2021
2022 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002023 * Large number of objects is good, but very large slabs are
2024 * currently bad for the gfp()s.
2025 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002026 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002027 break;
2028
Linus Torvalds9888e6f2006-03-06 17:44:43 -08002029 /*
2030 * Acceptable internal fragmentation?
2031 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002032 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002033 break;
2034 }
2035 return left_over;
2036}
2037
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002038static int setup_cpu_cache(struct kmem_cache *cachep)
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002039{
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002040 if (g_cpucache_up == FULL)
2041 return enable_cpucache(cachep);
2042
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002043 if (g_cpucache_up == NONE) {
2044 /*
2045 * Note: the first kmem_cache_create must create the cache
2046 * that's used by kmalloc(24), otherwise the creation of
2047 * further caches will BUG().
2048 */
2049 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2050
2051 /*
2052 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2053 * the first cache, then we need to set up all its list3s,
2054 * otherwise the creation of further caches will BUG().
2055 */
2056 set_up_list3s(cachep, SIZE_AC);
2057 if (INDEX_AC == INDEX_L3)
2058 g_cpucache_up = PARTIAL_L3;
2059 else
2060 g_cpucache_up = PARTIAL_AC;
2061 } else {
2062 cachep->array[smp_processor_id()] =
2063 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2064
2065 if (g_cpucache_up == PARTIAL_AC) {
2066 set_up_list3s(cachep, SIZE_L3);
2067 g_cpucache_up = PARTIAL_L3;
2068 } else {
2069 int node;
2070 for_each_online_node(node) {
2071 cachep->nodelists[node] =
2072 kmalloc_node(sizeof(struct kmem_list3),
2073 GFP_KERNEL, node);
2074 BUG_ON(!cachep->nodelists[node]);
2075 kmem_list3_init(cachep->nodelists[node]);
2076 }
2077 }
2078 }
2079 cachep->nodelists[numa_node_id()]->next_reap =
2080 jiffies + REAPTIMEOUT_LIST3 +
2081 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2082
2083 cpu_cache_get(cachep)->avail = 0;
2084 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2085 cpu_cache_get(cachep)->batchcount = 1;
2086 cpu_cache_get(cachep)->touched = 0;
2087 cachep->batchcount = 1;
2088 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002089 return 0;
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002090}
2091
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002092/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093 * kmem_cache_create - Create a cache.
2094 * @name: A string which is used in /proc/slabinfo to identify this cache.
2095 * @size: The size of objects to be created in this cache.
2096 * @align: The required alignment for the objects.
2097 * @flags: SLAB flags
2098 * @ctor: A constructor for the objects.
2099 * @dtor: A destructor for the objects.
2100 *
2101 * Returns a ptr to the cache on success, NULL on failure.
2102 * Cannot be called within a int, but can be interrupted.
2103 * The @ctor is run when new pages are allocated by the cache
2104 * and the @dtor is run before the pages are handed back.
2105 *
2106 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08002107 * the module calling this has to destroy the cache before getting unloaded.
2108 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002109 * The flags are
2110 *
2111 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2112 * to catch references to uninitialised memory.
2113 *
2114 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2115 * for buffer overruns.
2116 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002117 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2118 * cacheline. This can be beneficial if you're counting cycles as closely
2119 * as davem.
2120 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002121struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002122kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08002123 unsigned long flags,
2124 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08002125 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002126{
2127 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002128 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002129
2130 /*
2131 * Sanity checks... these are all serious usage bugs.
2132 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002133 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002134 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002135 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2136 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002137 BUG();
2138 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002139
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002140 /*
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002141 * We use cache_chain_mutex to ensure a consistent view of
2142 * cpu_online_map as well. Please see cpuup_callback
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002143 */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002144 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002145
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002146 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002147 char tmp;
2148 int res;
2149
2150 /*
2151 * This happens when the module gets unloaded and doesn't
2152 * destroy its slab cache and no-one else reuses the vmalloc
2153 * area of the module. Print a warning.
2154 */
Andrew Morton138ae662006-12-06 20:36:41 -08002155 res = probe_kernel_address(pc->name, tmp);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002156 if (res) {
2157 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002158 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002159 continue;
2160 }
2161
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002162 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002163 printk("kmem_cache_create: duplicate cache %s\n", name);
2164 dump_stack();
2165 goto oops;
2166 }
2167 }
2168
Linus Torvalds1da177e2005-04-16 15:20:36 -07002169#if DEBUG
2170 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2171 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2172 /* No constructor, but inital state check requested */
2173 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002174 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002175 flags &= ~SLAB_DEBUG_INITIAL;
2176 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002177#if FORCED_DEBUG
2178 /*
2179 * Enable redzoning and last user accounting, except for caches with
2180 * large objects, if the increased size would increase the object size
2181 * above the next power of two: caches with object sizes just above a
2182 * power of two have a significant amount of internal fragmentation.
2183 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002184 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002185 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002186 if (!(flags & SLAB_DESTROY_BY_RCU))
2187 flags |= SLAB_POISON;
2188#endif
2189 if (flags & SLAB_DESTROY_BY_RCU)
2190 BUG_ON(flags & SLAB_POISON);
2191#endif
2192 if (flags & SLAB_DESTROY_BY_RCU)
2193 BUG_ON(dtor);
2194
2195 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002196 * Always checks flags, a caller might be expecting debug support which
2197 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002198 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002199 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002200
Andrew Mortona737b3e2006-03-22 00:08:11 -08002201 /*
2202 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002203 * unaligned accesses for some archs when redzoning is used, and makes
2204 * sure any on-slab bufctl's are also correctly aligned.
2205 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002206 if (size & (BYTES_PER_WORD - 1)) {
2207 size += (BYTES_PER_WORD - 1);
2208 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002209 }
2210
Andrew Mortona737b3e2006-03-22 00:08:11 -08002211 /* calculate the final buffer alignment: */
2212
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 /* 1) arch recommendation: can be overridden for debug */
2214 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002215 /*
2216 * Default alignment: as specified by the arch code. Except if
2217 * an object is really small, then squeeze multiple objects into
2218 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002219 */
2220 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002221 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002222 ralign /= 2;
2223 } else {
2224 ralign = BYTES_PER_WORD;
2225 }
Pekka Enbergca5f9702006-09-25 23:31:25 -07002226
2227 /*
2228 * Redzoning and user store require word alignment. Note this will be
2229 * overridden by architecture or caller mandated alignment if either
2230 * is greater than BYTES_PER_WORD.
2231 */
2232 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2233 ralign = BYTES_PER_WORD;
2234
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002235 /* 2) arch mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002236 if (ralign < ARCH_SLAB_MINALIGN) {
2237 ralign = ARCH_SLAB_MINALIGN;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002238 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002239 /* 3) caller mandated alignment */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002240 if (ralign < align) {
2241 ralign = align;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002242 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08002243 /* disable debug if necessary */
2244 if (ralign > BYTES_PER_WORD)
2245 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002246 /*
Pekka Enbergca5f9702006-09-25 23:31:25 -07002247 * 4) Store it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002248 */
2249 align = ralign;
2250
2251 /* Get cache's description obj. */
Christoph Lametere94b1762006-12-06 20:33:17 -08002252 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002253 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002254 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002255
2256#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002257 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002258
Pekka Enbergca5f9702006-09-25 23:31:25 -07002259 /*
2260 * Both debugging options require word-alignment which is calculated
2261 * into align above.
2262 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263 if (flags & SLAB_RED_ZONE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002264 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002265 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002266 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002267 }
2268 if (flags & SLAB_STORE_USER) {
Pekka Enbergca5f9702006-09-25 23:31:25 -07002269 /* user store requires one word storage behind the end of
2270 * the real object.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002271 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002272 size += BYTES_PER_WORD;
2273 }
2274#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002275 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002276 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2277 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278 size = PAGE_SIZE;
2279 }
2280#endif
2281#endif
2282
Ingo Molnare0a42722006-06-23 02:03:46 -07002283 /*
2284 * Determine if the slab management is 'on' or 'off' slab.
2285 * (bootstrapping cannot cope with offslab caches so don't do
2286 * it too early on.)
2287 */
2288 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002289 /*
2290 * Size is large, assume best to place the slab management obj
2291 * off-slab (should allow better packing of objs).
2292 */
2293 flags |= CFLGS_OFF_SLAB;
2294
2295 size = ALIGN(size, align);
2296
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002297 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002298
2299 if (!cachep->num) {
2300 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2301 kmem_cache_free(&cache_cache, cachep);
2302 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002303 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002304 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002305 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2306 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002307
2308 /*
2309 * If the slab has been placed off-slab, and we have enough space then
2310 * move it on-slab. This is at the expense of any extra colouring.
2311 */
2312 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2313 flags &= ~CFLGS_OFF_SLAB;
2314 left_over -= slab_size;
2315 }
2316
2317 if (flags & CFLGS_OFF_SLAB) {
2318 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002319 slab_size =
2320 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002321 }
2322
2323 cachep->colour_off = cache_line_size();
2324 /* Offset must be a multiple of the alignment. */
2325 if (cachep->colour_off < align)
2326 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002327 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002328 cachep->slab_size = slab_size;
2329 cachep->flags = flags;
2330 cachep->gfpflags = 0;
Christoph Lameter4b51d662007-02-10 01:43:10 -08002331 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002333 cachep->buffer_size = size;
Eric Dumazet6a2d7a92006-12-13 00:34:27 -08002334 cachep->reciprocal_buffer_size = reciprocal_value(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002335
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002336 if (flags & CFLGS_OFF_SLAB) {
Victor Fuscob2d55072005-09-10 00:26:36 -07002337 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002338 /*
2339 * This is a possibility for one of the malloc_sizes caches.
