blob: 15d25ae5b6869592f35464c21c649c2a0f5e6c9e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700104#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700105#include <linux/nodemask.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700106
107#include <asm/uaccess.h>
108#include <asm/cacheflush.h>
109#include <asm/tlbflush.h>
110#include <asm/page.h>
111
112/*
113 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
114 * SLAB_RED_ZONE & SLAB_POISON.
115 * 0 for faster, smaller code (especially in the critical paths).
116 *
117 * STATS - 1 to collect stats for /proc/slabinfo.
118 * 0 for faster, smaller code (especially in the critical paths).
119 *
120 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
121 */
122
123#ifdef CONFIG_DEBUG_SLAB
124#define DEBUG 1
125#define STATS 1
126#define FORCED_DEBUG 1
127#else
128#define DEBUG 0
129#define STATS 0
130#define FORCED_DEBUG 0
131#endif
132
133
134/* Shouldn't this be in a header file somewhere? */
135#define BYTES_PER_WORD sizeof(void *)
136
137#ifndef cache_line_size
138#define cache_line_size() L1_CACHE_BYTES
139#endif
140
141#ifndef ARCH_KMALLOC_MINALIGN
142/*
143 * Enforce a minimum alignment for the kmalloc caches.
144 * Usually, the kmalloc caches are cache_line_size() aligned, except when
145 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
146 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
147 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
148 * Note that this flag disables some debug features.
149 */
150#define ARCH_KMALLOC_MINALIGN 0
151#endif
152
153#ifndef ARCH_SLAB_MINALIGN
154/*
155 * Enforce a minimum alignment for all caches.
156 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
157 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
158 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
159 * some debug features.
160 */
161#define ARCH_SLAB_MINALIGN 0
162#endif
163
164#ifndef ARCH_KMALLOC_FLAGS
165#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
166#endif
167
168/* Legal flag mask for kmem_cache_create(). */
169#if DEBUG
170# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
172 SLAB_NO_REAP | SLAB_CACHE_DMA | \
173 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
174 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
175 SLAB_DESTROY_BY_RCU)
176#else
177# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
178 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU)
181#endif
182
183/*
184 * kmem_bufctl_t:
185 *
186 * Bufctl's are used for linking objs within a slab
187 * linked offsets.
188 *
189 * This implementation relies on "struct page" for locating the cache &
190 * slab an object belongs to.
191 * This allows the bufctl structure to be small (one int), but limits
192 * the number of objects a slab (not a cache) can contain when off-slab
193 * bufctls are used. The limit is the size of the largest general cache
194 * that does not use off-slab slabs.
195 * For 32bit archs with 4 kB pages, is this 56.
196 * This is not serious, as it is only for large objects, when it is unwise
197 * to have too many per slab.
198 * Note: This limit can be raised by introducing a general cache whose size
199 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
200 */
201
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700202typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700203#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
204#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
205#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
206
207/* Max number of objs-per-slab for caches which use off-slab slabs.
208 * Needed to avoid a possible looping condition in cache_grow().
209 */
210static unsigned long offslab_limit;
211
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
Christoph Lametere498be72005-09-09 13:03:32 -0700225 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
245 struct rcu_head head;
246 kmem_cache_t *cachep;
247 void *addr;
248};
249
250/*
251 * struct array_cache
252 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700267 spinlock_t lock;
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700274};
275
276/* bootstrap: The caches do not work without cpuarrays anymore,
277 * but the cpuarrays are allocated from the generic caches...
278 */
279#define BOOT_CPUCACHE_ENTRIES 1
280struct arraycache_init {
281 struct array_cache cache;
282 void * entries[BOOT_CPUCACHE_ENTRIES];
283};
284
285/*
Christoph Lametere498be72005-09-09 13:03:32 -0700286 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700287 */
288struct kmem_list3 {
289 struct list_head slabs_partial; /* partial list first, better asm code */
290 struct list_head slabs_full;
291 struct list_head slabs_free;
292 unsigned long free_objects;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700293 unsigned long next_reap;
Christoph Lametere498be72005-09-09 13:03:32 -0700294 int free_touched;
295 unsigned int free_limit;
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700299};
300
Christoph Lametere498be72005-09-09 13:03:32 -0700301/*
302 * Need this for bootstrapping a per node allocator.
303 */
304#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
306#define CACHE_CACHE 0
307#define SIZE_AC 1
308#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309
Christoph Lametere498be72005-09-09 13:03:32 -0700310/*
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700311 * This function must be completely optimized away if
Christoph Lametere498be72005-09-09 13:03:32 -0700312 * a constant is passed to it. Mostly the same as
313 * what is in linux/slab.h except it returns an
314 * index.
315 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700316static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700317{
318 if (__builtin_constant_p(size)) {
319 int i = 0;
320
321#define CACHE(x) \
322 if (size <=x) \
323 return i; \
324 else \
325 i++;
326#include "linux/kmalloc_sizes.h"
327#undef CACHE
328 {
329 extern void __bad_size(void);
330 __bad_size();
331 }
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700332 } else
333 BUG();
Christoph Lametere498be72005-09-09 13:03:32 -0700334 return 0;
335}
336
337#define INDEX_AC index_of(sizeof(struct arraycache_init))
338#define INDEX_L3 index_of(sizeof(struct kmem_list3))
339
340static inline void kmem_list3_init(struct kmem_list3 *parent)
341{
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
347 spin_lock_init(&parent->list_lock);
348 parent->free_objects = 0;
349 parent->free_touched = 0;
350}
351
352#define MAKE_LIST(cachep, listp, slab, nodeid) \
353 do { \
354 INIT_LIST_HEAD(listp); \
355 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
356 } while (0)
357
358#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
359 do { \
360 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
361 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
363 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364
365/*
366 * kmem_cache_t
367 *
368 * manages a cache.
369 */
370
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800371struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700372/* 1) per-cpu data, touched during every alloc/free */
373 struct array_cache *array[NR_CPUS];
374 unsigned int batchcount;
375 unsigned int limit;
Christoph Lametere498be72005-09-09 13:03:32 -0700376 unsigned int shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700377 unsigned int objsize;
Christoph Lametere498be72005-09-09 13:03:32 -0700378/* 2) touched by every alloc & free from the backend */
379 struct kmem_list3 *nodelists[MAX_NUMNODES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700380 unsigned int flags; /* constant flags */
381 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700382 spinlock_t spinlock;
383
384/* 3) cache_grow/shrink */
385 /* order of pgs per slab (2^n) */
386 unsigned int gfporder;
387
388 /* force GFP flags, e.g. GFP_DMA */
Al Viro6daa0e22005-10-21 03:18:50 -0400389 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390
391 size_t colour; /* cache colouring range */
392 unsigned int colour_off; /* colour offset */
393 unsigned int colour_next; /* cache colouring */
394 kmem_cache_t *slabp_cache;
395 unsigned int slab_size;
396 unsigned int dflags; /* dynamic flags */
397
398 /* constructor func */
399 void (*ctor)(void *, kmem_cache_t *, unsigned long);
400
401 /* de-constructor func */
402 void (*dtor)(void *, kmem_cache_t *, unsigned long);
403
404/* 4) cache creation/removal */
405 const char *name;
406 struct list_head next;
407
408/* 5) statistics */
409#if STATS
410 unsigned long num_active;
411 unsigned long num_allocations;
412 unsigned long high_mark;
413 unsigned long grown;
414 unsigned long reaped;
415 unsigned long errors;
416 unsigned long max_freeable;
417 unsigned long node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -0700418 unsigned long node_frees;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419 atomic_t allochit;
420 atomic_t allocmiss;
421 atomic_t freehit;
422 atomic_t freemiss;
423#endif
424#if DEBUG
425 int dbghead;
426 int reallen;
427#endif
428};
429
430#define CFLGS_OFF_SLAB (0x80000000UL)
431#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
432
433#define BATCHREFILL_LIMIT 16
434/* Optimization question: fewer reaps means less
435 * probability for unnessary cpucache drain/refill cycles.
436 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100437 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700438 * which could lock up otherwise freeable slabs.
439 */
440#define REAPTIMEOUT_CPUC (2*HZ)
441#define REAPTIMEOUT_LIST3 (4*HZ)
442
443#if STATS
444#define STATS_INC_ACTIVE(x) ((x)->num_active++)
445#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
446#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
447#define STATS_INC_GROWN(x) ((x)->grown++)
448#define STATS_INC_REAPED(x) ((x)->reaped++)
449#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
450 (x)->high_mark = (x)->num_active; \
451 } while (0)
452#define STATS_INC_ERR(x) ((x)->errors++)
453#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700454#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700455#define STATS_SET_FREEABLE(x, i) \
456 do { if ((x)->max_freeable < i) \
457 (x)->max_freeable = i; \
458 } while (0)
459
460#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
461#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
462#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
463#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
464#else
465#define STATS_INC_ACTIVE(x) do { } while (0)
466#define STATS_DEC_ACTIVE(x) do { } while (0)
467#define STATS_INC_ALLOCED(x) do { } while (0)
468#define STATS_INC_GROWN(x) do { } while (0)
469#define STATS_INC_REAPED(x) do { } while (0)
470#define STATS_SET_HIGH(x) do { } while (0)
471#define STATS_INC_ERR(x) do { } while (0)
472#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700473#define STATS_INC_NODEFREES(x) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474#define STATS_SET_FREEABLE(x, i) \
475 do { } while (0)
476
477#define STATS_INC_ALLOCHIT(x) do { } while (0)
478#define STATS_INC_ALLOCMISS(x) do { } while (0)
479#define STATS_INC_FREEHIT(x) do { } while (0)
480#define STATS_INC_FREEMISS(x) do { } while (0)
481#endif
482
483#if DEBUG
484/* Magic nums for obj red zoning.
485 * Placed in the first word before and the first word after an obj.
486 */
487#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
488#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
489
490/* ...and for poisoning */
491#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
492#define POISON_FREE 0x6b /* for use-after-free poisoning */
493#define POISON_END 0xa5 /* end-byte of poisoning */
494
495/* memory layout of objects:
496 * 0 : objp
497 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
498 * the end of an object is aligned with the end of the real
499 * allocation. Catches writes behind the end of the allocation.
500 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
501 * redzone word.
502 * cachep->dbghead: The real object.
503 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
504 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
505 */
506static int obj_dbghead(kmem_cache_t *cachep)
507{
508 return cachep->dbghead;
509}
510
511static int obj_reallen(kmem_cache_t *cachep)
512{
513 return cachep->reallen;
514}
515
516static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
517{
518 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
519 return (unsigned long*) (objp+obj_dbghead(cachep)-BYTES_PER_WORD);
520}
521
522static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
523{
524 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
525 if (cachep->flags & SLAB_STORE_USER)
526 return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD);
527 return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD);
528}
529
530static void **dbg_userword(kmem_cache_t *cachep, void *objp)
531{
532 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
533 return (void**)(objp+cachep->objsize-BYTES_PER_WORD);
534}
535
536#else
537
538#define obj_dbghead(x) 0
539#define obj_reallen(cachep) (cachep->objsize)
540#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
541#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
542#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
543
544#endif
545
546/*
547 * Maximum size of an obj (in 2^order pages)
548 * and absolute limit for the gfp order.
549 */
550#if defined(CONFIG_LARGE_ALLOCS)
551#define MAX_OBJ_ORDER 13 /* up to 32Mb */
552#define MAX_GFP_ORDER 13 /* up to 32Mb */
553#elif defined(CONFIG_MMU)
554#define MAX_OBJ_ORDER 5 /* 32 pages */
555#define MAX_GFP_ORDER 5 /* 32 pages */
556#else
557#define MAX_OBJ_ORDER 8 /* up to 1Mb */
558#define MAX_GFP_ORDER 8 /* up to 1Mb */
559#endif
560
561/*
562 * Do not go above this order unless 0 objects fit into the slab.
563 */
564#define BREAK_GFP_ORDER_HI 1
565#define BREAK_GFP_ORDER_LO 0
566static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
567
Pekka Enberg065d41c2005-11-13 16:06:46 -0800568/* Functions for storing/retrieving the cachep and or slab from the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700569 * global 'mem_map'. These are used to find the slab an obj belongs to.
570 * With kfree(), these are used to find the cache which an obj belongs to.
571 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800572static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
573{
574 page->lru.next = (struct list_head *)cache;
575}
576
577static inline struct kmem_cache *page_get_cache(struct page *page)
578{
579 return (struct kmem_cache *)page->lru.next;
580}
581
582static inline void page_set_slab(struct page *page, struct slab *slab)
583{
584 page->lru.prev = (struct list_head *)slab;
585}
586
587static inline struct slab *page_get_slab(struct page *page)
588{
589 return (struct slab *)page->lru.prev;
590}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700591
592/* These are the default caches for kmalloc. Custom caches can have other sizes. */
593struct cache_sizes malloc_sizes[] = {
594#define CACHE(x) { .cs_size = (x) },
595#include <linux/kmalloc_sizes.h>
596 CACHE(ULONG_MAX)
597#undef CACHE
598};
599EXPORT_SYMBOL(malloc_sizes);
600
601/* Must match cache_sizes above. Out of line to keep cache footprint low. */
602struct cache_names {
603 char *name;
604 char *name_dma;
605};
606
607static struct cache_names __initdata cache_names[] = {
608#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
609#include <linux/kmalloc_sizes.h>
610 { NULL, }
611#undef CACHE
612};
613
614static struct arraycache_init initarray_cache __initdata =
615 { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
616static struct arraycache_init initarray_generic =
617 { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
618
619/* internal cache of cache description objs */
620static kmem_cache_t cache_cache = {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700621 .batchcount = 1,
622 .limit = BOOT_CPUCACHE_ENTRIES,
Christoph Lametere498be72005-09-09 13:03:32 -0700623 .shared = 1,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624 .objsize = sizeof(kmem_cache_t),
625 .flags = SLAB_NO_REAP,
626 .spinlock = SPIN_LOCK_UNLOCKED,
627 .name = "kmem_cache",
628#if DEBUG
629 .reallen = sizeof(kmem_cache_t),
630#endif
631};
632
633/* Guard access to the cache-chain. */
634static struct semaphore cache_chain_sem;
635static struct list_head cache_chain;
636
637/*
638 * vm_enough_memory() looks at this to determine how many
639 * slab-allocated pages are possibly freeable under pressure
640 *
641 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
642 */
643atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700644
645/*
646 * chicken and egg problem: delay the per-cpu array allocation
647 * until the general caches are up.
