blob: 9cd2faceb87cab23c0be23548c7783851ee942b4 [file] [log] [blame]
Rusty Russellf938d2c2007-07-26 10:41:02 -07001/*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
5 * it nor use it: we verify and convert it here to point the hardware to the
6 * actual Guest pages when running the Guest. :*/
7
8/* Copyright (C) Rusty Russell IBM Corporation 2006.
Rusty Russelld7e28ff2007-07-19 01:49:23 -07009 * GPL v2 and any later version */
10#include <linux/mm.h>
11#include <linux/types.h>
12#include <linux/spinlock.h>
13#include <linux/random.h>
14#include <linux/percpu.h>
15#include <asm/tlbflush.h>
16#include "lg.h"
17
Rusty Russellf56a3842007-07-26 10:41:05 -070018/*M:008 We hold reference to pages, which prevents them from being swapped.
19 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
20 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
21 * could probably consider launching Guests as non-root. :*/
22
Rusty Russellbff672e2007-07-26 10:41:04 -070023/*H:300
24 * The Page Table Code
25 *
26 * We use two-level page tables for the Guest. If you're not entirely
27 * comfortable with virtual addresses, physical addresses and page tables then
28 * I recommend you review lguest.c's "Page Table Handling" (with diagrams!).
29 *
30 * The Guest keeps page tables, but we maintain the actual ones here: these are
31 * called "shadow" page tables. Which is a very Guest-centric name: these are
32 * the real page tables the CPU uses, although we keep them up to date to
33 * reflect the Guest's. (See what I mean about weird naming? Since when do
34 * shadows reflect anything?)
35 *
36 * Anyway, this is the most complicated part of the Host code. There are seven
37 * parts to this:
38 * (i) Setting up a page table entry for the Guest when it faults,
39 * (ii) Setting up the page table entry for the Guest stack,
40 * (iii) Setting up a page table entry when the Guest tells us it has changed,
41 * (iv) Switching page tables,
42 * (v) Flushing (thowing away) page tables,
43 * (vi) Mapping the Switcher when the Guest is about to run,
44 * (vii) Setting up the page tables initially.
45 :*/
46
47/* Pages a 4k long, and each page table entry is 4 bytes long, giving us 1024
48 * (or 2^10) entries per page. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070049#define PTES_PER_PAGE_SHIFT 10
50#define PTES_PER_PAGE (1 << PTES_PER_PAGE_SHIFT)
Rusty Russellbff672e2007-07-26 10:41:04 -070051
52/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
53 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
54 * page. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070055#define SWITCHER_PGD_INDEX (PTES_PER_PAGE - 1)
56
Rusty Russellbff672e2007-07-26 10:41:04 -070057/* We actually need a separate PTE page for each CPU. Remember that after the
58 * Switcher code itself comes two pages for each CPU, and we don't want this
59 * CPU's guest to see the pages of any other CPU. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070060static DEFINE_PER_CPU(spte_t *, switcher_pte_pages);
61#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
62
Rusty Russellbff672e2007-07-26 10:41:04 -070063/*H:320 With our shadow and Guest types established, we need to deal with
64 * them: the page table code is curly enough to need helper functions to keep
65 * it clear and clean.
66 *
67 * The first helper takes a virtual address, and says which entry in the top
68 * level page table deals with that address. Since each top level entry deals
69 * with 4M, this effectively divides by 4M. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070070static unsigned vaddr_to_pgd_index(unsigned long vaddr)
71{
72 return vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
73}
74
Rusty Russellbff672e2007-07-26 10:41:04 -070075/* There are two functions which return pointers to the shadow (aka "real")
76 * page tables.