2340 * But since we go off slab only for object size greater than
2341 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2342 * this should not happen at all.
2343 * But leave a BUG_ON for some lucky dude.
2344 */
2345 BUG_ON(!cachep->slabp_cache);
2346 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002347 cachep->ctor = ctor;
2348 cachep->dtor = dtor;
2349 cachep->name = name;
2350
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002351 if (setup_cpu_cache(cachep)) {
2352 __kmem_cache_destroy(cachep);
2353 cachep = NULL;
2354 goto oops;
2355 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002356
Linus Torvalds1da177e2005-04-16 15:20:36 -07002357 /* cache setup completed, link it into the list */
2358 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002359oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002360 if (!cachep && (flags & SLAB_PANIC))
2361 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002362 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002363 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002364 return cachep;
2365}
2366EXPORT_SYMBOL(kmem_cache_create);
2367
2368#if DEBUG
2369static void check_irq_off(void)
2370{
2371 BUG_ON(!irqs_disabled());
2372}
2373
2374static void check_irq_on(void)
2375{
2376 BUG_ON(irqs_disabled());
2377}
2378
Pekka Enberg343e0d72006-02-01 03:05:50 -08002379static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002380{
2381#ifdef CONFIG_SMP
2382 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002383 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002384#endif
2385}
Christoph Lametere498be72005-09-09 13:03:32 -07002386
Pekka Enberg343e0d72006-02-01 03:05:50 -08002387static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002388{
2389#ifdef CONFIG_SMP
2390 check_irq_off();
2391 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2392#endif
2393}
2394
Linus Torvalds1da177e2005-04-16 15:20:36 -07002395#else
2396#define check_irq_off() do { } while(0)
2397#define check_irq_on() do { } while(0)
2398#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002399#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002400#endif
2401
Christoph Lameteraab22072006-03-22 00:09:06 -08002402static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2403 struct array_cache *ac,
2404 int force, int node);
2405
Linus Torvalds1da177e2005-04-16 15:20:36 -07002406static void do_drain(void *arg)
2407{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002408 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002409 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002410 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002411
2412 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002413 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002414 spin_lock(&cachep->nodelists[node]->list_lock);
2415 free_block(cachep, ac->entry, ac->avail, node);
2416 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002417 ac->avail = 0;
2418}
2419
Pekka Enberg343e0d72006-02-01 03:05:50 -08002420static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002421{
Christoph Lametere498be72005-09-09 13:03:32 -07002422 struct kmem_list3 *l3;
2423 int node;
2424
Andrew Mortona07fa392006-03-22 00:08:17 -08002425 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002426 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002427 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002428 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002429 if (l3 && l3->alien)
2430 drain_alien_cache(cachep, l3->alien);
2431 }
2432
2433 for_each_online_node(node) {
2434 l3 = cachep->nodelists[node];
2435 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002436 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002437 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002438}
2439
Christoph Lametered11d9e2006-06-30 01:55:45 -07002440/*
2441 * Remove slabs from the list of free slabs.
2442 * Specify the number of slabs to drain in tofree.
2443 *
2444 * Returns the actual number of slabs released.
2445 */
2446static int drain_freelist(struct kmem_cache *cache,
2447 struct kmem_list3 *l3, int tofree)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002448{
Christoph Lametered11d9e2006-06-30 01:55:45 -07002449 struct list_head *p;
2450 int nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002451 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002452
Christoph Lametered11d9e2006-06-30 01:55:45 -07002453 nr_freed = 0;
2454 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002455
Christoph Lametered11d9e2006-06-30 01:55:45 -07002456 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002457 p = l3->slabs_free.prev;
Christoph Lametered11d9e2006-06-30 01:55:45 -07002458 if (p == &l3->slabs_free) {
2459 spin_unlock_irq(&l3->list_lock);
2460 goto out;
2461 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002462
Christoph Lametered11d9e2006-06-30 01:55:45 -07002463 slabp = list_entry(p, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002464#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002465 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002466#endif
2467 list_del(&slabp->list);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002468 /*
2469 * Safe to drop the lock. The slab is no longer linked
2470 * to the cache.
2471 */
2472 l3->free_objects -= cache->num;
Christoph Lametere498be72005-09-09 13:03:32 -07002473 spin_unlock_irq(&l3->list_lock);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002474 slab_destroy(cache, slabp);
2475 nr_freed++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002476 }
Christoph Lametered11d9e2006-06-30 01:55:45 -07002477out:
2478 return nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002479}
2480
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002481/* Called with cache_chain_mutex held to protect against cpu hotplug */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002482static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002483{
2484 int ret = 0, i = 0;
2485 struct kmem_list3 *l3;
2486
2487 drain_cpu_caches(cachep);
2488
2489 check_irq_on();
2490 for_each_online_node(i) {
2491 l3 = cachep->nodelists[i];
Christoph Lametered11d9e2006-06-30 01:55:45 -07002492 if (!l3)
2493 continue;
2494
2495 drain_freelist(cachep, l3, l3->free_objects);
2496
2497 ret += !list_empty(&l3->slabs_full) ||
2498 !list_empty(&l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002499 }
2500 return (ret ? 1 : 0);
2501}
2502
Linus Torvalds1da177e2005-04-16 15:20:36 -07002503/**
2504 * kmem_cache_shrink - Shrink a cache.
2505 * @cachep: The cache to shrink.
2506 *
2507 * Releases as many slabs as possible for a cache.
2508 * To help debugging, a zero exit status indicates all slabs were released.
2509 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002510int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002511{
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002512 int ret;
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002513 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002514
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002515 mutex_lock(&cache_chain_mutex);
2516 ret = __cache_shrink(cachep);
2517 mutex_unlock(&cache_chain_mutex);
2518 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002519}
2520EXPORT_SYMBOL(kmem_cache_shrink);
2521
2522/**
2523 * kmem_cache_destroy - delete a cache
2524 * @cachep: the cache to destroy
2525 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08002526 * Remove a &struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002527 *
2528 * It is expected this function will be called by a module when it is
2529 * unloaded. This will remove the cache completely, and avoid a duplicate
2530 * cache being allocated each time a module is loaded and unloaded, if the
2531 * module doesn't have persistent in-kernel storage across loads and unloads.
2532 *
2533 * The cache must be empty before calling this function.
2534 *
2535 * The caller must guarantee that noone will allocate memory from the cache
2536 * during the kmem_cache_destroy().
2537 */
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002538void kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002539{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002540 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002541
Linus Torvalds1da177e2005-04-16 15:20:36 -07002542 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002543 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002544 /*
2545 * the chain is never empty, cache_cache is never destroyed
2546 */
2547 list_del(&cachep->next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002548 if (__cache_shrink(cachep)) {
2549 slab_error(cachep, "Can't free all objects");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002550 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002551 mutex_unlock(&cache_chain_mutex);
Alexey Dobriyan133d2052006-09-27 01:49:41 -07002552 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002553 }
2554
2555 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002556 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557
Christoph Lameter117f6eb2006-09-25 23:31:37 -07002558 __kmem_cache_destroy(cachep);
Ravikiran G Thirumalai8f5be202006-12-06 20:32:14 -08002559 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002560}
2561EXPORT_SYMBOL(kmem_cache_destroy);
2562
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002563/*
2564 * Get the memory for a slab management obj.
2565 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2566 * always come from malloc_sizes caches. The slab descriptor cannot
2567 * come from the same cache which is getting created because,
2568 * when we are searching for an appropriate cache for these
2569 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2570 * If we are creating a malloc_sizes cache here it would not be visible to
2571 * kmem_find_general_cachep till the initialization is complete.
2572 * Hence we cannot have slabp_cache same as the original cache.
2573 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002574static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002575 int colour_off, gfp_t local_flags,
2576 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002577{
2578 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002579
Linus Torvalds1da177e2005-04-16 15:20:36 -07002580 if (OFF_SLAB(cachep)) {
2581 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002582 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
Christoph Lameter3c517a62006-12-06 20:33:29 -08002583 local_flags & ~GFP_THISNODE, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002584 if (!slabp)
2585 return NULL;
2586 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002587 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002588 colour_off += cachep->slab_size;
2589 }
2590 slabp->inuse = 0;
2591 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002592 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002593 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002594 return slabp;
2595}
2596
2597static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2598{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002599 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002600}
2601
Pekka Enberg343e0d72006-02-01 03:05:50 -08002602static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002603 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002604{
2605 int i;
2606
2607 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002608 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002609#if DEBUG
2610 /* need to poison the objs? */
2611 if (cachep->flags & SLAB_POISON)
2612 poison_obj(cachep, objp, POISON_FREE);
2613 if (cachep->flags & SLAB_STORE_USER)
2614 *dbg_userword(cachep, objp) = NULL;
2615
2616 if (cachep->flags & SLAB_RED_ZONE) {
2617 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2618 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2619 }
2620 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002621 * Constructors are not allowed to allocate memory from the same
2622 * cache which they are a constructor for. Otherwise, deadlock.
