blob: 17d3329e34c2178dde0d159d890dc842db8a8d19 [file] [log] [blame]
Rusty Russellf938d2c2007-07-26 10:41:02 -07001/*P:700 The pagetable code, on the other hand, still shows the scars of
2 * previous encounters. It's functional, and as neat as it can be in the
3 * circumstances, but be wary, for these things are subtle and break easily.
4 * The Guest provides a virtual to physical mapping, but we can neither trust
5 * it nor use it: we verify and convert it here to point the hardware to the
6 * actual Guest pages when running the Guest. :*/
7
8/* Copyright (C) Rusty Russell IBM Corporation 2006.
Rusty Russelld7e28ff2007-07-19 01:49:23 -07009 * GPL v2 and any later version */
10#include <linux/mm.h>
11#include <linux/types.h>
12#include <linux/spinlock.h>
13#include <linux/random.h>
14#include <linux/percpu.h>
15#include <asm/tlbflush.h>
Rusty Russell47436aa2007-10-22 11:03:36 +100016#include <asm/uaccess.h>
Rusty Russelld7e28ff2007-07-19 01:49:23 -070017#include "lg.h"
18
Rusty Russellf56a3842007-07-26 10:41:05 -070019/*M:008 We hold reference to pages, which prevents them from being swapped.
20 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
21 * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
22 * could probably consider launching Guests as non-root. :*/
23
Rusty Russellbff672e2007-07-26 10:41:04 -070024/*H:300
25 * The Page Table Code
26 *
27 * We use two-level page tables for the Guest. If you're not entirely
28 * comfortable with virtual addresses, physical addresses and page tables then
Rusty Russelle1e72962007-10-25 15:02:50 +100029 * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
30 * diagrams!).
Rusty Russellbff672e2007-07-26 10:41:04 -070031 *
32 * The Guest keeps page tables, but we maintain the actual ones here: these are
33 * called "shadow" page tables. Which is a very Guest-centric name: these are
34 * the real page tables the CPU uses, although we keep them up to date to
35 * reflect the Guest's. (See what I mean about weird naming? Since when do
36 * shadows reflect anything?)
37 *
38 * Anyway, this is the most complicated part of the Host code. There are seven
39 * parts to this:
Rusty Russelle1e72962007-10-25 15:02:50 +100040 * (i) Looking up a page table entry when the Guest faults,
41 * (ii) Making sure the Guest stack is mapped,
42 * (iii) Setting up a page table entry when the Guest tells us one has changed,
Rusty Russellbff672e2007-07-26 10:41:04 -070043 * (iv) Switching page tables,
Rusty Russelle1e72962007-10-25 15:02:50 +100044 * (v) Flushing (throwing away) page tables,
Rusty Russellbff672e2007-07-26 10:41:04 -070045 * (vi) Mapping the Switcher when the Guest is about to run,
46 * (vii) Setting up the page tables initially.
47 :*/
48
Rusty Russellbff672e2007-07-26 10:41:04 -070049
50/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
51 * conveniently placed at the top 4MB, so it uses a separate, complete PTE
52 * page. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100053#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
Rusty Russelld7e28ff2007-07-19 01:49:23 -070054
Rusty Russellbff672e2007-07-26 10:41:04 -070055/* We actually need a separate PTE page for each CPU. Remember that after the
56 * Switcher code itself comes two pages for each CPU, and we don't want this
57 * CPU's guest to see the pages of any other CPU. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100058static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
Rusty Russelld7e28ff2007-07-19 01:49:23 -070059#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
60
Rusty Russelle1e72962007-10-25 15:02:50 +100061/*H:320 The page table code is curly enough to need helper functions to keep it
62 * clear and clean.
Rusty Russellbff672e2007-07-26 10:41:04 -070063 *
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100064 * There are two functions which return pointers to the shadow (aka "real")
Rusty Russellbff672e2007-07-26 10:41:04 -070065 * page tables.
