blob: d66c2b0d9715abea6d68336bb7291bd81e23753a [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700104#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700105#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800106#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800107#include <linux/mutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108
109#include <asm/uaccess.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112#include <asm/page.h>
113
114/*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define DEBUG 1
127#define STATS 1
128#define FORCED_DEBUG 1
129#else
130#define DEBUG 0
131#define STATS 0
132#define FORCED_DEBUG 0
133#endif
134
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135/* Shouldn't this be in a header file somewhere? */
136#define BYTES_PER_WORD sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size() L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177#else
178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700203typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800246 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800247 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800248 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249};
250
251/*
252 * struct array_cache
253 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275};
276
277/* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800283 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284};
285
286/*
Christoph Lametere498be72005-09-09 13:03:32 -0700287 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288 */
289struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800297 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301};
302
Christoph Lametere498be72005-09-09 13:03:32 -0700303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700311
Christoph Lametere498be72005-09-09 13:03:32 -0700312/*
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700313 * This function must be completely optimized away if
Christoph Lametere498be72005-09-09 13:03:32 -0700314 * a constant is passed to it. Mostly the same as
315 * what is in linux/slab.h except it returns an
316 * index.
317 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700318static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700319{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800320 extern void __bad_size(void);
321
Christoph Lametere498be72005-09-09 13:03:32 -0700322 if (__builtin_constant_p(size)) {
323 int i = 0;
324
325#define CACHE(x) \
326 if (size <=x) \
327 return i; \
328 else \
329 i++;
330#include "linux/kmalloc_sizes.h"
331#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800332 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700333 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800334 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700335 return 0;
336}
337
338#define INDEX_AC index_of(sizeof(struct arraycache_init))
339#define INDEX_L3 index_of(sizeof(struct kmem_list3))
340
Pekka Enberg5295a742006-02-01 03:05:48 -0800341static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700342{
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800348 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700349 spin_lock_init(&parent->list_lock);
350 parent->free_objects = 0;
351 parent->free_touched = 0;
352}
353
354#define MAKE_LIST(cachep, listp, slab, nodeid) \
355 do { \
356 INIT_LIST_HEAD(listp); \
357 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
358 } while (0)
359
360#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
361 do { \
362 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
364 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
365 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700366
367/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800368 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700369 *
370 * manages a cache.
371 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800372
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800373struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700374/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800375 struct array_cache *array[NR_CPUS];
376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800379 unsigned int buffer_size;
Christoph Lametere498be72005-09-09 13:03:32 -0700380/* 2) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800381 struct kmem_list3 *nodelists[MAX_NUMNODES];
382 unsigned int flags; /* constant flags */
383 unsigned int num; /* # of objs per slab */
384 spinlock_t spinlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700385
386/* 3) cache_grow/shrink */
387 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800388 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700389
390 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800391 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700392
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800393 size_t colour; /* cache colouring range */
394 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800395 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800396 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398
399 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800400 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401
402 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800403 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700404
405/* 4) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800406 const char *name;
407 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408
409/* 5) statistics */
410#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800411 unsigned long num_active;
412 unsigned long num_allocations;
413 unsigned long high_mark;
414 unsigned long grown;
415 unsigned long reaped;
416 unsigned long errors;
417 unsigned long max_freeable;
418 unsigned long node_allocs;
419 unsigned long node_frees;
420 atomic_t allochit;
421 atomic_t allocmiss;
422 atomic_t freehit;
423 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424#endif
425#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800426 /*
427 * If debugging is enabled, then the allocator can add additional
428 * fields and/or padding to every object. buffer_size contains the total
429 * object size including these internal fields, the following two
430 * variables contain the offset to the user object and its size.
431 */
432 int obj_offset;
433 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434#endif
435};
436
437#define CFLGS_OFF_SLAB (0x80000000UL)
438#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
439
440#define BATCHREFILL_LIMIT 16
441/* Optimization question: fewer reaps means less
442 * probability for unnessary cpucache drain/refill cycles.
443 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100444 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445 * which could lock up otherwise freeable slabs.
446 */
447#define REAPTIMEOUT_CPUC (2*HZ)
448#define REAPTIMEOUT_LIST3 (4*HZ)
449
450#if STATS
451#define STATS_INC_ACTIVE(x) ((x)->num_active++)
452#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454#define STATS_INC_GROWN(x) ((x)->grown++)
455#define STATS_INC_REAPED(x) ((x)->reaped++)
456#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
457 (x)->high_mark = (x)->num_active; \
458 } while (0)
459#define STATS_INC_ERR(x) ((x)->errors++)
460#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700461#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700462#define STATS_SET_FREEABLE(x, i) \
463 do { if ((x)->max_freeable < i) \
464 (x)->max_freeable = i; \
465 } while (0)
466
467#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
468#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
469#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
470#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
471#else
472#define STATS_INC_ACTIVE(x) do { } while (0)
473#define STATS_DEC_ACTIVE(x) do { } while (0)
474#define STATS_INC_ALLOCED(x) do { } while (0)
475#define STATS_INC_GROWN(x) do { } while (0)
476#define STATS_INC_REAPED(x) do { } while (0)
477#define STATS_SET_HIGH(x) do { } while (0)
478#define STATS_INC_ERR(x) do { } while (0)
479#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700480#define STATS_INC_NODEFREES(x) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481#define STATS_SET_FREEABLE(x, i) \
482 do { } while (0)
483
484#define STATS_INC_ALLOCHIT(x) do { } while (0)
485#define STATS_INC_ALLOCMISS(x) do { } while (0)
486#define STATS_INC_FREEHIT(x) do { } while (0)
487#define STATS_INC_FREEMISS(x) do { } while (0)
488#endif
489
490#if DEBUG
491/* Magic nums for obj red zoning.
492 * Placed in the first word before and the first word after an obj.
493 */
494#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
495#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
496
497/* ...and for poisoning */
498#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
499#define POISON_FREE 0x6b /* for use-after-free poisoning */
500#define POISON_END 0xa5 /* end-byte of poisoning */
501
502/* memory layout of objects:
503 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800504 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700505 * the end of an object is aligned with the end of the real
506 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800507 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700508 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800509 * cachep->obj_offset: The real object.
510 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
511 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800513static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800515 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516}
517
Pekka Enberg343e0d72006-02-01 03:05:50 -0800518static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521}
522
Pekka Enberg343e0d72006-02-01 03:05:50 -0800523static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800526 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700527}
528
Pekka Enberg343e0d72006-02-01 03:05:50 -0800529static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700530{
531 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
532 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800533 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800534 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800535 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700536}
537
Pekka Enberg343e0d72006-02-01 03:05:50 -0800538static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700539{
540 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800541 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700542}
543
544#else
545
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800546#define obj_offset(x) 0
547#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700548#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
549#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
550#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
551
552#endif
553
554/*
555 * Maximum size of an obj (in 2^order pages)
556 * and absolute limit for the gfp order.
557 */
558#if defined(CONFIG_LARGE_ALLOCS)
559#define MAX_OBJ_ORDER 13 /* up to 32Mb */
560#define MAX_GFP_ORDER 13 /* up to 32Mb */
561#elif defined(CONFIG_MMU)
562#define MAX_OBJ_ORDER 5 /* 32 pages */
563#define MAX_GFP_ORDER 5 /* 32 pages */
564#else
565#define MAX_OBJ_ORDER 8 /* up to 1Mb */
566#define MAX_GFP_ORDER 8 /* up to 1Mb */
567#endif
568
569/*
570 * Do not go above this order unless 0 objects fit into the slab.
571 */
572#define BREAK_GFP_ORDER_HI 1
573#define BREAK_GFP_ORDER_LO 0
574static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
575
Pekka Enberg065d41c2005-11-13 16:06:46 -0800576/* Functions for storing/retrieving the cachep and or slab from the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700577 * global 'mem_map'. These are used to find the slab an obj belongs to.
578 * With kfree(), these are used to find the cache which an obj belongs to.
579 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800580static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
581{
582 page->lru.next = (struct list_head *)cache;
583}
584
585static inline struct kmem_cache *page_get_cache(struct page *page)
586{
587 return (struct kmem_cache *)page->lru.next;
588}
589
590static inline void page_set_slab(struct page *page, struct slab *slab)
591{
592 page->lru.prev = (struct list_head *)slab;
593}
594
595static inline struct slab *page_get_slab(struct page *page)
596{
597 return (struct slab *)page->lru.prev;
598}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700599
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800600static inline struct kmem_cache *virt_to_cache(const void *obj)
601{
602 struct page *page = virt_to_page(obj);
603 return page_get_cache(page);
604}
605
606static inline struct slab *virt_to_slab(const void *obj)
607{
608 struct page *page = virt_to_page(obj);
609 return page_get_slab(page);
610}
611
Linus Torvalds1da177e2005-04-16 15:20:36 -0700612/* These are the default caches for kmalloc. Custom caches can have other sizes. */
613struct cache_sizes malloc_sizes[] = {
614#define CACHE(x) { .cs_size = (x) },
615#include <linux/kmalloc_sizes.h>
616 CACHE(ULONG_MAX)
617#undef CACHE
618};
619EXPORT_SYMBOL(malloc_sizes);
620
621/* Must match cache_sizes above. Out of line to keep cache footprint low. */
622struct cache_names {
623 char *name;
624 char *name_dma;
625};
626
627static struct cache_names __initdata cache_names[] = {
628#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
629#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800630 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700631#undef CACHE
632};
633
634static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800635 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800637 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638
639/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800640static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800641 .batchcount = 1,
642 .limit = BOOT_CPUCACHE_ENTRIES,
643 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800644 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800645 .flags = SLAB_NO_REAP,
646 .spinlock = SPIN_LOCK_UNLOCKED,
647 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800649 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700650#endif
651};
652
653/* Guard access to the cache-chain. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800654static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655static struct list_head cache_chain;
656
657/*
658 * vm_enough_memory() looks at this to determine how many
659 * slab-allocated pages are possibly freeable under pressure
660 *
661 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
662 */
663atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664
665/*
666 * chicken and egg problem: delay the per-cpu array allocation
667 * until the general caches are up.
668 */
669static enum {
670 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700671 PARTIAL_AC,
672 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673 FULL
674} g_cpucache_up;
675
676static DEFINE_PER_CPU(struct work_struct, reap_work);
677
Pekka Enberg343e0d72006-02-01 03:05:50 -0800678static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
679static void enable_cpucache(struct kmem_cache *cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800680static void cache_reap(void *unused);
Pekka Enberg343e0d72006-02-01 03:05:50 -0800681static int __node_shrink(struct kmem_cache *cachep, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700682
Pekka Enberg343e0d72006-02-01 03:05:50 -0800683static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700684{
685 return cachep->array[smp_processor_id()];
686}
687
Pekka Enberg343e0d72006-02-01 03:05:50 -0800688static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700689{
690 struct cache_sizes *csizep = malloc_sizes;
691
692#if DEBUG
693 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800694 * kmem_cache_create(), or __kmalloc(), before
695 * the generic caches are initialized.
696 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700697 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700698#endif
699 while (size > csizep->cs_size)
700 csizep++;
701
702 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700703 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700704 * has cs_{dma,}cachep==NULL. Thus no special case
705 * for large kmalloc calls required.
706 */
707 if (unlikely(gfpflags & GFP_DMA))
708 return csizep->cs_dmacachep;
709 return csizep->cs_cachep;
710}
711
Pekka Enberg343e0d72006-02-01 03:05:50 -0800712struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700713{
714 return __find_general_cachep(size, gfpflags);
715}
716EXPORT_SYMBOL(kmem_find_general_cachep);
717
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800718static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700719{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800720 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
721}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700722
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800723/* Calculate the number of objects and left-over bytes for a given
724 buffer size. */
725static void cache_estimate(unsigned long gfporder, size_t buffer_size,
726 size_t align, int flags, size_t *left_over,
727 unsigned int *num)
728{
729 int nr_objs;
730 size_t mgmt_size;
731 size_t slab_size = PAGE_SIZE << gfporder;
732
733 /*
734 * The slab management structure can be either off the slab or
735 * on it. For the latter case, the memory allocated for a
736 * slab is used for:
737 *
738 * - The struct slab
739 * - One kmem_bufctl_t for each object
740 * - Padding to respect alignment of @align
741 * - @buffer_size bytes for each object
742 *
743 * If the slab management structure is off the slab, then the
744 * alignment will already be calculated into the size. Because
745 * the slabs are all pages aligned, the objects will be at the
746 * correct alignment when allocated.