648 */
649static enum {
650 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700651 PARTIAL_AC,
652 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700653 FULL
654} g_cpucache_up;
655
656static DEFINE_PER_CPU(struct work_struct, reap_work);
657
Christoph Lameterff694162005-09-22 21:44:02 -0700658static void free_block(kmem_cache_t* cachep, void** objpp, int len, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700659static void enable_cpucache (kmem_cache_t *cachep);
660static void cache_reap (void *unused);
Christoph Lametere498be72005-09-09 13:03:32 -0700661static int __node_shrink(kmem_cache_t *cachep, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662
663static inline struct array_cache *ac_data(kmem_cache_t *cachep)
664{
665 return cachep->array[smp_processor_id()];
666}
667
Al Virodd0fc662005-10-07 07:46:04 +0100668static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700669{
670 struct cache_sizes *csizep = malloc_sizes;
671
672#if DEBUG
673 /* This happens if someone tries to call
674 * kmem_cache_create(), or __kmalloc(), before
675 * the generic caches are initialized.
676 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700677 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678#endif
679 while (size > csizep->cs_size)
680 csizep++;
681
682 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700683 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700684 * has cs_{dma,}cachep==NULL. Thus no special case
685 * for large kmalloc calls required.
686 */
687 if (unlikely(gfpflags & GFP_DMA))
688 return csizep->cs_dmacachep;
689 return csizep->cs_cachep;
690}
691
Al Virodd0fc662005-10-07 07:46:04 +0100692kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700693{
694 return __find_general_cachep(size, gfpflags);
695}
696EXPORT_SYMBOL(kmem_find_general_cachep);
697
Linus Torvalds1da177e2005-04-16 15:20:36 -0700698/* Cal the num objs, wastage, and bytes left over for a given slab size. */
699static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
700 int flags, size_t *left_over, unsigned int *num)
701{
702 int i;
703 size_t wastage = PAGE_SIZE<<gfporder;
704 size_t extra = 0;
705 size_t base = 0;
706
707 if (!(flags & CFLGS_OFF_SLAB)) {
708 base = sizeof(struct slab);
709 extra = sizeof(kmem_bufctl_t);
710 }
711 i = 0;
712 while (i*size + ALIGN(base+i*extra, align) <= wastage)
713 i++;
714 if (i > 0)
715 i--;
716
717 if (i > SLAB_LIMIT)
718 i = SLAB_LIMIT;
719
720 *num = i;
721 wastage -= i*size;
722 wastage -= ALIGN(base+i*extra, align);
723 *left_over = wastage;
724}
725
726#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
727
728static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
729{
730 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
731 function, cachep->name, msg);
732 dump_stack();
733}
734
735/*
736 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
737 * via the workqueue/eventd.
738 * Add the CPU number into the expiration time to minimize the possibility of
739 * the CPUs getting into lockstep and contending for the global cache chain
740 * lock.
741 */
742static void __devinit start_cpu_timer(int cpu)
743{
744 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
745
746 /*
747 * When this gets called from do_initcalls via cpucache_init(),
748 * init_workqueues() has already run, so keventd will be setup
749 * at that time.
750 */
751 if (keventd_up() && reap_work->func == NULL) {
752 INIT_WORK(reap_work, cache_reap, NULL);
753 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
754 }
755}
756
Christoph Lametere498be72005-09-09 13:03:32 -0700757static struct array_cache *alloc_arraycache(int node, int entries,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700758 int batchcount)
759{
760 int memsize = sizeof(void*)*entries+sizeof(struct array_cache);
761 struct array_cache *nc = NULL;
762
Christoph Lametere498be72005-09-09 13:03:32 -0700763 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700764 if (nc) {
765 nc->avail = 0;
766 nc->limit = entries;
767 nc->batchcount = batchcount;
768 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700769 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770 }
771 return nc;
772}
773
Christoph Lametere498be72005-09-09 13:03:32 -0700774#ifdef CONFIG_NUMA
775static inline struct array_cache **alloc_alien_cache(int node, int limit)
776{
777 struct array_cache **ac_ptr;
778 int memsize = sizeof(void*)*MAX_NUMNODES;
779 int i;
780
781 if (limit > 1)
782 limit = 12;
783 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
784 if (ac_ptr) {
785 for_each_node(i) {
786 if (i == node || !node_online(i)) {
787 ac_ptr[i] = NULL;
788 continue;
789 }
790 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
791 if (!ac_ptr[i]) {
792 for (i--; i <=0; i--)
793 kfree(ac_ptr[i]);
794 kfree(ac_ptr);
795 return NULL;
796 }
797 }
798 }
799 return ac_ptr;
800}
801
802static inline void free_alien_cache(struct array_cache **ac_ptr)
803{
804 int i;
805
806 if (!ac_ptr)
807 return;
808
809 for_each_node(i)
810 kfree(ac_ptr[i]);
811
812 kfree(ac_ptr);
813}
814
815static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node)
816{
817 struct kmem_list3 *rl3 = cachep->nodelists[node];
818
819 if (ac->avail) {
820 spin_lock(&rl3->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -0700821 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700822 ac->avail = 0;
823 spin_unlock(&rl3->list_lock);
824 }
825}
826
827static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
828{
829 int i=0;
830 struct array_cache *ac;
831 unsigned long flags;
832
833 for_each_online_node(i) {
834 ac = l3->alien[i];
835 if (ac) {
836 spin_lock_irqsave(&ac->lock, flags);
837 __drain_alien_cache(cachep, ac, i);
838 spin_unlock_irqrestore(&ac->lock, flags);
839 }
840 }
841}
842#else
843#define alloc_alien_cache(node, limit) do { } while (0)
844#define free_alien_cache(ac_ptr) do { } while (0)
845#define drain_alien_cache(cachep, l3) do { } while (0)
846#endif
847
Linus Torvalds1da177e2005-04-16 15:20:36 -0700848static int __devinit cpuup_callback(struct notifier_block *nfb,
849 unsigned long action, void *hcpu)
850{
851 long cpu = (long)hcpu;
852 kmem_cache_t* cachep;
Christoph Lametere498be72005-09-09 13:03:32 -0700853 struct kmem_list3 *l3 = NULL;
854 int node = cpu_to_node(cpu);
855 int memsize = sizeof(struct kmem_list3);
856 struct array_cache *nc = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857
858 switch (action) {
859 case CPU_UP_PREPARE:
860 down(&cache_chain_sem);
Christoph Lametere498be72005-09-09 13:03:32 -0700861 /* we need to do this right in the beginning since
862 * alloc_arraycache's are going to use this list.
863 * kmalloc_node allows us to add the slab to the right
864 * kmem_list3 and not this cpu's kmem_list3
865 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866
Christoph Lametere498be72005-09-09 13:03:32 -0700867 list_for_each_entry(cachep, &cache_chain, next) {
868 /* setup the size64 kmemlist for cpu before we can
869 * begin anything. Make sure some other cpu on this
870 * node has not already allocated this
871 */
872 if (!cachep->nodelists[node]) {
873 if (!(l3 = kmalloc_node(memsize,
874 GFP_KERNEL, node)))
875 goto bad;
876 kmem_list3_init(l3);
877 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
878 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
879
880 cachep->nodelists[node] = l3;
881 }
882
883 spin_lock_irq(&cachep->nodelists[node]->list_lock);
884 cachep->nodelists[node]->free_limit =
885 (1 + nr_cpus_node(node)) *
886 cachep->batchcount + cachep->num;
887 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
888 }
889
890 /* Now we can go ahead with allocating the shared array's
891 & array cache's */
892 list_for_each_entry(cachep, &cache_chain, next) {
893 nc = alloc_arraycache(node, cachep->limit,
894 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700895 if (!nc)
896 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897 cachep->array[cpu] = nc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700898
Christoph Lametere498be72005-09-09 13:03:32 -0700899 l3 = cachep->nodelists[node];
900 BUG_ON(!l3);
901 if (!l3->shared) {
902 if (!(nc = alloc_arraycache(node,
903 cachep->shared*cachep->batchcount,
904 0xbaadf00d)))
905 goto bad;
906
907 /* we are serialised from CPU_DEAD or
908 CPU_UP_CANCELLED by the cpucontrol lock */
909 l3->shared = nc;
910 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700911 }
912 up(&cache_chain_sem);
913 break;
914 case CPU_ONLINE:
915 start_cpu_timer(cpu);
916 break;
917#ifdef CONFIG_HOTPLUG_CPU
918 case CPU_DEAD:
919 /* fall thru */
920 case CPU_UP_CANCELED:
921 down(&cache_chain_sem);
922
923 list_for_each_entry(cachep, &cache_chain, next) {
924 struct array_cache *nc;
Christoph Lametere498be72005-09-09 13:03:32 -0700925 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700926
Christoph Lametere498be72005-09-09 13:03:32 -0700927 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700928 spin_lock_irq(&cachep->spinlock);
929 /* cpu is dead; no one can alloc from it. */
930 nc = cachep->array[cpu];
931 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -0700932 l3 = cachep->nodelists[node];
933
934 if (!l3)
935 goto unlock_cache;
936
937 spin_lock(&l3->list_lock);
938
939 /* Free limit for this kmem_list3 */
940 l3->free_limit -= cachep->batchcount;
941 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -0700942 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700943
944 if (!cpus_empty(mask)) {
945 spin_unlock(&l3->list_lock);
946 goto unlock_cache;
947 }
948
949 if (l3->shared) {
950 free_block(cachep, l3->shared->entry,
Christoph Lameterff694162005-09-22 21:44:02 -0700951 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700952 kfree(l3->shared);
953 l3->shared = NULL;
954 }
955 if (l3->alien) {
956 drain_alien_cache(cachep, l3);
957 free_alien_cache(l3->alien);
958 l3->alien = NULL;
959 }
960
961 /* free slabs belonging to this node */
962 if (__node_shrink(cachep, node)) {
963 cachep->nodelists[node] = NULL;
964 spin_unlock(&l3->list_lock);
965 kfree(l3);
966 } else {
967 spin_unlock(&l3->list_lock);
968 }
969unlock_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970 spin_unlock_irq(&cachep->spinlock);
971 kfree(nc);
972 }
973 up(&cache_chain_sem);
974 break;
975#endif
976 }
977 return NOTIFY_OK;
978bad:
979 up(&cache_chain_sem);
980 return NOTIFY_BAD;
981}
982
983static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
984
Christoph Lametere498be72005-09-09 13:03:32 -0700985/*
986 * swap the static kmem_list3 with kmalloced memory
987 */
988static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list,
989 int nodeid)
990{
991 struct kmem_list3 *ptr;
992
993 BUG_ON(cachep->nodelists[nodeid] != list);
994 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
995 BUG_ON(!ptr);
996
997 local_irq_disable();
998 memcpy(ptr, list, sizeof(struct kmem_list3));
999 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1000 cachep->nodelists[nodeid] = ptr;
1001 local_irq_enable();
1002}
1003
Linus Torvalds1da177e2005-04-16 15:20:36 -07001004/* Initialisation.
1005 * Called after the gfp() functions have been enabled, and before smp_init().
1006 */
1007void __init kmem_cache_init(void)
1008{
1009 size_t left_over;
1010 struct cache_sizes *sizes;
1011 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001012 int i;
1013
1014 for (i = 0; i < NUM_INIT_LISTS; i++) {
1015 kmem_list3_init(&initkmem_list3[i]);
1016 if (i < MAX_NUMNODES)
1017 cache_cache.nodelists[i] = NULL;
1018 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001019
1020 /*
1021 * Fragmentation resistance on low memory - only use bigger
1022 * page orders on machines with more than 32MB of memory.
1023 */
1024 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1025 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1026
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 /* Bootstrap is tricky, because several objects are allocated
1028 * from caches that do not exist yet:
1029 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1030 * structures of all caches, except cache_cache itself: cache_cache
1031 * is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001032 * Initially an __init data area is used for the head array and the
1033 * kmem_list3 structures, it's replaced with a kmalloc allocated
1034 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001035 * 2) Create the first kmalloc cache.
Christoph Lametere498be72005-09-09 13:03:32 -07001036 * The kmem_cache_t for the new cache is allocated normally.
1037 * An __init data area is used for the head array.
1038 * 3) Create the remaining kmalloc caches, with minimally sized
1039 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040 * 4) Replace the __init data head arrays for cache_cache and the first
1041 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001042 * 5) Replace the __init data for kmem_list3 for cache_cache and
1043 * the other cache's with kmalloc allocated memory.
1044 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001045 */
1046
1047 /* 1) create the cache_cache */
1048 init_MUTEX(&cache_chain_sem);
1049 INIT_LIST_HEAD(&cache_chain);
1050 list_add(&cache_cache.next, &cache_chain);
1051 cache_cache.colour_off = cache_line_size();
1052 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001053 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001054
1055 cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size());
1056
1057 cache_estimate(0, cache_cache.objsize, cache_line_size(), 0,
1058 &left_over, &cache_cache.num);
1059 if (!cache_cache.num)
1060 BUG();
1061
1062 cache_cache.colour = left_over/cache_cache.colour_off;
1063 cache_cache.colour_next = 0;
1064 cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) +
1065 sizeof(struct slab), cache_line_size());
1066
1067 /* 2+3) create the kmalloc caches */
1068 sizes = malloc_sizes;
1069 names = cache_names;
1070
Christoph Lametere498be72005-09-09 13:03:32 -07001071 /* Initialize the caches that provide memory for the array cache
1072 * and the kmem_list3 structures first.
1073 * Without this, further allocations will bug
1074 */
1075
1076 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1077 sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN,
1078 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1079
1080 if (INDEX_AC != INDEX_L3)
1081 sizes[INDEX_L3].cs_cachep =
1082 kmem_cache_create(names[INDEX_L3].name,
1083 sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN,
1084 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
1085
Linus Torvalds1da177e2005-04-16 15:20:36 -07001086 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001087 /*
1088 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001089 * This should be particularly beneficial on SMP boxes, as it
1090 * eliminates "false sharing".