66 *
67 * spgd_addr() takes the virtual address and returns a pointer to the top-level
Rusty Russelle1e72962007-10-25 15:02:50 +100068 * page directory entry (PGD) for that address. Since we keep track of several
69 * page tables, the "i" argument tells us which one we're interested in (it's
Rusty Russellbff672e2007-07-26 10:41:04 -070070 * usually the current one). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100071static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -070072{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100073 unsigned int index = pgd_index(vaddr);
Rusty Russelld7e28ff2007-07-19 01:49:23 -070074
Rusty Russellbff672e2007-07-26 10:41:04 -070075 /* We kill any Guest trying to touch the Switcher addresses. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070076 if (index >= SWITCHER_PGD_INDEX) {
77 kill_guest(lg, "attempt to access switcher pages");
78 index = 0;
79 }
Rusty Russellbff672e2007-07-26 10:41:04 -070080 /* Return a pointer index'th pgd entry for the i'th page table. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070081 return &lg->pgdirs[i].pgdir[index];
82}
83
Rusty Russelle1e72962007-10-25 15:02:50 +100084/* This routine then takes the page directory entry returned above, which
85 * contains the address of the page table entry (PTE) page. It then returns a
86 * pointer to the PTE entry for the given address. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100087static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -070088{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100089 pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
Rusty Russellbff672e2007-07-26 10:41:04 -070090 /* You should never call this if the PGD entry wasn't valid */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100091 BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
92 return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
Rusty Russelld7e28ff2007-07-19 01:49:23 -070093}
94
Rusty Russellbff672e2007-07-26 10:41:04 -070095/* These two functions just like the above two, except they access the Guest
96 * page tables. Hence they return a Guest address. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -070097static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
98{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +100099 unsigned int index = vaddr >> (PGDIR_SHIFT);
Rusty Russellee3db0f2007-10-22 11:03:34 +1000100 return lg->pgdirs[lg->pgdidx].gpgdir + index * sizeof(pgd_t);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700101}
102
103static unsigned long gpte_addr(struct lguest *lg,
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000104 pgd_t gpgd, unsigned long vaddr)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700105{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000106 unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
107 BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
108 return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700109}
110
Rusty Russellbff672e2007-07-26 10:41:04 -0700111/*H:350 This routine takes a page number given by the Guest and converts it to
112 * an actual, physical page number. It can fail for several reasons: the
113 * virtual address might not be mapped by the Launcher, the write flag is set
114 * and the page is read-only, or the write flag was set and the page was
115 * shared so had to be copied, but we ran out of memory.
116 *
117 * This holds a reference to the page, so release_pte() is careful to
118 * put that back. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700119static unsigned long get_pfn(unsigned long virtpfn, int write)
120{
121 struct page *page;
Rusty Russellbff672e2007-07-26 10:41:04 -0700122 /* This value indicates failure. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700123 unsigned long ret = -1UL;
124
Rusty Russellbff672e2007-07-26 10:41:04 -0700125 /* get_user_pages() is a complex interface: it gets the "struct
126 * vm_area_struct" and "struct page" assocated with a range of pages.
127 * It also needs the task's mmap_sem held, and is not very quick.
128 * It returns the number of pages it got. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700129 down_read(&current->mm->mmap_sem);
130 if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
131 1, write, 1, &page, NULL) == 1)
132 ret = page_to_pfn(page);
133 up_read(&current->mm->mmap_sem);
134 return ret;
135}
136
Rusty Russellbff672e2007-07-26 10:41:04 -0700137/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
138 * entry can be a little tricky. The flags are (almost) the same, but the
139 * Guest PTE contains a virtual page number: the CPU needs the real page
140 * number. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000141static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700142{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000143 unsigned long pfn, base, flags;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700144
Rusty Russellbff672e2007-07-26 10:41:04 -0700145 /* The Guest sets the global flag, because it thinks that it is using
146 * PGE. We only told it to use PGE so it would tell us whether it was
147 * flushing a kernel mapping or a userspace mapping. We don't actually
148 * use the global bit, so throw it away. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000149 flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700150
Rusty Russell3c6b5bf2007-10-22 11:03:26 +1000151 /* The Guest's pages are offset inside the Launcher. */
152 base = (unsigned long)lg->mem_base / PAGE_SIZE;
153
Rusty Russellbff672e2007-07-26 10:41:04 -0700154 /* We need a temporary "unsigned long" variable to hold the answer from
155 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
156 * fit in spte.pfn. get_pfn() finds the real physical number of the
157 * page, given the virtual number. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000158 pfn = get_pfn(base + pte_pfn(gpte), write);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700159 if (pfn == -1UL) {
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000160 kill_guest(lg, "failed to get page %lu", pte_pfn(gpte));
Rusty Russellbff672e2007-07-26 10:41:04 -0700161 /* When we destroy the Guest, we'll go through the shadow page
162 * tables and release_pte() them. Make sure we don't think
163 * this one is valid! */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000164 flags = 0;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700165 }
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000166 /* Now we assemble our shadow PTE from the page number and flags. */
167 return pfn_pte(pfn, __pgprot(flags));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700168}
169
Rusty Russellbff672e2007-07-26 10:41:04 -0700170/*H:460 And to complete the chain, release_pte() looks like this: */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000171static void release_pte(pte_t pte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700172{
Rusty Russellbff672e2007-07-26 10:41:04 -0700173 /* Remember that get_user_pages() took a reference to the page, in
174 * get_pfn()? We have to put it back now. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000175 if (pte_flags(pte) & _PAGE_PRESENT)
176 put_page(pfn_to_page(pte_pfn(pte)));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700177}
Rusty Russellbff672e2007-07-26 10:41:04 -0700178/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700179
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000180static void check_gpte(struct lguest *lg, pte_t gpte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700181{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000182 if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
183 || pte_pfn(gpte) >= lg->pfn_limit)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700184 kill_guest(lg, "bad page table entry");
185}
186
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000187static void check_gpgd(struct lguest *lg, pgd_t gpgd)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700188{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000189 if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700190 kill_guest(lg, "bad page directory entry");
191}
192
Rusty Russellbff672e2007-07-26 10:41:04 -0700193/*H:330
Rusty Russelle1e72962007-10-25 15:02:50 +1000194 * (i) Looking up a page table entry when the Guest faults.