747 */
748 if (flags & CFLGS_OFF_SLAB) {
749 mgmt_size = 0;
750 nr_objs = slab_size / buffer_size;
751
752 if (nr_objs > SLAB_LIMIT)
753 nr_objs = SLAB_LIMIT;
754 } else {
755 /*
756 * Ignore padding for the initial guess. The padding
757 * is at most @align-1 bytes, and @buffer_size is at
758 * least @align. In the worst case, this result will
759 * be one greater than the number of objects that fit
760 * into the memory allocation when taking the padding
761 * into account.
762 */
763 nr_objs = (slab_size - sizeof(struct slab)) /
764 (buffer_size + sizeof(kmem_bufctl_t));
765
766 /*
767 * This calculated number will be either the right
768 * amount, or one greater than what we want.
769 */
770 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
771 > slab_size)
772 nr_objs--;
773
774 if (nr_objs > SLAB_LIMIT)
775 nr_objs = SLAB_LIMIT;
776
777 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700778 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800779 *num = nr_objs;
780 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700781}
782
783#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
784
Pekka Enberg343e0d72006-02-01 03:05:50 -0800785static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786{
787 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800788 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700789 dump_stack();
790}
791
792/*
793 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
794 * via the workqueue/eventd.
795 * Add the CPU number into the expiration time to minimize the possibility of
796 * the CPUs getting into lockstep and contending for the global cache chain
797 * lock.
798 */
799static void __devinit start_cpu_timer(int cpu)
800{
801 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
802
803 /*
804 * When this gets called from do_initcalls via cpucache_init(),
805 * init_workqueues() has already run, so keventd will be setup
806 * at that time.
807 */
808 if (keventd_up() && reap_work->func == NULL) {
809 INIT_WORK(reap_work, cache_reap, NULL);
810 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
811 }
812}
813
Christoph Lametere498be72005-09-09 13:03:32 -0700814static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800815 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800817 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700818 struct array_cache *nc = NULL;
819
Christoph Lametere498be72005-09-09 13:03:32 -0700820 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700821 if (nc) {
822 nc->avail = 0;
823 nc->limit = entries;
824 nc->batchcount = batchcount;
825 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700826 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827 }
828 return nc;
829}
830
Christoph Lametere498be72005-09-09 13:03:32 -0700831#ifdef CONFIG_NUMA
Pekka Enberg343e0d72006-02-01 03:05:50 -0800832static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
Christoph Lameterdc85da12006-01-18 17:42:36 -0800833
Pekka Enberg5295a742006-02-01 03:05:48 -0800834static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -0700835{
836 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800837 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -0700838 int i;
839
840 if (limit > 1)
841 limit = 12;
842 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
843 if (ac_ptr) {
844 for_each_node(i) {
845 if (i == node || !node_online(i)) {
846 ac_ptr[i] = NULL;
847 continue;
848 }
849 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
850 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800851 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -0700852 kfree(ac_ptr[i]);
853 kfree(ac_ptr);
854 return NULL;
855 }
856 }
857 }
858 return ac_ptr;
859}
860
Pekka Enberg5295a742006-02-01 03:05:48 -0800861static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -0700862{
863 int i;
864
865 if (!ac_ptr)
866 return;
867
868 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800869 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -0700870
871 kfree(ac_ptr);
872}
873
Pekka Enberg343e0d72006-02-01 03:05:50 -0800874static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -0800875 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -0700876{
877 struct kmem_list3 *rl3 = cachep->nodelists[node];
878
879 if (ac->avail) {
880 spin_lock(&rl3->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -0700881 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700882 ac->avail = 0;
883 spin_unlock(&rl3->list_lock);
884 }
885}
886
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800887static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -0700888{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800889 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700890 struct array_cache *ac;
891 unsigned long flags;
892
893 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800894 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -0700895 if (ac) {
896 spin_lock_irqsave(&ac->lock, flags);
897 __drain_alien_cache(cachep, ac, i);
898 spin_unlock_irqrestore(&ac->lock, flags);
899 }
900 }
901}
902#else
Linus Torvalds7a21ef62006-02-05 11:26:38 -0800903
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800904#define drain_alien_cache(cachep, alien) do { } while (0)
905
Linus Torvalds7a21ef62006-02-05 11:26:38 -0800906static inline struct array_cache **alloc_alien_cache(int node, int limit)
907{
908 return (struct array_cache **) 0x01020304ul;
909}
910
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800911static inline void free_alien_cache(struct array_cache **ac_ptr)
912{
913}
Linus Torvalds7a21ef62006-02-05 11:26:38 -0800914
Christoph Lametere498be72005-09-09 13:03:32 -0700915#endif
916
Linus Torvalds1da177e2005-04-16 15:20:36 -0700917static int __devinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800918 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700919{
920 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800921 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -0700922 struct kmem_list3 *l3 = NULL;
923 int node = cpu_to_node(cpu);
924 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700925
926 switch (action) {
927 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800928 mutex_lock(&cache_chain_mutex);
Christoph Lametere498be72005-09-09 13:03:32 -0700929 /* we need to do this right in the beginning since
930 * alloc_arraycache's are going to use this list.
931 * kmalloc_node allows us to add the slab to the right
932 * kmem_list3 and not this cpu's kmem_list3
933 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700934
Christoph Lametere498be72005-09-09 13:03:32 -0700935 list_for_each_entry(cachep, &cache_chain, next) {
936 /* setup the size64 kmemlist for cpu before we can
937 * begin anything. Make sure some other cpu on this
938 * node has not already allocated this
939 */
940 if (!cachep->nodelists[node]) {
941 if (!(l3 = kmalloc_node(memsize,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800942 GFP_KERNEL, node)))
Christoph Lametere498be72005-09-09 13:03:32 -0700943 goto bad;
944 kmem_list3_init(l3);
945 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800946 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -0700947
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800948 /*
949 * The l3s don't come and go as CPUs come and
950 * go. cache_chain_mutex is sufficient
951 * protection here.
952 */
Christoph Lametere498be72005-09-09 13:03:32 -0700953 cachep->nodelists[node] = l3;
954 }
955
956 spin_lock_irq(&cachep->nodelists[node]->list_lock);
957 cachep->nodelists[node]->free_limit =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800958 (1 + nr_cpus_node(node)) *
959 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -0700960 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
961 }
962
963 /* Now we can go ahead with allocating the shared array's
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800964 & array cache's */
Christoph Lametere498be72005-09-09 13:03:32 -0700965 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -0800966 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800967 struct array_cache *shared;
968 struct array_cache **alien;
Tobias Klausercd105df2006-01-08 01:00:59 -0800969
Christoph Lametere498be72005-09-09 13:03:32 -0700970 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800971 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700972 if (!nc)
973 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800974 shared = alloc_arraycache(node,
975 cachep->shared * cachep->batchcount,
976 0xbaadf00d);
977 if (!shared)
978 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -0800979
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800980 alien = alloc_alien_cache(node, cachep->limit);
981 if (!alien)
982 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700983 cachep->array[cpu] = nc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700984
Christoph Lametere498be72005-09-09 13:03:32 -0700985 l3 = cachep->nodelists[node];
986 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -0700987
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800988 spin_lock_irq(&l3->list_lock);
989 if (!l3->shared) {
990 /*
991 * We are serialised from CPU_DEAD or
992 * CPU_UP_CANCELLED by the cpucontrol lock
993 */
994 l3->shared = shared;
995 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -0700996 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -0800997#ifdef CONFIG_NUMA
998 if (!l3->alien) {
999 l3->alien = alien;
1000 alien = NULL;
1001 }
1002#endif
1003 spin_unlock_irq(&l3->list_lock);
1004
1005 kfree(shared);
1006 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001007 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001008 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001009 break;
1010 case CPU_ONLINE:
1011 start_cpu_timer(cpu);
1012 break;
1013#ifdef CONFIG_HOTPLUG_CPU
1014 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001015 /*
1016 * Even if all the cpus of a node are down, we don't free the
1017 * kmem_list3 of any cache. This to avoid a race between
1018 * cpu_down, and a kmalloc allocation from another cpu for
1019 * memory from the node of the cpu going down. The list3
1020 * structure is usually allocated from kmem_cache_create() and
1021 * gets destroyed at kmem_cache_destroy().
1022 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023 /* fall thru */
1024 case CPU_UP_CANCELED:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001025 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001026
1027 list_for_each_entry(cachep, &cache_chain, next) {
1028 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001029 struct array_cache *shared;
1030 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001031 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032
Christoph Lametere498be72005-09-09 13:03:32 -07001033 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034 /* cpu is dead; no one can alloc from it. */
1035 nc = cachep->array[cpu];
1036 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001037 l3 = cachep->nodelists[node];
1038
1039 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001040 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001041
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001042 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001043
1044 /* Free limit for this kmem_list3 */
1045 l3->free_limit -= cachep->batchcount;
1046 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001047 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001048
1049 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001050 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001051 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001052 }
Christoph Lametere498be72005-09-09 13:03:32 -07001053
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001054 shared = l3->shared;
1055 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001056 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001057 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001058 l3->shared = NULL;
1059 }
Christoph Lametere498be72005-09-09 13:03:32 -07001060
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001061 alien = l3->alien;
1062 l3->alien = NULL;
1063
1064 spin_unlock_irq(&l3->list_lock);
1065
1066 kfree(shared);
1067 if (alien) {
1068 drain_alien_cache(cachep, alien);
1069 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001070 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001071free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001072 kfree(nc);
1073 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001074 /*
1075 * In the previous loop, all the objects were freed to
1076 * the respective cache's slabs, now we can go ahead and
1077 * shrink each nodelist to its limit.
1078 */
1079 list_for_each_entry(cachep, &cache_chain, next) {
1080 l3 = cachep->nodelists[node];
1081 if (!l3)
1082 continue;
1083 spin_lock_irq(&l3->list_lock);
1084 /* free slabs belonging to this node */
1085 __node_shrink(cachep, node);
1086 spin_unlock_irq(&l3->list_lock);
1087 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001088 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001089 break;
1090#endif
1091 }
1092 return NOTIFY_OK;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001093 bad:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001094 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001095 return NOTIFY_BAD;
1096}
1097
1098static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1099
Christoph Lametere498be72005-09-09 13:03:32 -07001100/*
1101 * swap the static kmem_list3 with kmalloced memory
1102 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001103static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001104{
1105 struct kmem_list3 *ptr;
1106
1107 BUG_ON(cachep->nodelists[nodeid] != list);
1108 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1109 BUG_ON(!ptr);
1110
1111 local_irq_disable();
1112 memcpy(ptr, list, sizeof(struct kmem_list3));
1113 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1114 cachep->nodelists[nodeid] = ptr;
1115 local_irq_enable();
1116}
1117
Linus Torvalds1da177e2005-04-16 15:20:36 -07001118/* Initialisation.
1119 * Called after the gfp() functions have been enabled, and before smp_init().
1120 */
1121void __init kmem_cache_init(void)
1122{
1123 size_t left_over;
1124 struct cache_sizes *sizes;
1125 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001126 int i;
1127
1128 for (i = 0; i < NUM_INIT_LISTS; i++) {
1129 kmem_list3_init(&initkmem_list3[i]);
1130 if (i < MAX_NUMNODES)
1131 cache_cache.nodelists[i] = NULL;
1132 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001133
1134 /*
1135 * Fragmentation resistance on low memory - only use bigger
1136 * page orders on machines with more than 32MB of memory.
1137 */
1138 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1139 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1140
Linus Torvalds1da177e2005-04-16 15:20:36 -07001141 /* Bootstrap is tricky, because several objects are allocated
1142 * from caches that do not exist yet:
Pekka Enberg343e0d72006-02-01 03:05:50 -08001143 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -07001144 * structures of all caches, except cache_cache itself: cache_cache
1145 * is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001146 * Initially an __init data area is used for the head array and the
1147 * kmem_list3 structures, it's replaced with a kmalloc allocated
1148 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001149 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001150 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001151 * An __init data area is used for the head array.
1152 * 3) Create the remaining kmalloc caches, with minimally sized
1153 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001154 * 4) Replace the __init data head arrays for cache_cache and the first
1155 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001156 * 5) Replace the __init data for kmem_list3 for cache_cache and
1157 * the other cache's with kmalloc allocated memory.
1158 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001159 */
1160
1161 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162 INIT_LIST_HEAD(&cache_chain);
1163 list_add(&cache_cache.next, &cache_chain);
1164 cache_cache.colour_off = cache_line_size();
1165 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001166 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001167
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001168 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001169
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001170 cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001171 &left_over, &cache_cache.num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172 if (!cache_cache.num)
1173 BUG();
1174
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001175 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001176 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1177 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178
1179 /* 2+3) create the kmalloc caches */
1180 sizes = malloc_sizes;
1181 names = cache_names;
1182
Christoph Lametere498be72005-09-09 13:03:32 -07001183 /* Initialize the caches that provide memory for the array cache
1184 * and the kmem_list3 structures first.
