blob: 576a8318221c9dfe47dc28a660565094c9ef7753 [file] [log] [blame]
Rusty Russellf938d2c2007-07-26 10:41:02 -07001/*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
Rusty Russella6bd8e12008-03-28 11:05:53 -05005 * it nor use it: we verify and convert it here then point the CPU to the
6 * converted Guest pages when running the Guest. :*/
Rusty Russellf938d2c2007-07-26 10:41:02 -07007
8/* Copyright (C) Rusty Russell IBM Corporation 2006.
Rusty Russelld7e28ff2007-07-19 01:49:23 -07009 * GPL v2 and any later version */
10#include <linux/mm.h>
11#include <linux/types.h>
12#include <linux/spinlock.h>
13#include <linux/random.h>
14#include <linux/percpu.h>
15#include <asm/tlbflush.h>
Rusty Russell47436aa2007-10-22 11:03:36 +100016#include <asm/uaccess.h>
Matias Zabaljauregui58a24562008-09-29 01:40:07 -030017#include <asm/bootparam.h>
Rusty Russelld7e28ff2007-07-19 01:49:23 -070018#include "lg.h"
19
Rusty Russellf56a3842007-07-26 10:41:05 -070020/*M:008 We hold reference to pages, which prevents them from being swapped.
21 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
22 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
23 * could probably consider launching Guests as non-root. :*/
24
Rusty Russellbff672e2007-07-26 10:41:04 -070025/*H:300
26 * The Page Table Code
27 *
28 * We use two-level page tables for the Guest. If you're not entirely
29 * comfortable with virtual addresses, physical addresses and page tables then
Rusty Russelle1e72962007-10-25 15:02:50 +100030 * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
31 * diagrams!).
Rusty Russellbff672e2007-07-26 10:41:04 -070032 *
33 * The Guest keeps page tables, but we maintain the actual ones here: these are
34 * called "shadow" page tables. Which is a very Guest-centric name: these are
35 * the real page tables the CPU uses, although we keep them up to date to
36 * reflect the Guest's. (See what I mean about weird naming? Since when do
37 * shadows reflect anything?)
38 *
39 * Anyway, this is the most complicated part of the Host code. There are seven
40 * parts to this:
Rusty Russelle1e72962007-10-25 15:02:50 +100041 * (i) Looking up a page table entry when the Guest faults,
42 * (ii) Making sure the Guest stack is mapped,
43 * (iii) Setting up a page table entry when the Guest tells us one has changed,
Rusty Russellbff672e2007-07-26 10:41:04 -070044 * (iv) Switching page tables,
Rusty Russelle1e72962007-10-25 15:02:50 +100045 * (v) Flushing (throwing away) page tables,
Rusty Russellbff672e2007-07-26 10:41:04 -070046 * (vi) Mapping the Switcher when the Guest is about to run,
47 * (vii) Setting up the page tables initially.
48 :*/
49
Rusty Russellbff672e2007-07-26 10:41:04 -070050
51/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
52 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
53 * page. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100054#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
Rusty Russelld7e28ff2007-07-19 01:49:23 -070055
Rusty Russellbff672e2007-07-26 10:41:04 -070056/* We actually need a separate PTE page for each CPU. Remember that after the
57 * Switcher code itself comes two pages for each CPU, and we don't want this
58 * CPU's guest to see the pages of any other CPU. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100059static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
Rusty Russelld7e28ff2007-07-19 01:49:23 -070060#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
61
Rusty Russelle1e72962007-10-25 15:02:50 +100062/*H:320 The page table code is curly enough to need helper functions to keep it
63 * clear and clean.
Rusty Russellbff672e2007-07-26 10:41:04 -070064 *
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100065 * There are two functions which return pointers to the shadow (aka "real")
Rusty Russellbff672e2007-07-26 10:41:04 -070066 * page tables.