1091 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001092 * allow tighter packing of the smaller caches.
1093 */
1094 if(!sizes->cs_cachep)
1095 sizes->cs_cachep = kmem_cache_create(names->name,
1096 sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1097 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001098
1099 /* Inc off-slab bufctl limit until the ceiling is hit. */
1100 if (!(OFF_SLAB(sizes->cs_cachep))) {
1101 offslab_limit = sizes->cs_size-sizeof(struct slab);
1102 offslab_limit /= sizeof(kmem_bufctl_t);
1103 }
1104
1105 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1106 sizes->cs_size, ARCH_KMALLOC_MINALIGN,
1107 (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC),
1108 NULL, NULL);
1109
1110 sizes++;
1111 names++;
1112 }
1113 /* 4) Replace the bootstrap head arrays */
1114 {
1115 void * ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001116
Linus Torvalds1da177e2005-04-16 15:20:36 -07001117 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001118
Linus Torvalds1da177e2005-04-16 15:20:36 -07001119 local_irq_disable();
1120 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
Christoph Lametere498be72005-09-09 13:03:32 -07001121 memcpy(ptr, ac_data(&cache_cache),
1122 sizeof(struct arraycache_init));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123 cache_cache.array[smp_processor_id()] = ptr;
1124 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001125
Linus Torvalds1da177e2005-04-16 15:20:36 -07001126 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001127
Linus Torvalds1da177e2005-04-16 15:20:36 -07001128 local_irq_disable();
Christoph Lametere498be72005-09-09 13:03:32 -07001129 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
1130 != &initarray_generic.cache);
1131 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
Linus Torvalds1da177e2005-04-16 15:20:36 -07001132 sizeof(struct arraycache_init));
Christoph Lametere498be72005-09-09 13:03:32 -07001133 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1134 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001135 local_irq_enable();
1136 }
Christoph Lametere498be72005-09-09 13:03:32 -07001137 /* 5) Replace the bootstrap kmem_list3's */
1138 {
1139 int node;
1140 /* Replace the static kmem_list3 structures for the boot cpu */
1141 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1142 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001143
Christoph Lametere498be72005-09-09 13:03:32 -07001144 for_each_online_node(node) {
1145 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1146 &initkmem_list3[SIZE_AC+node], node);
1147
1148 if (INDEX_AC != INDEX_L3) {
1149 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1150 &initkmem_list3[SIZE_L3+node],
1151 node);
1152 }
1153 }
1154 }
1155
1156 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001157 {
1158 kmem_cache_t *cachep;
1159 down(&cache_chain_sem);
1160 list_for_each_entry(cachep, &cache_chain, next)
1161 enable_cpucache(cachep);
1162 up(&cache_chain_sem);
1163 }
1164
1165 /* Done! */
1166 g_cpucache_up = FULL;
1167
1168 /* Register a cpu startup notifier callback
1169 * that initializes ac_data for all new cpus
1170 */
1171 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172
1173 /* The reap timers are started later, with a module init call:
1174 * That part of the kernel is not yet operational.
1175 */
1176}
1177
1178static int __init cpucache_init(void)
1179{
1180 int cpu;
1181
1182 /*
1183 * Register the timers that return unneeded
1184 * pages to gfp.
1185 */
Christoph Lametere498be72005-09-09 13:03:32 -07001186 for_each_online_cpu(cpu)
1187 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001188
1189 return 0;
1190}
1191
1192__initcall(cpucache_init);
1193
1194/*
1195 * Interface to system's page allocator. No need to hold the cache-lock.
1196 *
1197 * If we requested dmaable memory, we will get it. Even if we
1198 * did not request dmaable memory, we might get it, but that
1199 * would be relatively rare and ignorable.
1200 */
Al Virodd0fc662005-10-07 07:46:04 +01001201static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202{
1203 struct page *page;
1204 void *addr;
1205 int i;
1206
1207 flags |= cachep->gfpflags;
1208 if (likely(nodeid == -1)) {
1209 page = alloc_pages(flags, cachep->gfporder);
1210 } else {
1211 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1212 }
1213 if (!page)
1214 return NULL;
1215 addr = page_address(page);
1216
1217 i = (1 << cachep->gfporder);
1218 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1219 atomic_add(i, &slab_reclaim_pages);
1220 add_page_state(nr_slab, i);
1221 while (i--) {
1222 SetPageSlab(page);
1223 page++;
1224 }
1225 return addr;
1226}
1227
1228/*
1229 * Interface to system's page release.
1230 */
1231static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1232{
1233 unsigned long i = (1<<cachep->gfporder);
1234 struct page *page = virt_to_page(addr);
1235 const unsigned long nr_freed = i;
1236
1237 while (i--) {
1238 if (!TestClearPageSlab(page))
1239 BUG();
1240 page++;
1241 }
1242 sub_page_state(nr_slab, nr_freed);
1243 if (current->reclaim_state)
1244 current->reclaim_state->reclaimed_slab += nr_freed;
1245 free_pages((unsigned long)addr, cachep->gfporder);
1246 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1247 atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages);
1248}
1249
1250static void kmem_rcu_free(struct rcu_head *head)
1251{
1252 struct slab_rcu *slab_rcu = (struct slab_rcu *) head;
1253 kmem_cache_t *cachep = slab_rcu->cachep;
1254
1255 kmem_freepages(cachep, slab_rcu->addr);
1256 if (OFF_SLAB(cachep))
1257 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1258}
1259
1260#if DEBUG
1261
1262#ifdef CONFIG_DEBUG_PAGEALLOC
1263static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
1264 unsigned long caller)
1265{
1266 int size = obj_reallen(cachep);
1267
1268 addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)];
1269
1270 if (size < 5*sizeof(unsigned long))
1271 return;
1272
1273 *addr++=0x12345678;
1274 *addr++=caller;
1275 *addr++=smp_processor_id();
1276 size -= 3*sizeof(unsigned long);
1277 {
1278 unsigned long *sptr = &caller;
1279 unsigned long svalue;
1280
1281 while (!kstack_end(sptr)) {
1282 svalue = *sptr++;
1283 if (kernel_text_address(svalue)) {
1284 *addr++=svalue;
1285 size -= sizeof(unsigned long);
1286 if (size <= sizeof(unsigned long))
1287 break;
1288 }
1289 }
1290
1291 }
1292 *addr++=0x87654321;
1293}
1294#endif
1295
1296static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1297{
1298 int size = obj_reallen(cachep);
1299 addr = &((char*)addr)[obj_dbghead(cachep)];
1300
1301 memset(addr, val, size);
1302 *(unsigned char *)(addr+size-1) = POISON_END;
1303}
1304
1305static void dump_line(char *data, int offset, int limit)
1306{
1307 int i;
1308 printk(KERN_ERR "%03x:", offset);
1309 for (i=0;i<limit;i++) {
1310 printk(" %02x", (unsigned char)data[offset+i]);
1311 }
1312 printk("\n");
1313}
1314#endif
1315
1316#if DEBUG
1317
1318static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1319{
1320 int i, size;
1321 char *realobj;
1322
1323 if (cachep->flags & SLAB_RED_ZONE) {
1324 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1325 *dbg_redzone1(cachep, objp),
1326 *dbg_redzone2(cachep, objp));
1327 }
1328
1329 if (cachep->flags & SLAB_STORE_USER) {
1330 printk(KERN_ERR "Last user: [<%p>]",
1331 *dbg_userword(cachep, objp));
1332 print_symbol("(%s)",
1333 (unsigned long)*dbg_userword(cachep, objp));
1334 printk("\n");
1335 }
1336 realobj = (char*)objp+obj_dbghead(cachep);
1337 size = obj_reallen(cachep);
1338 for (i=0; i<size && lines;i+=16, lines--) {
1339 int limit;
1340 limit = 16;
1341 if (i+limit > size)
1342 limit = size-i;
1343 dump_line(realobj, i, limit);
1344 }
1345}
1346
1347static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1348{
1349 char *realobj;
1350 int size, i;
1351 int lines = 0;
1352
1353 realobj = (char*)objp+obj_dbghead(cachep);
1354 size = obj_reallen(cachep);
1355
1356 for (i=0;i<size;i++) {
1357 char exp = POISON_FREE;
1358 if (i == size-1)
1359 exp = POISON_END;
1360 if (realobj[i] != exp) {
1361 int limit;
1362 /* Mismatch ! */
1363 /* Print header */
1364 if (lines == 0) {
1365 printk(KERN_ERR "Slab corruption: start=%p, len=%d\n",
1366 realobj, size);
1367 print_objinfo(cachep, objp, 0);
1368 }
1369 /* Hexdump the affected line */
1370 i = (i/16)*16;
1371 limit = 16;
1372 if (i+limit > size)
1373 limit = size-i;
1374 dump_line(realobj, i, limit);
1375 i += 16;
1376 lines++;
1377 /* Limit to 5 lines */
1378 if (lines > 5)
1379 break;
1380 }
1381 }
1382 if (lines != 0) {
1383 /* Print some data about the neighboring objects, if they
1384 * exist:
1385 */
Pekka Enberg065d41c2005-11-13 16:06:46 -08001386 struct slab *slabp = page_get_slab(virt_to_page(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387 int objnr;
1388
1389 objnr = (objp-slabp->s_mem)/cachep->objsize;
1390 if (objnr) {
1391 objp = slabp->s_mem+(objnr-1)*cachep->objsize;
1392 realobj = (char*)objp+obj_dbghead(cachep);
1393 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1394 realobj, size);
1395 print_objinfo(cachep, objp, 2);
1396 }
1397 if (objnr+1 < cachep->num) {
1398 objp = slabp->s_mem+(objnr+1)*cachep->objsize;
1399 realobj = (char*)objp+obj_dbghead(cachep);
1400 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1401 realobj, size);
1402 print_objinfo(cachep, objp, 2);
1403 }
1404 }
1405}
1406#endif
1407
1408/* Destroy all the objs in a slab, and release the mem back to the system.
1409 * Before calling the slab must have been unlinked from the cache.
1410 * The cache-lock is not held/needed.
1411 */
1412static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp)
1413{
1414 void *addr = slabp->s_mem - slabp->colouroff;
1415
1416#if DEBUG
1417 int i;
1418 for (i = 0; i < cachep->num; i++) {
1419 void *objp = slabp->s_mem + cachep->objsize * i;
1420
1421 if (cachep->flags & SLAB_POISON) {
1422#ifdef CONFIG_DEBUG_PAGEALLOC
1423 if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep))
1424 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1);
1425 else
1426 check_poison_obj(cachep, objp);
1427#else
1428 check_poison_obj(cachep, objp);
1429#endif
1430 }
1431 if (cachep->flags & SLAB_RED_ZONE) {
1432 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1433 slab_error(cachep, "start of a freed object "
1434 "was overwritten");
1435 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1436 slab_error(cachep, "end of a freed object "
1437 "was overwritten");
1438 }
1439 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1440 (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0);
1441 }
1442#else
1443 if (cachep->dtor) {
1444 int i;
1445 for (i = 0; i < cachep->num; i++) {
1446 void* objp = slabp->s_mem+cachep->objsize*i;
1447 (cachep->dtor)(objp, cachep, 0);
1448 }
1449 }
1450#endif
1451
1452 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1453 struct slab_rcu *slab_rcu;
1454
1455 slab_rcu = (struct slab_rcu *) slabp;
1456 slab_rcu->cachep = cachep;
1457 slab_rcu->addr = addr;
1458 call_rcu(&slab_rcu->head, kmem_rcu_free);
1459 } else {
1460 kmem_freepages(cachep, addr);
1461 if (OFF_SLAB(cachep))
1462 kmem_cache_free(cachep->slabp_cache, slabp);
1463 }
1464}
1465
Christoph Lametere498be72005-09-09 13:03:32 -07001466/* For setting up all the kmem_list3s for cache whose objsize is same
1467 as size of kmem_list3. */
1468static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1469{
1470 int node;
1471
1472 for_each_online_node(node) {
1473 cachep->nodelists[node] = &initkmem_list3[index+node];
1474 cachep->nodelists[node]->next_reap = jiffies +
1475 REAPTIMEOUT_LIST3 +
1476 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1477 }
1478}
1479
Linus Torvalds1da177e2005-04-16 15:20:36 -07001480/**
1481 * kmem_cache_create - Create a cache.
1482 * @name: A string which is used in /proc/slabinfo to identify this cache.
1483 * @size: The size of objects to be created in this cache.
1484 * @align: The required alignment for the objects.
1485 * @flags: SLAB flags
1486 * @ctor: A constructor for the objects.
1487 * @dtor: A destructor for the objects.
1488 *
1489 * Returns a ptr to the cache on success, NULL on failure.
1490 * Cannot be called within a int, but can be interrupted.
1491 * The @ctor is run when new pages are allocated by the cache
1492 * and the @dtor is run before the pages are handed back.
1493 *
1494 * @name must be valid until the cache is destroyed. This implies that
1495 * the module calling this has to destroy the cache before getting
1496 * unloaded.
1497 *
1498 * The flags are
1499 *
1500 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1501 * to catch references to uninitialised memory.
1502 *
1503 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1504 * for buffer overruns.
1505 *
1506 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1507 * memory pressure.
1508 *
1509 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1510 * cacheline. This can be beneficial if you're counting cycles as closely
1511 * as davem.
1512 */
1513kmem_cache_t *
1514kmem_cache_create (const char *name, size_t size, size_t align,
1515 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1516 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1517{
1518 size_t left_over, slab_size, ralign;
1519 kmem_cache_t *cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001520 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001521
1522 /*
1523 * Sanity checks... these are all serious usage bugs.