77 *
78 * spgd_addr() takes the virtual address and returns a pointer to the top-level
79 * page directory entry for that address. Since we keep track of several page
80 * tables, the "i" argument tells us which one we're interested in (it's
81 * usually the current one). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070082static spgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
83{
84 unsigned int index = vaddr_to_pgd_index(vaddr);
85
Rusty Russellbff672e2007-07-26 10:41:04 -070086 /* We kill any Guest trying to touch the Switcher addresses. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070087 if (index >= SWITCHER_PGD_INDEX) {
88 kill_guest(lg, "attempt to access switcher pages");
89 index = 0;
90 }
Rusty Russellbff672e2007-07-26 10:41:04 -070091 /* Return a pointer index'th pgd entry for the i'th page table. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070092 return &lg->pgdirs[i].pgdir[index];
93}
94
Rusty Russellbff672e2007-07-26 10:41:04 -070095/* This routine then takes the PGD entry given above, which contains the
96 * address of the PTE page. It then returns a pointer to the PTE entry for the
97 * given address. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070098static spte_t *spte_addr(struct lguest *lg, spgd_t spgd, unsigned long vaddr)
99{
100 spte_t *page = __va(spgd.pfn << PAGE_SHIFT);
Rusty Russellbff672e2007-07-26 10:41:04 -0700101 /* You should never call this if the PGD entry wasn't valid */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700102 BUG_ON(!(spgd.flags & _PAGE_PRESENT));
103 return &page[(vaddr >> PAGE_SHIFT) % PTES_PER_PAGE];
104}
105
Rusty Russellbff672e2007-07-26 10:41:04 -0700106/* These two functions just like the above two, except they access the Guest
107 * page tables. Hence they return a Guest address. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700108static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
109{
110 unsigned int index = vaddr >> (PAGE_SHIFT + PTES_PER_PAGE_SHIFT);
111 return lg->pgdirs[lg->pgdidx].cr3 + index * sizeof(gpgd_t);
112}
113
114static unsigned long gpte_addr(struct lguest *lg,
115 gpgd_t gpgd, unsigned long vaddr)
116{
117 unsigned long gpage = gpgd.pfn << PAGE_SHIFT;
118 BUG_ON(!(gpgd.flags & _PAGE_PRESENT));
119 return gpage + ((vaddr>>PAGE_SHIFT) % PTES_PER_PAGE) * sizeof(gpte_t);
120}
121
Rusty Russellbff672e2007-07-26 10:41:04 -0700122/*H:350 This routine takes a page number given by the Guest and converts it to
123 * an actual, physical page number. It can fail for several reasons: the
124 * virtual address might not be mapped by the Launcher, the write flag is set
125 * and the page is read-only, or the write flag was set and the page was
126 * shared so had to be copied, but we ran out of memory.
127 *
128 * This holds a reference to the page, so release_pte() is careful to
129 * put that back. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700130static unsigned long get_pfn(unsigned long virtpfn, int write)
131{
132 struct page *page;
Rusty Russellbff672e2007-07-26 10:41:04 -0700133 /* This value indicates failure. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700134 unsigned long ret = -1UL;
135
Rusty Russellbff672e2007-07-26 10:41:04 -0700136 /* get_user_pages() is a complex interface: it gets the "struct
137 * vm_area_struct" and "struct page" assocated with a range of pages.
138 * It also needs the task's mmap_sem held, and is not very quick.
139 * It returns the number of pages it got. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700140 down_read(&current->mm->mmap_sem);
141 if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
142 1, write, 1, &page, NULL) == 1)
143 ret = page_to_pfn(page);
144 up_read(&current->mm->mmap_sem);
145 return ret;
146}
147
Rusty Russellbff672e2007-07-26 10:41:04 -0700148/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
149 * entry can be a little tricky. The flags are (almost) the same, but the
150 * Guest PTE contains a virtual page number: the CPU needs the real page
151 * number. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700152static spte_t gpte_to_spte(struct lguest *lg, gpte_t gpte, int write)
153{
154 spte_t spte;
Rusty Russell3c6b5bf2007-10-22 11:03:26 +1000155 unsigned long pfn, base;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700156