67 *
68 * spgd_addr() takes the virtual address and returns a pointer to the top-level
Rusty Russelle1e72962007-10-25 15:02:50 +100069 * page directory entry (PGD) for that address. Since we keep track of several
70 * page tables, the "i" argument tells us which one we're interested in (it's
Rusty Russellbff672e2007-07-26 10:41:04 -070071 * usually the current one). */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -020072static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -070073{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100074 unsigned int index = pgd_index(vaddr);
Rusty Russelld7e28ff2007-07-19 01:49:23 -070075
Rusty Russellbff672e2007-07-26 10:41:04 -070076 /* We kill any Guest trying to touch the Switcher addresses. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070077 if (index >= SWITCHER_PGD_INDEX) {
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -020078 kill_guest(cpu, "attempt to access switcher pages");
Rusty Russelld7e28ff2007-07-19 01:49:23 -070079 index = 0;
80 }
Rusty Russellbff672e2007-07-26 10:41:04 -070081 /* Return a pointer index'th pgd entry for the i'th page table. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -020082 return &cpu->lg->pgdirs[i].pgdir[index];
Rusty Russelld7e28ff2007-07-19 01:49:23 -070083}
84
Rusty Russelle1e72962007-10-25 15:02:50 +100085/* This routine then takes the page directory entry returned above, which
86 * contains the address of the page table entry (PTE) page. It then returns a
87 * pointer to the PTE entry for the given address. */
Glauber de Oliveira Costa2092aa22008-01-17 19:09:49 -020088static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -070089{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100090 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
Rusty Russellbff672e2007-07-26 10:41:04 -070091 /* You should never call this if the PGD entry wasn't valid */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100092 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
93 return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
Rusty Russelld7e28ff2007-07-19 01:49:23 -070094}
95
Rusty Russellbff672e2007-07-26 10:41:04 -070096/* These two functions just like the above two, except they access the Guest
97 * page tables. Hence they return a Guest address. */
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -020098static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -070099{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000100 unsigned int index = vaddr >> (PGDIR_SHIFT);
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200101 return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700102}
103
Glauber de Oliveira Costa934faab2008-01-17 19:18:08 -0200104static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700105{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000106 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
107 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
108 return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700109}
Rusty Russella6bd8e12008-03-28 11:05:53 -0500110/*:*/
111
Rusty Russell71a3f4e2008-08-12 17:52:53 -0500112/*M:014 get_pfn is slow: we could probably try to grab batches of pages here as
113 * an optimization (ie. pre-faulting). :*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700114
Rusty Russellbff672e2007-07-26 10:41:04 -0700115/*H:350 This routine takes a page number given by the Guest and converts it to
116 * an actual, physical page number. It can fail for several reasons: the
117 * virtual address might not be mapped by the Launcher, the write flag is set
118 * and the page is read-only, or the write flag was set and the page was
119 * shared so had to be copied, but we ran out of memory.
120 *
Rusty Russella6bd8e12008-03-28 11:05:53 -0500121 * This holds a reference to the page, so release_pte() is careful to put that
122 * back. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700123static unsigned long get_pfn(unsigned long virtpfn, int write)
124{
125 struct page *page;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700126
Rusty Russell71a3f4e2008-08-12 17:52:53 -0500127 /* gup me one page at this address please! */
128 if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
129 return page_to_pfn(page);
130
131 /* This value indicates failure. */
132 return -1UL;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700133}
134
Rusty Russellbff672e2007-07-26 10:41:04 -0700135/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
136 * entry can be a little tricky. The flags are (almost) the same, but the
137 * Guest PTE contains a virtual page number: the CPU needs the real page
138 * number. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200139static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700140{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000141 unsigned long pfn, base, flags;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700142
Rusty Russellbff672e2007-07-26 10:41:04 -0700143 /* The Guest sets the global flag, because it thinks that it is using
144 * PGE. We only told it to use PGE so it would tell us whether it was
145 * flushing a kernel mapping or a userspace mapping. We don't actually
146 * use the global bit, so throw it away. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000147 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700148
Rusty Russell3c6b5bf2007-10-22 11:03:26 +1000149 /* The Guest's pages are offset inside the Launcher. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200150 base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
Rusty Russell3c6b5bf2007-10-22 11:03:26 +1000151
Rusty Russellbff672e2007-07-26 10:41:04 -0700152 /* We need a temporary "unsigned long" variable to hold the answer from
153 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
154 * fit in spte.pfn. get_pfn() finds the real physical number of the
155 * page, given the virtual number. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000156 pfn = get_pfn(base + pte_pfn(gpte), write);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700157 if (pfn == -1UL) {
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200158 kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
Rusty Russellbff672e2007-07-26 10:41:04 -0700159 /* When we destroy the Guest, we'll go through the shadow page
160 * tables and release_pte() them. Make sure we don't think
161 * this one is valid! */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000162 flags = 0;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700163 }
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000164 /* Now we assemble our shadow PTE from the page number and flags. */
165 return pfn_pte(pfn, __pgprot(flags));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700166}
167
Rusty Russellbff672e2007-07-26 10:41:04 -0700168/*H:460 And to complete the chain, release_pte() looks like this: */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000169static void release_pte(pte_t pte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700170{
Rusty Russell71a3f4e2008-08-12 17:52:53 -0500171 /* Remember that get_user_pages_fast() took a reference to the page, in
Rusty Russellbff672e2007-07-26 10:41:04 -0700172 * get_pfn()? We have to put it back now. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000173 if (pte_flags(pte) & _PAGE_PRESENT)
174 put_page(pfn_to_page(pte_pfn(pte)));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700175}
Rusty Russellbff672e2007-07-26 10:41:04 -0700176/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700177
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200178static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700179{
Ahmed S. Darwish31f4b462008-02-09 23:24:09 +0100180 if ((pte_flags(gpte) & _PAGE_PSE) ||
181 pte_pfn(gpte) >= cpu->lg->pfn_limit)
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200182 kill_guest(cpu, "bad page table entry");
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700183}
184
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200185static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700186{
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200187 if ((pgd_flags(gpgd) & ~_PAGE_TABLE) ||
188 (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
189 kill_guest(cpu, "bad page directory entry");
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700190}
191
Rusty Russellbff672e2007-07-26 10:41:04 -0700192/*H:330
Rusty Russelle1e72962007-10-25 15:02:50 +1000193 * (i) Looking up a page table entry when the Guest faults.