2623 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002624 */
2625 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002626 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002627 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002628
2629 if (cachep->flags & SLAB_RED_ZONE) {
2630 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2631 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002632 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002633 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2634 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002635 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002636 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002637 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2638 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002639 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002640 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002641#else
2642 if (cachep->ctor)
2643 cachep->ctor(objp, cachep, ctor_flags);
2644#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002645 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002646 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002647 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002648 slabp->free = 0;
2649}
2650
Pekka Enberg343e0d72006-02-01 03:05:50 -08002651static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002652{
Christoph Lameter4b51d662007-02-10 01:43:10 -08002653 if (CONFIG_ZONE_DMA_FLAG) {
2654 if (flags & GFP_DMA)
2655 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2656 else
2657 BUG_ON(cachep->gfpflags & GFP_DMA);
2658 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002659}
2660
Andrew Mortona737b3e2006-03-22 00:08:11 -08002661static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2662 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002663{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002664 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002665 kmem_bufctl_t next;
2666
2667 slabp->inuse++;
2668 next = slab_bufctl(slabp)[slabp->free];
2669#if DEBUG
2670 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2671 WARN_ON(slabp->nodeid != nodeid);
2672#endif
2673 slabp->free = next;
2674
2675 return objp;
2676}
2677
Andrew Mortona737b3e2006-03-22 00:08:11 -08002678static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2679 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002680{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002681 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002682
2683#if DEBUG
2684 /* Verify that the slab belongs to the intended node */
2685 WARN_ON(slabp->nodeid != nodeid);
2686
Al Viro871751e2006-03-25 03:06:39 -08002687 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002688 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002689 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002690 BUG();
2691 }
2692#endif
2693 slab_bufctl(slabp)[objnr] = slabp->free;
2694 slabp->free = objnr;
2695 slabp->inuse--;
2696}
2697
Pekka Enberg47768742006-06-23 02:03:07 -07002698/*
2699 * Map pages beginning at addr to the given cache and slab. This is required
2700 * for the slab allocator to be able to lookup the cache and slab of a
2701 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2702 */
2703static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2704 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002705{
Pekka Enberg47768742006-06-23 02:03:07 -07002706 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002707 struct page *page;
2708
Pekka Enberg47768742006-06-23 02:03:07 -07002709 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002710
Pekka Enberg47768742006-06-23 02:03:07 -07002711 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002712 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002713 nr_pages <<= cache->gfporder;
2714
Linus Torvalds1da177e2005-04-16 15:20:36 -07002715 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002716 page_set_cache(page, cache);
2717 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002718 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002719 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002720}
2721
2722/*
2723 * Grow (by 1) the number of slabs within a cache. This is called by
2724 * kmem_cache_alloc() when there are no active objs left in a cache.
2725 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002726static int cache_grow(struct kmem_cache *cachep,
2727 gfp_t flags, int nodeid, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002728{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002729 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002730 size_t offset;
2731 gfp_t local_flags;
2732 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002733 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002734
Andrew Mortona737b3e2006-03-22 00:08:11 -08002735 /*
2736 * Be lazy and only check for valid flags here, keeping it out of the
2737 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738 */
Christoph Lameter441e1432006-12-06 20:33:19 -08002739 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
Christoph Lameter6e0eaa42006-12-06 20:33:10 -08002740 if (flags & __GFP_NO_GROW)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002741 return 0;
2742
2743 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Christoph Lametera06d72c2006-12-06 20:33:12 -08002744 local_flags = (flags & GFP_LEVEL_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002745 if (!(local_flags & __GFP_WAIT))
2746 /*
2747 * Not allowed to sleep. Need to tell a constructor about
2748 * this - it might need to know...
2749 */
2750 ctor_flags |= SLAB_CTOR_ATOMIC;
2751
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002752 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002753 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002754 l3 = cachep->nodelists[nodeid];
2755 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002756
2757 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002758 offset = l3->colour_next;
2759 l3->colour_next++;
2760 if (l3->colour_next >= cachep->colour)
2761 l3->colour_next = 0;
2762 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002763
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002764 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002765
2766 if (local_flags & __GFP_WAIT)
2767 local_irq_enable();
2768
2769 /*
2770 * The test for missing atomic flag is performed here, rather than
2771 * the more obvious place, simply to reduce the critical path length
2772 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2773 * will eventually be caught here (where it matters).
2774 */
2775 kmem_flagcheck(cachep, flags);
2776
Andrew Mortona737b3e2006-03-22 00:08:11 -08002777 /*
2778 * Get mem for the objs. Attempt to allocate a physical page from
2779 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002780 */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002781 if (!objp)
2782 objp = kmem_getpages(cachep, flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002783 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002784 goto failed;
2785
2786 /* Get slab management. */
Christoph Lameter3c517a62006-12-06 20:33:29 -08002787 slabp = alloc_slabmgmt(cachep, objp, offset,
2788 local_flags & ~GFP_THISNODE, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002789 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002790 goto opps1;
2791
Christoph Lametere498be72005-09-09 13:03:32 -07002792 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002793 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002794
2795 cache_init_objs(cachep, slabp, ctor_flags);
2796
2797 if (local_flags & __GFP_WAIT)
2798 local_irq_disable();
2799 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002800 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002801
2802 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002803 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002804 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002805 l3->free_objects += cachep->num;
2806 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002807 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002808opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002809 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002810failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002811 if (local_flags & __GFP_WAIT)
2812 local_irq_disable();
2813 return 0;
2814}
2815
2816#if DEBUG
2817
2818/*
2819 * Perform extra freeing checks:
2820 * - detect bad pointers.
2821 * - POISON/RED_ZONE checking
2822 * - destructor calls, for caches with POISON+dtor
2823 */
2824static void kfree_debugcheck(const void *objp)
2825{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826 if (!virt_addr_valid(objp)) {
2827 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002828 (unsigned long)objp);
2829 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002830 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831}
2832
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002833static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2834{
2835 unsigned long redzone1, redzone2;
2836
2837 redzone1 = *dbg_redzone1(cache, obj);
2838 redzone2 = *dbg_redzone2(cache, obj);
2839
2840 /*
2841 * Redzone is ok.
2842 */
2843 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2844 return;
2845
2846 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2847 slab_error(cache, "double free detected");
2848 else
2849 slab_error(cache, "memory outside object was overwritten");
2850
2851 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2852 obj, redzone1, redzone2);
2853}
2854
Pekka Enberg343e0d72006-02-01 03:05:50 -08002855static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002856 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002857{
2858 struct page *page;
2859 unsigned int objnr;
2860 struct slab *slabp;
2861
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002862 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002863 kfree_debugcheck(objp);
2864 page = virt_to_page(objp);
2865
Pekka Enberg065d41c2005-11-13 16:06:46 -08002866 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002867
2868 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002869 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002870 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2871 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2872 }
2873 if (cachep->flags & SLAB_STORE_USER)
2874 *dbg_userword(cachep, objp) = caller;
2875
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002876 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002877
2878 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002879 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002880
2881 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002882 /*
2883 * Need to call the slab's constructor so the caller can
2884 * perform a verify of its state (debugging). Called without
2885 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002886 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002887 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002888 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002889 }
2890 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2891 /* we want to cache poison the object,
2892 * call the destruction callback
2893 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002894 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002895 }
Al Viro871751e2006-03-25 03:06:39 -08002896#ifdef CONFIG_DEBUG_SLAB_LEAK
2897 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2898#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002899 if (cachep->flags & SLAB_POISON) {
2900#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002901 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002902 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002903 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002904 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002905 } else {
2906 poison_obj(cachep, objp, POISON_FREE);
2907 }
2908#else
2909 poison_obj(cachep, objp, POISON_FREE);
2910#endif
2911 }
2912 return objp;
2913}
2914
Pekka Enberg343e0d72006-02-01 03:05:50 -08002915static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002916{
2917 kmem_bufctl_t i;
2918 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002919
Linus Torvalds1da177e2005-04-16 15:20:36 -07002920 /* Check slab's freelist to see if this obj is there. */
2921 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2922 entries++;
2923 if (entries > cachep->num || i >= cachep->num)
2924 goto bad;
2925 }
2926 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002927bad:
2928 printk(KERN_ERR "slab: Internal list corruption detected in "
2929 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2930 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002931 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002932 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002933 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002934 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002935 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002936 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002937 }
2938 printk("\n");
2939 BUG();
2940 }
2941}
2942#else
2943#define kfree_debugcheck(x) do { } while(0)
2944#define cache_free_debugcheck(x,objp,z) (objp)
2945#define check_slabp(x,y) do { } while(0)
2946#endif
2947
Pekka Enberg343e0d72006-02-01 03:05:50 -08002948static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002949{
2950 int batchcount;
2951 struct kmem_list3 *l3;
2952 struct array_cache *ac;
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002953 int node;
2954
2955 node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002956
2957 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002958 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002959retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002960 batchcount = ac->batchcount;
2961 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002962 /*
2963 * If there was little recent activity on this cache, then
2964 * perform only a partial refill. Otherwise we could generate
2965 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002966 */
2967 batchcount = BATCHREFILL_LIMIT;
2968 }
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07002969 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002970
Christoph Lametere498be72005-09-09 13:03:32 -07002971 BUG_ON(ac->avail > 0 || !l3);
2972 spin_lock(&l3->list_lock);
2973
Christoph Lameter3ded1752006-03-25 03:06:44 -08002974 /* See if we can refill from the shared array */
2975 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2976 goto alloc_done;
2977
Linus Torvalds1da177e2005-04-16 15:20:36 -07002978 while (batchcount > 0) {
2979 struct list_head *entry;
2980 struct slab *slabp;
2981 /* Get slab alloc is to come from. */
2982 entry = l3->slabs_partial.next;
2983 if (entry == &l3->slabs_partial) {
2984 l3->free_touched = 1;
2985 entry = l3->slabs_free.next;
2986 if (entry == &l3->slabs_free)
2987 goto must_grow;
2988 }
2989
2990 slabp = list_entry(entry, struct slab, list);
2991 check_slabp(cachep, slabp);
2992 check_spinlock_acquired(cachep);
Pekka Enberg714b81712007-05-06 14:49:03 -07002993
2994 /*
2995 * The slab was either on partial or free list so
2996 * there must be at least one object available for
2997 * allocation.