Rusty Russellbff672e2007-07-26 10:41:04 -0700195 *
196 * We saw this call in run_guest(): when we see a page fault in the Guest, we
197 * come here. That's because we only set up the shadow page tables lazily as
198 * they're needed, so we get page faults all the time and quietly fix them up
199 * and return to the Guest without it knowing.
200 *
201 * If we fixed up the fault (ie. we mapped the address), this routine returns
Rusty Russelle1e72962007-10-25 15:02:50 +1000202 * true. Otherwise, it was a real fault and we need to tell the Guest. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700203int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
204{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000205 pgd_t gpgd;
206 pgd_t *spgd;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700207 unsigned long gpte_ptr;
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000208 pte_t gpte;
209 pte_t *spte;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700210
Rusty Russellbff672e2007-07-26 10:41:04 -0700211 /* First step: get the top-level Guest page table entry. */
Rusty Russell2d37f942007-10-22 11:24:24 +1000212 gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
Rusty Russellbff672e2007-07-26 10:41:04 -0700213 /* Toplevel not present? We can't map it in. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000214 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700215 return 0;
216
Rusty Russellbff672e2007-07-26 10:41:04 -0700217 /* Now look at the matching shadow entry. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700218 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000219 if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
Rusty Russellbff672e2007-07-26 10:41:04 -0700220 /* No shadow entry: allocate a new shadow PTE page. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700221 unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700222 /* This is not really the Guest's fault, but killing it is
223 * simple for this corner case. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700224 if (!ptepage) {
225 kill_guest(lg, "out of memory allocating pte page");
226 return 0;
227 }
Rusty Russellbff672e2007-07-26 10:41:04 -0700228 /* We check that the Guest pgd is OK. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700229 check_gpgd(lg, gpgd);
Rusty Russellbff672e2007-07-26 10:41:04 -0700230 /* And we copy the flags to the shadow PGD entry. The page
231 * number in the shadow PGD is the page we just allocated. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000232 *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700233 }
234
Rusty Russellbff672e2007-07-26 10:41:04 -0700235 /* OK, now we look at the lower level in the Guest page table: keep its
236 * address, because we might update it later. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700237 gpte_ptr = gpte_addr(lg, gpgd, vaddr);
Rusty Russell2d37f942007-10-22 11:24:24 +1000238 gpte = lgread(lg, gpte_ptr, pte_t);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700239
Rusty Russellbff672e2007-07-26 10:41:04 -0700240 /* If this page isn't in the Guest page tables, we can't page it in. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000241 if (!(pte_flags(gpte) & _PAGE_PRESENT))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700242 return 0;
243
Rusty Russellbff672e2007-07-26 10:41:04 -0700244 /* Check they're not trying to write to a page the Guest wants
245 * read-only (bit 2 of errcode == write). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000246 if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700247 return 0;
248
Rusty Russelle1e72962007-10-25 15:02:50 +1000249 /* User access to a kernel-only page? (bit 3 == user access) */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000250 if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700251 return 0;
252
Rusty Russellbff672e2007-07-26 10:41:04 -0700253 /* Check that the Guest PTE flags are OK, and the page number is below
254 * the pfn_limit (ie. not mapping the Launcher binary). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700255 check_gpte(lg, gpte);
Rusty Russelle1e72962007-10-25 15:02:50 +1000256
Rusty Russellbff672e2007-07-26 10:41:04 -0700257 /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000258 gpte = pte_mkyoung(gpte);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700259 if (errcode & 2)
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000260 gpte = pte_mkdirty(gpte);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700261
Rusty Russellbff672e2007-07-26 10:41:04 -0700262 /* Get the pointer to the shadow PTE entry we're going to set. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700263 spte = spte_addr(lg, *spgd, vaddr);
Rusty Russellbff672e2007-07-26 10:41:04 -0700264 /* If there was a valid shadow PTE entry here before, we release it.