Rusty Russellbff672e2007-07-26 10:41:04 -0700194 *
195 * We saw this call in run_guest(): when we see a page fault in the Guest, we
196 * come here. That's because we only set up the shadow page tables lazily as
197 * they're needed, so we get page faults all the time and quietly fix them up
198 * and return to the Guest without it knowing.
199 *
200 * If we fixed up the fault (ie. we mapped the address), this routine returns
Rusty Russelle1e72962007-10-25 15:02:50 +1000201 * true. Otherwise, it was a real fault and we need to tell the Guest. */
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200202int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700203{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000204 pgd_t gpgd;
205 pgd_t *spgd;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700206 unsigned long gpte_ptr;
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000207 pte_t gpte;
208 pte_t *spte;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700209
Rusty Russellbff672e2007-07-26 10:41:04 -0700210 /* First step: get the top-level Guest page table entry. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200211 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
Rusty Russellbff672e2007-07-26 10:41:04 -0700212 /* Toplevel not present? We can't map it in. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000213 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700214 return 0;
215
Rusty Russellbff672e2007-07-26 10:41:04 -0700216 /* Now look at the matching shadow entry. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200217 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000218 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
Rusty Russellbff672e2007-07-26 10:41:04 -0700219 /* No shadow entry: allocate a new shadow PTE page. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700220 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700221 /* This is not really the Guest's fault, but killing it is
222 * simple for this corner case. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700223 if (!ptepage) {
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200224 kill_guest(cpu, "out of memory allocating pte page");
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700225 return 0;
226 }
Rusty Russellbff672e2007-07-26 10:41:04 -0700227 /* We check that the Guest pgd is OK. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200228 check_gpgd(cpu, gpgd);
Rusty Russellbff672e2007-07-26 10:41:04 -0700229 /* And we copy the flags to the shadow PGD entry. The page
230 * number in the shadow PGD is the page we just allocated. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000231 *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700232 }
233
Rusty Russellbff672e2007-07-26 10:41:04 -0700234 /* OK, now we look at the lower level in the Guest page table: keep its
235 * address, because we might update it later. */
Glauber de Oliveira Costa934faab2008-01-17 19:18:08 -0200236 gpte_ptr = gpte_addr(gpgd, vaddr);
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200237 gpte = lgread(cpu, gpte_ptr, pte_t);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700238
Rusty Russellbff672e2007-07-26 10:41:04 -0700239 /* If this page isn't in the Guest page tables, we can't page it in. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000240 if (!(pte_flags(gpte) & _PAGE_PRESENT))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700241 return 0;
242
Rusty Russellbff672e2007-07-26 10:41:04 -0700243 /* Check they're not trying to write to a page the Guest wants
244 * read-only (bit 2 of errcode == write). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000245 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700246 return 0;
247
Rusty Russelle1e72962007-10-25 15:02:50 +1000248 /* User access to a kernel-only page? (bit 3 == user access) */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000249 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700250 return 0;
251
Rusty Russellbff672e2007-07-26 10:41:04 -0700252 /* Check that the Guest PTE flags are OK, and the page number is below
253 * the pfn_limit (ie. not mapping the Launcher binary). */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200254 check_gpte(cpu, gpte);
Rusty Russelle1e72962007-10-25 15:02:50 +1000255
Rusty Russellbff672e2007-07-26 10:41:04 -0700256 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000257 gpte = pte_mkyoung(gpte);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700258 if (errcode & 2)
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000259 gpte = pte_mkdirty(gpte);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700260
Rusty Russellbff672e2007-07-26 10:41:04 -0700261 /* Get the pointer to the shadow PTE entry we're going to set. */
Glauber de Oliveira Costa2092aa22008-01-17 19:09:49 -0200262 spte = spte_addr(*spgd, vaddr);
Rusty Russellbff672e2007-07-26 10:41:04 -0700263 /* If there was a valid shadow PTE entry here before, we release it.
264 * This can happen with a write to a previously read-only entry. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700265 release_pte(*spte);
266
Rusty Russellbff672e2007-07-26 10:41:04 -0700267 /* If this is a write, we insist that the Guest page is writable (the
268 * final arg to gpte_to_spte()). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000269 if (pte_dirty(gpte))
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200270 *spte = gpte_to_spte(cpu, gpte, 1);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000271 else
Rusty Russellbff672e2007-07-26 10:41:04 -0700272 /* If this is a read, don't set the "writable" bit in the page
273 * table entry, even if the Guest says it's writable. That way
Rusty Russelle1e72962007-10-25 15:02:50 +1000274 * we will come back here when a write does actually occur, so
275 * we can update the Guest's _PAGE_DIRTY flag. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200276 *spte = gpte_to_spte(cpu, pte_wrprotect(gpte), 0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700277
Rusty Russellbff672e2007-07-26 10:41:04 -0700278 /* Finally, we write the Guest PTE entry back: we've set the
279 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200280 lgwrite(cpu, gpte_ptr, pte_t, gpte);
Rusty Russellbff672e2007-07-26 10:41:04 -0700281
Rusty Russelle1e72962007-10-25 15:02:50 +1000282 /* The fault is fixed, the page table is populated, the mapping
283 * manipulated, the result returned and the code complete. A small
284 * delay and a trace of alliteration are the only indications the Guest
285 * has that a page fault occurred at all. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700286 return 1;
287}
288
Rusty Russelle1e72962007-10-25 15:02:50 +1000289/*H:360
290 * (ii) Making sure the Guest stack is mapped.