1185 * Without this, further allocations will bug
1186 */
1187
1188 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001189 sizes[INDEX_AC].cs_size,
1190 ARCH_KMALLOC_MINALIGN,
1191 (ARCH_KMALLOC_FLAGS |
1192 SLAB_PANIC), NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001193
1194 if (INDEX_AC != INDEX_L3)
1195 sizes[INDEX_L3].cs_cachep =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001196 kmem_cache_create(names[INDEX_L3].name,
1197 sizes[INDEX_L3].cs_size,
1198 ARCH_KMALLOC_MINALIGN,
1199 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1200 NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001201
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001203 /*
1204 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001205 * This should be particularly beneficial on SMP boxes, as it
1206 * eliminates "false sharing".
1207 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001208 * allow tighter packing of the smaller caches.
1209 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001210 if (!sizes->cs_cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07001211 sizes->cs_cachep = kmem_cache_create(names->name,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001212 sizes->cs_size,
1213 ARCH_KMALLOC_MINALIGN,
1214 (ARCH_KMALLOC_FLAGS
1215 | SLAB_PANIC),
1216 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001217
1218 /* Inc off-slab bufctl limit until the ceiling is hit. */
1219 if (!(OFF_SLAB(sizes->cs_cachep))) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001220 offslab_limit = sizes->cs_size - sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001221 offslab_limit /= sizeof(kmem_bufctl_t);
1222 }
1223
1224 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001225 sizes->cs_size,
1226 ARCH_KMALLOC_MINALIGN,
1227 (ARCH_KMALLOC_FLAGS |
1228 SLAB_CACHE_DMA |
1229 SLAB_PANIC), NULL,
1230 NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001231
1232 sizes++;
1233 names++;
1234 }
1235 /* 4) Replace the bootstrap head arrays */
1236 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001237 void *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001238
Linus Torvalds1da177e2005-04-16 15:20:36 -07001239 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001240
Linus Torvalds1da177e2005-04-16 15:20:36 -07001241 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001242 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1243 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001244 sizeof(struct arraycache_init));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001245 cache_cache.array[smp_processor_id()] = ptr;
1246 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001247
Linus Torvalds1da177e2005-04-16 15:20:36 -07001248 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001249
Linus Torvalds1da177e2005-04-16 15:20:36 -07001250 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001251 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001252 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001253 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001254 sizeof(struct arraycache_init));
Christoph Lametere498be72005-09-09 13:03:32 -07001255 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001256 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001257 local_irq_enable();
1258 }
Christoph Lametere498be72005-09-09 13:03:32 -07001259 /* 5) Replace the bootstrap kmem_list3's */
1260 {
1261 int node;
1262 /* Replace the static kmem_list3 structures for the boot cpu */
1263 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001264 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001265
Christoph Lametere498be72005-09-09 13:03:32 -07001266 for_each_online_node(node) {
1267 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001268 &initkmem_list3[SIZE_AC + node], node);
Christoph Lametere498be72005-09-09 13:03:32 -07001269
1270 if (INDEX_AC != INDEX_L3) {
1271 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001272 &initkmem_list3[SIZE_L3 + node],
1273 node);
Christoph Lametere498be72005-09-09 13:03:32 -07001274 }
1275 }
1276 }
1277
1278 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001279 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001280 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001281 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001282 list_for_each_entry(cachep, &cache_chain, next)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001283 enable_cpucache(cachep);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001284 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001285 }
1286
1287 /* Done! */
1288 g_cpucache_up = FULL;
1289
1290 /* Register a cpu startup notifier callback
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001291 * that initializes cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001292 */
1293 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294
1295 /* The reap timers are started later, with a module init call:
1296 * That part of the kernel is not yet operational.
1297 */
1298}
1299
1300static int __init cpucache_init(void)
1301{
1302 int cpu;
1303
1304 /*
1305 * Register the timers that return unneeded
1306 * pages to gfp.
1307 */
Christoph Lametere498be72005-09-09 13:03:32 -07001308 for_each_online_cpu(cpu)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001309 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310
1311 return 0;
1312}
1313
1314__initcall(cpucache_init);
1315
1316/*
1317 * Interface to system's page allocator. No need to hold the cache-lock.
1318 *
1319 * If we requested dmaable memory, we will get it. Even if we
1320 * did not request dmaable memory, we might get it, but that
1321 * would be relatively rare and ignorable.
1322 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001323static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001324{
1325 struct page *page;
1326 void *addr;
1327 int i;
1328
1329 flags |= cachep->gfpflags;
Christoph Lameter50c85a12005-11-13 16:06:47 -08001330 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001331 if (!page)
1332 return NULL;
1333 addr = page_address(page);
1334
1335 i = (1 << cachep->gfporder);
1336 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1337 atomic_add(i, &slab_reclaim_pages);
1338 add_page_state(nr_slab, i);
1339 while (i--) {
1340 SetPageSlab(page);
1341 page++;
1342 }
1343 return addr;
1344}
1345
1346/*
1347 * Interface to system's page release.
1348 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001349static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001350{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001351 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001352 struct page *page = virt_to_page(addr);
1353 const unsigned long nr_freed = i;
1354
1355 while (i--) {
1356 if (!TestClearPageSlab(page))
1357 BUG();
1358 page++;
1359 }
1360 sub_page_state(nr_slab, nr_freed);
1361 if (current->reclaim_state)
1362 current->reclaim_state->reclaimed_slab += nr_freed;
1363 free_pages((unsigned long)addr, cachep->gfporder);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001364 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1365 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001366}
1367
1368static void kmem_rcu_free(struct rcu_head *head)
1369{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001370 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001371 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001372
1373 kmem_freepages(cachep, slab_rcu->addr);
1374 if (OFF_SLAB(cachep))
1375 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1376}
1377
1378#if DEBUG
1379
1380#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001381static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001382 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001384 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001386 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001388 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001389 return;
1390
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001391 *addr++ = 0x12345678;
1392 *addr++ = caller;
1393 *addr++ = smp_processor_id();
1394 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001395 {
1396 unsigned long *sptr = &caller;
1397 unsigned long svalue;
1398
1399 while (!kstack_end(sptr)) {
1400 svalue = *sptr++;
1401 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001402 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001403 size -= sizeof(unsigned long);
1404 if (size <= sizeof(unsigned long))
1405 break;
1406 }
1407 }
1408
1409 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001410 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001411}
1412#endif
1413
Pekka Enberg343e0d72006-02-01 03:05:50 -08001414static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001415{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001416 int size = obj_size(cachep);
1417 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001418
1419 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001420 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001421}
1422
1423static void dump_line(char *data, int offset, int limit)
1424{
1425 int i;
1426 printk(KERN_ERR "%03x:", offset);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001427 for (i = 0; i < limit; i++) {
1428 printk(" %02x", (unsigned char)data[offset + i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001429 }
1430 printk("\n");
1431}
1432#endif
1433
1434#if DEBUG
1435
Pekka Enberg343e0d72006-02-01 03:05:50 -08001436static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001437{
1438 int i, size;
1439 char *realobj;
1440
1441 if (cachep->flags & SLAB_RED_ZONE) {
1442 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001443 *dbg_redzone1(cachep, objp),
1444 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001445 }
1446
1447 if (cachep->flags & SLAB_STORE_USER) {
1448 printk(KERN_ERR "Last user: [<%p>]",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001449 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450 print_symbol("(%s)",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001451 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452 printk("\n");
1453 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001454 realobj = (char *)objp + obj_offset(cachep);
1455 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001456 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457 int limit;
1458 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001459 if (i + limit > size)
1460 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461 dump_line(realobj, i, limit);
1462 }
1463}
1464
Pekka Enberg343e0d72006-02-01 03:05:50 -08001465static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001466{
1467 char *realobj;
1468 int size, i;
1469 int lines = 0;
1470
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001471 realobj = (char *)objp + obj_offset(cachep);
1472 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001473
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001474 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001476 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477 exp = POISON_END;
1478 if (realobj[i] != exp) {
1479 int limit;
1480 /* Mismatch ! */
1481 /* Print header */
1482 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001483 printk(KERN_ERR
1484 "Slab corruption: start=%p, len=%d\n",
1485 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001486 print_objinfo(cachep, objp, 0);
1487 }
1488 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001489 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001490 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001491 if (i + limit > size)
1492 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001493 dump_line(realobj, i, limit);
1494 i += 16;
1495 lines++;
1496 /* Limit to 5 lines */
1497 if (lines > 5)
1498 break;
1499 }
1500 }
1501 if (lines != 0) {
1502 /* Print some data about the neighboring objects, if they
1503 * exist:
1504 */
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08001505 struct slab *slabp = virt_to_slab(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001506 int objnr;
1507
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001508 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001509 if (objnr) {
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001510 objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
1511 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001512 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001513 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001514 print_objinfo(cachep, objp, 2);
1515 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001516 if (objnr + 1 < cachep->num) {
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001517 objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
1518 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001519 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001520 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001521 print_objinfo(cachep, objp, 2);
1522 }
1523 }
1524}
1525#endif
1526
Linus Torvalds1da177e2005-04-16 15:20:36 -07001527#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001528/**
1529 * slab_destroy_objs - call the registered destructor for each object in
1530 * a slab that is to be destroyed.
1531 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001532static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001533{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001534 int i;
1535 for (i = 0; i < cachep->num; i++) {
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001536 void *objp = slabp->s_mem + cachep->buffer_size * i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001537
1538 if (cachep->flags & SLAB_POISON) {
1539#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001540 if ((cachep->buffer_size % PAGE_SIZE) == 0
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001541 && OFF_SLAB(cachep))
1542 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001543 cachep->buffer_size / PAGE_SIZE,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001544 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001545 else
1546 check_poison_obj(cachep, objp);
1547#else
1548 check_poison_obj(cachep, objp);
1549#endif
1550 }
1551 if (cachep->flags & SLAB_RED_ZONE) {
1552 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1553 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001554 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001555 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1556 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001557 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001558 }
1559 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001560 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001561 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001562}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001563#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001564static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001565{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566 if (cachep->dtor) {
1567 int i;
1568 for (i = 0; i < cachep->num; i++) {
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001569 void *objp = slabp->s_mem + cachep->buffer_size * i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001570 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001571 }
1572 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001573}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001574#endif
1575
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001576/**
1577 * Destroy all the objs in a slab, and release the mem back to the system.
1578 * Before calling the slab must have been unlinked from the cache.
1579 * The cache-lock is not held/needed.
1580 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001581static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001582{
1583 void *addr = slabp->s_mem - slabp->colouroff;
1584
1585 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001586 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1587 struct slab_rcu *slab_rcu;
1588
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001589 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001590 slab_rcu->cachep = cachep;
1591 slab_rcu->addr = addr;
1592 call_rcu(&slab_rcu->head, kmem_rcu_free);
1593 } else {
1594 kmem_freepages(cachep, addr);
1595 if (OFF_SLAB(cachep))
1596 kmem_cache_free(cachep->slabp_cache, slabp);
1597 }
1598}
1599
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001600/* For setting up all the kmem_list3s for cache whose buffer_size is same
Christoph Lametere498be72005-09-09 13:03:32 -07001601 as size of kmem_list3. */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001602static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001603{
1604 int node;
1605
1606 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001607 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001608 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001609 REAPTIMEOUT_LIST3 +
1610 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001611 }
1612}
1613
Linus Torvalds1da177e2005-04-16 15:20:36 -07001614/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001615 * calculate_slab_order - calculate size (page order) of slabs
1616 * @cachep: pointer to the cache that is being created
1617 * @size: size of objects to be created in this cache.
1618 * @align: required alignment for the objects.
1619 * @flags: slab allocation flags
1620 *
1621 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001622 *
1623 * This could be made much more intelligent. For now, try to avoid using
1624 * high order pages for slabs. When the gfp() functions are more friendly
1625 * towards high-order requests, this should be changed.
1626 */
Randy Dunlapee13d782006-02-01 03:05:53 -08001627static inline size_t calculate_slab_order(struct kmem_cache *cachep,
1628 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001629{
1630 size_t left_over = 0;
1631
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001632 for (;; cachep->gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001633 unsigned int num;
1634 size_t remainder;
1635
1636 if (cachep->gfporder > MAX_GFP_ORDER) {
1637 cachep->num = 0;
1638 break;
1639 }
1640
1641 cache_estimate(cachep->gfporder, size, align, flags,
1642 &remainder, &num);
1643 if (!num)
1644 continue;
1645 /* More than offslab_limit objects will cause problems */
1646 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1647 break;
1648
1649 cachep->num = num;
1650 left_over = remainder;
1651
1652 /*
1653 * Large number of objects is good, but very large slabs are
1654 * currently bad for the gfp()s.