2998 */
2999 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3000
Linus Torvalds1da177e2005-04-16 15:20:36 -07003001 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003002 STATS_INC_ALLOCED(cachep);
3003 STATS_INC_ACTIVE(cachep);
3004 STATS_SET_HIGH(cachep);
3005
Matthew Dobson78d382d2006-02-01 03:05:47 -08003006 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
Pekka Enberg1ca4cb22006-10-06 00:43:52 -07003007 node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003008 }
3009 check_slabp(cachep, slabp);
3010
3011 /* move slabp to correct slabp list: */
3012 list_del(&slabp->list);
3013 if (slabp->free == BUFCTL_END)
3014 list_add(&slabp->list, &l3->slabs_full);
3015 else
3016 list_add(&slabp->list, &l3->slabs_partial);
3017 }
3018
Andrew Mortona737b3e2006-03-22 00:08:11 -08003019must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003020 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003021alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07003022 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003023
3024 if (unlikely(!ac->avail)) {
3025 int x;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003026 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07003027
Andrew Mortona737b3e2006-03-22 00:08:11 -08003028 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003029 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003030 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003031 return NULL;
3032
Andrew Mortona737b3e2006-03-22 00:08:11 -08003033 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003034 goto retry;
3035 }
3036 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003037 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003038}
3039
Andrew Mortona737b3e2006-03-22 00:08:11 -08003040static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3041 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003042{
3043 might_sleep_if(flags & __GFP_WAIT);
3044#if DEBUG
3045 kmem_flagcheck(cachep, flags);
3046#endif
3047}
3048
3049#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003050static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3051 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003052{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003053 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003054 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003055 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003056#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003057 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003058 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003059 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003060 else
3061 check_poison_obj(cachep, objp);
3062#else
3063 check_poison_obj(cachep, objp);
3064#endif
3065 poison_obj(cachep, objp, POISON_INUSE);
3066 }
3067 if (cachep->flags & SLAB_STORE_USER)
3068 *dbg_userword(cachep, objp) = caller;
3069
3070 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08003071 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3072 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3073 slab_error(cachep, "double free, or memory outside"
3074 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003075 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08003076 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3077 objp, *dbg_redzone1(cachep, objp),
3078 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003079 }
3080 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3081 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3082 }
Al Viro871751e2006-03-25 03:06:39 -08003083#ifdef CONFIG_DEBUG_SLAB_LEAK
3084 {
3085 struct slab *slabp;
3086 unsigned objnr;
3087
3088 slabp = page_get_slab(virt_to_page(objp));
3089 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3090 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3091 }
3092#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003093 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003094 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003095 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003096
3097 if (!(flags & __GFP_WAIT))
3098 ctor_flags |= SLAB_CTOR_ATOMIC;
3099
3100 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003101 }
Kevin Hilmana44b56d2006-12-06 20:32:11 -08003102#if ARCH_SLAB_MINALIGN
3103 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3104 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3105 objp, ARCH_SLAB_MINALIGN);
3106 }
3107#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003108 return objp;
3109}
3110#else
3111#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3112#endif
3113
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003114#ifdef CONFIG_FAILSLAB
3115
3116static struct failslab_attr {
3117
3118 struct fault_attr attr;
3119
3120 u32 ignore_gfp_wait;
3121#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3122 struct dentry *ignore_gfp_wait_file;
3123#endif
3124
3125} failslab = {
3126 .attr = FAULT_ATTR_INITIALIZER,
Don Mullis6b1b60f2006-12-08 02:39:53 -08003127 .ignore_gfp_wait = 1,
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003128};
3129
3130static int __init setup_failslab(char *str)
3131{
3132 return setup_fault_attr(&failslab.attr, str);
3133}
3134__setup("failslab=", setup_failslab);
3135
3136static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3137{
3138 if (cachep == &cache_cache)
3139 return 0;
3140 if (flags & __GFP_NOFAIL)
3141 return 0;
3142 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3143 return 0;
3144
3145 return should_fail(&failslab.attr, obj_size(cachep));
3146}
3147
3148#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3149
3150static int __init failslab_debugfs(void)
3151{
3152 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3153 struct dentry *dir;
3154 int err;
3155
3156 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3157 if (err)
3158 return err;
3159 dir = failslab.attr.dentries.dir;
3160
3161 failslab.ignore_gfp_wait_file =
3162 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3163 &failslab.ignore_gfp_wait);
3164
3165 if (!failslab.ignore_gfp_wait_file) {
3166 err = -ENOMEM;
3167 debugfs_remove(failslab.ignore_gfp_wait_file);
3168 cleanup_fault_attr_dentries(&failslab.attr);
3169 }
3170
3171 return err;
3172}
3173
3174late_initcall(failslab_debugfs);
3175
3176#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3177
3178#else /* CONFIG_FAILSLAB */
3179
3180static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3181{
3182 return 0;
3183}
3184
3185#endif /* CONFIG_FAILSLAB */
3186
Pekka Enberg343e0d72006-02-01 03:05:50 -08003187static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003188{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003189 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003190 struct array_cache *ac;
3191
Alok N Kataria5c382302005-09-27 21:45:46 -07003192 check_irq_off();
Akinobu Mita8a8b6502006-12-08 02:39:44 -08003193
3194 if (should_failslab(cachep, flags))
3195 return NULL;
3196
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003197 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003198 if (likely(ac->avail)) {
3199 STATS_INC_ALLOCHIT(cachep);
3200 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003201 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003202 } else {
3203 STATS_INC_ALLOCMISS(cachep);
3204 objp = cache_alloc_refill(cachep, flags);
3205 }
Alok N Kataria5c382302005-09-27 21:45:46 -07003206 return objp;
3207}
3208
Christoph Lametere498be72005-09-09 13:03:32 -07003209#ifdef CONFIG_NUMA
3210/*
Paul Jacksonb2455392006-03-24 03:16:12 -08003211 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08003212 *
3213 * If we are in_interrupt, then process context, including cpusets and
3214 * mempolicy, may not apply and should not be used for allocation policy.
3215 */
3216static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3217{
3218 int nid_alloc, nid_here;
3219
Christoph Lameter765c4502006-09-27 01:50:08 -07003220 if (in_interrupt() || (flags & __GFP_THISNODE))
Paul Jacksonc61afb12006-03-24 03:16:08 -08003221 return NULL;
3222 nid_alloc = nid_here = numa_node_id();
3223 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3224 nid_alloc = cpuset_mem_spread_node();
3225 else if (current->mempolicy)
3226 nid_alloc = slab_node(current->mempolicy);
3227 if (nid_alloc != nid_here)
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003228 return ____cache_alloc_node(cachep, flags, nid_alloc);
Paul Jacksonc61afb12006-03-24 03:16:08 -08003229 return NULL;
3230}
3231
3232/*
Christoph Lameter765c4502006-09-27 01:50:08 -07003233 * Fallback function if there was no memory available and no objects on a
Christoph Lameter3c517a62006-12-06 20:33:29 -08003234 * certain node and fall back is permitted. First we scan all the
3235 * available nodelists for available objects. If that fails then we
3236 * perform an allocation without specifying a node. This allows the page
3237 * allocator to do its reclaim / fallback magic. We then insert the
3238 * slab into the proper nodelist and then allocate from it.
Christoph Lameter765c4502006-09-27 01:50:08 -07003239 */
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003240static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
Christoph Lameter765c4502006-09-27 01:50:08 -07003241{
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003242 struct zonelist *zonelist;
3243 gfp_t local_flags;
Christoph Lameter765c4502006-09-27 01:50:08 -07003244 struct zone **z;
3245 void *obj = NULL;
Christoph Lameter3c517a62006-12-06 20:33:29 -08003246 int nid;
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003247
3248 if (flags & __GFP_THISNODE)
3249 return NULL;
3250
3251 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3252 ->node_zonelists[gfp_zone(flags)];
3253 local_flags = (flags & GFP_LEVEL_MASK);
Christoph Lameter765c4502006-09-27 01:50:08 -07003254
Christoph Lameter3c517a62006-12-06 20:33:29 -08003255retry:
3256 /*
3257 * Look through allowed nodes for objects available
3258 * from existing per node queues.
3259 */
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003260 for (z = zonelist->zones; *z && !obj; z++) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003261 nid = zone_to_nid(*z);
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003262
Paul Jackson02a0e532006-12-13 00:34:25 -08003263 if (cpuset_zone_allowed_hardwall(*z, flags) &&
Christoph Lameter3c517a62006-12-06 20:33:29 -08003264 cache->nodelists[nid] &&
3265 cache->nodelists[nid]->free_objects)
3266 obj = ____cache_alloc_node(cache,
3267 flags | GFP_THISNODE, nid);
3268 }
3269
Hugh Dickinsb6a60452007-01-05 16:36:36 -08003270 if (!obj && !(flags & __GFP_NO_GROW)) {
Christoph Lameter3c517a62006-12-06 20:33:29 -08003271 /*
3272 * This allocation will be performed within the constraints
3273 * of the current cpuset / memory policy requirements.