Rusty Russellbff672e2007-07-26 10:41:04 -0700157 /* The Guest sets the global flag, because it thinks that it is using
158 * PGE. We only told it to use PGE so it would tell us whether it was
159 * flushing a kernel mapping or a userspace mapping. We don't actually
160 * use the global bit, so throw it away. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700161 spte.flags = (gpte.flags & ~_PAGE_GLOBAL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700162
Rusty Russell3c6b5bf2007-10-22 11:03:26 +1000163 /* The Guest's pages are offset inside the Launcher. */
164 base = (unsigned long)lg->mem_base / PAGE_SIZE;
165
Rusty Russellbff672e2007-07-26 10:41:04 -0700166 /* We need a temporary "unsigned long" variable to hold the answer from
167 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
168 * fit in spte.pfn. get_pfn() finds the real physical number of the
169 * page, given the virtual number. */
Rusty Russell3c6b5bf2007-10-22 11:03:26 +1000170 pfn = get_pfn(base + gpte.pfn, write);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700171 if (pfn == -1UL) {
172 kill_guest(lg, "failed to get page %u", gpte.pfn);
Rusty Russellbff672e2007-07-26 10:41:04 -0700173 /* When we destroy the Guest, we'll go through the shadow page
174 * tables and release_pte() them. Make sure we don't think
175 * this one is valid! */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700176 spte.flags = 0;
177 }
Rusty Russellbff672e2007-07-26 10:41:04 -0700178 /* Now we assign the page number, and our shadow PTE is complete. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700179 spte.pfn = pfn;
180 return spte;
181}
182
Rusty Russellbff672e2007-07-26 10:41:04 -0700183/*H:460 And to complete the chain, release_pte() looks like this: */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700184static void release_pte(spte_t pte)
185{
Rusty Russellbff672e2007-07-26 10:41:04 -0700186 /* Remember that get_user_pages() took a reference to the page, in
187 * get_pfn()? We have to put it back now. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700188 if (pte.flags & _PAGE_PRESENT)
189 put_page(pfn_to_page(pte.pfn));
190}
Rusty Russellbff672e2007-07-26 10:41:04 -0700191/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700192
193static void check_gpte(struct lguest *lg, gpte_t gpte)
194{
195 if ((gpte.flags & (_PAGE_PWT|_PAGE_PSE)) || gpte.pfn >= lg->pfn_limit)
196 kill_guest(lg, "bad page table entry");
197}
198
199static void check_gpgd(struct lguest *lg, gpgd_t gpgd)
200{
201 if ((gpgd.flags & ~_PAGE_TABLE) || gpgd.pfn >= lg->pfn_limit)
202 kill_guest(lg, "bad page directory entry");
203}
204
Rusty Russellbff672e2007-07-26 10:41:04 -0700205/*H:330
206 * (i) Setting up a page table entry for the Guest when it faults
207 *
208 * We saw this call in run_guest(): when we see a page fault in the Guest, we
209 * come here. That's because we only set up the shadow page tables lazily as
210 * they're needed, so we get page faults all the time and quietly fix them up
211 * and return to the Guest without it knowing.
212 *
213 * If we fixed up the fault (ie. we mapped the address), this routine returns
214 * true. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700215int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
216{
217 gpgd_t gpgd;
218 spgd_t *spgd;
219 unsigned long gpte_ptr;
220 gpte_t gpte;
221 spte_t *spte;
222
Rusty Russellbff672e2007-07-26 10:41:04 -0700223 /* First step: get the top-level Guest page table entry. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700224 gpgd = mkgpgd(lgread_u32(lg, gpgd_addr(lg, vaddr)));
Rusty Russellbff672e2007-07-26 10:41:04 -0700225 /* Toplevel not present? We can't map it in. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700226 if (!(gpgd.flags & _PAGE_PRESENT))
227 return 0;
228
Rusty Russellbff672e2007-07-26 10:41:04 -0700229 /* Now look at the matching shadow entry. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700230 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
231 if (!(spgd->flags & _PAGE_PRESENT)) {
Rusty Russellbff672e2007-07-26 10:41:04 -0700232 /* No shadow entry: allocate a new shadow PTE page. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700233 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700234 /* This is not really the Guest's fault, but killing it is