1524 */
1525 if ((!name) ||
1526 in_interrupt() ||
1527 (size < BYTES_PER_WORD) ||
1528 (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||
1529 (dtor && !ctor)) {
1530 printk(KERN_ERR "%s: Early error in slab %s\n",
1531 __FUNCTION__, name);
1532 BUG();
1533 }
1534
Andrew Morton4f12bb42005-11-07 00:58:00 -08001535 down(&cache_chain_sem);
1536
1537 list_for_each(p, &cache_chain) {
1538 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1539 mm_segment_t old_fs = get_fs();
1540 char tmp;
1541 int res;
1542
1543 /*
1544 * This happens when the module gets unloaded and doesn't
1545 * destroy its slab cache and no-one else reuses the vmalloc
1546 * area of the module. Print a warning.
1547 */
1548 set_fs(KERNEL_DS);
1549 res = __get_user(tmp, pc->name);
1550 set_fs(old_fs);
1551 if (res) {
1552 printk("SLAB: cache with size %d has lost its name\n",
1553 pc->objsize);
1554 continue;
1555 }
1556
1557 if (!strcmp(pc->name,name)) {
1558 printk("kmem_cache_create: duplicate cache %s\n", name);
1559 dump_stack();
1560 goto oops;
1561 }
1562 }
1563
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564#if DEBUG
1565 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1566 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1567 /* No constructor, but inital state check requested */
1568 printk(KERN_ERR "%s: No con, but init state check "
1569 "requested - %s\n", __FUNCTION__, name);
1570 flags &= ~SLAB_DEBUG_INITIAL;
1571 }
1572
1573#if FORCED_DEBUG
1574 /*
1575 * Enable redzoning and last user accounting, except for caches with
1576 * large objects, if the increased size would increase the object size
1577 * above the next power of two: caches with object sizes just above a
1578 * power of two have a significant amount of internal fragmentation.
1579 */
1580 if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD)))
1581 flags |= SLAB_RED_ZONE|SLAB_STORE_USER;
1582 if (!(flags & SLAB_DESTROY_BY_RCU))
1583 flags |= SLAB_POISON;
1584#endif
1585 if (flags & SLAB_DESTROY_BY_RCU)
1586 BUG_ON(flags & SLAB_POISON);
1587#endif
1588 if (flags & SLAB_DESTROY_BY_RCU)
1589 BUG_ON(dtor);
1590
1591 /*
1592 * Always checks flags, a caller might be expecting debug
1593 * support which isn't available.
1594 */
1595 if (flags & ~CREATE_MASK)
1596 BUG();
1597
1598 /* Check that size is in terms of words. This is needed to avoid
1599 * unaligned accesses for some archs when redzoning is used, and makes
1600 * sure any on-slab bufctl's are also correctly aligned.
1601 */
1602 if (size & (BYTES_PER_WORD-1)) {
1603 size += (BYTES_PER_WORD-1);
1604 size &= ~(BYTES_PER_WORD-1);
1605 }
1606
1607 /* calculate out the final buffer alignment: */
1608 /* 1) arch recommendation: can be overridden for debug */
1609 if (flags & SLAB_HWCACHE_ALIGN) {
1610 /* Default alignment: as specified by the arch code.
1611 * Except if an object is really small, then squeeze multiple
1612 * objects into one cacheline.
1613 */
1614 ralign = cache_line_size();
1615 while (size <= ralign/2)
1616 ralign /= 2;
1617 } else {
1618 ralign = BYTES_PER_WORD;
1619 }
1620 /* 2) arch mandated alignment: disables debug if necessary */
1621 if (ralign < ARCH_SLAB_MINALIGN) {
1622 ralign = ARCH_SLAB_MINALIGN;
1623 if (ralign > BYTES_PER_WORD)
1624 flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1625 }
1626 /* 3) caller mandated alignment: disables debug if necessary */
1627 if (ralign < align) {
1628 ralign = align;
1629 if (ralign > BYTES_PER_WORD)
1630 flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER);
1631 }
1632 /* 4) Store it. Note that the debug code below can reduce
1633 * the alignment to BYTES_PER_WORD.
1634 */
1635 align = ralign;
1636
1637 /* Get cache's description obj. */
1638 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1639 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08001640 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001641 memset(cachep, 0, sizeof(kmem_cache_t));
1642
1643#if DEBUG
1644 cachep->reallen = size;
1645
1646 if (flags & SLAB_RED_ZONE) {
1647 /* redzoning only works with word aligned caches */
1648 align = BYTES_PER_WORD;
1649
1650 /* add space for red zone words */
1651 cachep->dbghead += BYTES_PER_WORD;
1652 size += 2*BYTES_PER_WORD;
1653 }
1654 if (flags & SLAB_STORE_USER) {
1655 /* user store requires word alignment and
1656 * one word storage behind the end of the real
1657 * object.
1658 */
1659 align = BYTES_PER_WORD;
1660 size += BYTES_PER_WORD;
1661 }
1662#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Christoph Lametere498be72005-09-09 13:03:32 -07001663 if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001664 cachep->dbghead += PAGE_SIZE - size;
1665 size = PAGE_SIZE;
1666 }
1667#endif
1668#endif
1669
1670 /* Determine if the slab management is 'on' or 'off' slab. */
1671 if (size >= (PAGE_SIZE>>3))
1672 /*
1673 * Size is large, assume best to place the slab management obj
1674 * off-slab (should allow better packing of objs).
1675 */
1676 flags |= CFLGS_OFF_SLAB;
1677
1678 size = ALIGN(size, align);
1679
1680 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1681 /*
1682 * A VFS-reclaimable slab tends to have most allocations
1683 * as GFP_NOFS and we really don't want to have to be allocating
1684 * higher-order pages when we are unable to shrink dcache.
1685 */
1686 cachep->gfporder = 0;
1687 cache_estimate(cachep->gfporder, size, align, flags,
1688 &left_over, &cachep->num);
1689 } else {
1690 /*
1691 * Calculate size (in pages) of slabs, and the num of objs per
1692 * slab. This could be made much more intelligent. For now,
1693 * try to avoid using high page-orders for slabs. When the
1694 * gfp() funcs are more friendly towards high-order requests,
1695 * this should be changed.
1696 */
1697 do {
1698 unsigned int break_flag = 0;
1699cal_wastage:
1700 cache_estimate(cachep->gfporder, size, align, flags,
1701 &left_over, &cachep->num);
1702 if (break_flag)
1703 break;
1704 if (cachep->gfporder >= MAX_GFP_ORDER)
1705 break;
1706 if (!cachep->num)
1707 goto next;
1708 if (flags & CFLGS_OFF_SLAB &&
1709 cachep->num > offslab_limit) {
1710 /* This num of objs will cause problems. */
1711 cachep->gfporder--;
1712 break_flag++;
1713 goto cal_wastage;
1714 }
1715
1716 /*
1717 * Large num of objs is good, but v. large slabs are
1718 * currently bad for the gfp()s.
1719 */
1720 if (cachep->gfporder >= slab_break_gfp_order)
1721 break;
1722
1723 if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))
1724 break; /* Acceptable internal fragmentation. */
1725next:
1726 cachep->gfporder++;
1727 } while (1);
1728 }
1729
1730 if (!cachep->num) {
1731 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1732 kmem_cache_free(&cache_cache, cachep);
1733 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001734 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001735 }
1736 slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t)
1737 + sizeof(struct slab), align);
1738
1739 /*
1740 * If the slab has been placed off-slab, and we have enough space then
1741 * move it on-slab. This is at the expense of any extra colouring.
1742 */
1743 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1744 flags &= ~CFLGS_OFF_SLAB;
1745 left_over -= slab_size;
1746 }
1747
1748 if (flags & CFLGS_OFF_SLAB) {
1749 /* really off slab. No need for manual alignment */
1750 slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab);
1751 }
1752
1753 cachep->colour_off = cache_line_size();
1754 /* Offset must be a multiple of the alignment. */
1755 if (cachep->colour_off < align)
1756 cachep->colour_off = align;
1757 cachep->colour = left_over/cachep->colour_off;
1758 cachep->slab_size = slab_size;
1759 cachep->flags = flags;
1760 cachep->gfpflags = 0;
1761 if (flags & SLAB_CACHE_DMA)
1762 cachep->gfpflags |= GFP_DMA;
1763 spin_lock_init(&cachep->spinlock);
1764 cachep->objsize = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001765
1766 if (flags & CFLGS_OFF_SLAB)
Victor Fuscob2d55072005-09-10 00:26:36 -07001767 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001768 cachep->ctor = ctor;
1769 cachep->dtor = dtor;
1770 cachep->name = name;
1771
1772 /* Don't let CPUs to come and go */
1773 lock_cpu_hotplug();
1774
1775 if (g_cpucache_up == FULL) {
1776 enable_cpucache(cachep);
1777 } else {
1778 if (g_cpucache_up == NONE) {
1779 /* Note: the first kmem_cache_create must create
1780 * the cache that's used by kmalloc(24), otherwise
1781 * the creation of further caches will BUG().
1782 */
Christoph Lametere498be72005-09-09 13:03:32 -07001783 cachep->array[smp_processor_id()] =
1784 &initarray_generic.cache;
1785
1786 /* If the cache that's used by
1787 * kmalloc(sizeof(kmem_list3)) is the first cache,
1788 * then we need to set up all its list3s, otherwise
1789 * the creation of further caches will BUG().
1790 */
1791 set_up_list3s(cachep, SIZE_AC);
1792 if (INDEX_AC == INDEX_L3)
1793 g_cpucache_up = PARTIAL_L3;
1794 else
1795 g_cpucache_up = PARTIAL_AC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07001797 cachep->array[smp_processor_id()] =
1798 kmalloc(sizeof(struct arraycache_init),
1799 GFP_KERNEL);
1800
1801 if (g_cpucache_up == PARTIAL_AC) {
1802 set_up_list3s(cachep, SIZE_L3);
1803 g_cpucache_up = PARTIAL_L3;
1804 } else {
1805 int node;
1806 for_each_online_node(node) {
1807
1808 cachep->nodelists[node] =
1809 kmalloc_node(sizeof(struct kmem_list3),
1810 GFP_KERNEL, node);
1811 BUG_ON(!cachep->nodelists[node]);
1812 kmem_list3_init(cachep->nodelists[node]);
1813 }
1814 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815 }
Christoph Lametere498be72005-09-09 13:03:32 -07001816 cachep->nodelists[numa_node_id()]->next_reap =
1817 jiffies + REAPTIMEOUT_LIST3 +
1818 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1819
Linus Torvalds1da177e2005-04-16 15:20:36 -07001820 BUG_ON(!ac_data(cachep));
1821 ac_data(cachep)->avail = 0;
1822 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1823 ac_data(cachep)->batchcount = 1;
1824 ac_data(cachep)->touched = 0;
1825 cachep->batchcount = 1;
1826 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001827 }
1828
Linus Torvalds1da177e2005-04-16 15:20:36 -07001829 /* cache setup completed, link it into the list */
1830 list_add(&cachep->next, &cache_chain);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001831 unlock_cpu_hotplug();
Andrew Morton4f12bb42005-11-07 00:58:00 -08001832oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001833 if (!cachep && (flags & SLAB_PANIC))
1834 panic("kmem_cache_create(): failed to create slab `%s'\n",
1835 name);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001836 up(&cache_chain_sem);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001837 return cachep;
1838}
1839EXPORT_SYMBOL(kmem_cache_create);
1840
1841#if DEBUG
1842static void check_irq_off(void)
1843{
1844 BUG_ON(!irqs_disabled());
1845}
1846
1847static void check_irq_on(void)
1848{
1849 BUG_ON(irqs_disabled());
1850}
1851
1852static void check_spinlock_acquired(kmem_cache_t *cachep)
1853{
1854#ifdef CONFIG_SMP
1855 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07001856 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001857#endif
1858}
Christoph Lametere498be72005-09-09 13:03:32 -07001859
1860static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1861{
1862#ifdef CONFIG_SMP
1863 check_irq_off();
1864 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1865#endif
1866}
1867
Linus Torvalds1da177e2005-04-16 15:20:36 -07001868#else
1869#define check_irq_off() do { } while(0)
1870#define check_irq_on() do { } while(0)
1871#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07001872#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001873#endif
1874
1875/*
1876 * Waits for all CPUs to execute func().
1877 */
1878static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg)
1879{
1880 check_irq_on();
1881 preempt_disable();
1882
1883 local_irq_disable();
1884 func(arg);
1885 local_irq_enable();
1886
1887 if (smp_call_function(func, arg, 1, 1))
1888 BUG();
1889
1890 preempt_enable();
1891}
1892
1893static void drain_array_locked(kmem_cache_t* cachep,
Christoph Lametere498be72005-09-09 13:03:32 -07001894 struct array_cache *ac, int force, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001895
1896static void do_drain(void *arg)
1897{
1898 kmem_cache_t *cachep = (kmem_cache_t*)arg;
1899 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07001900 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001901
1902 check_irq_off();
1903 ac = ac_data(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07001904 spin_lock(&cachep->nodelists[node]->list_lock);
1905 free_block(cachep, ac->entry, ac->avail, node);
1906 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907 ac->avail = 0;
1908}
1909
1910static void drain_cpu_caches(kmem_cache_t *cachep)
1911{
Christoph Lametere498be72005-09-09 13:03:32 -07001912 struct kmem_list3 *l3;
1913 int node;
1914
Linus Torvalds1da177e2005-04-16 15:20:36 -07001915 smp_call_function_all_cpus(do_drain, cachep);
1916 check_irq_on();
1917 spin_lock_irq(&cachep->spinlock);
Christoph Lametere498be72005-09-09 13:03:32 -07001918 for_each_online_node(node) {
1919 l3 = cachep->nodelists[node];
1920 if (l3) {
1921 spin_lock(&l3->list_lock);
1922 drain_array_locked(cachep, l3->shared, 1, node);
1923 spin_unlock(&l3->list_lock);
1924 if (l3->alien)
1925 drain_alien_cache(cachep, l3);
1926 }
1927 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001928 spin_unlock_irq(&cachep->spinlock);
1929}
1930
Christoph Lametere498be72005-09-09 13:03:32 -07001931static int __node_shrink(kmem_cache_t *cachep, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001932{
1933 struct slab *slabp;
Christoph Lametere498be72005-09-09 13:03:32 -07001934 struct kmem_list3 *l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001935 int ret;
1936
Christoph Lametere498be72005-09-09 13:03:32 -07001937 for (;;) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001938 struct list_head *p;
1939
Christoph Lametere498be72005-09-09 13:03:32 -07001940 p = l3->slabs_free.prev;
1941 if (p == &l3->slabs_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001942 break;
1943
Christoph Lametere498be72005-09-09 13:03:32 -07001944 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001945#if DEBUG
1946 if (slabp->inuse)
1947 BUG();
1948#endif
1949 list_del(&slabp->list);
1950
Christoph Lametere498be72005-09-09 13:03:32 -07001951 l3->free_objects -= cachep->num;
1952 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001953 slab_destroy(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07001954 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001955 }
Christoph Lametere498be72005-09-09 13:03:32 -07001956 ret = !list_empty(&l3->slabs_full) ||
1957 !list_empty(&l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001958 return ret;
1959}
1960
Christoph Lametere498be72005-09-09 13:03:32 -07001961static int __cache_shrink(kmem_cache_t *cachep)
1962{
1963 int ret = 0, i = 0;
1964 struct kmem_list3 *l3;
1965
1966 drain_cpu_caches(cachep);
1967
1968 check_irq_on();
1969 for_each_online_node(i) {
1970 l3 = cachep->nodelists[i];
1971 if (l3) {
1972 spin_lock_irq(&l3->list_lock);
1973 ret += __node_shrink(cachep, i);
1974 spin_unlock_irq(&l3->list_lock);
1975 }
1976 }
1977 return (ret ? 1 : 0);
1978}
1979
Linus Torvalds1da177e2005-04-16 15:20:36 -07001980/**
1981 * kmem_cache_shrink - Shrink a cache.