3274 * We may trigger various forms of reclaim on the allowed
3275 * set and go into memory reserves if necessary.
3276 */
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003277 if (local_flags & __GFP_WAIT)
3278 local_irq_enable();
3279 kmem_flagcheck(cache, flags);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003280 obj = kmem_getpages(cache, flags, -1);
Christoph Lameterdd47ea72006-12-13 00:34:11 -08003281 if (local_flags & __GFP_WAIT)
3282 local_irq_disable();
Christoph Lameter3c517a62006-12-06 20:33:29 -08003283 if (obj) {
3284 /*
3285 * Insert into the appropriate per node queues
3286 */
3287 nid = page_to_nid(virt_to_page(obj));
3288 if (cache_grow(cache, flags, nid, obj)) {
3289 obj = ____cache_alloc_node(cache,
3290 flags | GFP_THISNODE, nid);
3291 if (!obj)
3292 /*
3293 * Another processor may allocate the
3294 * objects in the slab since we are
3295 * not holding any locks.
3296 */
3297 goto retry;
3298 } else {
Hugh Dickinsb6a60452007-01-05 16:36:36 -08003299 /* cache_grow already freed obj */
Christoph Lameter3c517a62006-12-06 20:33:29 -08003300 obj = NULL;
3301 }
3302 }
Christoph Lameteraedb0eb2006-10-21 10:24:16 -07003303 }
Christoph Lameter765c4502006-09-27 01:50:08 -07003304 return obj;
3305}
3306
3307/*
Christoph Lametere498be72005-09-09 13:03:32 -07003308 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07003309 */
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003310static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003311 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07003312{
3313 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003314 struct slab *slabp;
3315 struct kmem_list3 *l3;
3316 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003317 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003318
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003319 l3 = cachep->nodelists[nodeid];
3320 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003321
Andrew Mortona737b3e2006-03-22 00:08:11 -08003322retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003323 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003324 spin_lock(&l3->list_lock);
3325 entry = l3->slabs_partial.next;
3326 if (entry == &l3->slabs_partial) {
3327 l3->free_touched = 1;
3328 entry = l3->slabs_free.next;
3329 if (entry == &l3->slabs_free)
3330 goto must_grow;
3331 }
Christoph Lametere498be72005-09-09 13:03:32 -07003332
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003333 slabp = list_entry(entry, struct slab, list);
3334 check_spinlock_acquired_node(cachep, nodeid);
3335 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003336
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003337 STATS_INC_NODEALLOCS(cachep);
3338 STATS_INC_ACTIVE(cachep);
3339 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003340
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003341 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003342
Matthew Dobson78d382d2006-02-01 03:05:47 -08003343 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003344 check_slabp(cachep, slabp);
3345 l3->free_objects--;
3346 /* move slabp to correct slabp list: */
3347 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003348
Andrew Mortona737b3e2006-03-22 00:08:11 -08003349 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003350 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003351 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003352 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003353
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003354 spin_unlock(&l3->list_lock);
3355 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003356
Andrew Mortona737b3e2006-03-22 00:08:11 -08003357must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003358 spin_unlock(&l3->list_lock);
Christoph Lameter3c517a62006-12-06 20:33:29 -08003359 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
Christoph Lameter765c4502006-09-27 01:50:08 -07003360 if (x)
3361 goto retry;
Christoph Lametere498be72005-09-09 13:03:32 -07003362
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003363 return fallback_alloc(cachep, flags);
Christoph Lameter765c4502006-09-27 01:50:08 -07003364
Andrew Mortona737b3e2006-03-22 00:08:11 -08003365done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003366 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003367}
Pekka Enberg8c8cc2c2007-02-10 01:42:53 -08003368
3369/**
3370 * kmem_cache_alloc_node - Allocate an object on the specified node
3371 * @cachep: The cache to allocate from.
3372 * @flags: See kmalloc().
3373 * @nodeid: node number of the target node.
3374 * @caller: return address of caller, used for debug information
3375 *
3376 * Identical to kmem_cache_alloc but it will allocate memory on the given
3377 * node, which can improve the performance for cpu bound structures.
3378 *
3379 * Fallback to other node is possible if __GFP_THISNODE is not set.
3380 */
3381static __always_inline void *
3382__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3383 void *caller)
3384{
3385 unsigned long save_flags;
3386 void *ptr;
3387
3388 cache_alloc_debugcheck_before(cachep, flags);
3389 local_irq_save(save_flags);
3390
3391 if (unlikely(nodeid == -1))
3392 nodeid = numa_node_id();
3393
3394 if (unlikely(!cachep->nodelists[nodeid])) {
3395 /* Node not bootstrapped yet */
3396 ptr = fallback_alloc(cachep, flags);
3397 goto out;
3398 }
3399
3400 if (nodeid == numa_node_id()) {
3401 /*
3402 * Use the locally cached objects if possible.
3403 * However ____cache_alloc does not allow fallback
3404 * to other nodes. It may fail while we still have
3405 * objects on other nodes available.
3406 */
3407 ptr = ____cache_alloc(cachep, flags);
3408 if (ptr)
3409 goto out;
3410 }
3411 /* ___cache_alloc_node can fall back to other nodes */
3412 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3413 out:
3414 local_irq_restore(save_flags);
3415 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3416
3417 return ptr;
3418}
3419
3420static __always_inline void *
3421__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3422{
3423 void *objp;
3424
3425 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3426 objp = alternate_node_alloc(cache, flags);
3427 if (objp)
3428 goto out;
3429 }
3430 objp = ____cache_alloc(cache, flags);
3431
3432 /*
3433 * We may just have run out of memory on the local node.
3434 * ____cache_alloc_node() knows how to locate memory on other nodes
3435 */
3436 if (!objp)
3437 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3438
3439 out:
3440 return objp;
3441}
3442#else
3443
3444static __always_inline void *
3445__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3446{
3447 return ____cache_alloc(cachep, flags);
3448}
3449
3450#endif /* CONFIG_NUMA */
3451
3452static __always_inline void *
3453__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3454{
3455 unsigned long save_flags;
3456 void *objp;
3457
3458 cache_alloc_debugcheck_before(cachep, flags);
3459 local_irq_save(save_flags);
3460 objp = __do_cache_alloc(cachep, flags);
3461 local_irq_restore(save_flags);
3462 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3463 prefetchw(objp);
3464
3465 return objp;
3466}
Christoph Lametere498be72005-09-09 13:03:32 -07003467
3468/*
3469 * Caller needs to acquire correct kmem_list's list_lock
3470 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003471static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003472 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003473{
3474 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003475 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003476
3477 for (i = 0; i < nr_objects; i++) {
3478 void *objp = objpp[i];
3479 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003480
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003481 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003482 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003483 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003484 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003485 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003486 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003487 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003488 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003489 check_slabp(cachep, slabp);
3490
3491 /* fixup slab chains */
3492 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003493 if (l3->free_objects > l3->free_limit) {
3494 l3->free_objects -= cachep->num;
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07003495 /* No need to drop any previously held
3496 * lock here, even if we have a off-slab slab
3497 * descriptor it is guaranteed to come from
3498 * a different cache, refer to comments before
3499 * alloc_slabmgmt.
3500 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003501 slab_destroy(cachep, slabp);
3502 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003503 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003504 }
3505 } else {
3506 /* Unconditionally move a slab to the end of the
3507 * partial list on free - maximum time for the
3508 * other objects to be freed, too.
3509 */
Christoph Lametere498be72005-09-09 13:03:32 -07003510 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003511 }
3512 }
3513}
3514
Pekka Enberg343e0d72006-02-01 03:05:50 -08003515static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003516{
3517 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003518 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003519 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003520
3521 batchcount = ac->batchcount;
3522#if DEBUG
3523 BUG_ON(!batchcount || batchcount > ac->avail);
3524#endif
3525 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003526 l3 = cachep->nodelists[node];
Ingo Molnar873623d2006-07-13 14:44:38 +02003527 spin_lock(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003528 if (l3->shared) {
3529 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003530 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003531 if (max) {
3532 if (batchcount > max)
3533 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003534 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003535 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003536 shared_array->avail += batchcount;
3537 goto free_done;
3538 }
3539 }
3540
Christoph Lameterff694162005-09-22 21:44:02 -07003541 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003542free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003543#if STATS
3544 {
3545 int i = 0;
3546 struct list_head *p;
3547
Christoph Lametere498be72005-09-09 13:03:32 -07003548 p = l3->slabs_free.next;
3549 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003550 struct slab *slabp;
3551
3552 slabp = list_entry(p, struct slab, list);
3553 BUG_ON(slabp->inuse);
3554
3555 i++;
3556 p = p->next;
3557 }
3558 STATS_SET_FREEABLE(cachep, i);
3559 }
3560#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003561 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003562 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003563 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003564}
3565
3566/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003567 * Release an obj back to its cache. If the obj has a constructed state, it must
3568 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003569 */
Ingo Molnar873623d2006-07-13 14:44:38 +02003570static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003571{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003572 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003573
3574 check_irq_off();
3575 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3576
Siddha, Suresh B62918a02007-05-02 19:27:18 +02003577 if (use_alien_caches && cache_free_alien(cachep, objp))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003578 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003579
Linus Torvalds1da177e2005-04-16 15:20:36 -07003580 if (likely(ac->avail < ac->limit)) {
3581 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003582 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583 return;
3584 } else {
3585 STATS_INC_FREEMISS(cachep);
3586 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003587 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003588 }
3589}
3590
3591/**
3592 * kmem_cache_alloc - Allocate an object
3593 * @cachep: The cache to allocate from.