235 * simple for this corner case. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700236 if (!ptepage) {
237 kill_guest(lg, "out of memory allocating pte page");
238 return 0;
239 }
Rusty Russellbff672e2007-07-26 10:41:04 -0700240 /* We check that the Guest pgd is OK. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700241 check_gpgd(lg, gpgd);
Rusty Russellbff672e2007-07-26 10:41:04 -0700242 /* And we copy the flags to the shadow PGD entry. The page
243 * number in the shadow PGD is the page we just allocated. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700244 spgd->raw.val = (__pa(ptepage) | gpgd.flags);
245 }
246
Rusty Russellbff672e2007-07-26 10:41:04 -0700247 /* OK, now we look at the lower level in the Guest page table: keep its
248 * address, because we might update it later. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700249 gpte_ptr = gpte_addr(lg, gpgd, vaddr);
250 gpte = mkgpte(lgread_u32(lg, gpte_ptr));
251
Rusty Russellbff672e2007-07-26 10:41:04 -0700252 /* If this page isn't in the Guest page tables, we can't page it in. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700253 if (!(gpte.flags & _PAGE_PRESENT))
254 return 0;
255
Rusty Russellbff672e2007-07-26 10:41:04 -0700256 /* Check they're not trying to write to a page the Guest wants
257 * read-only (bit 2 of errcode == write). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700258 if ((errcode & 2) && !(gpte.flags & _PAGE_RW))
259 return 0;
260
Rusty Russellbff672e2007-07-26 10:41:04 -0700261 /* User access to a kernel page? (bit 3 == user access) */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700262 if ((errcode & 4) && !(gpte.flags & _PAGE_USER))
263 return 0;
264
Rusty Russellbff672e2007-07-26 10:41:04 -0700265 /* Check that the Guest PTE flags are OK, and the page number is below
266 * the pfn_limit (ie. not mapping the Launcher binary). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700267 check_gpte(lg, gpte);
Rusty Russellbff672e2007-07-26 10:41:04 -0700268 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700269 gpte.flags |= _PAGE_ACCESSED;
270 if (errcode & 2)
271 gpte.flags |= _PAGE_DIRTY;
272
Rusty Russellbff672e2007-07-26 10:41:04 -0700273 /* Get the pointer to the shadow PTE entry we're going to set. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700274 spte = spte_addr(lg, *spgd, vaddr);
Rusty Russellbff672e2007-07-26 10:41:04 -0700275 /* If there was a valid shadow PTE entry here before, we release it.
276 * This can happen with a write to a previously read-only entry. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700277 release_pte(*spte);
278
Rusty Russellbff672e2007-07-26 10:41:04 -0700279 /* If this is a write, we insist that the Guest page is writable (the
280 * final arg to gpte_to_spte()). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700281 if (gpte.flags & _PAGE_DIRTY)
282 *spte = gpte_to_spte(lg, gpte, 1);
283 else {
Rusty Russellbff672e2007-07-26 10:41:04 -0700284 /* If this is a read, don't set the "writable" bit in the page
285 * table entry, even if the Guest says it's writable. That way
286 * we come back here when a write does actually ocur, so we can
287 * update the Guest's _PAGE_DIRTY flag. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700288 gpte_t ro_gpte = gpte;
289 ro_gpte.flags &= ~_PAGE_RW;
290 *spte = gpte_to_spte(lg, ro_gpte, 0);
291 }
292
Rusty Russellbff672e2007-07-26 10:41:04 -0700293 /* Finally, we write the Guest PTE entry back: we've set the
294 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700295 lgwrite_u32(lg, gpte_ptr, gpte.raw.val);
Rusty Russellbff672e2007-07-26 10:41:04 -0700296
297 /* We succeeded in mapping the page! */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700298 return 1;
299}
300
Rusty Russellbff672e2007-07-26 10:41:04 -0700301/*H:360 (ii) Setting up the page table entry for the Guest stack.
302 *
303 * Remember pin_stack_pages() which makes sure the stack is mapped? It could
304 * simply call demand_page(), but as we've seen that logic is quite long, and
305 * usually the stack pages are already mapped anyway, so it's not required.