Rusty Russellbff672e2007-07-26 10:41:04 -0700291 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000292 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
293 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
294 * we've seen that logic is quite long, and usually the stack pages are already
295 * mapped, so it's overkill.
Rusty Russellbff672e2007-07-26 10:41:04 -0700296 *
297 * This is a quick version which answers the question: is this virtual address
298 * mapped by the shadow page tables, and is it writable? */
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200299static int page_writable(struct lg_cpu *cpu, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700300{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000301 pgd_t *spgd;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700302 unsigned long flags;
303
Rusty Russelle1e72962007-10-25 15:02:50 +1000304 /* Look at the current top level entry: is it present? */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200305 spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000306 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700307 return 0;
308
Rusty Russellbff672e2007-07-26 10:41:04 -0700309 /* Check the flags on the pte entry itself: it must be present and
310 * writable. */
Glauber de Oliveira Costa2092aa22008-01-17 19:09:49 -0200311 flags = pte_flags(*(spte_addr(*spgd, vaddr)));
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000312
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700313 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
314}
315
Rusty Russellbff672e2007-07-26 10:41:04 -0700316/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
317 * in the page tables, and if not, we call demand_page() with error code 2
318 * (meaning "write"). */
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200319void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700320{
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200321 if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200322 kill_guest(cpu, "bad stack page %#lx", vaddr);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700323}
324
Rusty Russellbff672e2007-07-26 10:41:04 -0700325/*H:450 If we chase down the release_pgd() code, it looks like this: */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000326static void release_pgd(struct lguest *lg, pgd_t *spgd)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700327{
Rusty Russellbff672e2007-07-26 10:41:04 -0700328 /* If the entry's not present, there's nothing to release. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000329 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700330 unsigned int i;
Rusty Russellbff672e2007-07-26 10:41:04 -0700331 /* Converting the pfn to find the actual PTE page is easy: turn
332 * the page number into a physical address, then convert to a
333 * virtual address (easy for kernel pages like this one). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000334 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
Rusty Russellbff672e2007-07-26 10:41:04 -0700335 /* For each entry in the page, we might need to release it. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000336 for (i = 0; i < PTRS_PER_PTE; i++)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700337 release_pte(ptepage[i]);
Rusty Russellbff672e2007-07-26 10:41:04 -0700338 /* Now we can free the page of PTEs */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700339 free_page((long)ptepage);
Rusty Russelle1e72962007-10-25 15:02:50 +1000340 /* And zero out the PGD entry so we never release it twice. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000341 *spgd = __pgd(0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700342 }
343}
344
Rusty Russelle1e72962007-10-25 15:02:50 +1000345/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
346 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
347 * It simply releases every PTE page from 0 up to the Guest's kernel address. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700348static void flush_user_mappings(struct lguest *lg, int idx)
349{
350 unsigned int i;
Rusty Russellbff672e2007-07-26 10:41:04 -0700351 /* Release every pgd entry up to the kernel's address. */
Rusty Russell47436aa2007-10-22 11:03:36 +1000352 for (i = 0; i < pgd_index(lg->kernel_address); i++)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700353 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
354}
355
Rusty Russelle1e72962007-10-25 15:02:50 +1000356/*H:440 (v) Flushing (throwing away) page tables,
357 *
358 * The Guest has a hypercall to throw away the page tables: it's used when a
359 * large number of mappings have been changed. */
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200360void guest_pagetable_flush_user(struct lg_cpu *cpu)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700361{
Rusty Russellbff672e2007-07-26 10:41:04 -0700362 /* Drop the userspace part of the current page table. */
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200363 flush_user_mappings(cpu->lg, cpu->cpu_pgd);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700364}
Rusty Russellbff672e2007-07-26 10:41:04 -0700365/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700366
Rusty Russell47436aa2007-10-22 11:03:36 +1000367/* We walk down the guest page tables to get a guest-physical address */
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200368unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
Rusty Russell47436aa2007-10-22 11:03:36 +1000369{
370 pgd_t gpgd;
371 pte_t gpte;
372
373 /* First step: get the top-level Guest page table entry. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200374 gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
Rusty Russell47436aa2007-10-22 11:03:36 +1000375 /* Toplevel not present? We can't map it in. */
376 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200377 kill_guest(cpu, "Bad address %#lx", vaddr);
Rusty Russell47436aa2007-10-22 11:03:36 +1000378
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200379 gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t);
Rusty Russell47436aa2007-10-22 11:03:36 +1000380 if (!(pte_flags(gpte) & _PAGE_PRESENT))
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200381 kill_guest(cpu, "Bad address %#lx", vaddr);
Rusty Russell47436aa2007-10-22 11:03:36 +1000382
383 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