3594 * @flags: See kmalloc().
3595 *
3596 * Allocate an object from this cache. The flags are only relevant
3597 * if the cache has no available objects.
3598 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003599void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003600{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003601 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003602}
3603EXPORT_SYMBOL(kmem_cache_alloc);
3604
3605/**
Rolf Eike Beerb8008b22006-07-30 03:04:04 -07003606 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003607 * @cache: The cache to allocate from.
3608 * @flags: See kmalloc().
3609 *
3610 * Allocate an object from this cache and set the allocated memory to zero.
3611 * The flags are only relevant if the cache has no available objects.
3612 */
3613void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3614{
3615 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3616 if (ret)
3617 memset(ret, 0, obj_size(cache));
3618 return ret;
3619}
3620EXPORT_SYMBOL(kmem_cache_zalloc);
3621
3622/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003623 * kmem_ptr_validate - check if an untrusted pointer might
3624 * be a slab entry.
3625 * @cachep: the cache we're checking against
3626 * @ptr: pointer to validate
3627 *
3628 * This verifies that the untrusted pointer looks sane:
3629 * it is _not_ a guarantee that the pointer is actually
3630 * part of the slab cache in question, but it at least
3631 * validates that the pointer can be dereferenced and
3632 * looks half-way sane.
3633 *
3634 * Currently only used for dentry validation.
3635 */
Christoph Lameterb7f869a22006-12-22 01:06:44 -08003636int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003637{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003638 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003639 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003640 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003641 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003642 struct page *page;
3643
3644 if (unlikely(addr < min_addr))
3645 goto out;
3646 if (unlikely(addr > (unsigned long)high_memory - size))
3647 goto out;
3648 if (unlikely(addr & align_mask))
3649 goto out;
3650 if (unlikely(!kern_addr_valid(addr)))
3651 goto out;
3652 if (unlikely(!kern_addr_valid(addr + size - 1)))
3653 goto out;
3654 page = virt_to_page(ptr);
3655 if (unlikely(!PageSlab(page)))
3656 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003657 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003658 goto out;
3659 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003660out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003661 return 0;
3662}
3663
3664#ifdef CONFIG_NUMA
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003665void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3666{
3667 return __cache_alloc_node(cachep, flags, nodeid,
3668 __builtin_return_address(0));
3669}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003670EXPORT_SYMBOL(kmem_cache_alloc_node);
3671
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003672static __always_inline void *
3673__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003674{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003675 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003676
3677 cachep = kmem_find_general_cachep(size, flags);
3678 if (unlikely(cachep == NULL))
3679 return NULL;
3680 return kmem_cache_alloc_node(cachep, flags, node);
3681}
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003682
3683#ifdef CONFIG_DEBUG_SLAB
3684void *__kmalloc_node(size_t size, gfp_t flags, int node)
3685{
3686 return __do_kmalloc_node(size, flags, node,
3687 __builtin_return_address(0));
3688}
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003689EXPORT_SYMBOL(__kmalloc_node);
Christoph Hellwig8b98c162006-12-06 20:32:30 -08003690
3691void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3692 int node, void *caller)
3693{
3694 return __do_kmalloc_node(size, flags, node, caller);
3695}
3696EXPORT_SYMBOL(__kmalloc_node_track_caller);
3697#else
3698void *__kmalloc_node(size_t size, gfp_t flags, int node)
3699{
3700 return __do_kmalloc_node(size, flags, node, NULL);
3701}
3702EXPORT_SYMBOL(__kmalloc_node);
3703#endif /* CONFIG_DEBUG_SLAB */
3704#endif /* CONFIG_NUMA */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003705
3706/**
Paul Drynoff800590f2006-06-23 02:03:48 -07003707 * __do_kmalloc - allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07003708 * @size: how many bytes of memory are required.
Paul Drynoff800590f2006-06-23 02:03:48 -07003709 * @flags: the type of memory to allocate (see kmalloc).
Randy Dunlap911851e2006-03-22 00:08:14 -08003710 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003711 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003712static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3713 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003714{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003715 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003716
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003717 /* If you want to save a few bytes .text space: replace
3718 * __ with kmem_.
3719 * Then kmalloc uses the uninlined functions instead of the inline
3720 * functions.
3721 */
3722 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003723 if (unlikely(cachep == NULL))
3724 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003725 return __cache_alloc(cachep, flags, caller);
3726}
3727
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003728
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003729#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003730void *__kmalloc(size_t size, gfp_t flags)
3731{
Al Viro871751e2006-03-25 03:06:39 -08003732 return __do_kmalloc(size, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003733}
3734EXPORT_SYMBOL(__kmalloc);
3735
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003736void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3737{
3738 return __do_kmalloc(size, flags, caller);
3739}
3740EXPORT_SYMBOL(__kmalloc_track_caller);
Christoph Hellwig1d2c8ee2006-10-04 02:15:25 -07003741
3742#else
3743void *__kmalloc(size_t size, gfp_t flags)
3744{
3745 return __do_kmalloc(size, flags, NULL);
3746}
3747EXPORT_SYMBOL(__kmalloc);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003748#endif
3749
Linus Torvalds1da177e2005-04-16 15:20:36 -07003750/**
Pekka Enbergfd76bab2007-05-06 14:48:40 -07003751 * krealloc - reallocate memory. The contents will remain unchanged.
3752 *
3753 * @p: object to reallocate memory for.
3754 * @new_size: how many bytes of memory are required.
3755 * @flags: the type of memory to allocate.
3756 *
3757 * The contents of the object pointed to are preserved up to the
3758 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3759 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3760 * %NULL pointer, the object pointed to is freed.
3761 */
3762void *krealloc(const void *p, size_t new_size, gfp_t flags)
3763{
3764 struct kmem_cache *cache, *new_cache;
3765 void *ret;
3766
3767 if (unlikely(!p))
3768 return kmalloc_track_caller(new_size, flags);
3769
3770 if (unlikely(!new_size)) {
3771 kfree(p);
3772 return NULL;
3773 }
3774
3775 cache = virt_to_cache(p);
3776 new_cache = __find_general_cachep(new_size, flags);
3777
3778 /*
3779 * If new size fits in the current cache, bail out.
3780 */
3781 if (likely(cache == new_cache))
3782 return (void *)p;
3783
3784 /*
3785 * We are on the slow-path here so do not use __cache_alloc
3786 * because it bloats kernel text.
3787 */
3788 ret = kmalloc_track_caller(new_size, flags);
3789 if (ret) {
3790 memcpy(ret, p, min(new_size, ksize(p)));
3791 kfree(p);
3792 }
3793 return ret;
3794}
3795EXPORT_SYMBOL(krealloc);
3796
3797/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003798 * kmem_cache_free - Deallocate an object
3799 * @cachep: The cache the allocation was from.
3800 * @objp: The previously allocated object.
3801 *
3802 * Free an object which was previously allocated from this
3803 * cache.
3804 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003805void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003806{
3807 unsigned long flags;
3808
Pekka Enbergddc2e812006-06-23 02:03:40 -07003809 BUG_ON(virt_to_cache(objp) != cachep);
3810
Linus Torvalds1da177e2005-04-16 15:20:36 -07003811 local_irq_save(flags);
Ingo Molnar898552c2007-02-10 01:44:57 -08003812 debug_check_no_locks_freed(objp, obj_size(cachep));
Ingo Molnar873623d2006-07-13 14:44:38 +02003813 __cache_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003814 local_irq_restore(flags);
3815}
3816EXPORT_SYMBOL(kmem_cache_free);
3817
3818/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003819 * kfree - free previously allocated memory
3820 * @objp: pointer returned by kmalloc.
3821 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003822 * If @objp is NULL, no operation is performed.
3823 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003824 * Don't free memory not originally allocated by kmalloc()
3825 * or you will run into trouble.