306 *
307 * This is a quick version which answers the question: is this virtual address
308 * mapped by the shadow page tables, and is it writable? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700309static int page_writable(struct lguest *lg, unsigned long vaddr)
310{
311 spgd_t *spgd;
312 unsigned long flags;
313
Rusty Russellbff672e2007-07-26 10:41:04 -0700314 /* Look at the top level entry: is it present? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700315 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
316 if (!(spgd->flags & _PAGE_PRESENT))
317 return 0;
318
Rusty Russellbff672e2007-07-26 10:41:04 -0700319 /* Check the flags on the pte entry itself: it must be present and
320 * writable. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700321 flags = spte_addr(lg, *spgd, vaddr)->flags;
322 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
323}
324
Rusty Russellbff672e2007-07-26 10:41:04 -0700325/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
326 * in the page tables, and if not, we call demand_page() with error code 2
327 * (meaning "write"). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700328void pin_page(struct lguest *lg, unsigned long vaddr)
329{
330 if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
331 kill_guest(lg, "bad stack page %#lx", vaddr);
332}
333
Rusty Russellbff672e2007-07-26 10:41:04 -0700334/*H:450 If we chase down the release_pgd() code, it looks like this: */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700335static void release_pgd(struct lguest *lg, spgd_t *spgd)
336{
Rusty Russellbff672e2007-07-26 10:41:04 -0700337 /* If the entry's not present, there's nothing to release. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700338 if (spgd->flags & _PAGE_PRESENT) {
339 unsigned int i;
Rusty Russellbff672e2007-07-26 10:41:04 -0700340 /* Converting the pfn to find the actual PTE page is easy: turn
341 * the page number into a physical address, then convert to a
342 * virtual address (easy for kernel pages like this one). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700343 spte_t *ptepage = __va(spgd->pfn << PAGE_SHIFT);
Rusty Russellbff672e2007-07-26 10:41:04 -0700344 /* For each entry in the page, we might need to release it. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700345 for (i = 0; i < PTES_PER_PAGE; i++)
346 release_pte(ptepage[i]);
Rusty Russellbff672e2007-07-26 10:41:04 -0700347 /* Now we can free the page of PTEs */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700348 free_page((long)ptepage);
Rusty Russellbff672e2007-07-26 10:41:04 -0700349 /* And zero out the PGD entry we we never release it twice. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700350 spgd->raw.val = 0;
351 }
352}
353
Rusty Russellbff672e2007-07-26 10:41:04 -0700354/*H:440 (v) Flushing (thowing away) page tables,
355 *
356 * We saw flush_user_mappings() called when we re-used a top-level pgdir page.
357 * It simply releases every PTE page from 0 up to the kernel address. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700358static void flush_user_mappings(struct lguest *lg, int idx)
359{
360 unsigned int i;
Rusty Russellbff672e2007-07-26 10:41:04 -0700361 /* Release every pgd entry up to the kernel's address. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700362 for (i = 0; i < vaddr_to_pgd_index(lg->page_offset); i++)
363 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
364}
365
Rusty Russellbff672e2007-07-26 10:41:04 -0700366/* The Guest also has a hypercall to do this manually: it's used when a large
367 * number of mappings have been changed. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700368void guest_pagetable_flush_user(struct lguest *lg)
369{
Rusty Russellbff672e2007-07-26 10:41:04 -0700370 /* Drop the userspace part of the current page table. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700371 flush_user_mappings(lg, lg->pgdidx);
372}
Rusty Russellbff672e2007-07-26 10:41:04 -0700373/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700374
Rusty Russellbff672e2007-07-26 10:41:04 -0700375/* We keep several page tables. This is a simple routine to find the page
376 * table (if any) corresponding to this top-level address the Guest has given
377 * us. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700378static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
379{
380 unsigned int i;
381 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
382 if (lg->pgdirs[i].cr3 == pgtable)
383 break;
384 return i;
385}
386
Rusty Russellbff672e2007-07-26 10:41:04 -0700387/*H:435 And this is us, creating the new page directory. If we really do
388 * allocate a new one (and so the kernel parts are not there), we set
389 * blank_pgdir. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700390static unsigned int new_pgdir(struct lguest *lg,
391 unsigned long cr3,
392 int *blank_pgdir)
393{
394 unsigned int next;
395
Rusty Russellbff672e2007-07-26 10:41:04 -0700396 /* We pick one entry at random to throw out. Choosing the Least
397 * Recently Used might be better, but this is easy. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700398 next = random32() % ARRAY_SIZE(lg->pgdirs);
Rusty Russellbff672e2007-07-26 10:41:04 -0700399 /* If it's never been allocated at all before, try now. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700400 if (!lg->pgdirs[next].pgdir) {
401 lg->pgdirs[next].pgdir = (spgd_t *)get_zeroed_page(GFP_KERNEL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700402 /* If the allocation fails, just keep using the one we have */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700403 if (!lg->pgdirs[next].pgdir)