384}
385
Rusty Russellbff672e2007-07-26 10:41:04 -0700386/* We keep several page tables. This is a simple routine to find the page
387 * table (if any) corresponding to this top-level address the Guest has given
388 * us. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700389static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
390{
391 unsigned int i;
392 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
Rusty Russell4357bd92008-03-11 09:35:57 -0500393 if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700394 break;
395 return i;
396}
397
Rusty Russellbff672e2007-07-26 10:41:04 -0700398/*H:435 And this is us, creating the new page directory. If we really do
399 * allocate a new one (and so the kernel parts are not there), we set
400 * blank_pgdir. */
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200401static unsigned int new_pgdir(struct lg_cpu *cpu,
Rusty Russellee3db0f2007-10-22 11:03:34 +1000402 unsigned long gpgdir,
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700403 int *blank_pgdir)
404{
405 unsigned int next;
406
Rusty Russellbff672e2007-07-26 10:41:04 -0700407 /* We pick one entry at random to throw out. Choosing the Least
408 * Recently Used might be better, but this is easy. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200409 next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
Rusty Russellbff672e2007-07-26 10:41:04 -0700410 /* If it's never been allocated at all before, try now. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200411 if (!cpu->lg->pgdirs[next].pgdir) {
412 cpu->lg->pgdirs[next].pgdir =
413 (pgd_t *)get_zeroed_page(GFP_KERNEL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700414 /* If the allocation fails, just keep using the one we have */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200415 if (!cpu->lg->pgdirs[next].pgdir)
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200416 next = cpu->cpu_pgd;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700417 else
Rusty Russellbff672e2007-07-26 10:41:04 -0700418 /* This is a blank page, so there are no kernel
419 * mappings: caller must map the stack! */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700420 *blank_pgdir = 1;
421 }
Rusty Russellbff672e2007-07-26 10:41:04 -0700422 /* Record which Guest toplevel this shadows. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200423 cpu->lg->pgdirs[next].gpgdir = gpgdir;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700424 /* Release all the non-kernel mappings. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200425 flush_user_mappings(cpu->lg, next);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700426
427 return next;
428}
429
Rusty Russellbff672e2007-07-26 10:41:04 -0700430/*H:430 (iv) Switching page tables
431 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000432 * Now we've seen all the page table setting and manipulation, let's see what
433 * what happens when the Guest changes page tables (ie. changes the top-level
434 * pgdir). This occurs on almost every context switch. */
Glauber de Oliveira Costa4665ac8e2008-01-07 11:05:35 -0200435void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700436{
437 int newpgdir, repin = 0;
438
Rusty Russellbff672e2007-07-26 10:41:04 -0700439 /* Look to see if we have this one already. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200440 newpgdir = find_pgdir(cpu->lg, pgtable);
Rusty Russellbff672e2007-07-26 10:41:04 -0700441 /* If not, we allocate or mug an existing one: if it's a fresh one,
442 * repin gets set to 1. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200443 if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200444 newpgdir = new_pgdir(cpu, pgtable, &repin);
Rusty Russellbff672e2007-07-26 10:41:04 -0700445 /* Change the current pgd index to the new one. */
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200446 cpu->cpu_pgd = newpgdir;
Rusty Russellbff672e2007-07-26 10:41:04 -0700447 /* If it was completely blank, we map in the Guest kernel stack */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700448 if (repin)
Glauber de Oliveira Costa4665ac8e2008-01-07 11:05:35 -0200449 pin_stack_pages(cpu);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700450}
451
Rusty Russellbff672e2007-07-26 10:41:04 -0700452/*H:470 Finally, a routine which throws away everything: all PGD entries in all
Rusty Russelle1e72962007-10-25 15:02:50 +1000453 * the shadow page tables, including the Guest's kernel mappings. This is used
454 * when we destroy the Guest. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700455static void release_all_pagetables(struct lguest *lg)
456{
457 unsigned int i, j;
458
Rusty Russellbff672e2007-07-26 10:41:04 -0700459 /* Every shadow pagetable this Guest has */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700460 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
461 if (lg->pgdirs[i].pgdir)
Rusty Russellbff672e2007-07-26 10:41:04 -0700462 /* Every PGD entry except the Switcher at the top */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700463 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
464 release_pgd(lg, lg->pgdirs[i].pgdir + j);
465}
466
Rusty Russellbff672e2007-07-26 10:41:04 -0700467/* We also throw away everything when a Guest tells us it's changed a kernel
468 * mapping. Since kernel mappings are in every page table, it's easiest to
Rusty Russelle1e72962007-10-25 15:02:50 +1000469 * throw them all away. This traps the Guest in amber for a while as
470 * everything faults back in, but it's rare. */
Glauber de Oliveira Costa4665ac8e2008-01-07 11:05:35 -0200471void guest_pagetable_clear_all(struct lg_cpu *cpu)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700472{
Glauber de Oliveira Costa4665ac8e2008-01-07 11:05:35 -0200473 release_all_pagetables(cpu->lg);
Rusty Russellbff672e2007-07-26 10:41:04 -0700474 /* We need the Guest kernel stack mapped again. */
Glauber de Oliveira Costa4665ac8e2008-01-07 11:05:35 -0200475 pin_stack_pages(cpu);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700476}
Rusty Russelle1e72962007-10-25 15:02:50 +1000477/*:*/
478/*M:009 Since we throw away all mappings when a kernel mapping changes, our
479 * performance sucks for guests using highmem. In fact, a guest with
480 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
481 * usually slower than a Guest with less memory.