1982 * @cachep: The cache to shrink.
1983 *
1984 * Releases as many slabs as possible for a cache.
1985 * To help debugging, a zero exit status indicates all slabs were released.
1986 */
1987int kmem_cache_shrink(kmem_cache_t *cachep)
1988{
1989 if (!cachep || in_interrupt())
1990 BUG();
1991
1992 return __cache_shrink(cachep);
1993}
1994EXPORT_SYMBOL(kmem_cache_shrink);
1995
1996/**
1997 * kmem_cache_destroy - delete a cache
1998 * @cachep: the cache to destroy
1999 *
2000 * Remove a kmem_cache_t object from the slab cache.
2001 * Returns 0 on success.
2002 *
2003 * It is expected this function will be called by a module when it is
2004 * unloaded. This will remove the cache completely, and avoid a duplicate
2005 * cache being allocated each time a module is loaded and unloaded, if the
2006 * module doesn't have persistent in-kernel storage across loads and unloads.
2007 *
2008 * The cache must be empty before calling this function.
2009 *
2010 * The caller must guarantee that noone will allocate memory from the cache
2011 * during the kmem_cache_destroy().
2012 */
2013int kmem_cache_destroy(kmem_cache_t * cachep)
2014{
2015 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002016 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002017
2018 if (!cachep || in_interrupt())
2019 BUG();
2020
2021 /* Don't let CPUs to come and go */
2022 lock_cpu_hotplug();
2023
2024 /* Find the cache in the chain of caches. */
2025 down(&cache_chain_sem);
2026 /*
2027 * the chain is never empty, cache_cache is never destroyed
2028 */
2029 list_del(&cachep->next);
2030 up(&cache_chain_sem);
2031
2032 if (__cache_shrink(cachep)) {
2033 slab_error(cachep, "Can't free all objects");
2034 down(&cache_chain_sem);
2035 list_add(&cachep->next,&cache_chain);
2036 up(&cache_chain_sem);
2037 unlock_cpu_hotplug();
2038 return 1;
2039 }
2040
2041 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002042 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002043
Christoph Lametere498be72005-09-09 13:03:32 -07002044 for_each_online_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002045 kfree(cachep->array[i]);
2046
2047 /* NUMA: free the list3 structures */
Christoph Lametere498be72005-09-09 13:03:32 -07002048 for_each_online_node(i) {
2049 if ((l3 = cachep->nodelists[i])) {
2050 kfree(l3->shared);
2051 free_alien_cache(l3->alien);
2052 kfree(l3);
2053 }
2054 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002055 kmem_cache_free(&cache_cache, cachep);
2056
2057 unlock_cpu_hotplug();
2058
2059 return 0;
2060}
2061EXPORT_SYMBOL(kmem_cache_destroy);
2062
2063/* Get the memory for a slab management obj. */
Christoph Lametere498be72005-09-09 13:03:32 -07002064static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
Al Virodd0fc662005-10-07 07:46:04 +01002065 int colour_off, gfp_t local_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002066{
2067 struct slab *slabp;
2068
2069 if (OFF_SLAB(cachep)) {
2070 /* Slab management obj is off-slab. */
2071 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2072 if (!slabp)
2073 return NULL;
2074 } else {
2075 slabp = objp+colour_off;
2076 colour_off += cachep->slab_size;
2077 }
2078 slabp->inuse = 0;
2079 slabp->colouroff = colour_off;
2080 slabp->s_mem = objp+colour_off;
2081
2082 return slabp;
2083}
2084
2085static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2086{
2087 return (kmem_bufctl_t *)(slabp+1);
2088}
2089
2090static void cache_init_objs(kmem_cache_t *cachep,
2091 struct slab *slabp, unsigned long ctor_flags)
2092{
2093 int i;
2094
2095 for (i = 0; i < cachep->num; i++) {
Christoph Lametere498be72005-09-09 13:03:32 -07002096 void *objp = slabp->s_mem+cachep->objsize*i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002097#if DEBUG
2098 /* need to poison the objs? */
2099 if (cachep->flags & SLAB_POISON)
2100 poison_obj(cachep, objp, POISON_FREE);
2101 if (cachep->flags & SLAB_STORE_USER)
2102 *dbg_userword(cachep, objp) = NULL;
2103
2104 if (cachep->flags & SLAB_RED_ZONE) {
2105 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2106 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2107 }
2108 /*
2109 * Constructors are not allowed to allocate memory from
2110 * the same cache which they are a constructor for.
2111 * Otherwise, deadlock. They must also be threaded.
2112 */
2113 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2114 cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags);
2115
2116 if (cachep->flags & SLAB_RED_ZONE) {
2117 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2118 slab_error(cachep, "constructor overwrote the"
2119 " end of an object");
2120 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2121 slab_error(cachep, "constructor overwrote the"
2122 " start of an object");
2123 }
2124 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2125 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2126#else
2127 if (cachep->ctor)
2128 cachep->ctor(objp, cachep, ctor_flags);
2129#endif
2130 slab_bufctl(slabp)[i] = i+1;
2131 }
2132 slab_bufctl(slabp)[i-1] = BUFCTL_END;
2133 slabp->free = 0;
2134}
2135
Al Viro6daa0e22005-10-21 03:18:50 -04002136static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002137{
2138 if (flags & SLAB_DMA) {
2139 if (!(cachep->gfpflags & GFP_DMA))
2140 BUG();
2141 } else {
2142 if (cachep->gfpflags & GFP_DMA)
2143 BUG();
2144 }
2145}
2146
2147static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2148{
2149 int i;
2150 struct page *page;
2151
2152 /* Nasty!!!!!! I hope this is OK. */
2153 i = 1 << cachep->gfporder;
2154 page = virt_to_page(objp);
2155 do {
Pekka Enberg065d41c2005-11-13 16:06:46 -08002156 page_set_cache(page, cachep);
2157 page_set_slab(page, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002158 page++;
2159 } while (--i);
2160}
2161
2162/*
2163 * Grow (by 1) the number of slabs within a cache. This is called by
2164 * kmem_cache_alloc() when there are no active objs left in a cache.
2165 */
Al Virodd0fc662005-10-07 07:46:04 +01002166static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167{
2168 struct slab *slabp;
2169 void *objp;
2170 size_t offset;
Al Viro6daa0e22005-10-21 03:18:50 -04002171 gfp_t local_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002172 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002173 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002174
2175 /* Be lazy and only check for valid flags here,
2176 * keeping it out of the critical path in kmem_cache_alloc().
2177 */
2178 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))
2179 BUG();
2180 if (flags & SLAB_NO_GROW)
2181 return 0;
2182
2183 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2184 local_flags = (flags & SLAB_LEVEL_MASK);
2185 if (!(local_flags & __GFP_WAIT))
2186 /*
2187 * Not allowed to sleep. Need to tell a constructor about
2188 * this - it might need to know...
2189 */
2190 ctor_flags |= SLAB_CTOR_ATOMIC;
2191
2192 /* About to mess with non-constant members - lock. */
2193 check_irq_off();
2194 spin_lock(&cachep->spinlock);
2195
2196 /* Get colour for the slab, and cal the next value. */
2197 offset = cachep->colour_next;
2198 cachep->colour_next++;
2199 if (cachep->colour_next >= cachep->colour)
2200 cachep->colour_next = 0;
2201 offset *= cachep->colour_off;
2202
2203 spin_unlock(&cachep->spinlock);
2204
Christoph Lametere498be72005-09-09 13:03:32 -07002205 check_irq_off();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002206 if (local_flags & __GFP_WAIT)
2207 local_irq_enable();
2208
2209 /*
2210 * The test for missing atomic flag is performed here, rather than
2211 * the more obvious place, simply to reduce the critical path length
2212 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2213 * will eventually be caught here (where it matters).
2214 */
2215 kmem_flagcheck(cachep, flags);
2216
Christoph Lametere498be72005-09-09 13:03:32 -07002217 /* Get mem for the objs.
2218 * Attempt to allocate a physical page from 'nodeid',
2219 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002220 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2221 goto failed;
2222
2223 /* Get slab management. */
2224 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2225 goto opps1;
2226
Christoph Lametere498be72005-09-09 13:03:32 -07002227 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002228 set_slab_attr(cachep, slabp, objp);
2229
2230 cache_init_objs(cachep, slabp, ctor_flags);
2231
2232 if (local_flags & __GFP_WAIT)
2233 local_irq_disable();
2234 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002235 l3 = cachep->nodelists[nodeid];
2236 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002237
2238 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002239 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002240 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002241 l3->free_objects += cachep->num;
2242 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002243 return 1;
2244opps1:
2245 kmem_freepages(cachep, objp);
2246failed:
2247 if (local_flags & __GFP_WAIT)
2248 local_irq_disable();
2249 return 0;
2250}
2251
2252#if DEBUG
2253
2254/*
2255 * Perform extra freeing checks:
2256 * - detect bad pointers.
2257 * - POISON/RED_ZONE checking
2258 * - destructor calls, for caches with POISON+dtor
2259 */
2260static void kfree_debugcheck(const void *objp)
2261{
2262 struct page *page;
2263
2264 if (!virt_addr_valid(objp)) {
2265 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2266 (unsigned long)objp);
2267 BUG();
2268 }
2269 page = virt_to_page(objp);
2270 if (!PageSlab(page)) {
2271 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp);
2272 BUG();
2273 }
2274}
2275
2276static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
2277 void *caller)
2278{
2279 struct page *page;
2280 unsigned int objnr;
2281 struct slab *slabp;
2282
2283 objp -= obj_dbghead(cachep);
2284 kfree_debugcheck(objp);
2285 page = virt_to_page(objp);
2286
Pekka Enberg065d41c2005-11-13 16:06:46 -08002287 if (page_get_cache(page) != cachep) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002288 printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n",
Pekka Enberg065d41c2005-11-13 16:06:46 -08002289 page_get_cache(page),cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002290 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
Pekka Enberg065d41c2005-11-13 16:06:46 -08002291 printk(KERN_ERR "%p is %s.\n", page_get_cache(page), page_get_cache(page)->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002292 WARN_ON(1);
2293 }
Pekka Enberg065d41c2005-11-13 16:06:46 -08002294 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002295
2296 if (cachep->flags & SLAB_RED_ZONE) {
2297 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2298 slab_error(cachep, "double free, or memory outside"
2299 " object was overwritten");
2300 printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2301 objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2302 }
2303 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2304 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2305 }
2306 if (cachep->flags & SLAB_STORE_USER)
2307 *dbg_userword(cachep, objp) = caller;
2308
2309 objnr = (objp-slabp->s_mem)/cachep->objsize;
2310
2311 BUG_ON(objnr >= cachep->num);
2312 BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize);
2313
2314 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2315 /* Need to call the slab's constructor so the
2316 * caller can perform a verify of its state (debugging).
2317 * Called without the cache-lock held.
2318 */
2319 cachep->ctor(objp+obj_dbghead(cachep),
2320 cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);
2321 }
2322 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2323 /* we want to cache poison the object,
2324 * call the destruction callback
2325 */
2326 cachep->dtor(objp+obj_dbghead(cachep), cachep, 0);
2327 }
2328 if (cachep->flags & SLAB_POISON) {
2329#ifdef CONFIG_DEBUG_PAGEALLOC
2330 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2331 store_stackinfo(cachep, objp, (unsigned long)caller);
2332 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0);
2333 } else {
2334 poison_obj(cachep, objp, POISON_FREE);
2335 }
2336#else
2337 poison_obj(cachep, objp, POISON_FREE);
2338#endif
2339 }
2340 return objp;
2341}
2342
2343static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2344{
2345 kmem_bufctl_t i;
2346 int entries = 0;
2347
Linus Torvalds1da177e2005-04-16 15:20:36 -07002348 /* Check slab's freelist to see if this obj is there. */
2349 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2350 entries++;
2351 if (entries > cachep->num || i >= cachep->num)
2352 goto bad;
2353 }
2354 if (entries != cachep->num - slabp->inuse) {
2355bad:
2356 printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2357 cachep->name, cachep->num, slabp, slabp->inuse);
2358 for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) {
2359 if ((i%16)==0)
2360 printk("\n%03x:", i);
2361 printk(" %02x", ((unsigned char*)slabp)[i]);
2362 }
2363 printk("\n");
2364 BUG();
2365 }
2366}
2367#else
2368#define kfree_debugcheck(x) do { } while(0)
2369#define cache_free_debugcheck(x,objp,z) (objp)
2370#define check_slabp(x,y) do { } while(0)
2371#endif
2372
Al Virodd0fc662005-10-07 07:46:04 +01002373static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002374{
2375 int batchcount;
2376 struct kmem_list3 *l3;
2377 struct array_cache *ac;
2378
2379 check_irq_off();
2380 ac = ac_data(cachep);
2381retry:
2382 batchcount = ac->batchcount;
2383 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2384 /* if there was little recent activity on this
2385 * cache, then perform only a partial refill.