404 next = lg->pgdidx;
405 else
Rusty Russellbff672e2007-07-26 10:41:04 -0700406 /* This is a blank page, so there are no kernel
407 * mappings: caller must map the stack! */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700408 *blank_pgdir = 1;
409 }
Rusty Russellbff672e2007-07-26 10:41:04 -0700410 /* Record which Guest toplevel this shadows. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700411 lg->pgdirs[next].cr3 = cr3;
412 /* Release all the non-kernel mappings. */
413 flush_user_mappings(lg, next);
414
415 return next;
416}
417
Rusty Russellbff672e2007-07-26 10:41:04 -0700418/*H:430 (iv) Switching page tables
419 *
420 * This is what happens when the Guest changes page tables (ie. changes the
421 * top-level pgdir). This happens on almost every context switch. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700422void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
423{
424 int newpgdir, repin = 0;
425
Rusty Russellbff672e2007-07-26 10:41:04 -0700426 /* Look to see if we have this one already. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700427 newpgdir = find_pgdir(lg, pgtable);
Rusty Russellbff672e2007-07-26 10:41:04 -0700428 /* If not, we allocate or mug an existing one: if it's a fresh one,
429 * repin gets set to 1. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700430 if (newpgdir == ARRAY_SIZE(lg->pgdirs))
431 newpgdir = new_pgdir(lg, pgtable, &repin);
Rusty Russellbff672e2007-07-26 10:41:04 -0700432 /* Change the current pgd index to the new one. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700433 lg->pgdidx = newpgdir;
Rusty Russellbff672e2007-07-26 10:41:04 -0700434 /* If it was completely blank, we map in the Guest kernel stack */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700435 if (repin)
436 pin_stack_pages(lg);
437}
438
Rusty Russellbff672e2007-07-26 10:41:04 -0700439/*H:470 Finally, a routine which throws away everything: all PGD entries in all
440 * the shadow page tables. This is used when we destroy the Guest. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700441static void release_all_pagetables(struct lguest *lg)
442{
443 unsigned int i, j;
444
Rusty Russellbff672e2007-07-26 10:41:04 -0700445 /* Every shadow pagetable this Guest has */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700446 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
447 if (lg->pgdirs[i].pgdir)
Rusty Russellbff672e2007-07-26 10:41:04 -0700448 /* Every PGD entry except the Switcher at the top */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700449 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
450 release_pgd(lg, lg->pgdirs[i].pgdir + j);
451}
452
Rusty Russellbff672e2007-07-26 10:41:04 -0700453/* We also throw away everything when a Guest tells us it's changed a kernel
454 * mapping. Since kernel mappings are in every page table, it's easiest to
455 * throw them all away. This is amazingly slow, but thankfully rare. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700456void guest_pagetable_clear_all(struct lguest *lg)
457{
458 release_all_pagetables(lg);
Rusty Russellbff672e2007-07-26 10:41:04 -0700459 /* We need the Guest kernel stack mapped again. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700460 pin_stack_pages(lg);
461}
462
Rusty Russellbff672e2007-07-26 10:41:04 -0700463/*H:420 This is the routine which actually sets the page table entry for then
464 * "idx"'th shadow page table.
465 *
466 * Normally, we can just throw out the old entry and replace it with 0: if they
467 * use it demand_page() will put the new entry in. We need to do this anyway:
468 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
469 * is read from, and _PAGE_DIRTY when it's written to.
470 *
471 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
472 * these bits on PTEs immediately anyway. This is done to save the CPU from
473 * having to update them, but it helps us the same way: if they set
474 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
475 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
476 */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700477static void do_set_pte(struct lguest *lg, int idx,
478 unsigned long vaddr, gpte_t gpte)
479{
Rusty Russellbff672e2007-07-26 10:41:04 -0700480 /* Look up the matching shadow page directot entry. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700481 spgd_t *spgd = spgd_addr(lg, idx, vaddr);
Rusty Russellbff672e2007-07-26 10:41:04 -0700482
483 /* If the top level isn't present, there's no entry to update. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700484 if (spgd->flags & _PAGE_PRESENT) {
Rusty Russellbff672e2007-07-26 10:41:04 -0700485 /* Otherwise, we start by releasing the existing entry. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700486 spte_t *spte = spte_addr(lg, *spgd, vaddr);
487 release_pte(*spte);
Rusty Russellbff672e2007-07-26 10:41:04 -0700488
489 /* If they're setting this entry as dirty or accessed, we might
490 * as well put that entry they've given us in now. This shaves
491 * 10% off a copy-on-write micro-benchmark. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700492 if (gpte.flags & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
493 check_gpte(lg, gpte);
494 *spte = gpte_to_spte(lg, gpte, gpte.flags&_PAGE_DIRTY);
495 } else
Rusty Russellbff672e2007-07-26 10:41:04 -0700496 /* Otherwise we can demand_page() it in later. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700497 spte->raw.val = 0;
498 }
499}
500
Rusty Russellbff672e2007-07-26 10:41:04 -0700501/*H:410 Updating a PTE entry is a little trickier.