1655 */
1656 if (cachep->gfporder >= slab_break_gfp_order)
1657 break;
1658
1659 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1660 /* Acceptable internal fragmentation */
1661 break;
1662 }
1663 return left_over;
1664}
1665
1666/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001667 * kmem_cache_create - Create a cache.
1668 * @name: A string which is used in /proc/slabinfo to identify this cache.
1669 * @size: The size of objects to be created in this cache.
1670 * @align: The required alignment for the objects.
1671 * @flags: SLAB flags
1672 * @ctor: A constructor for the objects.
1673 * @dtor: A destructor for the objects.
1674 *
1675 * Returns a ptr to the cache on success, NULL on failure.
1676 * Cannot be called within a int, but can be interrupted.
1677 * The @ctor is run when new pages are allocated by the cache
1678 * and the @dtor is run before the pages are handed back.
1679 *
1680 * @name must be valid until the cache is destroyed. This implies that
1681 * the module calling this has to destroy the cache before getting
1682 * unloaded.
1683 *
1684 * The flags are
1685 *
1686 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1687 * to catch references to uninitialised memory.
1688 *
1689 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1690 * for buffer overruns.
1691 *
1692 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1693 * memory pressure.
1694 *
1695 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1696 * cacheline. This can be beneficial if you're counting cycles as closely
1697 * as davem.
1698 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001699struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001700kmem_cache_create (const char *name, size_t size, size_t align,
Pekka Enberg343e0d72006-02-01 03:05:50 -08001701 unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
1702 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703{
1704 size_t left_over, slab_size, ralign;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001705 struct kmem_cache *cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001706 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001707
1708 /*
1709 * Sanity checks... these are all serious usage bugs.
1710 */
1711 if ((!name) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001712 in_interrupt() ||
1713 (size < BYTES_PER_WORD) ||
1714 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1715 printk(KERN_ERR "%s: Early error in slab %s\n",
1716 __FUNCTION__, name);
1717 BUG();
1718 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001719
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001720 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001721
1722 list_for_each(p, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001723 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001724 mm_segment_t old_fs = get_fs();
1725 char tmp;
1726 int res;
1727
1728 /*
1729 * This happens when the module gets unloaded and doesn't
1730 * destroy its slab cache and no-one else reuses the vmalloc
1731 * area of the module. Print a warning.
1732 */
1733 set_fs(KERNEL_DS);
1734 res = __get_user(tmp, pc->name);
1735 set_fs(old_fs);
1736 if (res) {
1737 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001738 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001739 continue;
1740 }
1741
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001742 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08001743 printk("kmem_cache_create: duplicate cache %s\n", name);
1744 dump_stack();
1745 goto oops;
1746 }
1747 }
1748
Linus Torvalds1da177e2005-04-16 15:20:36 -07001749#if DEBUG
1750 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1751 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1752 /* No constructor, but inital state check requested */
1753 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001754 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755 flags &= ~SLAB_DEBUG_INITIAL;
1756 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757#if FORCED_DEBUG
1758 /*
1759 * Enable redzoning and last user accounting, except for caches with
1760 * large objects, if the increased size would increase the object size
1761 * above the next power of two: caches with object sizes just above a
1762 * power of two have a significant amount of internal fragmentation.
1763 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001764 if ((size < 4096
1765 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1766 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001767 if (!(flags & SLAB_DESTROY_BY_RCU))
1768 flags |= SLAB_POISON;
1769#endif
1770 if (flags & SLAB_DESTROY_BY_RCU)
1771 BUG_ON(flags & SLAB_POISON);
1772#endif
1773 if (flags & SLAB_DESTROY_BY_RCU)
1774 BUG_ON(dtor);
1775
1776 /*
1777 * Always checks flags, a caller might be expecting debug
1778 * support which isn't available.
1779 */
1780 if (flags & ~CREATE_MASK)
1781 BUG();
1782
1783 /* Check that size is in terms of words. This is needed to avoid
1784 * unaligned accesses for some archs when redzoning is used, and makes
1785 * sure any on-slab bufctl's are also correctly aligned.
1786 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001787 if (size & (BYTES_PER_WORD - 1)) {
1788 size += (BYTES_PER_WORD - 1);
1789 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001790 }
1791
1792 /* calculate out the final buffer alignment: */
1793 /* 1) arch recommendation: can be overridden for debug */
1794 if (flags & SLAB_HWCACHE_ALIGN) {
1795 /* Default alignment: as specified by the arch code.
1796 * Except if an object is really small, then squeeze multiple
1797 * objects into one cacheline.
1798 */
1799 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001800 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001801 ralign /= 2;
1802 } else {
1803 ralign = BYTES_PER_WORD;
1804 }
1805 /* 2) arch mandated alignment: disables debug if necessary */
1806 if (ralign < ARCH_SLAB_MINALIGN) {
1807 ralign = ARCH_SLAB_MINALIGN;
1808 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001809 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001810 }
1811 /* 3) caller mandated alignment: disables debug if necessary */
1812 if (ralign < align) {
1813 ralign = align;
1814 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001815 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001816 }
1817 /* 4) Store it. Note that the debug code below can reduce
1818 * the alignment to BYTES_PER_WORD.
1819 */
1820 align = ralign;
1821
1822 /* Get cache's description obj. */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001823 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001824 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08001825 goto oops;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001826 memset(cachep, 0, sizeof(struct kmem_cache));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001827
1828#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001829 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830
1831 if (flags & SLAB_RED_ZONE) {
1832 /* redzoning only works with word aligned caches */
1833 align = BYTES_PER_WORD;
1834
1835 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001836 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001837 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001838 }
1839 if (flags & SLAB_STORE_USER) {
1840 /* user store requires word alignment and
1841 * one word storage behind the end of the real
1842 * object.
1843 */
1844 align = BYTES_PER_WORD;
1845 size += BYTES_PER_WORD;
1846 }
1847#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001848 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001849 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1850 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851 size = PAGE_SIZE;
1852 }
1853#endif
1854#endif
1855
1856 /* Determine if the slab management is 'on' or 'off' slab. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001857 if (size >= (PAGE_SIZE >> 3))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001858 /*
1859 * Size is large, assume best to place the slab management obj
1860 * off-slab (should allow better packing of objs).
1861 */
1862 flags |= CFLGS_OFF_SLAB;
1863
1864 size = ALIGN(size, align);
1865
1866 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1867 /*
1868 * A VFS-reclaimable slab tends to have most allocations
1869 * as GFP_NOFS and we really don't want to have to be allocating
1870 * higher-order pages when we are unable to shrink dcache.
1871 */
1872 cachep->gfporder = 0;
1873 cache_estimate(cachep->gfporder, size, align, flags,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001874 &left_over, &cachep->num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001875 } else
1876 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001877
1878 if (!cachep->num) {
1879 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1880 kmem_cache_free(&cache_cache, cachep);
1881 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001882 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001883 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001884 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1885 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886
1887 /*
1888 * If the slab has been placed off-slab, and we have enough space then
1889 * move it on-slab. This is at the expense of any extra colouring.
1890 */
1891 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1892 flags &= ~CFLGS_OFF_SLAB;
1893 left_over -= slab_size;
1894 }
1895
1896 if (flags & CFLGS_OFF_SLAB) {
1897 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001898 slab_size =
1899 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001900 }
1901
1902 cachep->colour_off = cache_line_size();
1903 /* Offset must be a multiple of the alignment. */
1904 if (cachep->colour_off < align)
1905 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001906 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907 cachep->slab_size = slab_size;
1908 cachep->flags = flags;
1909 cachep->gfpflags = 0;
1910 if (flags & SLAB_CACHE_DMA)
1911 cachep->gfpflags |= GFP_DMA;
1912 spin_lock_init(&cachep->spinlock);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001913 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001914
1915 if (flags & CFLGS_OFF_SLAB)
Victor Fuscob2d55072005-09-10 00:26:36 -07001916 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001917 cachep->ctor = ctor;
1918 cachep->dtor = dtor;
1919 cachep->name = name;
1920
1921 /* Don't let CPUs to come and go */
1922 lock_cpu_hotplug();
1923
1924 if (g_cpucache_up == FULL) {
1925 enable_cpucache(cachep);
1926 } else {
1927 if (g_cpucache_up == NONE) {
1928 /* Note: the first kmem_cache_create must create
1929 * the cache that's used by kmalloc(24), otherwise
1930 * the creation of further caches will BUG().
1931 */
Christoph Lametere498be72005-09-09 13:03:32 -07001932 cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001933 &initarray_generic.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001934
1935 /* If the cache that's used by
1936 * kmalloc(sizeof(kmem_list3)) is the first cache,
1937 * then we need to set up all its list3s, otherwise
1938 * the creation of further caches will BUG().
1939 */
1940 set_up_list3s(cachep, SIZE_AC);
1941 if (INDEX_AC == INDEX_L3)
1942 g_cpucache_up = PARTIAL_L3;
1943 else
1944 g_cpucache_up = PARTIAL_AC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001945 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07001946 cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001947 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001948
1949 if (g_cpucache_up == PARTIAL_AC) {
1950 set_up_list3s(cachep, SIZE_L3);
1951 g_cpucache_up = PARTIAL_L3;
1952 } else {
1953 int node;
1954 for_each_online_node(node) {
1955
1956 cachep->nodelists[node] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001957 kmalloc_node(sizeof
1958 (struct kmem_list3),
1959 GFP_KERNEL, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001960 BUG_ON(!cachep->nodelists[node]);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001961 kmem_list3_init(cachep->
1962 nodelists[node]);
Christoph Lametere498be72005-09-09 13:03:32 -07001963 }
1964 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001965 }
Christoph Lametere498be72005-09-09 13:03:32 -07001966 cachep->nodelists[numa_node_id()]->next_reap =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001967 jiffies + REAPTIMEOUT_LIST3 +
1968 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001969
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001970 BUG_ON(!cpu_cache_get(cachep));
1971 cpu_cache_get(cachep)->avail = 0;
1972 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1973 cpu_cache_get(cachep)->batchcount = 1;
1974 cpu_cache_get(cachep)->touched = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001975 cachep->batchcount = 1;
1976 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001977 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001978
Linus Torvalds1da177e2005-04-16 15:20:36 -07001979 /* cache setup completed, link it into the list */
1980 list_add(&cachep->next, &cache_chain);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981 unlock_cpu_hotplug();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001982 oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001983 if (!cachep && (flags & SLAB_PANIC))
1984 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001985 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001986 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001987 return cachep;
1988}
1989EXPORT_SYMBOL(kmem_cache_create);
1990
1991#if DEBUG
1992static void check_irq_off(void)
1993{
1994 BUG_ON(!irqs_disabled());
1995}
1996
1997static void check_irq_on(void)
1998{
1999 BUG_ON(irqs_disabled());
2000}
2001
Pekka Enberg343e0d72006-02-01 03:05:50 -08002002static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002003{
2004#ifdef CONFIG_SMP
2005 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002006 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002007#endif
2008}
Christoph Lametere498be72005-09-09 13:03:32 -07002009
Pekka Enberg343e0d72006-02-01 03:05:50 -08002010static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002011{
2012#ifdef CONFIG_SMP
2013 check_irq_off();
2014 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2015#endif
2016}
2017
Linus Torvalds1da177e2005-04-16 15:20:36 -07002018#else
2019#define check_irq_off() do { } while(0)
2020#define check_irq_on() do { } while(0)
2021#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002022#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002023#endif
2024
2025/*
2026 * Waits for all CPUs to execute func().