265 * This can happen with a write to a previously read-only entry. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700266 release_pte(*spte);
267
Rusty Russellbff672e2007-07-26 10:41:04 -0700268 /* If this is a write, we insist that the Guest page is writable (the
269 * final arg to gpte_to_spte()). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000270 if (pte_dirty(gpte))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700271 *spte = gpte_to_spte(lg, gpte, 1);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000272 else
Rusty Russellbff672e2007-07-26 10:41:04 -0700273 /* If this is a read, don't set the "writable" bit in the page
274 * table entry, even if the Guest says it's writable. That way
Rusty Russelle1e72962007-10-25 15:02:50 +1000275 * we will come back here when a write does actually occur, so
276 * we can update the Guest's _PAGE_DIRTY flag. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000277 *spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700278
Rusty Russellbff672e2007-07-26 10:41:04 -0700279 /* Finally, we write the Guest PTE entry back: we've set the
280 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
Rusty Russell2d37f942007-10-22 11:24:24 +1000281 lgwrite(lg, gpte_ptr, pte_t, gpte);
Rusty Russellbff672e2007-07-26 10:41:04 -0700282
Rusty Russelle1e72962007-10-25 15:02:50 +1000283 /* The fault is fixed, the page table is populated, the mapping
284 * manipulated, the result returned and the code complete. A small
285 * delay and a trace of alliteration are the only indications the Guest
286 * has that a page fault occurred at all. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700287 return 1;
288}
289
Rusty Russelle1e72962007-10-25 15:02:50 +1000290/*H:360
291 * (ii) Making sure the Guest stack is mapped.
Rusty Russellbff672e2007-07-26 10:41:04 -0700292 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000293 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
294 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
295 * we've seen that logic is quite long, and usually the stack pages are already
296 * mapped, so it's overkill.
Rusty Russellbff672e2007-07-26 10:41:04 -0700297 *
298 * This is a quick version which answers the question: is this virtual address
299 * mapped by the shadow page tables, and is it writable? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700300static int page_writable(struct lguest *lg, unsigned long vaddr)
301{
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000302 pgd_t *spgd;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700303 unsigned long flags;
304
Rusty Russelle1e72962007-10-25 15:02:50 +1000305 /* Look at the current top level entry: is it present? */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700306 spgd = spgd_addr(lg, lg->pgdidx, vaddr);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000307 if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700308 return 0;
309
Rusty Russellbff672e2007-07-26 10:41:04 -0700310 /* Check the flags on the pte entry itself: it must be present and
311 * writable. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000312 flags = pte_flags(*(spte_addr(lg, *spgd, vaddr)));
313
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700314 return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
315}
316
Rusty Russellbff672e2007-07-26 10:41:04 -0700317/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
318 * in the page tables, and if not, we call demand_page() with error code 2
319 * (meaning "write"). */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700320void pin_page(struct lguest *lg, unsigned long vaddr)
321{
322 if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
323 kill_guest(lg, "bad stack page %#lx", vaddr);
324}
325
Rusty Russellbff672e2007-07-26 10:41:04 -0700326/*H:450 If we chase down the release_pgd() code, it looks like this: */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000327static void release_pgd(struct lguest *lg, pgd_t *spgd)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700328{
Rusty Russellbff672e2007-07-26 10:41:04 -0700329 /* If the entry's not present, there's nothing to release. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000330 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700331 unsigned int i;
Rusty Russellbff672e2007-07-26 10:41:04 -0700332 /* Converting the pfn to find the actual PTE page is easy: turn
333 * the page number into a physical address, then convert to a
334 * virtual address (easy for kernel pages like this one). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000335 pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
Rusty Russellbff672e2007-07-26 10:41:04 -0700336 /* For each entry in the page, we might need to release it. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000337 for (i = 0; i < PTRS_PER_PTE; i++)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700338 release_pte(ptepage[i]);
Rusty Russellbff672e2007-07-26 10:41:04 -0700339 /* Now we can free the page of PTEs */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700340 free_page((long)ptepage);
Rusty Russelle1e72962007-10-25 15:02:50 +1000341 /* And zero out the PGD entry so we never release it twice. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000342 *spgd = __pgd(0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700343 }
344}
345
Rusty Russelle1e72962007-10-25 15:02:50 +1000346/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
347 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