2386 * Otherwise we could generate refill bouncing.
2387 */
2388 batchcount = BATCHREFILL_LIMIT;
2389 }
Christoph Lametere498be72005-09-09 13:03:32 -07002390 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002391
Christoph Lametere498be72005-09-09 13:03:32 -07002392 BUG_ON(ac->avail > 0 || !l3);
2393 spin_lock(&l3->list_lock);
2394
Linus Torvalds1da177e2005-04-16 15:20:36 -07002395 if (l3->shared) {
2396 struct array_cache *shared_array = l3->shared;
2397 if (shared_array->avail) {
2398 if (batchcount > shared_array->avail)
2399 batchcount = shared_array->avail;
2400 shared_array->avail -= batchcount;
2401 ac->avail = batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002402 memcpy(ac->entry,
2403 &(shared_array->entry[shared_array->avail]),
2404 sizeof(void*)*batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002405 shared_array->touched = 1;
2406 goto alloc_done;
2407 }
2408 }
2409 while (batchcount > 0) {
2410 struct list_head *entry;
2411 struct slab *slabp;
2412 /* Get slab alloc is to come from. */
2413 entry = l3->slabs_partial.next;
2414 if (entry == &l3->slabs_partial) {
2415 l3->free_touched = 1;
2416 entry = l3->slabs_free.next;
2417 if (entry == &l3->slabs_free)
2418 goto must_grow;
2419 }
2420
2421 slabp = list_entry(entry, struct slab, list);
2422 check_slabp(cachep, slabp);
2423 check_spinlock_acquired(cachep);
2424 while (slabp->inuse < cachep->num && batchcount--) {
2425 kmem_bufctl_t next;
2426 STATS_INC_ALLOCED(cachep);
2427 STATS_INC_ACTIVE(cachep);
2428 STATS_SET_HIGH(cachep);
2429
2430 /* get obj pointer */
Christoph Lametere498be72005-09-09 13:03:32 -07002431 ac->entry[ac->avail++] = slabp->s_mem +
2432 slabp->free*cachep->objsize;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002433
2434 slabp->inuse++;
2435 next = slab_bufctl(slabp)[slabp->free];
2436#if DEBUG
2437 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
Christoph Lameter09ad4bb2005-10-29 18:15:52 -07002438 WARN_ON(numa_node_id() != slabp->nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002439#endif
2440 slabp->free = next;
2441 }
2442 check_slabp(cachep, slabp);
2443
2444 /* move slabp to correct slabp list: */
2445 list_del(&slabp->list);
2446 if (slabp->free == BUFCTL_END)
2447 list_add(&slabp->list, &l3->slabs_full);
2448 else
2449 list_add(&slabp->list, &l3->slabs_partial);
2450 }
2451
2452must_grow:
2453 l3->free_objects -= ac->avail;
2454alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002455 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002456
2457 if (unlikely(!ac->avail)) {
2458 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002459 x = cache_grow(cachep, flags, numa_node_id());
2460
Linus Torvalds1da177e2005-04-16 15:20:36 -07002461 // cache_grow can reenable interrupts, then ac could change.
2462 ac = ac_data(cachep);
2463 if (!x && ac->avail == 0) // no objects in sight? abort
2464 return NULL;
2465
2466 if (!ac->avail) // objects refilled by interrupt?
2467 goto retry;
2468 }
2469 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002470 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002471}
2472
2473static inline void
Al Virodd0fc662005-10-07 07:46:04 +01002474cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002475{
2476 might_sleep_if(flags & __GFP_WAIT);
2477#if DEBUG
2478 kmem_flagcheck(cachep, flags);
2479#endif
2480}
2481
2482#if DEBUG
2483static void *
2484cache_alloc_debugcheck_after(kmem_cache_t *cachep,
Al Virodd0fc662005-10-07 07:46:04 +01002485 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002486{
2487 if (!objp)
2488 return objp;
2489 if (cachep->flags & SLAB_POISON) {
2490#ifdef CONFIG_DEBUG_PAGEALLOC
2491 if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2492 kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1);
2493 else
2494 check_poison_obj(cachep, objp);
2495#else
2496 check_poison_obj(cachep, objp);
2497#endif
2498 poison_obj(cachep, objp, POISON_INUSE);
2499 }
2500 if (cachep->flags & SLAB_STORE_USER)
2501 *dbg_userword(cachep, objp) = caller;
2502
2503 if (cachep->flags & SLAB_RED_ZONE) {
2504 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2505 slab_error(cachep, "double free, or memory outside"
2506 " object was overwritten");
2507 printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2508 objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp));
2509 }
2510 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2511 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2512 }
2513 objp += obj_dbghead(cachep);
2514 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2515 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2516
2517 if (!(flags & __GFP_WAIT))
2518 ctor_flags |= SLAB_CTOR_ATOMIC;
2519
2520 cachep->ctor(objp, cachep, ctor_flags);
2521 }
2522 return objp;
2523}
2524#else
2525#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2526#endif
2527
Al Virodd0fc662005-10-07 07:46:04 +01002528static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002529{
Linus Torvalds1da177e2005-04-16 15:20:36 -07002530 void* objp;
2531 struct array_cache *ac;
2532
Alok N Kataria5c382302005-09-27 21:45:46 -07002533 check_irq_off();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002534 ac = ac_data(cachep);
2535 if (likely(ac->avail)) {
2536 STATS_INC_ALLOCHIT(cachep);
2537 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002538 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002539 } else {
2540 STATS_INC_ALLOCMISS(cachep);
2541 objp = cache_alloc_refill(cachep, flags);
2542 }
Alok N Kataria5c382302005-09-27 21:45:46 -07002543 return objp;
2544}
2545
Al Virodd0fc662005-10-07 07:46:04 +01002546static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
Alok N Kataria5c382302005-09-27 21:45:46 -07002547{
2548 unsigned long save_flags;
2549 void* objp;
2550
2551 cache_alloc_debugcheck_before(cachep, flags);
2552
2553 local_irq_save(save_flags);
2554 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002555 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07002556 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2557 __builtin_return_address(0));
2558 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002559 return objp;
2560}
2561
Christoph Lametere498be72005-09-09 13:03:32 -07002562#ifdef CONFIG_NUMA
2563/*
2564 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565 */
Al Viro6daa0e22005-10-21 03:18:50 -04002566static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07002567{
2568 struct list_head *entry;
2569 struct slab *slabp;
2570 struct kmem_list3 *l3;
2571 void *obj;
2572 kmem_bufctl_t next;
2573 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002574
Christoph Lametere498be72005-09-09 13:03:32 -07002575 l3 = cachep->nodelists[nodeid];
2576 BUG_ON(!l3);
2577
2578retry:
2579 spin_lock(&l3->list_lock);
2580 entry = l3->slabs_partial.next;
2581 if (entry == &l3->slabs_partial) {
2582 l3->free_touched = 1;
2583 entry = l3->slabs_free.next;
2584 if (entry == &l3->slabs_free)
2585 goto must_grow;
2586 }
2587
2588 slabp = list_entry(entry, struct slab, list);
2589 check_spinlock_acquired_node(cachep, nodeid);
2590 check_slabp(cachep, slabp);
2591
2592 STATS_INC_NODEALLOCS(cachep);
2593 STATS_INC_ACTIVE(cachep);
2594 STATS_SET_HIGH(cachep);
2595
2596 BUG_ON(slabp->inuse == cachep->num);
2597
2598 /* get obj pointer */
2599 obj = slabp->s_mem + slabp->free*cachep->objsize;
2600 slabp->inuse++;
2601 next = slab_bufctl(slabp)[slabp->free];
2602#if DEBUG
2603 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2604#endif
2605 slabp->free = next;
2606 check_slabp(cachep, slabp);
2607 l3->free_objects--;
2608 /* move slabp to correct slabp list: */
2609 list_del(&slabp->list);
2610
2611 if (slabp->free == BUFCTL_END) {
2612 list_add(&slabp->list, &l3->slabs_full);
2613 } else {
2614 list_add(&slabp->list, &l3->slabs_partial);
2615 }
2616
2617 spin_unlock(&l3->list_lock);
2618 goto done;
2619
2620must_grow:
2621 spin_unlock(&l3->list_lock);
2622 x = cache_grow(cachep, flags, nodeid);
2623
2624 if (!x)
2625 return NULL;
2626
2627 goto retry;
2628done:
2629 return obj;
2630}
2631#endif
2632
2633/*
2634 * Caller needs to acquire correct kmem_list's list_lock
2635 */
Christoph Lameterff694162005-09-22 21:44:02 -07002636static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002637{
2638 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002639 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002640
2641 for (i = 0; i < nr_objects; i++) {
2642 void *objp = objpp[i];
2643 struct slab *slabp;
2644 unsigned int objnr;
2645
Pekka Enberg065d41c2005-11-13 16:06:46 -08002646 slabp = page_get_slab(virt_to_page(objp));
Christoph Lameterff694162005-09-22 21:44:02 -07002647 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002648 list_del(&slabp->list);
2649 objnr = (objp - slabp->s_mem) / cachep->objsize;
Christoph Lameterff694162005-09-22 21:44:02 -07002650 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002651 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002652
Linus Torvalds1da177e2005-04-16 15:20:36 -07002653#if DEBUG
Christoph Lameter09ad4bb2005-10-29 18:15:52 -07002654 /* Verify that the slab belongs to the intended node */
2655 WARN_ON(slabp->nodeid != node);
2656
Linus Torvalds1da177e2005-04-16 15:20:36 -07002657 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
Christoph Lametere498be72005-09-09 13:03:32 -07002658 printk(KERN_ERR "slab: double free detected in cache "
2659 "'%s', objp %p\n", cachep->name, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002660 BUG();
2661 }
2662#endif
2663 slab_bufctl(slabp)[objnr] = slabp->free;
2664 slabp->free = objnr;
2665 STATS_DEC_ACTIVE(cachep);
2666 slabp->inuse--;
Christoph Lametere498be72005-09-09 13:03:32 -07002667 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002668 check_slabp(cachep, slabp);
2669
2670 /* fixup slab chains */
2671 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07002672 if (l3->free_objects > l3->free_limit) {
2673 l3->free_objects -= cachep->num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002674 slab_destroy(cachep, slabp);
2675 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07002676 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002677 }
2678 } else {
2679 /* Unconditionally move a slab to the end of the
2680 * partial list on free - maximum time for the
2681 * other objects to be freed, too.
2682 */
Christoph Lametere498be72005-09-09 13:03:32 -07002683 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002684 }
2685 }
2686}
2687
2688static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2689{
2690 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002691 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07002692 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002693
2694 batchcount = ac->batchcount;
2695#if DEBUG
2696 BUG_ON(!batchcount || batchcount > ac->avail);
2697#endif
2698 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07002699 l3 = cachep->nodelists[node];
Christoph Lametere498be72005-09-09 13:03:32 -07002700 spin_lock(&l3->list_lock);
2701 if (l3->shared) {
2702 struct array_cache *shared_array = l3->shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703 int max = shared_array->limit-shared_array->avail;
2704 if (max) {
2705 if (batchcount > max)
2706 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07002707 memcpy(&(shared_array->entry[shared_array->avail]),
2708 ac->entry,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002709 sizeof(void*)*batchcount);
2710 shared_array->avail += batchcount;
2711 goto free_done;
2712 }
2713 }
2714
Christoph Lameterff694162005-09-22 21:44:02 -07002715 free_block(cachep, ac->entry, batchcount, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002716free_done:
2717#if STATS
2718 {
2719 int i = 0;
2720 struct list_head *p;
2721
Christoph Lametere498be72005-09-09 13:03:32 -07002722 p = l3->slabs_free.next;
2723 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002724 struct slab *slabp;
2725
2726 slabp = list_entry(p, struct slab, list);
2727 BUG_ON(slabp->inuse);
2728
2729 i++;
2730 p = p->next;
2731 }
2732 STATS_SET_FREEABLE(cachep, i);
2733 }
2734#endif
Christoph Lametere498be72005-09-09 13:03:32 -07002735 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736 ac->avail -= batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002737 memmove(ac->entry, &(ac->entry[batchcount]),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738 sizeof(void*)*ac->avail);
2739}
2740
Christoph Lametere498be72005-09-09 13:03:32 -07002741
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742/*
2743 * __cache_free
2744 * Release an obj back to its cache. If the obj has a constructed
2745 * state, it must be in this state _before_ it is released.
2746 *
2747 * Called with disabled ints.
2748 */
2749static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2750{
2751 struct array_cache *ac = ac_data(cachep);
2752
2753 check_irq_off();
2754 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2755
Christoph Lametere498be72005-09-09 13:03:32 -07002756 /* Make sure we are not freeing a object from another
2757 * node to the array cache on this cpu.
2758 */
2759#ifdef CONFIG_NUMA
2760 {
2761 struct slab *slabp;
Pekka Enberg065d41c2005-11-13 16:06:46 -08002762 slabp = page_get_slab(virt_to_page(objp));
Christoph Lametere498be72005-09-09 13:03:32 -07002763 if (unlikely(slabp->nodeid != numa_node_id())) {
2764 struct array_cache *alien = NULL;
2765 int nodeid = slabp->nodeid;
2766 struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()];
2767
2768 STATS_INC_NODEFREES(cachep);
2769 if (l3->alien && l3->alien[nodeid]) {
2770 alien = l3->alien[nodeid];
2771 spin_lock(&alien->lock);
2772 if (unlikely(alien->avail == alien->limit))
2773 __drain_alien_cache(cachep,
2774 alien, nodeid);
2775 alien->entry[alien->avail++] = objp;
2776 spin_unlock(&alien->lock);
2777 } else {
2778 spin_lock(&(cachep->nodelists[nodeid])->
2779 list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07002780 free_block(cachep, &objp, 1, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002781 spin_unlock(&(cachep->nodelists[nodeid])->
2782 list_lock);
2783 }
2784 return;
2785 }
2786 }
2787#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002788 if (likely(ac->avail < ac->limit)) {
2789 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002790 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002791 return;
2792 } else {
2793 STATS_INC_FREEMISS(cachep);
2794 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07002795 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002796 }
2797}
2798
2799/**
2800 * kmem_cache_alloc - Allocate an object
2801 * @cachep: The cache to allocate from.