2027 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002028static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002029{
2030 check_irq_on();
2031 preempt_disable();
2032
2033 local_irq_disable();
2034 func(arg);
2035 local_irq_enable();
2036
2037 if (smp_call_function(func, arg, 1, 1))
2038 BUG();
2039
2040 preempt_enable();
2041}
2042
Pekka Enberg343e0d72006-02-01 03:05:50 -08002043static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002044 int force, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002045
2046static void do_drain(void *arg)
2047{
Pekka Enberg343e0d72006-02-01 03:05:50 -08002048 struct kmem_cache *cachep = (struct kmem_cache *) arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002049 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002050 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002051
2052 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002053 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002054 spin_lock(&cachep->nodelists[node]->list_lock);
2055 free_block(cachep, ac->entry, ac->avail, node);
2056 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002057 ac->avail = 0;
2058}
2059
Pekka Enberg343e0d72006-02-01 03:05:50 -08002060static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002061{
Christoph Lametere498be72005-09-09 13:03:32 -07002062 struct kmem_list3 *l3;
2063 int node;
2064
Linus Torvalds1da177e2005-04-16 15:20:36 -07002065 smp_call_function_all_cpus(do_drain, cachep);
2066 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002067 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002068 l3 = cachep->nodelists[node];
2069 if (l3) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002070 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002071 drain_array_locked(cachep, l3->shared, 1, node);
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002072 spin_unlock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002073 if (l3->alien)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08002074 drain_alien_cache(cachep, l3->alien);
Christoph Lametere498be72005-09-09 13:03:32 -07002075 }
2076 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002077}
2078
Pekka Enberg343e0d72006-02-01 03:05:50 -08002079static int __node_shrink(struct kmem_cache *cachep, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002080{
2081 struct slab *slabp;
Christoph Lametere498be72005-09-09 13:03:32 -07002082 struct kmem_list3 *l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002083 int ret;
2084
Christoph Lametere498be72005-09-09 13:03:32 -07002085 for (;;) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002086 struct list_head *p;
2087
Christoph Lametere498be72005-09-09 13:03:32 -07002088 p = l3->slabs_free.prev;
2089 if (p == &l3->slabs_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002090 break;
2091
Christoph Lametere498be72005-09-09 13:03:32 -07002092 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093#if DEBUG
2094 if (slabp->inuse)
2095 BUG();
2096#endif
2097 list_del(&slabp->list);
2098
Christoph Lametere498be72005-09-09 13:03:32 -07002099 l3->free_objects -= cachep->num;
2100 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002101 slab_destroy(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002102 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002103 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002104 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002105 return ret;
2106}
2107
Pekka Enberg343e0d72006-02-01 03:05:50 -08002108static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002109{
2110 int ret = 0, i = 0;
2111 struct kmem_list3 *l3;
2112
2113 drain_cpu_caches(cachep);
2114
2115 check_irq_on();
2116 for_each_online_node(i) {
2117 l3 = cachep->nodelists[i];
2118 if (l3) {
2119 spin_lock_irq(&l3->list_lock);
2120 ret += __node_shrink(cachep, i);
2121 spin_unlock_irq(&l3->list_lock);
2122 }
2123 }
2124 return (ret ? 1 : 0);
2125}
2126
Linus Torvalds1da177e2005-04-16 15:20:36 -07002127/**
2128 * kmem_cache_shrink - Shrink a cache.
2129 * @cachep: The cache to shrink.
2130 *
2131 * Releases as many slabs as possible for a cache.
2132 * To help debugging, a zero exit status indicates all slabs were released.
2133 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002134int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002135{
2136 if (!cachep || in_interrupt())
2137 BUG();
2138
2139 return __cache_shrink(cachep);
2140}
2141EXPORT_SYMBOL(kmem_cache_shrink);
2142
2143/**
2144 * kmem_cache_destroy - delete a cache
2145 * @cachep: the cache to destroy
2146 *
Pekka Enberg343e0d72006-02-01 03:05:50 -08002147 * Remove a struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002148 * Returns 0 on success.
2149 *
2150 * It is expected this function will be called by a module when it is
2151 * unloaded. This will remove the cache completely, and avoid a duplicate
2152 * cache being allocated each time a module is loaded and unloaded, if the
2153 * module doesn't have persistent in-kernel storage across loads and unloads.
2154 *
2155 * The cache must be empty before calling this function.
2156 *
2157 * The caller must guarantee that noone will allocate memory from the cache
2158 * during the kmem_cache_destroy().
2159 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002160int kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002161{
2162 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002163 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164
2165 if (!cachep || in_interrupt())
2166 BUG();
2167
2168 /* Don't let CPUs to come and go */
2169 lock_cpu_hotplug();
2170
2171 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002172 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002173 /*
2174 * the chain is never empty, cache_cache is never destroyed
2175 */
2176 list_del(&cachep->next);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002177 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002178
2179 if (__cache_shrink(cachep)) {
2180 slab_error(cachep, "Can't free all objects");
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002181 mutex_lock(&cache_chain_mutex);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002182 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002183 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002184 unlock_cpu_hotplug();
2185 return 1;
2186 }
2187
2188 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002189 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002190
Christoph Lametere498be72005-09-09 13:03:32 -07002191 for_each_online_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002192 kfree(cachep->array[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002193
2194 /* NUMA: free the list3 structures */
Christoph Lametere498be72005-09-09 13:03:32 -07002195 for_each_online_node(i) {
2196 if ((l3 = cachep->nodelists[i])) {
2197 kfree(l3->shared);
2198 free_alien_cache(l3->alien);
2199 kfree(l3);
2200 }
2201 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002202 kmem_cache_free(&cache_cache, cachep);
2203
2204 unlock_cpu_hotplug();
2205
2206 return 0;
2207}
2208EXPORT_SYMBOL(kmem_cache_destroy);
2209
2210/* Get the memory for a slab management obj. */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002211static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002212 int colour_off, gfp_t local_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213{
2214 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002215
Linus Torvalds1da177e2005-04-16 15:20:36 -07002216 if (OFF_SLAB(cachep)) {
2217 /* Slab management obj is off-slab. */
2218 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2219 if (!slabp)
2220 return NULL;
2221 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002222 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002223 colour_off += cachep->slab_size;
2224 }
2225 slabp->inuse = 0;
2226 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002227 slabp->s_mem = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002228
2229 return slabp;
2230}
2231
2232static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2233{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002234 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002235}
2236
Pekka Enberg343e0d72006-02-01 03:05:50 -08002237static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002238 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002239{
2240 int i;
2241
2242 for (i = 0; i < cachep->num; i++) {
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002243 void *objp = slabp->s_mem + cachep->buffer_size * i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002244#if DEBUG
2245 /* need to poison the objs? */
2246 if (cachep->flags & SLAB_POISON)
2247 poison_obj(cachep, objp, POISON_FREE);
2248 if (cachep->flags & SLAB_STORE_USER)
2249 *dbg_userword(cachep, objp) = NULL;
2250
2251 if (cachep->flags & SLAB_RED_ZONE) {
2252 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2253 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2254 }
2255 /*
2256 * Constructors are not allowed to allocate memory from
2257 * the same cache which they are a constructor for.
2258 * Otherwise, deadlock. They must also be threaded.
2259 */
2260 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002261 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002262 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002263
2264 if (cachep->flags & SLAB_RED_ZONE) {
2265 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2266 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002267 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2269 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002270 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002271 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002272 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002273 && cachep->flags & SLAB_POISON)
2274 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002275 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002276#else
2277 if (cachep->ctor)
2278 cachep->ctor(objp, cachep, ctor_flags);
2279#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002280 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002281 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002282 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002283 slabp->free = 0;
2284}
2285
Pekka Enberg343e0d72006-02-01 03:05:50 -08002286static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002287{
2288 if (flags & SLAB_DMA) {
2289 if (!(cachep->gfpflags & GFP_DMA))
2290 BUG();
2291 } else {
2292 if (cachep->gfpflags & GFP_DMA)
2293 BUG();
2294 }
2295}
2296
Pekka Enberg343e0d72006-02-01 03:05:50 -08002297static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002298{
2299 void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
2300 kmem_bufctl_t next;
2301
2302 slabp->inuse++;
2303 next = slab_bufctl(slabp)[slabp->free];
2304#if DEBUG
2305 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2306 WARN_ON(slabp->nodeid != nodeid);
2307#endif
2308 slabp->free = next;
2309
2310 return objp;
2311}
2312
Pekka Enberg343e0d72006-02-01 03:05:50 -08002313static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
Matthew Dobson78d382d2006-02-01 03:05:47 -08002314 int nodeid)
2315{
2316 unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;
2317
2318#if DEBUG
2319 /* Verify that the slab belongs to the intended node */
2320 WARN_ON(slabp->nodeid != nodeid);
2321
2322 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2323 printk(KERN_ERR "slab: double free detected in cache "
2324 "'%s', objp %p\n", cachep->name, objp);
2325 BUG();
2326 }
2327#endif
2328 slab_bufctl(slabp)[objnr] = slabp->free;
2329 slabp->free = objnr;
2330 slabp->inuse--;
2331}
2332
Pekka Enberg343e0d72006-02-01 03:05:50 -08002333static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002334{
2335 int i;
2336 struct page *page;
2337
2338 /* Nasty!!!!!! I hope this is OK. */
2339 i = 1 << cachep->gfporder;
2340 page = virt_to_page(objp);
2341 do {
Pekka Enberg065d41c2005-11-13 16:06:46 -08002342 page_set_cache(page, cachep);
2343 page_set_slab(page, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002344 page++;
2345 } while (--i);
2346}
2347
2348/*
2349 * Grow (by 1) the number of slabs within a cache. This is called by
2350 * kmem_cache_alloc() when there are no active objs left in a cache.
2351 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002352static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002353{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002354 struct slab *slabp;
2355 void *objp;
2356 size_t offset;
2357 gfp_t local_flags;
2358 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002359 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002360
2361 /* Be lazy and only check for valid flags here,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002362 * keeping it out of the critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002363 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002364 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002365 BUG();
2366 if (flags & SLAB_NO_GROW)
2367 return 0;
2368
2369 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2370 local_flags = (flags & SLAB_LEVEL_MASK);
2371 if (!(local_flags & __GFP_WAIT))
2372 /*
2373 * Not allowed to sleep. Need to tell a constructor about
2374 * this - it might need to know...
2375 */
2376 ctor_flags |= SLAB_CTOR_ATOMIC;
2377
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002378 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002379 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002380 l3 = cachep->nodelists[nodeid];
2381 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002382
2383 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002384 offset = l3->colour_next;
2385 l3->colour_next++;
2386 if (l3->colour_next >= cachep->colour)
2387 l3->colour_next = 0;
2388 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002390 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002391
2392 if (local_flags & __GFP_WAIT)
2393 local_irq_enable();
2394
2395 /*
2396 * The test for missing atomic flag is performed here, rather than
2397 * the more obvious place, simply to reduce the critical path length
2398 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2399 * will eventually be caught here (where it matters).
2400 */
2401 kmem_flagcheck(cachep, flags);
2402
Christoph Lametere498be72005-09-09 13:03:32 -07002403 /* Get mem for the objs.
2404 * Attempt to allocate a physical page from 'nodeid',
2405 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002406 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2407 goto failed;
2408
2409 /* Get slab management. */
2410 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2411 goto opps1;
2412
Christoph Lametere498be72005-09-09 13:03:32 -07002413 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002414 set_slab_attr(cachep, slabp, objp);
2415
2416 cache_init_objs(cachep, slabp, ctor_flags);
2417
2418 if (local_flags & __GFP_WAIT)
2419 local_irq_disable();
2420 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002421 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002422
2423 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002424 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002425 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002426 l3->free_objects += cachep->num;
2427 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002428 return 1;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002429 opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002430 kmem_freepages(cachep, objp);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002431 failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002432 if (local_flags & __GFP_WAIT)
2433 local_irq_disable();
2434 return 0;
2435}
2436
2437#if DEBUG
2438
2439/*
2440 * Perform extra freeing checks:
2441 * - detect bad pointers.
2442 * - POISON/RED_ZONE checking
2443 * - destructor calls, for caches with POISON+dtor
2444 */
2445static void kfree_debugcheck(const void *objp)
2446{
2447 struct page *page;
2448
2449 if (!virt_addr_valid(objp)) {
2450 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002451 (unsigned long)objp);
2452 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002453 }
2454 page = virt_to_page(objp);
2455 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002456 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2457 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002458 BUG();
2459 }
2460}
2461
Pekka Enberg343e0d72006-02-01 03:05:50 -08002462static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002463 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002464{
2465 struct page *page;
2466 unsigned int objnr;
2467 struct slab *slabp;
2468
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002469 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002470 kfree_debugcheck(objp);
2471 page = virt_to_page(objp);
2472
Pekka Enberg065d41c2005-11-13 16:06:46 -08002473 if (page_get_cache(page) != cachep) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002474 printk(KERN_ERR
2475 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2476 page_get_cache(page), cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002477 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002478 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2479 page_get_cache(page)->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002480 WARN_ON(1);
2481 }
Pekka Enberg065d41c2005-11-13 16:06:46 -08002482 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002483
2484 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002485 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2486 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2487 slab_error(cachep,
2488 "double free, or memory outside"
2489 " object was overwritten");
2490 printk(KERN_ERR
2491 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2492 objp, *dbg_redzone1(cachep, objp),
2493 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002494 }
2495 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2496 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2497 }
2498 if (cachep->flags & SLAB_STORE_USER)
2499 *dbg_userword(cachep, objp) = caller;
2500
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002501 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002502
2503 BUG_ON(objnr >= cachep->num);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002504 BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002505
2506 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2507 /* Need to call the slab's constructor so the
2508 * caller can perform a verify of its state (debugging).
2509 * Called without the cache-lock held.