482 *
483 * This, of course, cannot be fixed. It would take some kind of... well, I
484 * don't know, but the term "puissant code-fu" comes to mind. :*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700485
Rusty Russellbff672e2007-07-26 10:41:04 -0700486/*H:420 This is the routine which actually sets the page table entry for then
487 * "idx"'th shadow page table.
488 *
489 * Normally, we can just throw out the old entry and replace it with 0: if they
490 * use it demand_page() will put the new entry in. We need to do this anyway:
491 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
492 * is read from, and _PAGE_DIRTY when it's written to.
493 *
494 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
495 * these bits on PTEs immediately anyway. This is done to save the CPU from
496 * having to update them, but it helps us the same way: if they set
497 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
498 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
499 */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200500static void do_set_pte(struct lg_cpu *cpu, int idx,
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000501 unsigned long vaddr, pte_t gpte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700502{
Rusty Russelle1e72962007-10-25 15:02:50 +1000503 /* Look up the matching shadow page directory entry. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200504 pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
Rusty Russellbff672e2007-07-26 10:41:04 -0700505
506 /* If the top level isn't present, there's no entry to update. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000507 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
Rusty Russellbff672e2007-07-26 10:41:04 -0700508 /* Otherwise, we start by releasing the existing entry. */
Glauber de Oliveira Costa2092aa22008-01-17 19:09:49 -0200509 pte_t *spte = spte_addr(*spgd, vaddr);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700510 release_pte(*spte);
Rusty Russellbff672e2007-07-26 10:41:04 -0700511
512 /* If they're setting this entry as dirty or accessed, we might
513 * as well put that entry they've given us in now. This shaves
514 * 10% off a copy-on-write micro-benchmark. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000515 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200516 check_gpte(cpu, gpte);
517 *spte = gpte_to_spte(cpu, gpte,
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000518 pte_flags(gpte) & _PAGE_DIRTY);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700519 } else
Rusty Russelle1e72962007-10-25 15:02:50 +1000520 /* Otherwise kill it and we can demand_page() it in
521 * later. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000522 *spte = __pte(0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700523 }
524}
525
Rusty Russellbff672e2007-07-26 10:41:04 -0700526/*H:410 Updating a PTE entry is a little trickier.
527 *
528 * We keep track of several different page tables (the Guest uses one for each
529 * process, so it makes sense to cache at least a few). Each of these have
530 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
531 * all processes. So when the page table above that address changes, we update
532 * all the page tables, not just the current one. This is rare.
533 *
Rusty Russella6bd8e12008-03-28 11:05:53 -0500534 * The benefit is that when we have to track a new page table, we can keep all
535 * the kernel mappings. This speeds up context switch immensely. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200536void guest_set_pte(struct lg_cpu *cpu,
Rusty Russellee3db0f2007-10-22 11:03:34 +1000537 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700538{
Rusty Russella6bd8e12008-03-28 11:05:53 -0500539 /* Kernel mappings must be changed on all top levels. Slow, but doesn't
540 * happen often. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200541 if (vaddr >= cpu->lg->kernel_address) {
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700542 unsigned int i;
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200543 for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
544 if (cpu->lg->pgdirs[i].pgdir)
545 do_set_pte(cpu, i, vaddr, gpte);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700546 } else {
Rusty Russellbff672e2007-07-26 10:41:04 -0700547 /* Is this page table one we have a shadow for? */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200548 int pgdir = find_pgdir(cpu->lg, gpgdir);
549 if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
Rusty Russellbff672e2007-07-26 10:41:04 -0700550 /* If so, do the update. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200551 do_set_pte(cpu, pgdir, vaddr, gpte);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700552 }
553}
554
Rusty Russellbff672e2007-07-26 10:41:04 -0700555/*H:400
Rusty Russelle1e72962007-10-25 15:02:50 +1000556 * (iii) Setting up a page table entry when the Guest tells us one has changed.
Rusty Russellbff672e2007-07-26 10:41:04 -0700557 *
558 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
559 * with the other side of page tables while we're here: what happens when the
560 * Guest asks for a page table to be updated?
561 *
562 * We already saw that demand_page() will fill in the shadow page tables when
563 * needed, so we can simply remove shadow page table entries whenever the Guest
564 * tells us they've changed. When the Guest tries to use the new entry it will
565 * fault and demand_page() will fix it up.