2802 * @flags: See kmalloc().
2803 *
2804 * Allocate an object from this cache. The flags are only relevant
2805 * if the cache has no available objects.
2806 */
Al Virodd0fc662005-10-07 07:46:04 +01002807void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002808{
2809 return __cache_alloc(cachep, flags);
2810}
2811EXPORT_SYMBOL(kmem_cache_alloc);
2812
2813/**
2814 * kmem_ptr_validate - check if an untrusted pointer might
2815 * be a slab entry.
2816 * @cachep: the cache we're checking against
2817 * @ptr: pointer to validate
2818 *
2819 * This verifies that the untrusted pointer looks sane:
2820 * it is _not_ a guarantee that the pointer is actually
2821 * part of the slab cache in question, but it at least
2822 * validates that the pointer can be dereferenced and
2823 * looks half-way sane.
2824 *
2825 * Currently only used for dentry validation.
2826 */
2827int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2828{
2829 unsigned long addr = (unsigned long) ptr;
2830 unsigned long min_addr = PAGE_OFFSET;
2831 unsigned long align_mask = BYTES_PER_WORD-1;
2832 unsigned long size = cachep->objsize;
2833 struct page *page;
2834
2835 if (unlikely(addr < min_addr))
2836 goto out;
2837 if (unlikely(addr > (unsigned long)high_memory - size))
2838 goto out;
2839 if (unlikely(addr & align_mask))
2840 goto out;
2841 if (unlikely(!kern_addr_valid(addr)))
2842 goto out;
2843 if (unlikely(!kern_addr_valid(addr + size - 1)))
2844 goto out;
2845 page = virt_to_page(ptr);
2846 if (unlikely(!PageSlab(page)))
2847 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08002848 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002849 goto out;
2850 return 1;
2851out:
2852 return 0;
2853}
2854
2855#ifdef CONFIG_NUMA
2856/**
2857 * kmem_cache_alloc_node - Allocate an object on the specified node
2858 * @cachep: The cache to allocate from.
2859 * @flags: See kmalloc().
2860 * @nodeid: node number of the target node.
2861 *
2862 * Identical to kmem_cache_alloc, except that this function is slow
2863 * and can sleep. And it will allocate memory on the given node, which
2864 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07002865 * New and improved: it will now make sure that the object gets
2866 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002867 */
Al Virodd0fc662005-10-07 07:46:04 +01002868void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002869{
Christoph Lametere498be72005-09-09 13:03:32 -07002870 unsigned long save_flags;
2871 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002872
Christoph Lameterff694162005-09-22 21:44:02 -07002873 if (nodeid == -1)
Christoph Lametere498be72005-09-09 13:03:32 -07002874 return __cache_alloc(cachep, flags);
Christoph Lameter83b78bd2005-07-06 10:47:07 -07002875
Christoph Lametere498be72005-09-09 13:03:32 -07002876 if (unlikely(!cachep->nodelists[nodeid])) {
2877 /* Fall back to __cache_alloc if we run into trouble */
2878 printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name);
2879 return __cache_alloc(cachep,flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002880 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002881
Christoph Lametere498be72005-09-09 13:03:32 -07002882 cache_alloc_debugcheck_before(cachep, flags);
2883 local_irq_save(save_flags);
Alok N Kataria5c382302005-09-27 21:45:46 -07002884 if (nodeid == numa_node_id())
2885 ptr = ____cache_alloc(cachep, flags);
2886 else
2887 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002888 local_irq_restore(save_flags);
2889 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002890
Christoph Lametere498be72005-09-09 13:03:32 -07002891 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002892}
2893EXPORT_SYMBOL(kmem_cache_alloc_node);
2894
Al Virodd0fc662005-10-07 07:46:04 +01002895void *kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07002896{
2897 kmem_cache_t *cachep;
2898
2899 cachep = kmem_find_general_cachep(size, flags);
2900 if (unlikely(cachep == NULL))
2901 return NULL;
2902 return kmem_cache_alloc_node(cachep, flags, node);
2903}
2904EXPORT_SYMBOL(kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002905#endif
2906
2907/**
2908 * kmalloc - allocate memory
2909 * @size: how many bytes of memory are required.
2910 * @flags: the type of memory to allocate.
2911 *
2912 * kmalloc is the normal method of allocating memory
2913 * in the kernel.
2914 *
2915 * The @flags argument may be one of:
2916 *
2917 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2918 *
2919 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2920 *
2921 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2922 *
2923 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2924 * must be suitable for DMA. This can mean different things on different
2925 * platforms. For example, on i386, it means that the memory must come
2926 * from the first 16MB.
2927 */
Al Virodd0fc662005-10-07 07:46:04 +01002928void *__kmalloc(size_t size, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002929{
2930 kmem_cache_t *cachep;
2931
Manfred Spraul97e2bde2005-05-01 08:58:38 -07002932 /* If you want to save a few bytes .text space: replace
2933 * __ with kmem_.
2934 * Then kmalloc uses the uninlined functions instead of the inline
2935 * functions.
2936 */
2937 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07002938 if (unlikely(cachep == NULL))
2939 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002940 return __cache_alloc(cachep, flags);
2941}
2942EXPORT_SYMBOL(__kmalloc);
2943
2944#ifdef CONFIG_SMP
2945/**
2946 * __alloc_percpu - allocate one copy of the object for every present
2947 * cpu in the system, zeroing them.
2948 * Objects should be dereferenced using the per_cpu_ptr macro only.
2949 *
2950 * @size: how many bytes of memory are required.
2951 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2952 */
2953void *__alloc_percpu(size_t size, size_t align)
2954{
2955 int i;
2956 struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL);
2957
2958 if (!pdata)
2959 return NULL;
2960
Christoph Lametere498be72005-09-09 13:03:32 -07002961 /*
2962 * Cannot use for_each_online_cpu since a cpu may come online
2963 * and we have no way of figuring out how to fix the array
2964 * that we have allocated then....
2965 */
2966 for_each_cpu(i) {
2967 int node = cpu_to_node(i);
2968
2969 if (node_online(node))
2970 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
2971 else
2972 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002973
2974 if (!pdata->ptrs[i])
2975 goto unwind_oom;
2976 memset(pdata->ptrs[i], 0, size);
2977 }
2978
2979 /* Catch derefs w/o wrappers */
2980 return (void *) (~(unsigned long) pdata);
2981
2982unwind_oom:
2983 while (--i >= 0) {
2984 if (!cpu_possible(i))
2985 continue;
2986 kfree(pdata->ptrs[i]);
2987 }
2988 kfree(pdata);
2989 return NULL;
2990}
2991EXPORT_SYMBOL(__alloc_percpu);
2992#endif
2993
2994/**
2995 * kmem_cache_free - Deallocate an object
2996 * @cachep: The cache the allocation was from.
2997 * @objp: The previously allocated object.
2998 *
2999 * Free an object which was previously allocated from this
3000 * cache.
3001 */
3002void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3003{
3004 unsigned long flags;
3005
3006 local_irq_save(flags);
3007 __cache_free(cachep, objp);
3008 local_irq_restore(flags);
3009}
3010EXPORT_SYMBOL(kmem_cache_free);
3011
3012/**
Pekka J Enbergdd392712005-09-06 15:18:31 -07003013 * kzalloc - allocate memory. The memory is set to zero.
3014 * @size: how many bytes of memory are required.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003015 * @flags: the type of memory to allocate.
3016 */
Al Virodd0fc662005-10-07 07:46:04 +01003017void *kzalloc(size_t size, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003018{
Pekka J Enbergdd392712005-09-06 15:18:31 -07003019 void *ret = kmalloc(size, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003020 if (ret)
Pekka J Enbergdd392712005-09-06 15:18:31 -07003021 memset(ret, 0, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003022 return ret;
3023}
Pekka J Enbergdd392712005-09-06 15:18:31 -07003024EXPORT_SYMBOL(kzalloc);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003025
3026/**
3027 * kfree - free previously allocated memory
3028 * @objp: pointer returned by kmalloc.
3029 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003030 * If @objp is NULL, no operation is performed.
3031 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003032 * Don't free memory not originally allocated by kmalloc()
3033 * or you will run into trouble.
3034 */
3035void kfree(const void *objp)
3036{
3037 kmem_cache_t *c;
3038 unsigned long flags;
3039
3040 if (unlikely(!objp))
3041 return;
3042 local_irq_save(flags);
3043 kfree_debugcheck(objp);
Pekka Enberg065d41c2005-11-13 16:06:46 -08003044 c = page_get_cache(virt_to_page(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003045 __cache_free(c, (void*)objp);
3046 local_irq_restore(flags);
3047}
3048EXPORT_SYMBOL(kfree);
3049
3050#ifdef CONFIG_SMP
3051/**
3052 * free_percpu - free previously allocated percpu memory
3053 * @objp: pointer returned by alloc_percpu.
3054 *
3055 * Don't free memory not originally allocated by alloc_percpu()
3056 * The complemented objp is to check for that.
3057 */
3058void
3059free_percpu(const void *objp)
3060{
3061 int i;
3062 struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp);
3063
Christoph Lametere498be72005-09-09 13:03:32 -07003064 /*
3065 * We allocate for all cpus so we cannot use for online cpu here.
3066 */
3067 for_each_cpu(i)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003068 kfree(p->ptrs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003069 kfree(p);
3070}
3071EXPORT_SYMBOL(free_percpu);
3072#endif
3073
3074unsigned int kmem_cache_size(kmem_cache_t *cachep)
3075{
3076 return obj_reallen(cachep);
3077}
3078EXPORT_SYMBOL(kmem_cache_size);
3079
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003080const char *kmem_cache_name(kmem_cache_t *cachep)
3081{
3082 return cachep->name;
3083}
3084EXPORT_SYMBOL_GPL(kmem_cache_name);
3085
Christoph Lametere498be72005-09-09 13:03:32 -07003086/*
3087 * This initializes kmem_list3 for all nodes.
3088 */
3089static int alloc_kmemlist(kmem_cache_t *cachep)
3090{
3091 int node;
3092 struct kmem_list3 *l3;
3093 int err = 0;
3094
3095 for_each_online_node(node) {
3096 struct array_cache *nc = NULL, *new;
3097 struct array_cache **new_alien = NULL;
3098#ifdef CONFIG_NUMA
3099 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3100 goto fail;
3101#endif
3102 if (!(new = alloc_arraycache(node, (cachep->shared*
3103 cachep->batchcount), 0xbaadf00d)))
3104 goto fail;
3105 if ((l3 = cachep->nodelists[node])) {
3106
3107 spin_lock_irq(&l3->list_lock);
3108
3109 if ((nc = cachep->nodelists[node]->shared))
3110 free_block(cachep, nc->entry,
Christoph Lameterff694162005-09-22 21:44:02 -07003111 nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003112
3113 l3->shared = new;
3114 if (!cachep->nodelists[node]->alien) {
3115 l3->alien = new_alien;
3116 new_alien = NULL;
3117 }
3118 l3->free_limit = (1 + nr_cpus_node(node))*
3119 cachep->batchcount + cachep->num;
3120 spin_unlock_irq(&l3->list_lock);
3121 kfree(nc);
3122 free_alien_cache(new_alien);
3123 continue;
3124 }
3125 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
3126 GFP_KERNEL, node)))
3127 goto fail;
3128
3129 kmem_list3_init(l3);
3130 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3131 ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
3132 l3->shared = new;
3133 l3->alien = new_alien;
3134 l3->free_limit = (1 + nr_cpus_node(node))*
3135 cachep->batchcount + cachep->num;
3136 cachep->nodelists[node] = l3;
3137 }
3138 return err;
3139fail:
3140 err = -ENOMEM;
3141 return err;
3142}
3143
Linus Torvalds1da177e2005-04-16 15:20:36 -07003144struct ccupdate_struct {
3145 kmem_cache_t *cachep;
3146 struct array_cache *new[NR_CPUS];
3147};
3148
3149static void do_ccupdate_local(void *info)
3150{
3151 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3152 struct array_cache *old;
3153
3154 check_irq_off();
3155 old = ac_data(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003156
Linus Torvalds1da177e2005-04-16 15:20:36 -07003157 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3158 new->new[smp_processor_id()] = old;
3159}
3160
3161
3162static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
3163 int shared)
3164{
3165 struct ccupdate_struct new;
Christoph Lametere498be72005-09-09 13:03:32 -07003166 int i, err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003167
3168 memset(&new.new,0,sizeof(new.new));
Christoph Lametere498be72005-09-09 13:03:32 -07003169 for_each_online_cpu(i) {
3170 new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount);
3171 if (!new.new[i]) {
3172 for (i--; i >= 0; i--) kfree(new.new[i]);
3173 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003174 }
3175 }
3176 new.cachep = cachep;
3177
3178 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
Christoph Lametere498be72005-09-09 13:03:32 -07003179
Linus Torvalds1da177e2005-04-16 15:20:36 -07003180 check_irq_on();
3181 spin_lock_irq(&cachep->spinlock);
3182 cachep->batchcount = batchcount;
3183 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003184 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003185 spin_unlock_irq(&cachep->spinlock);
3186
Christoph Lametere498be72005-09-09 13:03:32 -07003187 for_each_online_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003188 struct array_cache *ccold = new.new[i];
3189 if (!ccold)
3190 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003191 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003192 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003193 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003194 kfree(ccold);
3195 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003196
Christoph Lametere498be72005-09-09 13:03:32 -07003197 err = alloc_kmemlist(cachep);
3198 if (err) {
3199 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3200 cachep->name, -err);
3201 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003202 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003203 return 0;
3204}
3205
3206
3207static void enable_cpucache(kmem_cache_t *cachep)
3208{
3209 int err;
3210 int limit, shared;
3211
3212 /* The head array serves three purposes:
3213 * - create a LIFO ordering, i.e. return objects that are cache-warm
3214 * - reduce the number of spinlock operations.