2510 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002511 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002512 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002513 }
2514 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2515 /* we want to cache poison the object,
2516 * call the destruction callback
2517 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002518 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002519 }
2520 if (cachep->flags & SLAB_POISON) {
2521#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002522 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002523 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002524 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002525 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002526 } else {
2527 poison_obj(cachep, objp, POISON_FREE);
2528 }
2529#else
2530 poison_obj(cachep, objp, POISON_FREE);
2531#endif
2532 }
2533 return objp;
2534}
2535
Pekka Enberg343e0d72006-02-01 03:05:50 -08002536static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002537{
2538 kmem_bufctl_t i;
2539 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002540
Linus Torvalds1da177e2005-04-16 15:20:36 -07002541 /* Check slab's freelist to see if this obj is there. */
2542 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2543 entries++;
2544 if (entries > cachep->num || i >= cachep->num)
2545 goto bad;
2546 }
2547 if (entries != cachep->num - slabp->inuse) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002548 bad:
2549 printk(KERN_ERR
2550 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2551 cachep->name, cachep->num, slabp, slabp->inuse);
2552 for (i = 0;
2553 i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2554 i++) {
2555 if ((i % 16) == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002556 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002557 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002558 }
2559 printk("\n");
2560 BUG();
2561 }
2562}
2563#else
2564#define kfree_debugcheck(x) do { } while(0)
2565#define cache_free_debugcheck(x,objp,z) (objp)
2566#define check_slabp(x,y) do { } while(0)
2567#endif
2568
Pekka Enberg343e0d72006-02-01 03:05:50 -08002569static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002570{
2571 int batchcount;
2572 struct kmem_list3 *l3;
2573 struct array_cache *ac;
2574
2575 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002576 ac = cpu_cache_get(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002577 retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002578 batchcount = ac->batchcount;
2579 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2580 /* if there was little recent activity on this
2581 * cache, then perform only a partial refill.
2582 * Otherwise we could generate refill bouncing.
2583 */
2584 batchcount = BATCHREFILL_LIMIT;
2585 }
Christoph Lametere498be72005-09-09 13:03:32 -07002586 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002587
Christoph Lametere498be72005-09-09 13:03:32 -07002588 BUG_ON(ac->avail > 0 || !l3);
2589 spin_lock(&l3->list_lock);
2590
Linus Torvalds1da177e2005-04-16 15:20:36 -07002591 if (l3->shared) {
2592 struct array_cache *shared_array = l3->shared;
2593 if (shared_array->avail) {
2594 if (batchcount > shared_array->avail)
2595 batchcount = shared_array->avail;
2596 shared_array->avail -= batchcount;
2597 ac->avail = batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002598 memcpy(ac->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002599 &(shared_array->entry[shared_array->avail]),
2600 sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002601 shared_array->touched = 1;
2602 goto alloc_done;
2603 }
2604 }
2605 while (batchcount > 0) {
2606 struct list_head *entry;
2607 struct slab *slabp;
2608 /* Get slab alloc is to come from. */
2609 entry = l3->slabs_partial.next;
2610 if (entry == &l3->slabs_partial) {
2611 l3->free_touched = 1;
2612 entry = l3->slabs_free.next;
2613 if (entry == &l3->slabs_free)
2614 goto must_grow;
2615 }
2616
2617 slabp = list_entry(entry, struct slab, list);
2618 check_slabp(cachep, slabp);
2619 check_spinlock_acquired(cachep);
2620 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002621 STATS_INC_ALLOCED(cachep);
2622 STATS_INC_ACTIVE(cachep);
2623 STATS_SET_HIGH(cachep);
2624
Matthew Dobson78d382d2006-02-01 03:05:47 -08002625 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2626 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002627 }
2628 check_slabp(cachep, slabp);
2629
2630 /* move slabp to correct slabp list: */
2631 list_del(&slabp->list);
2632 if (slabp->free == BUFCTL_END)
2633 list_add(&slabp->list, &l3->slabs_full);
2634 else
2635 list_add(&slabp->list, &l3->slabs_partial);
2636 }
2637
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002638 must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002639 l3->free_objects -= ac->avail;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002640 alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002641 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642
2643 if (unlikely(!ac->avail)) {
2644 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002645 x = cache_grow(cachep, flags, numa_node_id());
2646
Linus Torvalds1da177e2005-04-16 15:20:36 -07002647 // cache_grow can reenable interrupts, then ac could change.
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002648 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002649 if (!x && ac->avail == 0) // no objects in sight? abort
2650 return NULL;
2651
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002652 if (!ac->avail) // objects refilled by interrupt?
Linus Torvalds1da177e2005-04-16 15:20:36 -07002653 goto retry;
2654 }
2655 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002656 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002657}
2658
2659static inline void
Pekka Enberg343e0d72006-02-01 03:05:50 -08002660cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002661{
2662 might_sleep_if(flags & __GFP_WAIT);
2663#if DEBUG
2664 kmem_flagcheck(cachep, flags);
2665#endif
2666}
2667
2668#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -08002669static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002670 void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002671{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002672 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002673 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002674 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002675#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002676 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002677 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002678 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002679 else
2680 check_poison_obj(cachep, objp);
2681#else
2682 check_poison_obj(cachep, objp);
2683#endif
2684 poison_obj(cachep, objp, POISON_INUSE);
2685 }
2686 if (cachep->flags & SLAB_STORE_USER)
2687 *dbg_userword(cachep, objp) = caller;
2688
2689 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002690 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2691 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2692 slab_error(cachep,
2693 "double free, or memory outside"
2694 " object was overwritten");
2695 printk(KERN_ERR
2696 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2697 objp, *dbg_redzone1(cachep, objp),
2698 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002699 }
2700 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2701 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2702 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002703 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002704 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002705 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002706
2707 if (!(flags & __GFP_WAIT))
2708 ctor_flags |= SLAB_CTOR_ATOMIC;
2709
2710 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002711 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002712 return objp;
2713}
2714#else
2715#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2716#endif
2717
Pekka Enberg343e0d72006-02-01 03:05:50 -08002718static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002720 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721 struct array_cache *ac;
2722
Christoph Lameterdc85da12006-01-18 17:42:36 -08002723#ifdef CONFIG_NUMA
Christoph Lameter86c562a2006-01-18 17:42:37 -08002724 if (unlikely(current->mempolicy && !in_interrupt())) {
Christoph Lameterdc85da12006-01-18 17:42:36 -08002725 int nid = slab_node(current->mempolicy);
2726
2727 if (nid != numa_node_id())
2728 return __cache_alloc_node(cachep, flags, nid);
2729 }
2730#endif
2731
Alok N Kataria5c382302005-09-27 21:45:46 -07002732 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002733 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002734 if (likely(ac->avail)) {
2735 STATS_INC_ALLOCHIT(cachep);
2736 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002737 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738 } else {
2739 STATS_INC_ALLOCMISS(cachep);
2740 objp = cache_alloc_refill(cachep, flags);
2741 }
Alok N Kataria5c382302005-09-27 21:45:46 -07002742 return objp;
2743}
2744
Pekka Enberg7fd6b142006-02-01 03:05:52 -08002745static __always_inline void *
2746__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
Alok N Kataria5c382302005-09-27 21:45:46 -07002747{
2748 unsigned long save_flags;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002749 void *objp;
Alok N Kataria5c382302005-09-27 21:45:46 -07002750
2751 cache_alloc_debugcheck_before(cachep, flags);
2752
2753 local_irq_save(save_flags);
2754 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002755 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07002756 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enberg7fd6b142006-02-01 03:05:52 -08002757 caller);
Eric Dumazet34342e82005-09-03 15:55:06 -07002758 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002759 return objp;
2760}
2761
Christoph Lametere498be72005-09-09 13:03:32 -07002762#ifdef CONFIG_NUMA
2763/*
2764 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002765 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002766static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07002767{
2768 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002769 struct slab *slabp;
2770 struct kmem_list3 *l3;
2771 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002772 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002773
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002774 l3 = cachep->nodelists[nodeid];
2775 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07002776
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002777 retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08002778 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002779 spin_lock(&l3->list_lock);
2780 entry = l3->slabs_partial.next;
2781 if (entry == &l3->slabs_partial) {
2782 l3->free_touched = 1;
2783 entry = l3->slabs_free.next;
2784 if (entry == &l3->slabs_free)
2785 goto must_grow;
2786 }
Christoph Lametere498be72005-09-09 13:03:32 -07002787
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002788 slabp = list_entry(entry, struct slab, list);
2789 check_spinlock_acquired_node(cachep, nodeid);
2790 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002791
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002792 STATS_INC_NODEALLOCS(cachep);
2793 STATS_INC_ACTIVE(cachep);
2794 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002795
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002796 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07002797
Matthew Dobson78d382d2006-02-01 03:05:47 -08002798 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002799 check_slabp(cachep, slabp);
2800 l3->free_objects--;
2801 /* move slabp to correct slabp list: */
2802 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07002803
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002804 if (slabp->free == BUFCTL_END) {
2805 list_add(&slabp->list, &l3->slabs_full);
2806 } else {
2807 list_add(&slabp->list, &l3->slabs_partial);
2808 }
Christoph Lametere498be72005-09-09 13:03:32 -07002809
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002810 spin_unlock(&l3->list_lock);
2811 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07002812
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002813 must_grow:
2814 spin_unlock(&l3->list_lock);
2815 x = cache_grow(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002816
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002817 if (!x)
2818 return NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07002819
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002820 goto retry;
2821 done:
2822 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07002823}
2824#endif
2825
2826/*
2827 * Caller needs to acquire correct kmem_list's list_lock
2828 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002829static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002830 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002831{
2832 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002833 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002834
2835 for (i = 0; i < nr_objects; i++) {
2836 void *objp = objpp[i];
2837 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002838
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08002839 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07002840 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002841 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07002842 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002843 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002844 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002845 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002846 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002847 check_slabp(cachep, slabp);
2848
2849 /* fixup slab chains */
2850 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07002851 if (l3->free_objects > l3->free_limit) {
2852 l3->free_objects -= cachep->num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002853 slab_destroy(cachep, slabp);
2854 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07002855 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002856 }
2857 } else {
2858 /* Unconditionally move a slab to the end of the
2859 * partial list on free - maximum time for the
2860 * other objects to be freed, too.
2861 */
Christoph Lametere498be72005-09-09 13:03:32 -07002862 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002863 }
2864 }
2865}
2866
Pekka Enberg343e0d72006-02-01 03:05:50 -08002867static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868{
2869 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002870 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07002871 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002872
2873 batchcount = ac->batchcount;
2874#if DEBUG
2875 BUG_ON(!batchcount || batchcount > ac->avail);
2876#endif
2877 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07002878 l3 = cachep->nodelists[node];
Christoph Lametere498be72005-09-09 13:03:32 -07002879 spin_lock(&l3->list_lock);
2880 if (l3->shared) {
2881 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002882 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002883 if (max) {
2884 if (batchcount > max)
2885 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07002886 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002887 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002888 shared_array->avail += batchcount;
2889 goto free_done;
2890 }
2891 }
2892
Christoph Lameterff694162005-09-22 21:44:02 -07002893 free_block(cachep, ac->entry, batchcount, node);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002894 free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002895#if STATS
2896 {
2897 int i = 0;
2898 struct list_head *p;
2899
Christoph Lametere498be72005-09-09 13:03:32 -07002900 p = l3->slabs_free.next;
2901 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002902 struct slab *slabp;
2903
2904 slabp = list_entry(p, struct slab, list);
2905 BUG_ON(slabp->inuse);
2906
2907 i++;
2908 p = p->next;
2909 }
2910 STATS_SET_FREEABLE(cachep, i);
2911 }
2912#endif
Christoph Lametere498be72005-09-09 13:03:32 -07002913 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002914 ac->avail -= batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002915 memmove(ac->entry, &(ac->entry[batchcount]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002916 sizeof(void *) * ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002917}
2918
2919/*
2920 * __cache_free
2921 * Release an obj back to its cache. If the obj has a constructed
2922 * state, it must be in this state _before_ it is released.
2923 *
2924 * Called with disabled ints.
2925 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002926static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002927{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002928 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002929
2930 check_irq_off();
2931 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2932
Christoph Lametere498be72005-09-09 13:03:32 -07002933 /* Make sure we are not freeing a object from another
2934 * node to the array cache on this cpu.