566 *
567 * So with that in mind here's our code to to update a (top-level) PGD entry:
568 */
Rusty Russellee3db0f2007-10-22 11:03:34 +1000569void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700570{
571 int pgdir;
572
Rusty Russellbff672e2007-07-26 10:41:04 -0700573 /* The kernel seems to try to initialize this early on: we ignore its
574 * attempts to map over the Switcher. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700575 if (idx >= SWITCHER_PGD_INDEX)
576 return;
577
Rusty Russellbff672e2007-07-26 10:41:04 -0700578 /* If they're talking about a page table we have a shadow for... */
Rusty Russellee3db0f2007-10-22 11:03:34 +1000579 pgdir = find_pgdir(lg, gpgdir);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700580 if (pgdir < ARRAY_SIZE(lg->pgdirs))
Rusty Russellbff672e2007-07-26 10:41:04 -0700581 /* ... throw it away. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700582 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
583}
584
Matias Zabaljauregui58a24562008-09-29 01:40:07 -0300585/* Once we know how much memory we have we can construct simple identity
586 * (which set virtual == physical) and linear mappings
587 * which will get the Guest far enough into the boot to create its own.
588 *
589 * We lay them out of the way, just below the initrd (which is why we need to
590 * know its size here). */
591static unsigned long setup_pagetables(struct lguest *lg,
592 unsigned long mem,
593 unsigned long initrd_size)
594{
595 pgd_t __user *pgdir;
596 pte_t __user *linear;
597 unsigned int mapped_pages, i, linear_pages, phys_linear;
598 unsigned long mem_base = (unsigned long)lg->mem_base;
599
600 /* We have mapped_pages frames to map, so we need
601 * linear_pages page tables to map them. */
602 mapped_pages = mem / PAGE_SIZE;
603 linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
604
605 /* We put the toplevel page directory page at the top of memory. */
606 pgdir = (pgd_t *)(mem + mem_base - initrd_size - PAGE_SIZE);
607
608 /* Now we use the next linear_pages pages as pte pages */
609 linear = (void *)pgdir - linear_pages * PAGE_SIZE;
610
611 /* Linear mapping is easy: put every page's address into the
612 * mapping in order. */
613 for (i = 0; i < mapped_pages; i++) {
614 pte_t pte;
615 pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
616 if (copy_to_user(&linear[i], &pte, sizeof(pte)) != 0)
617 return -EFAULT;
618 }
619
620 /* The top level points to the linear page table pages above.
621 * We setup the identity and linear mappings here. */
622 phys_linear = (unsigned long)linear - mem_base;
623 for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
624 pgd_t pgd;
625 pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
626 (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
627
628 if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
629 || copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
630 + i / PTRS_PER_PTE],
631 &pgd, sizeof(pgd)))
632 return -EFAULT;
633 }
634
635 /* We return the top level (guest-physical) address: remember where
636 * this is. */
637 return (unsigned long)pgdir - mem_base;
638}
639
Rusty Russellbff672e2007-07-26 10:41:04 -0700640/*H:500 (vii) Setting up the page tables initially.
641 *
642 * When a Guest is first created, the Launcher tells us where the toplevel of
643 * its first page table is. We set some things up here: */
Matias Zabaljauregui58a24562008-09-29 01:40:07 -0300644int init_guest_pagetable(struct lguest *lg)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700645{
Matias Zabaljauregui58a24562008-09-29 01:40:07 -0300646 u64 mem;
647 u32 initrd_size;
648 struct boot_params __user *boot = (struct boot_params *)lg->mem_base;
649
650 /* Get the Guest memory size and the ramdisk size from the boot header
651 * located at lg->mem_base (Guest address 0). */
652 if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
653 || get_user(initrd_size, &boot->hdr.ramdisk_size))
654 return -EFAULT;
655
Rusty Russellbff672e2007-07-26 10:41:04 -0700656 /* We start on the first shadow page table, and give it a blank PGD
657 * page. */
Matias Zabaljauregui58a24562008-09-29 01:40:07 -0300658 lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
659 if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
660 return lg->pgdirs[0].gpgdir;
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200661 lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
662 if (!lg->pgdirs[0].pgdir)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700663 return -ENOMEM;
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200664 lg->cpus[0].cpu_pgd = 0;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700665 return 0;
666}
667
Rusty Russell47436aa2007-10-22 11:03:36 +1000668/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200669void page_table_guest_data_init(struct lg_cpu *cpu)
Rusty Russell47436aa2007-10-22 11:03:36 +1000670{
671 /* We get the kernel address: above this is all kernel memory. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200672 if (get_user(cpu->lg->kernel_address,
673 &cpu->lg->lguest_data->kernel_address)
Rusty Russell47436aa2007-10-22 11:03:36 +1000674 /* We tell the Guest that it can't use the top 4MB of virtual
675 * addresses used by the Switcher. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200676 || put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem)
677 || put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir))
678 kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
Rusty Russell47436aa2007-10-22 11:03:36 +1000679
680 /* In flush_user_mappings() we loop from 0 to
681 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
682 * Switcher mappings, so check that now. */
Glauber de Oliveira Costa382ac6b2008-01-17 19:19:42 -0200683 if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
684 kill_guest(cpu, "bad kernel address %#lx",
685 cpu->lg->kernel_address);
Rusty Russell47436aa2007-10-22 11:03:36 +1000686}
687
Rusty Russellbff672e2007-07-26 10:41:04 -0700688/* When a Guest dies, our cleanup is fairly simple. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700689void free_guest_pagetable(struct lguest *lg)
690{
691 unsigned int i;
692
Rusty Russellbff672e2007-07-26 10:41:04 -0700693 /* Throw away all page table pages. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700694 release_all_pagetables(lg);