3215 * - reduce the number of linked list operations on the slab and
3216 * bufctl chains: array operations are cheaper.
3217 * The numbers are guessed, we should auto-tune as described by
3218 * Bonwick.
3219 */
3220 if (cachep->objsize > 131072)
3221 limit = 1;
3222 else if (cachep->objsize > PAGE_SIZE)
3223 limit = 8;
3224 else if (cachep->objsize > 1024)
3225 limit = 24;
3226 else if (cachep->objsize > 256)
3227 limit = 54;
3228 else
3229 limit = 120;
3230
3231 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3232 * allocation behaviour: Most allocs on one cpu, most free operations
3233 * on another cpu. For these cases, an efficient object passing between
3234 * cpus is necessary. This is provided by a shared array. The array
3235 * replaces Bonwick's magazine layer.
3236 * On uniprocessor, it's functionally equivalent (but less efficient)
3237 * to a larger limit. Thus disabled by default.
3238 */
3239 shared = 0;
3240#ifdef CONFIG_SMP
3241 if (cachep->objsize <= PAGE_SIZE)
3242 shared = 8;
3243#endif
3244
3245#if DEBUG
3246 /* With debugging enabled, large batchcount lead to excessively
3247 * long periods with disabled local interrupts. Limit the
3248 * batchcount
3249 */
3250 if (limit > 32)
3251 limit = 32;
3252#endif
3253 err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared);
3254 if (err)
3255 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3256 cachep->name, -err);
3257}
3258
3259static void drain_array_locked(kmem_cache_t *cachep,
Christoph Lametere498be72005-09-09 13:03:32 -07003260 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003261{
3262 int tofree;
3263
Christoph Lametere498be72005-09-09 13:03:32 -07003264 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003265 if (ac->touched && !force) {
3266 ac->touched = 0;
3267 } else if (ac->avail) {
3268 tofree = force ? ac->avail : (ac->limit+4)/5;
3269 if (tofree > ac->avail) {
3270 tofree = (ac->avail+1)/2;
3271 }
Christoph Lameterff694162005-09-22 21:44:02 -07003272 free_block(cachep, ac->entry, tofree, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003273 ac->avail -= tofree;
Christoph Lametere498be72005-09-09 13:03:32 -07003274 memmove(ac->entry, &(ac->entry[tofree]),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003275 sizeof(void*)*ac->avail);
3276 }
3277}
3278
3279/**
3280 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003281 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003282 *
3283 * Called from workqueue/eventd every few seconds.
3284 * Purpose:
3285 * - clear the per-cpu caches for this CPU.
3286 * - return freeable pages to the main free memory pool.
3287 *
3288 * If we cannot acquire the cache chain semaphore then just give up - we'll
3289 * try again on the next iteration.
3290 */
3291static void cache_reap(void *unused)
3292{
3293 struct list_head *walk;
Christoph Lametere498be72005-09-09 13:03:32 -07003294 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003295
3296 if (down_trylock(&cache_chain_sem)) {
3297 /* Give up. Setup the next iteration. */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003298 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003299 return;
3300 }
3301
3302 list_for_each(walk, &cache_chain) {
3303 kmem_cache_t *searchp;
3304 struct list_head* p;
3305 int tofree;
3306 struct slab *slabp;
3307
3308 searchp = list_entry(walk, kmem_cache_t, next);
3309
3310 if (searchp->flags & SLAB_NO_REAP)
3311 goto next;
3312
3313 check_irq_on();
3314
Christoph Lametere498be72005-09-09 13:03:32 -07003315 l3 = searchp->nodelists[numa_node_id()];
3316 if (l3->alien)
3317 drain_alien_cache(searchp, l3);
3318 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003319
Christoph Lametere498be72005-09-09 13:03:32 -07003320 drain_array_locked(searchp, ac_data(searchp), 0,
3321 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003322
Christoph Lametere498be72005-09-09 13:03:32 -07003323 if (time_after(l3->next_reap, jiffies))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003324 goto next_unlock;
3325
Christoph Lametere498be72005-09-09 13:03:32 -07003326 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003327
Christoph Lametere498be72005-09-09 13:03:32 -07003328 if (l3->shared)
3329 drain_array_locked(searchp, l3->shared, 0,
3330 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003331
Christoph Lametere498be72005-09-09 13:03:32 -07003332 if (l3->free_touched) {
3333 l3->free_touched = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003334 goto next_unlock;
3335 }
3336
Christoph Lametere498be72005-09-09 13:03:32 -07003337 tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003338 do {
Christoph Lametere498be72005-09-09 13:03:32 -07003339 p = l3->slabs_free.next;
3340 if (p == &(l3->slabs_free))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003341 break;
3342
3343 slabp = list_entry(p, struct slab, list);
3344 BUG_ON(slabp->inuse);
3345 list_del(&slabp->list);
3346 STATS_INC_REAPED(searchp);
3347
3348 /* Safe to drop the lock. The slab is no longer
3349 * linked to the cache.
3350 * searchp cannot disappear, we hold
3351 * cache_chain_lock
3352 */
Christoph Lametere498be72005-09-09 13:03:32 -07003353 l3->free_objects -= searchp->num;
3354 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003355 slab_destroy(searchp, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003356 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003357 } while(--tofree > 0);
3358next_unlock:
Christoph Lametere498be72005-09-09 13:03:32 -07003359 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003360next:
3361 cond_resched();
3362 }
3363 check_irq_on();
3364 up(&cache_chain_sem);
Christoph Lameter4ae7c032005-06-21 17:14:57 -07003365 drain_remote_pages();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003366 /* Setup the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003367 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003368}
3369
3370#ifdef CONFIG_PROC_FS
3371
3372static void *s_start(struct seq_file *m, loff_t *pos)
3373{
3374 loff_t n = *pos;
3375 struct list_head *p;
3376
3377 down(&cache_chain_sem);
3378 if (!n) {
3379 /*
3380 * Output format version, so at least we can change it
3381 * without _too_ many complaints.
3382 */
3383#if STATS
3384 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3385#else
3386 seq_puts(m, "slabinfo - version: 2.1\n");
3387#endif
3388 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
3389 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3390 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3391#if STATS
3392 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
Christoph Lametere498be72005-09-09 13:03:32 -07003393 " <error> <maxfreeable> <nodeallocs> <remotefrees>");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003394 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3395#endif
3396 seq_putc(m, '\n');
3397 }
3398 p = cache_chain.next;
3399 while (n--) {
3400 p = p->next;
3401 if (p == &cache_chain)
3402 return NULL;
3403 }
3404 return list_entry(p, kmem_cache_t, next);
3405}
3406
3407static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3408{
3409 kmem_cache_t *cachep = p;
3410 ++*pos;
3411 return cachep->next.next == &cache_chain ? NULL
3412 : list_entry(cachep->next.next, kmem_cache_t, next);
3413}
3414
3415static void s_stop(struct seq_file *m, void *p)
3416{
3417 up(&cache_chain_sem);
3418}
3419
3420static int s_show(struct seq_file *m, void *p)
3421{
3422 kmem_cache_t *cachep = p;
3423 struct list_head *q;
3424 struct slab *slabp;
3425 unsigned long active_objs;
3426 unsigned long num_objs;
3427 unsigned long active_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003428 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3429 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003430 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003431 int node;
3432 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003433
3434 check_irq_on();
3435 spin_lock_irq(&cachep->spinlock);
3436 active_objs = 0;
3437 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003438 for_each_online_node(node) {
3439 l3 = cachep->nodelists[node];
3440 if (!l3)
3441 continue;
3442
3443 spin_lock(&l3->list_lock);
3444
3445 list_for_each(q,&l3->slabs_full) {
3446 slabp = list_entry(q, struct slab, list);
3447 if (slabp->inuse != cachep->num && !error)
3448 error = "slabs_full accounting error";
3449 active_objs += cachep->num;
3450 active_slabs++;
3451 }
3452 list_for_each(q,&l3->slabs_partial) {
3453 slabp = list_entry(q, struct slab, list);
3454 if (slabp->inuse == cachep->num && !error)
3455 error = "slabs_partial inuse accounting error";
3456 if (!slabp->inuse && !error)
3457 error = "slabs_partial/inuse accounting error";
3458 active_objs += slabp->inuse;
3459 active_slabs++;
3460 }
3461 list_for_each(q,&l3->slabs_free) {
3462 slabp = list_entry(q, struct slab, list);
3463 if (slabp->inuse && !error)
3464 error = "slabs_free/inuse accounting error";
3465 num_slabs++;
3466 }
3467 free_objects += l3->free_objects;
3468 shared_avail += l3->shared->avail;
3469
3470 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003471 }
3472 num_slabs+=active_slabs;
3473 num_objs = num_slabs*cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003474 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003475 error = "free_objects accounting error";
3476
3477 name = cachep->name;
3478 if (error)
3479 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3480
3481 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3482 name, active_objs, num_objs, cachep->objsize,
3483 cachep->num, (1<<cachep->gfporder));
3484 seq_printf(m, " : tunables %4u %4u %4u",
3485 cachep->limit, cachep->batchcount,
Christoph Lametere498be72005-09-09 13:03:32 -07003486 cachep->shared);
3487 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3488 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003489#if STATS
3490 { /* list3 stats */
3491 unsigned long high = cachep->high_mark;
3492 unsigned long allocs = cachep->num_allocations;
3493 unsigned long grown = cachep->grown;
3494 unsigned long reaped = cachep->reaped;
3495 unsigned long errors = cachep->errors;
3496 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003497 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07003498 unsigned long node_frees = cachep->node_frees;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003499
Christoph Lametere498be72005-09-09 13:03:32 -07003500 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3501 %4lu %4lu %4lu %4lu",
3502 allocs, high, grown, reaped, errors,
3503 max_freeable, node_allocs, node_frees);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003504 }
3505 /* cpu stats */
3506 {
3507 unsigned long allochit = atomic_read(&cachep->allochit);
3508 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3509 unsigned long freehit = atomic_read(&cachep->freehit);
3510 unsigned long freemiss = atomic_read(&cachep->freemiss);
3511
3512 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3513 allochit, allocmiss, freehit, freemiss);
3514 }
3515#endif
3516 seq_putc(m, '\n');
3517 spin_unlock_irq(&cachep->spinlock);
3518 return 0;
3519}
3520
3521/*
3522 * slabinfo_op - iterator that generates /proc/slabinfo
3523 *
3524 * Output layout:
3525 * cache-name
3526 * num-active-objs
3527 * total-objs
3528 * object size
3529 * num-active-slabs
3530 * total-slabs
3531 * num-pages-per-slab
3532 * + further values on SMP and with statistics enabled
3533 */
3534
3535struct seq_operations slabinfo_op = {
3536 .start = s_start,
3537 .next = s_next,
3538 .stop = s_stop,
3539 .show = s_show,
3540};
3541
3542#define MAX_SLABINFO_WRITE 128
3543/**
3544 * slabinfo_write - Tuning for the slab allocator
3545 * @file: unused
3546 * @buffer: user buffer
3547 * @count: data length
3548 * @ppos: unused
3549 */
3550ssize_t slabinfo_write(struct file *file, const char __user *buffer,
3551 size_t count, loff_t *ppos)
3552{
3553 char kbuf[MAX_SLABINFO_WRITE+1], *tmp;
3554 int limit, batchcount, shared, res;
3555 struct list_head *p;
3556
3557 if (count > MAX_SLABINFO_WRITE)
3558 return -EINVAL;
3559 if (copy_from_user(&kbuf, buffer, count))
3560 return -EFAULT;
3561 kbuf[MAX_SLABINFO_WRITE] = '\0';
3562
3563 tmp = strchr(kbuf, ' ');
3564 if (!tmp)
3565 return -EINVAL;
3566 *tmp = '\0';
3567 tmp++;
3568 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3569 return -EINVAL;
3570
3571 /* Find the cache in the chain of caches. */
3572 down(&cache_chain_sem);
3573 res = -EINVAL;
3574 list_for_each(p,&cache_chain) {
3575 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3576
3577 if (!strcmp(cachep->name, kbuf)) {
3578 if (limit < 1 ||
3579 batchcount < 1 ||
3580 batchcount > limit ||
3581 shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003582 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003584 res = do_tune_cpucache(cachep, limit,
3585 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003586 }
3587 break;
3588 }
3589 }
3590 up(&cache_chain_sem);
3591 if (res >= 0)
3592 res = count;
3593 return res;
3594}
3595#endif
3596
Manfred Spraul00e145b2005-09-03 15:55:07 -07003597/**
3598 * ksize - get the actual amount of memory allocated for a given object
3599 * @objp: Pointer to the object
3600 *
3601 * kmalloc may internally round up allocations and return more memory
3602 * than requested. ksize() can be used to determine the actual amount of
3603 * memory allocated. The caller may use this additional memory, even though
3604 * a smaller amount of memory was initially specified with the kmalloc call.
3605 * The caller must guarantee that objp points to a valid object previously
3606 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3607 * must not be freed during the duration of the call.
3608 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003609unsigned int ksize(const void *objp)
3610{
Manfred Spraul00e145b2005-09-03 15:55:07 -07003611 if (unlikely(objp == NULL))
3612 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003613
Pekka Enberg065d41c2005-11-13 16:06:46 -08003614 return obj_reallen(page_get_cache(virt_to_page(objp)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003615}
Paulo Marques543537b2005-06-23 00:09:02 -07003616
3617
3618/*
3619 * kstrdup - allocate space for and copy an existing string
3620 *
3621 * @s: the string to duplicate
3622 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
3623 */
Al Virodd0fc662005-10-07 07:46:04 +01003624char *kstrdup(const char *s, gfp_t gfp)
Paulo Marques543537b2005-06-23 00:09:02 -07003625{
3626 size_t len;
3627 char *buf;
3628
3629 if (!s)
3630 return NULL;
3631
3632 len = strlen(s) + 1;
3633 buf = kmalloc(len, gfp);
3634 if (buf)
3635 memcpy(buf, s, len);
3636 return buf;
3637}
3638EXPORT_SYMBOL(kstrdup);