2935 */
2936#ifdef CONFIG_NUMA
2937 {
2938 struct slab *slabp;
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08002939 slabp = virt_to_slab(objp);
Christoph Lametere498be72005-09-09 13:03:32 -07002940 if (unlikely(slabp->nodeid != numa_node_id())) {
2941 struct array_cache *alien = NULL;
2942 int nodeid = slabp->nodeid;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002943 struct kmem_list3 *l3 =
2944 cachep->nodelists[numa_node_id()];
Christoph Lametere498be72005-09-09 13:03:32 -07002945
2946 STATS_INC_NODEFREES(cachep);
2947 if (l3->alien && l3->alien[nodeid]) {
2948 alien = l3->alien[nodeid];
2949 spin_lock(&alien->lock);
2950 if (unlikely(alien->avail == alien->limit))
2951 __drain_alien_cache(cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002952 alien, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002953 alien->entry[alien->avail++] = objp;
2954 spin_unlock(&alien->lock);
2955 } else {
2956 spin_lock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002957 list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07002958 free_block(cachep, &objp, 1, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002959 spin_unlock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002960 list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002961 }
2962 return;
2963 }
2964 }
2965#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002966 if (likely(ac->avail < ac->limit)) {
2967 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002968 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002969 return;
2970 } else {
2971 STATS_INC_FREEMISS(cachep);
2972 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07002973 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002974 }
2975}
2976
2977/**
2978 * kmem_cache_alloc - Allocate an object
2979 * @cachep: The cache to allocate from.
2980 * @flags: See kmalloc().
2981 *
2982 * Allocate an object from this cache. The flags are only relevant
2983 * if the cache has no available objects.
2984 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002985void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002986{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08002987 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002988}
2989EXPORT_SYMBOL(kmem_cache_alloc);
2990
2991/**
2992 * kmem_ptr_validate - check if an untrusted pointer might
2993 * be a slab entry.
2994 * @cachep: the cache we're checking against
2995 * @ptr: pointer to validate
2996 *
2997 * This verifies that the untrusted pointer looks sane:
2998 * it is _not_ a guarantee that the pointer is actually
2999 * part of the slab cache in question, but it at least
3000 * validates that the pointer can be dereferenced and
3001 * looks half-way sane.
3002 *
3003 * Currently only used for dentry validation.
3004 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003005int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003006{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003007 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003008 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003009 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003010 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003011 struct page *page;
3012
3013 if (unlikely(addr < min_addr))
3014 goto out;
3015 if (unlikely(addr > (unsigned long)high_memory - size))
3016 goto out;
3017 if (unlikely(addr & align_mask))
3018 goto out;
3019 if (unlikely(!kern_addr_valid(addr)))
3020 goto out;
3021 if (unlikely(!kern_addr_valid(addr + size - 1)))
3022 goto out;
3023 page = virt_to_page(ptr);
3024 if (unlikely(!PageSlab(page)))
3025 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003026 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003027 goto out;
3028 return 1;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003029 out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003030 return 0;
3031}
3032
3033#ifdef CONFIG_NUMA
3034/**
3035 * kmem_cache_alloc_node - Allocate an object on the specified node
3036 * @cachep: The cache to allocate from.
3037 * @flags: See kmalloc().
3038 * @nodeid: node number of the target node.
3039 *
3040 * Identical to kmem_cache_alloc, except that this function is slow
3041 * and can sleep. And it will allocate memory on the given node, which
3042 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07003043 * New and improved: it will now make sure that the object gets
3044 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003045 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003046void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003047{
Christoph Lametere498be72005-09-09 13:03:32 -07003048 unsigned long save_flags;
3049 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003050
Christoph Lametere498be72005-09-09 13:03:32 -07003051 cache_alloc_debugcheck_before(cachep, flags);
3052 local_irq_save(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003053
3054 if (nodeid == -1 || nodeid == numa_node_id() ||
3055 !cachep->nodelists[nodeid])
Alok N Kataria5c382302005-09-27 21:45:46 -07003056 ptr = ____cache_alloc(cachep, flags);
3057 else
3058 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003059 local_irq_restore(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003060
3061 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3062 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003063
Christoph Lametere498be72005-09-09 13:03:32 -07003064 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003065}
3066EXPORT_SYMBOL(kmem_cache_alloc_node);
3067
Al Virodd0fc662005-10-07 07:46:04 +01003068void *kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003069{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003070 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003071
3072 cachep = kmem_find_general_cachep(size, flags);
3073 if (unlikely(cachep == NULL))
3074 return NULL;
3075 return kmem_cache_alloc_node(cachep, flags, node);
3076}
3077EXPORT_SYMBOL(kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003078#endif
3079
3080/**
3081 * kmalloc - allocate memory
3082 * @size: how many bytes of memory are required.
3083 * @flags: the type of memory to allocate.
3084 *
3085 * kmalloc is the normal method of allocating memory
3086 * in the kernel.
3087 *
3088 * The @flags argument may be one of:
3089 *
3090 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3091 *
3092 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3093 *
3094 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3095 *
3096 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3097 * must be suitable for DMA. This can mean different things on different
3098 * platforms. For example, on i386, it means that the memory must come
3099 * from the first 16MB.
3100 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003101static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3102 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003103{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003104 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003105
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003106 /* If you want to save a few bytes .text space: replace
3107 * __ with kmem_.
3108 * Then kmalloc uses the uninlined functions instead of the inline
3109 * functions.
3110 */
3111 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003112 if (unlikely(cachep == NULL))
3113 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003114 return __cache_alloc(cachep, flags, caller);
3115}
3116
3117#ifndef CONFIG_DEBUG_SLAB
3118
3119void *__kmalloc(size_t size, gfp_t flags)
3120{
3121 return __do_kmalloc(size, flags, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003122}
3123EXPORT_SYMBOL(__kmalloc);
3124
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003125#else
3126
3127void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3128{
3129 return __do_kmalloc(size, flags, caller);
3130}
3131EXPORT_SYMBOL(__kmalloc_track_caller);
3132
3133#endif
3134
Linus Torvalds1da177e2005-04-16 15:20:36 -07003135#ifdef CONFIG_SMP
3136/**
3137 * __alloc_percpu - allocate one copy of the object for every present
3138 * cpu in the system, zeroing them.
3139 * Objects should be dereferenced using the per_cpu_ptr macro only.
3140 *
3141 * @size: how many bytes of memory are required.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003142 */
Pekka Enbergf9f75002006-01-08 01:00:33 -08003143void *__alloc_percpu(size_t size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003144{
3145 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003146 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003147
3148 if (!pdata)
3149 return NULL;
3150
Christoph Lametere498be72005-09-09 13:03:32 -07003151 /*
3152 * Cannot use for_each_online_cpu since a cpu may come online
3153 * and we have no way of figuring out how to fix the array
3154 * that we have allocated then....
3155 */
3156 for_each_cpu(i) {
3157 int node = cpu_to_node(i);
3158
3159 if (node_online(node))
3160 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3161 else
3162 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003163
3164 if (!pdata->ptrs[i])
3165 goto unwind_oom;
3166 memset(pdata->ptrs[i], 0, size);
3167 }
3168
3169 /* Catch derefs w/o wrappers */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003170 return (void *)(~(unsigned long)pdata);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003171
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003172 unwind_oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003173 while (--i >= 0) {
3174 if (!cpu_possible(i))
3175 continue;
3176 kfree(pdata->ptrs[i]);
3177 }
3178 kfree(pdata);
3179 return NULL;
3180}
3181EXPORT_SYMBOL(__alloc_percpu);
3182#endif
3183
3184/**
3185 * kmem_cache_free - Deallocate an object
3186 * @cachep: The cache the allocation was from.
3187 * @objp: The previously allocated object.
3188 *
3189 * Free an object which was previously allocated from this
3190 * cache.
3191 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003192void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003193{
3194 unsigned long flags;
3195
3196 local_irq_save(flags);
3197 __cache_free(cachep, objp);
3198 local_irq_restore(flags);
3199}
3200EXPORT_SYMBOL(kmem_cache_free);
3201
3202/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003203 * kfree - free previously allocated memory
3204 * @objp: pointer returned by kmalloc.
3205 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003206 * If @objp is NULL, no operation is performed.
3207 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003208 * Don't free memory not originally allocated by kmalloc()
3209 * or you will run into trouble.
3210 */
3211void kfree(const void *objp)
3212{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003213 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003214 unsigned long flags;
3215
3216 if (unlikely(!objp))
3217 return;
3218 local_irq_save(flags);
3219 kfree_debugcheck(objp);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003220 c = virt_to_cache(objp);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003221 mutex_debug_check_no_locks_freed(objp, obj_size(c));
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003222 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003223 local_irq_restore(flags);
3224}
3225EXPORT_SYMBOL(kfree);
3226
3227#ifdef CONFIG_SMP
3228/**
3229 * free_percpu - free previously allocated percpu memory
3230 * @objp: pointer returned by alloc_percpu.
3231 *
3232 * Don't free memory not originally allocated by alloc_percpu()
3233 * The complemented objp is to check for that.
3234 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003235void free_percpu(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003236{
3237 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003238 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003239
Christoph Lametere498be72005-09-09 13:03:32 -07003240 /*
3241 * We allocate for all cpus so we cannot use for online cpu here.
3242 */
3243 for_each_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003244 kfree(p->ptrs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003245 kfree(p);
3246}
3247EXPORT_SYMBOL(free_percpu);
3248#endif
3249
Pekka Enberg343e0d72006-02-01 03:05:50 -08003250unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003251{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003252 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003253}
3254EXPORT_SYMBOL(kmem_cache_size);
3255
Pekka Enberg343e0d72006-02-01 03:05:50 -08003256const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003257{
3258 return cachep->name;
3259}
3260EXPORT_SYMBOL_GPL(kmem_cache_name);
3261
Christoph Lametere498be72005-09-09 13:03:32 -07003262/*
3263 * This initializes kmem_list3 for all nodes.
3264 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003265static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003266{
3267 int node;
3268 struct kmem_list3 *l3;
3269 int err = 0;
3270
3271 for_each_online_node(node) {
3272 struct array_cache *nc = NULL, *new;
3273 struct array_cache **new_alien = NULL;
3274#ifdef CONFIG_NUMA
3275 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3276 goto fail;
3277#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003278 if (!(new = alloc_arraycache(node, (cachep->shared *
3279 cachep->batchcount),
3280 0xbaadf00d)))
Christoph Lametere498be72005-09-09 13:03:32 -07003281 goto fail;
3282 if ((l3 = cachep->nodelists[node])) {
3283
3284 spin_lock_irq(&l3->list_lock);
3285
3286 if ((nc = cachep->nodelists[node]->shared))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003287 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003288
3289 l3->shared = new;
3290 if (!cachep->nodelists[node]->alien) {
3291 l3->alien = new_alien;
3292 new_alien = NULL;
3293 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003294 l3->free_limit = (1 + nr_cpus_node(node)) *
3295 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003296 spin_unlock_irq(&l3->list_lock);
3297 kfree(nc);
3298 free_alien_cache(new_alien);
3299 continue;
3300 }
3301 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003302 GFP_KERNEL, node)))
Christoph Lametere498be72005-09-09 13:03:32 -07003303 goto fail;
3304
3305 kmem_list3_init(l3);
3306 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003307 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07003308 l3->shared = new;
3309 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003310 l3->free_limit = (1 + nr_cpus_node(node)) *
3311 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003312 cachep->nodelists[node] = l3;
3313 }
3314 return err;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003315 fail:
Christoph Lametere498be72005-09-09 13:03:32 -07003316 err = -ENOMEM;
3317 return err;
3318}
3319
Linus Torvalds1da177e2005-04-16 15:20:36 -07003320struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003321 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003322 struct array_cache *new[NR_CPUS];
3323};
3324
3325static void do_ccupdate_local(void *info)
3326{
3327 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3328 struct array_cache *old;
3329
3330 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003331 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003332
Linus Torvalds1da177e2005-04-16 15:20:36 -07003333 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3334 new->new[smp_processor_id()] = old;
3335}
3336
Pekka Enberg343e0d72006-02-01 03:05:50 -08003337static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003338 int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003339{
3340 struct ccupdate_struct new;
Christoph Lametere498be72005-09-09 13:03:32 -07003341 int i, err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003342
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003343 memset(&new.new, 0, sizeof(new.new));
Christoph Lametere498be72005-09-09 13:03:32 -07003344 for_each_online_cpu(i) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003345 new.new[i] =
3346 alloc_arraycache(cpu_to_node(i), limit, batchcount);
Christoph Lametere498be72005-09-09 13:03:32 -07003347 if (!new.new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003348 for (i--; i >= 0; i--)
3349 kfree(new.new[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07003350 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003351 }
3352 }
3353 new.cachep = cachep;
3354
3355 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
Christoph Lametere498be72005-09-09 13:03:32 -07003356
Linus Torvalds1da177e2005-04-16 15:20:36 -07003357 check_irq_on();
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003358 spin_lock(&cachep->spinlock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003359 cachep->batchcount = batchcount;
3360 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003361 cachep->shared = shared;
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003362 spin_unlock(&cachep->spinlock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003363
Christoph Lametere498be72005-09-09 13:03:32 -07003364 for_each_online_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003365 struct array_cache *ccold = new.new[i];
3366 if (!ccold)
3367 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003368 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003369 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003370 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003371 kfree(ccold);
3372 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003373
Christoph Lametere498be72005-09-09 13:03:32 -07003374 err = alloc_kmemlist(cachep);
3375 if (err) {
3376 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003377 cachep->name, -err);
Christoph Lametere498be72005-09-09 13:03:32 -07003378 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003379 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003380 return 0;
3381}
3382
Pekka Enberg343e0d72006-02-01 03:05:50 -08003383static void enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003384{
3385 int err;
3386 int limit, shared;
3387
3388 /* The head array serves three purposes:
3389 * - create a LIFO ordering, i.e. return objects that are cache-warm
3390 * - reduce the number of spinlock operations.