348 * It simply releases every PTE page from 0 up to the Guest's kernel address. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700349static void flush_user_mappings(struct lguest *lg, int idx)
350{
351 unsigned int i;
Rusty Russellbff672e2007-07-26 10:41:04 -0700352 /* Release every pgd entry up to the kernel's address. */
Rusty Russell47436aa2007-10-22 11:03:36 +1000353 for (i = 0; i < pgd_index(lg->kernel_address); i++)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700354 release_pgd(lg, lg->pgdirs[idx].pgdir + i);
355}
356
Rusty Russelle1e72962007-10-25 15:02:50 +1000357/*H:440 (v) Flushing (throwing away) page tables,
358 *
359 * The Guest has a hypercall to throw away the page tables: it's used when a
360 * large number of mappings have been changed. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700361void guest_pagetable_flush_user(struct lguest *lg)
362{
Rusty Russellbff672e2007-07-26 10:41:04 -0700363 /* Drop the userspace part of the current page table. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700364 flush_user_mappings(lg, lg->pgdidx);
365}
Rusty Russellbff672e2007-07-26 10:41:04 -0700366/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700367
Rusty Russell47436aa2007-10-22 11:03:36 +1000368/* We walk down the guest page tables to get a guest-physical address */
369unsigned long guest_pa(struct lguest *lg, unsigned long vaddr)
370{
371 pgd_t gpgd;
372 pte_t gpte;
373
374 /* First step: get the top-level Guest page table entry. */
Rusty Russell2d37f942007-10-22 11:24:24 +1000375 gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
Rusty Russell47436aa2007-10-22 11:03:36 +1000376 /* Toplevel not present? We can't map it in. */
377 if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
378 kill_guest(lg, "Bad address %#lx", vaddr);
379
Rusty Russell2d37f942007-10-22 11:24:24 +1000380 gpte = lgread(lg, gpte_addr(lg, gpgd, vaddr), pte_t);
Rusty Russell47436aa2007-10-22 11:03:36 +1000381 if (!(pte_flags(gpte) & _PAGE_PRESENT))
382 kill_guest(lg, "Bad address %#lx", vaddr);
383
384 return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
385}
386
Rusty Russellbff672e2007-07-26 10:41:04 -0700387/* We keep several page tables. This is a simple routine to find the page
388 * table (if any) corresponding to this top-level address the Guest has given
389 * us. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700390static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
391{
392 unsigned int i;
393 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
Rusty Russellee3db0f2007-10-22 11:03:34 +1000394 if (lg->pgdirs[i].gpgdir == pgtable)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700395 break;
396 return i;
397}
398
Rusty Russellbff672e2007-07-26 10:41:04 -0700399/*H:435 And this is us, creating the new page directory. If we really do
400 * allocate a new one (and so the kernel parts are not there), we set
401 * blank_pgdir. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700402static unsigned int new_pgdir(struct lguest *lg,
Rusty Russellee3db0f2007-10-22 11:03:34 +1000403 unsigned long gpgdir,
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700404 int *blank_pgdir)
405{
406 unsigned int next;
407
Rusty Russellbff672e2007-07-26 10:41:04 -0700408 /* We pick one entry at random to throw out. Choosing the Least
409 * Recently Used might be better, but this is easy. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700410 next = random32() % ARRAY_SIZE(lg->pgdirs);
Rusty Russellbff672e2007-07-26 10:41:04 -0700411 /* If it's never been allocated at all before, try now. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700412 if (!lg->pgdirs[next].pgdir) {
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000413 lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
Rusty Russellbff672e2007-07-26 10:41:04 -0700414 /* If the allocation fails, just keep using the one we have */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700415 if (!lg->pgdirs[next].pgdir)
416 next = lg->pgdidx;
417 else
Rusty Russellbff672e2007-07-26 10:41:04 -0700418 /* This is a blank page, so there are no kernel
419 * mappings: caller must map the stack! */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700420 *blank_pgdir = 1;
421 }
Rusty Russellbff672e2007-07-26 10:41:04 -0700422 /* Record which Guest toplevel this shadows. */
Rusty Russellee3db0f2007-10-22 11:03:34 +1000423 lg->pgdirs[next].gpgdir = gpgdir;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700424 /* Release all the non-kernel mappings. */
425 flush_user_mappings(lg, next);
426
427 return next;
428}
429
Rusty Russellbff672e2007-07-26 10:41:04 -0700430/*H:430 (iv) Switching page tables
431 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000432 * Now we've seen all the page table setting and manipulation, let's see what
433 * what happens when the Guest changes page tables (ie. changes the top-level
434 * pgdir). This occurs on almost every context switch. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700435void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
436{
437 int newpgdir, repin = 0;
438
Rusty Russellbff672e2007-07-26 10:41:04 -0700439 /* Look to see if we have this one already. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700440 newpgdir = find_pgdir(lg, pgtable);
Rusty Russellbff672e2007-07-26 10:41:04 -0700441 /* If not, we allocate or mug an existing one: if it's a fresh one,
442 * repin gets set to 1. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700443 if (newpgdir == ARRAY_SIZE(lg->pgdirs))
444 newpgdir = new_pgdir(lg, pgtable, &repin);