3826 */
3827void kfree(const void *objp)
3828{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003829 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003830 unsigned long flags;
3831
3832 if (unlikely(!objp))
3833 return;
3834 local_irq_save(flags);
3835 kfree_debugcheck(objp);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003836 c = virt_to_cache(objp);
Ingo Molnarf9b84042006-06-27 02:54:49 -07003837 debug_check_no_locks_freed(objp, obj_size(c));
Ingo Molnar873623d2006-07-13 14:44:38 +02003838 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003839 local_irq_restore(flags);
3840}
3841EXPORT_SYMBOL(kfree);
3842
Pekka Enberg343e0d72006-02-01 03:05:50 -08003843unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003844{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003845 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003846}
3847EXPORT_SYMBOL(kmem_cache_size);
3848
Pekka Enberg343e0d72006-02-01 03:05:50 -08003849const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003850{
3851 return cachep->name;
3852}
3853EXPORT_SYMBOL_GPL(kmem_cache_name);
3854
Christoph Lametere498be72005-09-09 13:03:32 -07003855/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003856 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003857 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003858static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003859{
3860 int node;
3861 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003862 struct array_cache *new_shared;
Paul Menage3395ee02006-12-06 20:32:16 -08003863 struct array_cache **new_alien = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003864
3865 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003866
Paul Menage3395ee02006-12-06 20:32:16 -08003867 if (use_alien_caches) {
3868 new_alien = alloc_alien_cache(node, cachep->limit);
3869 if (!new_alien)
3870 goto fail;
3871 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003872
Christoph Lameter0718dc22006-03-25 03:06:47 -08003873 new_shared = alloc_arraycache(node,
3874 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003875 0xbaadf00d);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003876 if (!new_shared) {
3877 free_alien_cache(new_alien);
Christoph Lametere498be72005-09-09 13:03:32 -07003878 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003879 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003880
Andrew Mortona737b3e2006-03-22 00:08:11 -08003881 l3 = cachep->nodelists[node];
3882 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003883 struct array_cache *shared = l3->shared;
3884
Christoph Lametere498be72005-09-09 13:03:32 -07003885 spin_lock_irq(&l3->list_lock);
3886
Christoph Lametercafeb022006-03-25 03:06:46 -08003887 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003888 free_block(cachep, shared->entry,
3889 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003890
Christoph Lametercafeb022006-03-25 03:06:46 -08003891 l3->shared = new_shared;
3892 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003893 l3->alien = new_alien;
3894 new_alien = NULL;
3895 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003896 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003897 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003898 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003899 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003900 free_alien_cache(new_alien);
3901 continue;
3902 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003903 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003904 if (!l3) {
3905 free_alien_cache(new_alien);
3906 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003907 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003908 }
Christoph Lametere498be72005-09-09 13:03:32 -07003909
3910 kmem_list3_init(l3);
3911 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003912 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003913 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003914 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003915 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003916 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003917 cachep->nodelists[node] = l3;
3918 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003919 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003920
Andrew Mortona737b3e2006-03-22 00:08:11 -08003921fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003922 if (!cachep->next.next) {
3923 /* Cache is not active yet. Roll back what we did */
3924 node--;
3925 while (node >= 0) {
3926 if (cachep->nodelists[node]) {
3927 l3 = cachep->nodelists[node];
3928
3929 kfree(l3->shared);
3930 free_alien_cache(l3->alien);
3931 kfree(l3);
3932 cachep->nodelists[node] = NULL;
3933 }
3934 node--;
3935 }
3936 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003937 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003938}
3939
Linus Torvalds1da177e2005-04-16 15:20:36 -07003940struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003941 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003942 struct array_cache *new[NR_CPUS];
3943};
3944
3945static void do_ccupdate_local(void *info)
3946{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003947 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003948 struct array_cache *old;
3949
3950 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003951 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003952
Linus Torvalds1da177e2005-04-16 15:20:36 -07003953 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3954 new->new[smp_processor_id()] = old;
3955}
3956
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003957/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003958static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3959 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003960{
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003961 struct ccupdate_struct *new;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003962 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003963
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003964 new = kzalloc(sizeof(*new), GFP_KERNEL);
3965 if (!new)
3966 return -ENOMEM;
3967
Christoph Lametere498be72005-09-09 13:03:32 -07003968 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003969 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003970 batchcount);
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003971 if (!new->new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003972 for (i--; i >= 0; i--)
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003973 kfree(new->new[i]);
3974 kfree(new);
Christoph Lametere498be72005-09-09 13:03:32 -07003975 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003976 }
3977 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003978 new->cachep = cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003979
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003980 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003981
Linus Torvalds1da177e2005-04-16 15:20:36 -07003982 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003983 cachep->batchcount = batchcount;
3984 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003985 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003986
Christoph Lametere498be72005-09-09 13:03:32 -07003987 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003988 struct array_cache *ccold = new->new[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003989 if (!ccold)
3990 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003991 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003992 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003993 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003994 kfree(ccold);
3995 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003996 kfree(new);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003997 return alloc_kmemlist(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003998}
3999
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08004000/* Called with cache_chain_mutex held always */
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004001static int enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004002{
4003 int err;
4004 int limit, shared;
4005
Andrew Mortona737b3e2006-03-22 00:08:11 -08004006 /*
4007 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004008 * - create a LIFO ordering, i.e. return objects that are cache-warm
4009 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08004010 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07004011 * bufctl chains: array operations are cheaper.
4012 * The numbers are guessed, we should auto-tune as described by
4013 * Bonwick.
4014 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004015 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004016 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004017 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004018 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004019 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004020 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004021 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004022 limit = 54;
4023 else
4024 limit = 120;
4025
Andrew Mortona737b3e2006-03-22 00:08:11 -08004026 /*
4027 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07004028 * allocation behaviour: Most allocs on one cpu, most free operations
4029 * on another cpu. For these cases, an efficient object passing between
4030 * cpus is necessary. This is provided by a shared array. The array
4031 * replaces Bonwick's magazine layer.
4032 * On uniprocessor, it's functionally equivalent (but less efficient)
4033 * to a larger limit. Thus disabled by default.
4034 */
4035 shared = 0;
Eric Dumazet364fbb22007-05-06 14:49:27 -07004036 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004037 shared = 8;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004038
4039#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08004040 /*
4041 * With debugging enabled, large batchcount lead to excessively long
4042 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07004043 */
4044 if (limit > 32)
4045 limit = 32;
4046#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004047 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004048 if (err)
4049 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004050 cachep->name, -err);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07004051 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004052}
4053
Christoph Lameter1b552532006-03-22 00:09:07 -08004054/*
4055 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004056 * necessary. Note that the l3 listlock also protects the array_cache
4057 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08004058 */
4059void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4060 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004061{
4062 int tofree;
4063
Christoph Lameter1b552532006-03-22 00:09:07 -08004064 if (!ac || !ac->avail)
4065 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004066 if (ac->touched && !force) {
4067 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004068 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08004069 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08004070 if (ac->avail) {
4071 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4072 if (tofree > ac->avail)
4073 tofree = (ac->avail + 1) / 2;
4074 free_block(cachep, ac->entry, tofree, node);
4075 ac->avail -= tofree;
4076 memmove(ac->entry, &(ac->entry[tofree]),
4077 sizeof(void *) * ac->avail);
4078 }
Christoph Lameter1b552532006-03-22 00:09:07 -08004079 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004080 }
4081}
4082
4083/**
4084 * cache_reap - Reclaim memory from caches.
Randy Dunlap05fb6bf2007-02-28 20:12:13 -08004085 * @w: work descriptor
Linus Torvalds1da177e2005-04-16 15:20:36 -07004086 *
4087 * Called from workqueue/eventd every few seconds.
4088 * Purpose:
4089 * - clear the per-cpu caches for this CPU.
4090 * - return freeable pages to the main free memory pool.
4091 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08004092 * If we cannot acquire the cache chain mutex then just give up - we'll try
4093 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004094 */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004095static void cache_reap(struct work_struct *w)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004096{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004097 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07004098 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08004099 int node = numa_node_id();
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004100 struct delayed_work *work =
4101 container_of(w, struct delayed_work, work);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004102
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004103 if (!mutex_trylock(&cache_chain_mutex))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004104 /* Give up. Setup the next iteration. */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004105 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004106
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004107 list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004108 check_irq_on();
4109
Christoph Lameter35386e32006-03-22 00:09:05 -08004110 /*
4111 * We only take the l3 lock if absolutely necessary and we
4112 * have established with reasonable certainty that
4113 * we can do some work if the lock was obtained.
4114 */
Christoph Lameteraab22072006-03-22 00:09:06 -08004115 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08004116
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004117 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004118
Christoph Lameteraab22072006-03-22 00:09:06 -08004119 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004120
Christoph Lameter35386e32006-03-22 00:09:05 -08004121 /*
4122 * These are racy checks but it does not matter
4123 * if we skip one check or scan twice.
4124 */
Christoph Lametere498be72005-09-09 13:03:32 -07004125 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08004126 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004127
Christoph Lametere498be72005-09-09 13:03:32 -07004128 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004129
Christoph Lameteraab22072006-03-22 00:09:06 -08004130 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004131
Christoph Lametered11d9e2006-06-30 01:55:45 -07004132 if (l3->free_touched)
Christoph Lametere498be72005-09-09 13:03:32 -07004133 l3->free_touched = 0;
Christoph Lametered11d9e2006-06-30 01:55:45 -07004134 else {
4135 int freed;
4136
4137 freed = drain_freelist(searchp, l3, (l3->free_limit +
4138 5 * searchp->num - 1) / (5 * searchp->num));
4139 STATS_ADD_REAPED(searchp, freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004140 }
Christoph Lameter35386e32006-03-22 00:09:05 -08004141next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07004142 cond_resched();
4143 }
4144 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004145 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08004146 next_reap_node();
Christoph Lameter2244b952006-06-30 01:55:33 -07004147 refresh_cpu_vm_stats(smp_processor_id());
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004148out:
Andrew Mortona737b3e2006-03-22 00:08:11 -08004149 /* Set up the next iteration */
Christoph Lameter7c5cae32007-02-10 01:42:55 -08004150 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004151}
4152
4153#ifdef CONFIG_PROC_FS
4154
Pekka Enberg85289f92006-01-08 01:00:36 -08004155static void print_slabinfo_header(struct seq_file *m)
4156{
4157 /*
4158 * Output format version, so at least we can change it
4159 * without _too_ many complaints.