502 *
503 * We keep track of several different page tables (the Guest uses one for each
504 * process, so it makes sense to cache at least a few). Each of these have
505 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
506 * all processes. So when the page table above that address changes, we update
507 * all the page tables, not just the current one. This is rare.
508 *
509 * The benefit is that when we have to track a new page table, we can copy keep
510 * all the kernel mappings. This speeds up context switch immensely. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700511void guest_set_pte(struct lguest *lg,
512 unsigned long cr3, unsigned long vaddr, gpte_t gpte)
513{
Rusty Russellbff672e2007-07-26 10:41:04 -0700514 /* Kernel mappings must be changed on all top levels. Slow, but
515 * doesn't happen often. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700516 if (vaddr >= lg->page_offset) {
517 unsigned int i;
518 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
519 if (lg->pgdirs[i].pgdir)
520 do_set_pte(lg, i, vaddr, gpte);
521 } else {
Rusty Russellbff672e2007-07-26 10:41:04 -0700522 /* Is this page table one we have a shadow for? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700523 int pgdir = find_pgdir(lg, cr3);
524 if (pgdir != ARRAY_SIZE(lg->pgdirs))
Rusty Russellbff672e2007-07-26 10:41:04 -0700525 /* If so, do the update. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700526 do_set_pte(lg, pgdir, vaddr, gpte);
527 }
528}
529
Rusty Russellbff672e2007-07-26 10:41:04 -0700530/*H:400
531 * (iii) Setting up a page table entry when the Guest tells us it has changed.
532 *
533 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
534 * with the other side of page tables while we're here: what happens when the
535 * Guest asks for a page table to be updated?
536 *
537 * We already saw that demand_page() will fill in the shadow page tables when
538 * needed, so we can simply remove shadow page table entries whenever the Guest
539 * tells us they've changed. When the Guest tries to use the new entry it will
540 * fault and demand_page() will fix it up.
541 *
542 * So with that in mind here's our code to to update a (top-level) PGD entry:
543 */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700544void guest_set_pmd(struct lguest *lg, unsigned long cr3, u32 idx)
545{
546 int pgdir;
547
Rusty Russellbff672e2007-07-26 10:41:04 -0700548 /* The kernel seems to try to initialize this early on: we ignore its
549 * attempts to map over the Switcher. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700550 if (idx >= SWITCHER_PGD_INDEX)
551 return;
552
Rusty Russellbff672e2007-07-26 10:41:04 -0700553 /* If they're talking about a page table we have a shadow for... */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700554 pgdir = find_pgdir(lg, cr3);
555 if (pgdir < ARRAY_SIZE(lg->pgdirs))
Rusty Russellbff672e2007-07-26 10:41:04 -0700556 /* ... throw it away. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700557 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
558}
559
Rusty Russellbff672e2007-07-26 10:41:04 -0700560/*H:500 (vii) Setting up the page tables initially.
561 *
562 * When a Guest is first created, the Launcher tells us where the toplevel of
563 * its first page table is. We set some things up here: */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700564int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
565{
Rusty Russellbff672e2007-07-26 10:41:04 -0700566 /* In flush_user_mappings() we loop from 0 to
567 * "vaddr_to_pgd_index(lg->page_offset)". This assumes it won't hit
568 * the Switcher mappings, so check that now. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700569 if (vaddr_to_pgd_index(lg->page_offset) >= SWITCHER_PGD_INDEX)
570 return -EINVAL;
Rusty Russellbff672e2007-07-26 10:41:04 -0700571 /* We start on the first shadow page table, and give it a blank PGD
572 * page. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700573 lg->pgdidx = 0;
574 lg->pgdirs[lg->pgdidx].cr3 = pgtable;
575 lg->pgdirs[lg->pgdidx].pgdir = (spgd_t*)get_zeroed_page(GFP_KERNEL);
576 if (!lg->pgdirs[lg->pgdidx].pgdir)
577 return -ENOMEM;
578 return 0;
579}
580
Rusty Russellbff672e2007-07-26 10:41:04 -0700581/* When a Guest dies, our cleanup is fairly simple. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700582void free_guest_pagetable(struct lguest *lg)
583{
584 unsigned int i;
585
Rusty Russellbff672e2007-07-26 10:41:04 -0700586 /* Throw away all page table pages. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700587 release_all_pagetables(lg);