Rusty Russellbff672e2007-07-26 10:41:04 -0700445 /* Change the current pgd index to the new one. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700446 lg->pgdidx = newpgdir;
Rusty Russellbff672e2007-07-26 10:41:04 -0700447 /* If it was completely blank, we map in the Guest kernel stack */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700448 if (repin)
449 pin_stack_pages(lg);
450}
451
Rusty Russellbff672e2007-07-26 10:41:04 -0700452/*H:470 Finally, a routine which throws away everything: all PGD entries in all
Rusty Russelle1e72962007-10-25 15:02:50 +1000453 * the shadow page tables, including the Guest's kernel mappings. This is used
454 * when we destroy the Guest. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700455static void release_all_pagetables(struct lguest *lg)
456{
457 unsigned int i, j;
458
Rusty Russellbff672e2007-07-26 10:41:04 -0700459 /* Every shadow pagetable this Guest has */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700460 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
461 if (lg->pgdirs[i].pgdir)
Rusty Russellbff672e2007-07-26 10:41:04 -0700462 /* Every PGD entry except the Switcher at the top */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700463 for (j = 0; j < SWITCHER_PGD_INDEX; j++)
464 release_pgd(lg, lg->pgdirs[i].pgdir + j);
465}
466
Rusty Russellbff672e2007-07-26 10:41:04 -0700467/* We also throw away everything when a Guest tells us it's changed a kernel
468 * mapping. Since kernel mappings are in every page table, it's easiest to
Rusty Russelle1e72962007-10-25 15:02:50 +1000469 * throw them all away. This traps the Guest in amber for a while as
470 * everything faults back in, but it's rare. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700471void guest_pagetable_clear_all(struct lguest *lg)
472{
473 release_all_pagetables(lg);
Rusty Russellbff672e2007-07-26 10:41:04 -0700474 /* We need the Guest kernel stack mapped again. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700475 pin_stack_pages(lg);
476}
Rusty Russelle1e72962007-10-25 15:02:50 +1000477/*:*/
478/*M:009 Since we throw away all mappings when a kernel mapping changes, our
479 * performance sucks for guests using highmem. In fact, a guest with
480 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
481 * usually slower than a Guest with less memory.
482 *
483 * This, of course, cannot be fixed. It would take some kind of... well, I
484 * don't know, but the term "puissant code-fu" comes to mind. :*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700485
Rusty Russellbff672e2007-07-26 10:41:04 -0700486/*H:420 This is the routine which actually sets the page table entry for then
487 * "idx"'th shadow page table.
488 *
489 * Normally, we can just throw out the old entry and replace it with 0: if they
490 * use it demand_page() will put the new entry in. We need to do this anyway:
491 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
492 * is read from, and _PAGE_DIRTY when it's written to.
493 *
494 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
495 * these bits on PTEs immediately anyway. This is done to save the CPU from
496 * having to update them, but it helps us the same way: if they set
497 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
498 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
499 */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700500static void do_set_pte(struct lguest *lg, int idx,
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000501 unsigned long vaddr, pte_t gpte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700502{
Rusty Russelle1e72962007-10-25 15:02:50 +1000503 /* Look up the matching shadow page directory entry. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000504 pgd_t *spgd = spgd_addr(lg, idx, vaddr);
Rusty Russellbff672e2007-07-26 10:41:04 -0700505
506 /* If the top level isn't present, there's no entry to update. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000507 if (pgd_flags(*spgd) & _PAGE_PRESENT) {
Rusty Russellbff672e2007-07-26 10:41:04 -0700508 /* Otherwise, we start by releasing the existing entry. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000509 pte_t *spte = spte_addr(lg, *spgd, vaddr);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700510 release_pte(*spte);
Rusty Russellbff672e2007-07-26 10:41:04 -0700511
512 /* If they're setting this entry as dirty or accessed, we might
513 * as well put that entry they've given us in now. This shaves
514 * 10% off a copy-on-write micro-benchmark. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000515 if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700516 check_gpte(lg, gpte);
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000517 *spte = gpte_to_spte(lg, gpte,
518 pte_flags(gpte) & _PAGE_DIRTY);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700519 } else
Rusty Russelle1e72962007-10-25 15:02:50 +1000520 /* Otherwise kill it and we can demand_page() it in
521 * later. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000522 *spte = __pte(0);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700523 }
524}
525
Rusty Russellbff672e2007-07-26 10:41:04 -0700526/*H:410 Updating a PTE entry is a little trickier.
527 *
528 * We keep track of several different page tables (the Guest uses one for each
529 * process, so it makes sense to cache at least a few). Each of these have
530 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
531 * all processes. So when the page table above that address changes, we update
532 * all the page tables, not just the current one. This is rare.