4160 */
4161#if STATS
4162 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4163#else
4164 seq_puts(m, "slabinfo - version: 2.1\n");
4165#endif
4166 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4167 "<objperslab> <pagesperslab>");
4168 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4169 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4170#if STATS
4171 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004172 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08004173 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4174#endif
4175 seq_putc(m, '\n');
4176}
4177
Linus Torvalds1da177e2005-04-16 15:20:36 -07004178static void *s_start(struct seq_file *m, loff_t *pos)
4179{
4180 loff_t n = *pos;
4181 struct list_head *p;
4182
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004183 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08004184 if (!n)
4185 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004186 p = cache_chain.next;
4187 while (n--) {
4188 p = p->next;
4189 if (p == &cache_chain)
4190 return NULL;
4191 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08004192 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004193}
4194
4195static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4196{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004197 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004198 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08004199 return cachep->next.next == &cache_chain ?
4200 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004201}
4202
4203static void s_stop(struct seq_file *m, void *p)
4204{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004205 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004206}
4207
4208static int s_show(struct seq_file *m, void *p)
4209{
Pekka Enberg343e0d72006-02-01 03:05:50 -08004210 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004211 struct slab *slabp;
4212 unsigned long active_objs;
4213 unsigned long num_objs;
4214 unsigned long active_slabs = 0;
4215 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004216 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004217 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07004218 int node;
4219 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004220
Linus Torvalds1da177e2005-04-16 15:20:36 -07004221 active_objs = 0;
4222 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07004223 for_each_online_node(node) {
4224 l3 = cachep->nodelists[node];
4225 if (!l3)
4226 continue;
4227
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004228 check_irq_on();
4229 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07004230
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004231 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004232 if (slabp->inuse != cachep->num && !error)
4233 error = "slabs_full accounting error";
4234 active_objs += cachep->num;
4235 active_slabs++;
4236 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004237 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004238 if (slabp->inuse == cachep->num && !error)
4239 error = "slabs_partial inuse accounting error";
4240 if (!slabp->inuse && !error)
4241 error = "slabs_partial/inuse accounting error";
4242 active_objs += slabp->inuse;
4243 active_slabs++;
4244 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004245 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004246 if (slabp->inuse && !error)
4247 error = "slabs_free/inuse accounting error";
4248 num_slabs++;
4249 }
4250 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08004251 if (l3->shared)
4252 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07004253
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004254 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004255 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004256 num_slabs += active_slabs;
4257 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07004258 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004259 error = "free_objects accounting error";
4260
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004261 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004262 if (error)
4263 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4264
4265 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004266 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004267 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004268 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004269 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07004270 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004271 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004272#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004273 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004274 unsigned long high = cachep->high_mark;
4275 unsigned long allocs = cachep->num_allocations;
4276 unsigned long grown = cachep->grown;
4277 unsigned long reaped = cachep->reaped;
4278 unsigned long errors = cachep->errors;
4279 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004280 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07004281 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004282 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004283
Christoph Lametere498be72005-09-09 13:03:32 -07004284 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004285 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08004286 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004287 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004288 }
4289 /* cpu stats */
4290 {
4291 unsigned long allochit = atomic_read(&cachep->allochit);
4292 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4293 unsigned long freehit = atomic_read(&cachep->freehit);
4294 unsigned long freemiss = atomic_read(&cachep->freemiss);
4295
4296 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004297 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004298 }
4299#endif
4300 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004301 return 0;
4302}
4303
4304/*
4305 * slabinfo_op - iterator that generates /proc/slabinfo
4306 *
4307 * Output layout:
4308 * cache-name
4309 * num-active-objs
4310 * total-objs
4311 * object size
4312 * num-active-slabs
4313 * total-slabs
4314 * num-pages-per-slab
4315 * + further values on SMP and with statistics enabled
4316 */
4317
Helge Deller15ad7cd2006-12-06 20:40:36 -08004318const struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004319 .start = s_start,
4320 .next = s_next,
4321 .stop = s_stop,
4322 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004323};
4324
4325#define MAX_SLABINFO_WRITE 128
4326/**
4327 * slabinfo_write - Tuning for the slab allocator
4328 * @file: unused
4329 * @buffer: user buffer
4330 * @count: data length
4331 * @ppos: unused
4332 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004333ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4334 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004335{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004336 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004337 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004338 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004339
Linus Torvalds1da177e2005-04-16 15:20:36 -07004340 if (count > MAX_SLABINFO_WRITE)
4341 return -EINVAL;
4342 if (copy_from_user(&kbuf, buffer, count))
4343 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004344 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07004345
4346 tmp = strchr(kbuf, ' ');
4347 if (!tmp)
4348 return -EINVAL;
4349 *tmp = '\0';
4350 tmp++;
4351 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4352 return -EINVAL;
4353
4354 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004355 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004356 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004357 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004358 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08004359 if (limit < 1 || batchcount < 1 ||
4360 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07004361 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004362 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004363 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004364 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004365 }
4366 break;
4367 }
4368 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004369 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004370 if (res >= 0)
4371 res = count;
4372 return res;
4373}
Al Viro871751e2006-03-25 03:06:39 -08004374
4375#ifdef CONFIG_DEBUG_SLAB_LEAK
4376
4377static void *leaks_start(struct seq_file *m, loff_t *pos)
4378{
4379 loff_t n = *pos;
4380 struct list_head *p;
4381
4382 mutex_lock(&cache_chain_mutex);
4383 p = cache_chain.next;
4384 while (n--) {
4385 p = p->next;
4386 if (p == &cache_chain)
4387 return NULL;
4388 }
4389 return list_entry(p, struct kmem_cache, next);
4390}
4391
4392static inline int add_caller(unsigned long *n, unsigned long v)
4393{
4394 unsigned long *p;
4395 int l;
4396 if (!v)
4397 return 1;
4398 l = n[1];
4399 p = n + 2;
4400 while (l) {
4401 int i = l/2;
4402 unsigned long *q = p + 2 * i;
4403 if (*q == v) {
4404 q[1]++;
4405 return 1;
4406 }
4407 if (*q > v) {
4408 l = i;
4409 } else {
4410 p = q + 2;
4411 l -= i + 1;
4412 }
4413 }
4414 if (++n[1] == n[0])
4415 return 0;
4416 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4417 p[0] = v;
4418 p[1] = 1;
4419 return 1;
4420}
4421
4422static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4423{
4424 void *p;
4425 int i;
4426 if (n[0] == n[1])
4427 return;
4428 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4429 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4430 continue;
4431 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4432 return;
4433 }
4434}
4435
4436static void show_symbol(struct seq_file *m, unsigned long address)
4437{
4438#ifdef CONFIG_KALLSYMS
4439 char *modname;
4440 const char *name;
4441 unsigned long offset, size;
4442 char namebuf[KSYM_NAME_LEN+1];
4443
4444 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4445
4446 if (name) {
4447 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4448 if (modname)
4449 seq_printf(m, " [%s]", modname);
4450 return;
4451 }
4452#endif
4453 seq_printf(m, "%p", (void *)address);
4454}
4455
4456static int leaks_show(struct seq_file *m, void *p)
4457{
4458 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004459 struct slab *slabp;
4460 struct kmem_list3 *l3;
4461 const char *name;
4462 unsigned long *n = m->private;
4463 int node;
4464 int i;
4465
4466 if (!(cachep->flags & SLAB_STORE_USER))
4467 return 0;
4468 if (!(cachep->flags & SLAB_RED_ZONE))
4469 return 0;
4470
4471 /* OK, we can do it */
4472
4473 n[1] = 0;
4474
4475 for_each_online_node(node) {
4476 l3 = cachep->nodelists[node];
4477 if (!l3)
4478 continue;
4479
4480 check_irq_on();
4481 spin_lock_irq(&l3->list_lock);
4482
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004483 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004484 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004485 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004486 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004487 spin_unlock_irq(&l3->list_lock);
4488 }
4489 name = cachep->name;
4490 if (n[0] == n[1]) {
4491 /* Increase the buffer size */
4492 mutex_unlock(&cache_chain_mutex);
4493 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4494 if (!m->private) {
4495 /* Too bad, we are really out */
4496 m->private = n;
4497 mutex_lock(&cache_chain_mutex);
4498 return -ENOMEM;
4499 }
4500 *(unsigned long *)m->private = n[0] * 2;
4501 kfree(n);
4502 mutex_lock(&cache_chain_mutex);
4503 /* Now make sure this entry will be retried */
4504 m->count = m->size;
4505 return 0;
4506 }
4507 for (i = 0; i < n[1]; i++) {
4508 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4509 show_symbol(m, n[2*i+2]);
4510 seq_putc(m, '\n');
4511 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004512
Al Viro871751e2006-03-25 03:06:39 -08004513 return 0;
4514}
4515
Helge Deller15ad7cd2006-12-06 20:40:36 -08004516const struct seq_operations slabstats_op = {
Al Viro871751e2006-03-25 03:06:39 -08004517 .start = leaks_start,
4518 .next = s_next,
4519 .stop = s_stop,
4520 .show = leaks_show,
4521};
4522#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004523#endif
4524
Manfred Spraul00e145b2005-09-03 15:55:07 -07004525/**
4526 * ksize - get the actual amount of memory allocated for a given object
4527 * @objp: Pointer to the object
4528 *
4529 * kmalloc may internally round up allocations and return more memory
4530 * than requested. ksize() can be used to determine the actual amount of
4531 * memory allocated. The caller may use this additional memory, even though
4532 * a smaller amount of memory was initially specified with the kmalloc call.
4533 * The caller must guarantee that objp points to a valid object previously
4534 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4535 * must not be freed during the duration of the call.
4536 */
Pekka Enbergfd76bab2007-05-06 14:48:40 -07004537size_t ksize(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004538{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004539 if (unlikely(objp == NULL))
4540 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004541
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08004542 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004543}