Rusty Russellbff672e2007-07-26 10:41:04 -0700695 /* Now free the top levels: free_page() can handle 0 just fine. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700696 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
697 free_page((long)lg->pgdirs[i].pgdir);
698}
699
Rusty Russellbff672e2007-07-26 10:41:04 -0700700/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
701 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000702 * The Switcher and the two pages for this CPU need to be visible in the
Rusty Russellbff672e2007-07-26 10:41:04 -0700703 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
Rusty Russelle1e72962007-10-25 15:02:50 +1000704 * for each CPU already set up, we just need to hook them in now we know which
705 * Guest is about to run on this CPU. */
Glauber de Oliveira Costa0c784412008-01-07 11:05:30 -0200706void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700707{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000708 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
709 pgd_t switcher_pgd;
710 pte_t regs_pte;
Glauber de Oliveira Costaa53a35a2008-01-07 11:05:32 -0200711 unsigned long pfn;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700712
Rusty Russellbff672e2007-07-26 10:41:04 -0700713 /* Make the last PGD entry for this Guest point to the Switcher's PTE
714 * page for this CPU (with appropriate flags). */
Glauber de Oliveira Costa84f12e32008-01-18 23:59:08 -0200715 switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000716
Glauber de Oliveira Costa17136082008-01-07 11:05:37 -0200717 cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700718
Rusty Russellbff672e2007-07-26 10:41:04 -0700719 /* We also change the Switcher PTE page. When we're running the Guest,
720 * we want the Guest's "regs" page to appear where the first Switcher
721 * page for this CPU is. This is an optimization: when the Switcher
722 * saves the Guest registers, it saves them into the first page of this
723 * CPU's "struct lguest_pages": if we make sure the Guest's register
724 * page is already mapped there, we don't have to copy them out
725 * again. */
Glauber de Oliveira Costaa53a35a2008-01-07 11:05:32 -0200726 pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
Glauber de Oliveira Costa84f12e32008-01-18 23:59:08 -0200727 regs_pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL));
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000728 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700729}
Rusty Russellbff672e2007-07-26 10:41:04 -0700730/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700731
732static void free_switcher_pte_pages(void)
733{
734 unsigned int i;
735
736 for_each_possible_cpu(i)
737 free_page((long)switcher_pte_page(i));
738}
739
Rusty Russellbff672e2007-07-26 10:41:04 -0700740/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
741 * the CPU number and the "struct page"s for the Switcher code itself.
742 *
743 * Currently the Switcher is less than a page long, so "pages" is always 1. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700744static __init void populate_switcher_pte_page(unsigned int cpu,
745 struct page *switcher_page[],
746 unsigned int pages)
747{
748 unsigned int i;
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000749 pte_t *pte = switcher_pte_page(cpu);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700750
Rusty Russellbff672e2007-07-26 10:41:04 -0700751 /* The first entries are easy: they map the Switcher code. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700752 for (i = 0; i < pages; i++) {
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000753 pte[i] = mk_pte(switcher_page[i],
754 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700755 }
756
Rusty Russellbff672e2007-07-26 10:41:04 -0700757 /* The only other thing we map is this CPU's pair of pages. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700758 i = pages + cpu*2;
759
Rusty Russellbff672e2007-07-26 10:41:04 -0700760 /* First page (Guest registers) is writable from the Guest */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000761 pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
762 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
763
Rusty Russellbff672e2007-07-26 10:41:04 -0700764 /* The second page contains the "struct lguest_ro_state", and is
765 * read-only. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000766 pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
767 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700768}
769
Rusty Russelle1e72962007-10-25 15:02:50 +1000770/* We've made it through the page table code. Perhaps our tired brains are
771 * still processing the details, or perhaps we're simply glad it's over.
772 *
Rusty Russella6bd8e12008-03-28 11:05:53 -0500773 * If nothing else, note that all this complexity in juggling shadow page tables
774 * in sync with the Guest's page tables is for one reason: for most Guests this
775 * page table dance determines how bad performance will be. This is why Xen
776 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
777 * have implemented shadow page table support directly into hardware.
Rusty Russelle1e72962007-10-25 15:02:50 +1000778 *
779 * There is just one file remaining in the Host. */
780
Rusty Russellbff672e2007-07-26 10:41:04 -0700781/*H:510 At boot or module load time, init_pagetables() allocates and populates
782 * the Switcher PTE page for each CPU. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700783__init int init_pagetables(struct page **switcher_page, unsigned int pages)
784{
785 unsigned int i;
786
787 for_each_possible_cpu(i) {
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000788 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700789 if (!switcher_pte_page(i)) {
790 free_switcher_pte_pages();
791 return -ENOMEM;
792 }
793 populate_switcher_pte_page(i, switcher_page, pages);
794 }
795 return 0;
796}
Rusty Russellbff672e2007-07-26 10:41:04 -0700797/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700798
Rusty Russellbff672e2007-07-26 10:41:04 -0700799/* Cleaning up simply involves freeing the PTE page for each CPU. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700800void free_pagetables(void)
801{
802 free_switcher_pte_pages();
803}