533 *
534 * The benefit is that when we have to track a new page table, we can copy keep
535 * all the kernel mappings. This speeds up context switch immensely. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700536void guest_set_pte(struct lguest *lg,
Rusty Russellee3db0f2007-10-22 11:03:34 +1000537 unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700538{
Rusty Russellbff672e2007-07-26 10:41:04 -0700539 /* Kernel mappings must be changed on all top levels. Slow, but
540 * doesn't happen often. */
Rusty Russell47436aa2007-10-22 11:03:36 +1000541 if (vaddr >= lg->kernel_address) {
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700542 unsigned int i;
543 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
544 if (lg->pgdirs[i].pgdir)
545 do_set_pte(lg, i, vaddr, gpte);
546 } else {
Rusty Russellbff672e2007-07-26 10:41:04 -0700547 /* Is this page table one we have a shadow for? */
Rusty Russellee3db0f2007-10-22 11:03:34 +1000548 int pgdir = find_pgdir(lg, gpgdir);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700549 if (pgdir != ARRAY_SIZE(lg->pgdirs))
Rusty Russellbff672e2007-07-26 10:41:04 -0700550 /* If so, do the update. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700551 do_set_pte(lg, pgdir, vaddr, gpte);
552 }
553}
554
Rusty Russellbff672e2007-07-26 10:41:04 -0700555/*H:400
Rusty Russelle1e72962007-10-25 15:02:50 +1000556 * (iii) Setting up a page table entry when the Guest tells us one has changed.
Rusty Russellbff672e2007-07-26 10:41:04 -0700557 *
558 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
559 * with the other side of page tables while we're here: what happens when the
560 * Guest asks for a page table to be updated?
561 *
562 * We already saw that demand_page() will fill in the shadow page tables when
563 * needed, so we can simply remove shadow page table entries whenever the Guest
564 * tells us they've changed. When the Guest tries to use the new entry it will
565 * fault and demand_page() will fix it up.
566 *
567 * So with that in mind here's our code to to update a (top-level) PGD entry:
568 */
Rusty Russellee3db0f2007-10-22 11:03:34 +1000569void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700570{
571 int pgdir;
572
Rusty Russellbff672e2007-07-26 10:41:04 -0700573 /* The kernel seems to try to initialize this early on: we ignore its
574 * attempts to map over the Switcher. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700575 if (idx >= SWITCHER_PGD_INDEX)
576 return;
577
Rusty Russellbff672e2007-07-26 10:41:04 -0700578 /* If they're talking about a page table we have a shadow for... */
Rusty Russellee3db0f2007-10-22 11:03:34 +1000579 pgdir = find_pgdir(lg, gpgdir);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700580 if (pgdir < ARRAY_SIZE(lg->pgdirs))
Rusty Russellbff672e2007-07-26 10:41:04 -0700581 /* ... throw it away. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700582 release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
583}
584
Rusty Russellbff672e2007-07-26 10:41:04 -0700585/*H:500 (vii) Setting up the page tables initially.
586 *
587 * When a Guest is first created, the Launcher tells us where the toplevel of
588 * its first page table is. We set some things up here: */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700589int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
590{
Rusty Russellbff672e2007-07-26 10:41:04 -0700591 /* We start on the first shadow page table, and give it a blank PGD
592 * page. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700593 lg->pgdidx = 0;
Rusty Russellee3db0f2007-10-22 11:03:34 +1000594 lg->pgdirs[lg->pgdidx].gpgdir = pgtable;
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000595 lg->pgdirs[lg->pgdidx].pgdir = (pgd_t*)get_zeroed_page(GFP_KERNEL);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700596 if (!lg->pgdirs[lg->pgdidx].pgdir)
597 return -ENOMEM;
598 return 0;
599}
600
Rusty Russell47436aa2007-10-22 11:03:36 +1000601/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
602void page_table_guest_data_init(struct lguest *lg)
603{
604 /* We get the kernel address: above this is all kernel memory. */
605 if (get_user(lg->kernel_address, &lg->lguest_data->kernel_address)
606 /* We tell the Guest that it can't use the top 4MB of virtual
607 * addresses used by the Switcher. */
608 || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
609 || put_user(lg->pgdirs[lg->pgdidx].gpgdir,&lg->lguest_data->pgdir))
610 kill_guest(lg, "bad guest page %p", lg->lguest_data);
611
612 /* In flush_user_mappings() we loop from 0 to
613 * "pgd_index(lg->kernel_address)". This assumes it won't hit the
614 * Switcher mappings, so check that now. */
615 if (pgd_index(lg->kernel_address) >= SWITCHER_PGD_INDEX)
616 kill_guest(lg, "bad kernel address %#lx", lg->kernel_address);
617}
618
Rusty Russellbff672e2007-07-26 10:41:04 -0700619/* When a Guest dies, our cleanup is fairly simple. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700620void free_guest_pagetable(struct lguest *lg)
621{
622 unsigned int i;
623
Rusty Russellbff672e2007-07-26 10:41:04 -0700624 /* Throw away all page table pages. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700625 release_all_pagetables(lg);
Rusty Russellbff672e2007-07-26 10:41:04 -0700626 /* Now free the top levels: free_page() can handle 0 just fine. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700627 for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
628 free_page((long)lg->pgdirs[i].pgdir);
629}
630
Rusty Russellbff672e2007-07-26 10:41:04 -0700631/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
632 *