Rusty Russellbff672e2007-07-26 10:41:04 -0700588 /* Now free the top levels: free_page() can handle 0 just fine. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700589 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
590 free_page((long)lg->pgdirs[i].pgdir);
591}
592
Rusty Russellbff672e2007-07-26 10:41:04 -0700593/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
594 *
595 * The Switcher and the two pages for this CPU need to be available to the
596 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
597 * for each CPU already set up, we just need to hook them in. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700598void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
599{
600 spte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
601 spgd_t switcher_pgd;
602 spte_t regs_pte;
603
Rusty Russellbff672e2007-07-26 10:41:04 -0700604 /* Make the last PGD entry for this Guest point to the Switcher's PTE
605 * page for this CPU (with appropriate flags). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700606 switcher_pgd.pfn = __pa(switcher_pte_page) >> PAGE_SHIFT;
607 switcher_pgd.flags = _PAGE_KERNEL;
608 lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
609
Rusty Russellbff672e2007-07-26 10:41:04 -0700610 /* We also change the Switcher PTE page. When we're running the Guest,
611 * we want the Guest's "regs" page to appear where the first Switcher
612 * page for this CPU is. This is an optimization: when the Switcher
613 * saves the Guest registers, it saves them into the first page of this
614 * CPU's "struct lguest_pages": if we make sure the Guest's register
615 * page is already mapped there, we don't have to copy them out
616 * again. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700617 regs_pte.pfn = __pa(lg->regs_page) >> PAGE_SHIFT;
618 regs_pte.flags = _PAGE_KERNEL;
619 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTES_PER_PAGE]
620 = regs_pte;
621}
Rusty Russellbff672e2007-07-26 10:41:04 -0700622/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700623
624static void free_switcher_pte_pages(void)
625{
626 unsigned int i;
627
628 for_each_possible_cpu(i)
629 free_page((long)switcher_pte_page(i));
630}
631
Rusty Russellbff672e2007-07-26 10:41:04 -0700632/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
633 * the CPU number and the "struct page"s for the Switcher code itself.
634 *
635 * Currently the Switcher is less than a page long, so "pages" is always 1. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700636static __init void populate_switcher_pte_page(unsigned int cpu,
637 struct page *switcher_page[],
638 unsigned int pages)
639{
640 unsigned int i;
641 spte_t *pte = switcher_pte_page(cpu);
642
Rusty Russellbff672e2007-07-26 10:41:04 -0700643 /* The first entries are easy: they map the Switcher code. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700644 for (i = 0; i < pages; i++) {
645 pte[i].pfn = page_to_pfn(switcher_page[i]);
646 pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED;
647 }
648
Rusty Russellbff672e2007-07-26 10:41:04 -0700649 /* The only other thing we map is this CPU's pair of pages. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700650 i = pages + cpu*2;
651
Rusty Russellbff672e2007-07-26 10:41:04 -0700652 /* First page (Guest registers) is writable from the Guest */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700653 pte[i].pfn = page_to_pfn(switcher_page[i]);
654 pte[i].flags = _PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW;
Rusty Russellbff672e2007-07-26 10:41:04 -0700655 /* The second page contains the "struct lguest_ro_state", and is
656 * read-only. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700657 pte[i+1].pfn = page_to_pfn(switcher_page[i+1]);
658 pte[i+1].flags = _PAGE_PRESENT|_PAGE_ACCESSED;
659}
660
Rusty Russellbff672e2007-07-26 10:41:04 -0700661/*H:510 At boot or module load time, init_pagetables() allocates and populates
662 * the Switcher PTE page for each CPU. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700663__init int init_pagetables(struct page **switcher_page, unsigned int pages)
664{
665 unsigned int i;
666
667 for_each_possible_cpu(i) {
668 switcher_pte_page(i) = (spte_t *)get_zeroed_page(GFP_KERNEL);
669 if (!switcher_pte_page(i)) {
670 free_switcher_pte_pages();
671 return -ENOMEM;
672 }
673 populate_switcher_pte_page(i, switcher_page, pages);
674 }
675 return 0;
676}
Rusty Russellbff672e2007-07-26 10:41:04 -0700677/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700678
Rusty Russellbff672e2007-07-26 10:41:04 -0700679/* Cleaning up simply involves freeing the PTE page for each CPU. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700680void free_pagetables(void)
681{
682 free_switcher_pte_pages();
683}