3391 * - reduce the number of linked list operations on the slab and
3392 * bufctl chains: array operations are cheaper.
3393 * The numbers are guessed, we should auto-tune as described by
3394 * Bonwick.
3395 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003396 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003397 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003398 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003399 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003400 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003401 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003402 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003403 limit = 54;
3404 else
3405 limit = 120;
3406
3407 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3408 * allocation behaviour: Most allocs on one cpu, most free operations
3409 * on another cpu. For these cases, an efficient object passing between
3410 * cpus is necessary. This is provided by a shared array. The array
3411 * replaces Bonwick's magazine layer.
3412 * On uniprocessor, it's functionally equivalent (but less efficient)
3413 * to a larger limit. Thus disabled by default.
3414 */
3415 shared = 0;
3416#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003417 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003418 shared = 8;
3419#endif
3420
3421#if DEBUG
3422 /* With debugging enabled, large batchcount lead to excessively
3423 * long periods with disabled local interrupts. Limit the
3424 * batchcount
3425 */
3426 if (limit > 32)
3427 limit = 32;
3428#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003429 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003430 if (err)
3431 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003432 cachep->name, -err);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003433}
3434
Pekka Enberg343e0d72006-02-01 03:05:50 -08003435static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003436 int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003437{
3438 int tofree;
3439
Christoph Lametere498be72005-09-09 13:03:32 -07003440 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003441 if (ac->touched && !force) {
3442 ac->touched = 0;
3443 } else if (ac->avail) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003444 tofree = force ? ac->avail : (ac->limit + 4) / 5;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003445 if (tofree > ac->avail) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003446 tofree = (ac->avail + 1) / 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003447 }
Christoph Lameterff694162005-09-22 21:44:02 -07003448 free_block(cachep, ac->entry, tofree, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003449 ac->avail -= tofree;
Christoph Lametere498be72005-09-09 13:03:32 -07003450 memmove(ac->entry, &(ac->entry[tofree]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003451 sizeof(void *) * ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003452 }
3453}
3454
3455/**
3456 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003457 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003458 *
3459 * Called from workqueue/eventd every few seconds.
3460 * Purpose:
3461 * - clear the per-cpu caches for this CPU.
3462 * - return freeable pages to the main free memory pool.
3463 *
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003464 * If we cannot acquire the cache chain mutex then just give up - we'll
Linus Torvalds1da177e2005-04-16 15:20:36 -07003465 * try again on the next iteration.
3466 */
3467static void cache_reap(void *unused)
3468{
3469 struct list_head *walk;
Christoph Lametere498be72005-09-09 13:03:32 -07003470 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003471
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003472 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003473 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003474 schedule_delayed_work(&__get_cpu_var(reap_work),
3475 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003476 return;
3477 }
3478
3479 list_for_each(walk, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003480 struct kmem_cache *searchp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003481 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003482 int tofree;
3483 struct slab *slabp;
3484
Pekka Enberg343e0d72006-02-01 03:05:50 -08003485 searchp = list_entry(walk, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003486
3487 if (searchp->flags & SLAB_NO_REAP)
3488 goto next;
3489
3490 check_irq_on();
3491
Christoph Lametere498be72005-09-09 13:03:32 -07003492 l3 = searchp->nodelists[numa_node_id()];
3493 if (l3->alien)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08003494 drain_alien_cache(searchp, l3->alien);
Christoph Lametere498be72005-09-09 13:03:32 -07003495 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003496
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003497 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003498 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003499
Christoph Lametere498be72005-09-09 13:03:32 -07003500 if (time_after(l3->next_reap, jiffies))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003501 goto next_unlock;
3502
Christoph Lametere498be72005-09-09 13:03:32 -07003503 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003504
Christoph Lametere498be72005-09-09 13:03:32 -07003505 if (l3->shared)
3506 drain_array_locked(searchp, l3->shared, 0,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003507 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003508
Christoph Lametere498be72005-09-09 13:03:32 -07003509 if (l3->free_touched) {
3510 l3->free_touched = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003511 goto next_unlock;
3512 }
3513
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003514 tofree =
3515 (l3->free_limit + 5 * searchp->num -
3516 1) / (5 * searchp->num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003517 do {
Christoph Lametere498be72005-09-09 13:03:32 -07003518 p = l3->slabs_free.next;
3519 if (p == &(l3->slabs_free))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003520 break;
3521
3522 slabp = list_entry(p, struct slab, list);
3523 BUG_ON(slabp->inuse);
3524 list_del(&slabp->list);
3525 STATS_INC_REAPED(searchp);
3526
3527 /* Safe to drop the lock. The slab is no longer
3528 * linked to the cache.
3529 * searchp cannot disappear, we hold
3530 * cache_chain_lock
3531 */
Christoph Lametere498be72005-09-09 13:03:32 -07003532 l3->free_objects -= searchp->num;
3533 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003534 slab_destroy(searchp, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003535 spin_lock_irq(&l3->list_lock);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003536 } while (--tofree > 0);
3537 next_unlock:
Christoph Lametere498be72005-09-09 13:03:32 -07003538 spin_unlock_irq(&l3->list_lock);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003539 next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003540 cond_resched();
3541 }
3542 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003543 mutex_unlock(&cache_chain_mutex);
Christoph Lameter4ae7c032005-06-21 17:14:57 -07003544 drain_remote_pages();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003545 /* Setup the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003546 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003547}
3548
3549#ifdef CONFIG_PROC_FS
3550
Pekka Enberg85289f92006-01-08 01:00:36 -08003551static void print_slabinfo_header(struct seq_file *m)
3552{
3553 /*
3554 * Output format version, so at least we can change it
3555 * without _too_ many complaints.
3556 */
3557#if STATS
3558 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3559#else
3560 seq_puts(m, "slabinfo - version: 2.1\n");
3561#endif
3562 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3563 "<objperslab> <pagesperslab>");
3564 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3565 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3566#if STATS
3567 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3568 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3569 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3570#endif
3571 seq_putc(m, '\n');
3572}
3573
Linus Torvalds1da177e2005-04-16 15:20:36 -07003574static void *s_start(struct seq_file *m, loff_t *pos)
3575{
3576 loff_t n = *pos;
3577 struct list_head *p;
3578
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003579 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08003580 if (!n)
3581 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003582 p = cache_chain.next;
3583 while (n--) {
3584 p = p->next;
3585 if (p == &cache_chain)
3586 return NULL;
3587 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08003588 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003589}
3590
3591static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3592{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003593 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594 ++*pos;
3595 return cachep->next.next == &cache_chain ? NULL
Pekka Enberg343e0d72006-02-01 03:05:50 -08003596 : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003597}
3598
3599static void s_stop(struct seq_file *m, void *p)
3600{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003601 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003602}
3603
3604static int s_show(struct seq_file *m, void *p)
3605{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003606 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003607 struct list_head *q;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003608 struct slab *slabp;
3609 unsigned long active_objs;
3610 unsigned long num_objs;
3611 unsigned long active_slabs = 0;
3612 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003613 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003614 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003615 int node;
3616 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003617
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003618 spin_lock(&cachep->spinlock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003619 active_objs = 0;
3620 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003621 for_each_online_node(node) {
3622 l3 = cachep->nodelists[node];
3623 if (!l3)
3624 continue;
3625
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003626 check_irq_on();
3627 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003628
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003629 list_for_each(q, &l3->slabs_full) {
Christoph Lametere498be72005-09-09 13:03:32 -07003630 slabp = list_entry(q, struct slab, list);
3631 if (slabp->inuse != cachep->num && !error)
3632 error = "slabs_full accounting error";
3633 active_objs += cachep->num;
3634 active_slabs++;
3635 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003636 list_for_each(q, &l3->slabs_partial) {
Christoph Lametere498be72005-09-09 13:03:32 -07003637 slabp = list_entry(q, struct slab, list);
3638 if (slabp->inuse == cachep->num && !error)
3639 error = "slabs_partial inuse accounting error";
3640 if (!slabp->inuse && !error)
3641 error = "slabs_partial/inuse accounting error";
3642 active_objs += slabp->inuse;
3643 active_slabs++;
3644 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003645 list_for_each(q, &l3->slabs_free) {
Christoph Lametere498be72005-09-09 13:03:32 -07003646 slabp = list_entry(q, struct slab, list);
3647 if (slabp->inuse && !error)
3648 error = "slabs_free/inuse accounting error";
3649 num_slabs++;
3650 }
3651 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08003652 if (l3->shared)
3653 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07003654
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003655 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003656 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003657 num_slabs += active_slabs;
3658 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003659 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003660 error = "free_objects accounting error";
3661
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003662 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003663 if (error)
3664 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3665
3666 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003667 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003668 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003669 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003670 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003671 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003672 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003673#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003674 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003675 unsigned long high = cachep->high_mark;
3676 unsigned long allocs = cachep->num_allocations;
3677 unsigned long grown = cachep->grown;
3678 unsigned long reaped = cachep->reaped;
3679 unsigned long errors = cachep->errors;
3680 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003681 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07003682 unsigned long node_frees = cachep->node_frees;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003683
Christoph Lametere498be72005-09-09 13:03:32 -07003684 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003685 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003686 }
3687 /* cpu stats */
3688 {
3689 unsigned long allochit = atomic_read(&cachep->allochit);
3690 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3691 unsigned long freehit = atomic_read(&cachep->freehit);
3692 unsigned long freemiss = atomic_read(&cachep->freemiss);
3693
3694 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003695 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003696 }
3697#endif
3698 seq_putc(m, '\n');
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003699 spin_unlock(&cachep->spinlock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003700 return 0;
3701}
3702
3703/*
3704 * slabinfo_op - iterator that generates /proc/slabinfo
3705 *
3706 * Output layout:
3707 * cache-name
3708 * num-active-objs
3709 * total-objs
3710 * object size
3711 * num-active-slabs
3712 * total-slabs
3713 * num-pages-per-slab
3714 * + further values on SMP and with statistics enabled
3715 */
3716
3717struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003718 .start = s_start,
3719 .next = s_next,
3720 .stop = s_stop,
3721 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003722};
3723
3724#define MAX_SLABINFO_WRITE 128
3725/**
3726 * slabinfo_write - Tuning for the slab allocator
3727 * @file: unused
3728 * @buffer: user buffer
3729 * @count: data length
3730 * @ppos: unused
3731 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003732ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3733 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003734{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003735 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003736 int limit, batchcount, shared, res;
3737 struct list_head *p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003738
Linus Torvalds1da177e2005-04-16 15:20:36 -07003739 if (count > MAX_SLABINFO_WRITE)
3740 return -EINVAL;
3741 if (copy_from_user(&kbuf, buffer, count))
3742 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003743 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07003744
3745 tmp = strchr(kbuf, ' ');
3746 if (!tmp)
3747 return -EINVAL;
3748 *tmp = '\0';
3749 tmp++;
3750 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3751 return -EINVAL;
3752
3753 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003754 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003755 res = -EINVAL;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003756 list_for_each(p, &cache_chain) {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003757 struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
3758 next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003759
3760 if (!strcmp(cachep->name, kbuf)) {
3761 if (limit < 1 ||
3762 batchcount < 1 ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003763 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003764 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003765 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003766 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003767 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003768 }
3769 break;
3770 }
3771 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003772 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003773 if (res >= 0)
3774 res = count;
3775 return res;
3776}
3777#endif
3778
Manfred Spraul00e145b2005-09-03 15:55:07 -07003779/**
3780 * ksize - get the actual amount of memory allocated for a given object
3781 * @objp: Pointer to the object
3782 *
3783 * kmalloc may internally round up allocations and return more memory
3784 * than requested. ksize() can be used to determine the actual amount of
3785 * memory allocated. The caller may use this additional memory, even though
3786 * a smaller amount of memory was initially specified with the kmalloc call.
3787 * The caller must guarantee that objp points to a valid object previously
3788 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3789 * must not be freed during the duration of the call.
3790 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003791unsigned int ksize(const void *objp)
3792{
Manfred Spraul00e145b2005-09-03 15:55:07 -07003793 if (unlikely(objp == NULL))
3794 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003795
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003796 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003797}