Rusty Russelle1e72962007-10-25 15:02:50 +1000633 * The Switcher and the two pages for this CPU need to be visible in the
Rusty Russellbff672e2007-07-26 10:41:04 -0700634 * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
Rusty Russelle1e72962007-10-25 15:02:50 +1000635 * for each CPU already set up, we just need to hook them in now we know which
636 * Guest is about to run on this CPU. */
Glauber de Oliveira Costa0c784412008-01-07 11:05:30 -0200637void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700638{
Glauber de Oliveira Costa0c784412008-01-07 11:05:30 -0200639 struct lguest *lg = cpu->lg;
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000640 pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
641 pgd_t switcher_pgd;
642 pte_t regs_pte;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700643
Rusty Russellbff672e2007-07-26 10:41:04 -0700644 /* Make the last PGD entry for this Guest point to the Switcher's PTE
645 * page for this CPU (with appropriate flags). */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000646 switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
647
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700648 lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
649
Rusty Russellbff672e2007-07-26 10:41:04 -0700650 /* We also change the Switcher PTE page. When we're running the Guest,
651 * we want the Guest's "regs" page to appear where the first Switcher
652 * page for this CPU is. This is an optimization: when the Switcher
653 * saves the Guest registers, it saves them into the first page of this
654 * CPU's "struct lguest_pages": if we make sure the Guest's register
655 * page is already mapped there, we don't have to copy them out
656 * again. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000657 regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
658 switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700659}
Rusty Russellbff672e2007-07-26 10:41:04 -0700660/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700661
662static void free_switcher_pte_pages(void)
663{
664 unsigned int i;
665
666 for_each_possible_cpu(i)
667 free_page((long)switcher_pte_page(i));
668}
669
Rusty Russellbff672e2007-07-26 10:41:04 -0700670/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
671 * the CPU number and the "struct page"s for the Switcher code itself.
672 *
673 * Currently the Switcher is less than a page long, so "pages" is always 1. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700674static __init void populate_switcher_pte_page(unsigned int cpu,
675 struct page *switcher_page[],
676 unsigned int pages)
677{
678 unsigned int i;
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000679 pte_t *pte = switcher_pte_page(cpu);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700680
Rusty Russellbff672e2007-07-26 10:41:04 -0700681 /* The first entries are easy: they map the Switcher code. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700682 for (i = 0; i < pages; i++) {
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000683 pte[i] = mk_pte(switcher_page[i],
684 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700685 }
686
Rusty Russellbff672e2007-07-26 10:41:04 -0700687 /* The only other thing we map is this CPU's pair of pages. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700688 i = pages + cpu*2;
689
Rusty Russellbff672e2007-07-26 10:41:04 -0700690 /* First page (Guest registers) is writable from the Guest */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000691 pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
692 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
693
Rusty Russellbff672e2007-07-26 10:41:04 -0700694 /* The second page contains the "struct lguest_ro_state", and is
695 * read-only. */
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000696 pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
697 __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700698}
699
Rusty Russelle1e72962007-10-25 15:02:50 +1000700/* We've made it through the page table code. Perhaps our tired brains are
701 * still processing the details, or perhaps we're simply glad it's over.
702 *
703 * If nothing else, note that all this complexity in juggling shadow page
704 * tables in sync with the Guest's page tables is for one reason: for most
705 * Guests this page table dance determines how bad performance will be. This
706 * is why Xen uses exotic direct Guest pagetable manipulation, and why both
707 * Intel and AMD have implemented shadow page table support directly into
708 * hardware.
709 *
710 * There is just one file remaining in the Host. */
711
Rusty Russellbff672e2007-07-26 10:41:04 -0700712/*H:510 At boot or module load time, init_pagetables() allocates and populates
713 * the Switcher PTE page for each CPU. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700714__init int init_pagetables(struct page **switcher_page, unsigned int pages)
715{
716 unsigned int i;
717
718 for_each_possible_cpu(i) {
Matias Zabaljaureguidf29f432007-10-22 11:03:33 +1000719 switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700720 if (!switcher_pte_page(i)) {
721 free_switcher_pte_pages();
722 return -ENOMEM;
723 }
724 populate_switcher_pte_page(i, switcher_page, pages);
725 }
726 return 0;
727}
Rusty Russellbff672e2007-07-26 10:41:04 -0700728/*:*/
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700729
Rusty Russellbff672e2007-07-26 10:41:04 -0700730/* Cleaning up simply involves freeing the PTE page for each CPU. */
Rusty Russelld7e28ff2007-07-19 01:49:23 -0700731void free_pagetables(void)
732{
733 free_switcher_pte_pages();
734}