blob: bbfb03eccb7f16bb23da347fc526b99eb260b4a0 [file] [log] [blame]
Joe Perchesc767a542012-05-21 19:50:07 -07001#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
Alok Katariabfc0f592008-07-01 11:43:24 -07003#include <linux/kernel.h>
Alok Kataria0ef95532008-07-01 11:43:18 -07004#include <linux/sched.h>
5#include <linux/init.h>
Paul Gortmaker186f4362016-07-13 20:18:56 -04006#include <linux/export.h>
Alok Kataria0ef95532008-07-01 11:43:18 -07007#include <linux/timer.h>
Alok Katariabfc0f592008-07-01 11:43:24 -07008#include <linux/acpi_pmtmr.h>
Alok Kataria2dbe06f2008-07-01 11:43:31 -07009#include <linux/cpufreq.h>
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070010#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
Arnd Bergmann08604bd2009-06-16 15:31:12 -070013#include <linux/timex.h>
Peter Zijlstra10b033d2013-11-28 19:01:40 +010014#include <linux/static_key.h>
Alok Katariabfc0f592008-07-01 11:43:24 -070015
16#include <asm/hpet.h>
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070017#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
Alok Kataria88b094f2008-10-27 10:41:46 -070021#include <asm/hypervisor.h>
Thomas Gleixner08047c42009-08-20 16:27:41 +020022#include <asm/nmi.h>
Thomas Gleixner2d826402009-08-20 17:06:25 +020023#include <asm/x86_init.h>
David Woodhouse03da3ff2015-09-16 14:10:03 +010024#include <asm/geode.h>
Nicolai Stange6731b0d2016-07-14 17:22:55 +020025#include <asm/apic.h>
Prarit Bhargava655e52d2016-09-19 08:51:40 -040026#include <asm/intel-family.h>
Alok Kataria0ef95532008-07-01 11:43:18 -070027
Ingo Molnarf24ade32009-03-10 19:02:30 +010028unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
Alok Kataria0ef95532008-07-01 11:43:18 -070029EXPORT_SYMBOL(cpu_khz);
Ingo Molnarf24ade32009-03-10 19:02:30 +010030
31unsigned int __read_mostly tsc_khz;
Alok Kataria0ef95532008-07-01 11:43:18 -070032EXPORT_SYMBOL(tsc_khz);
33
34/*
35 * TSC can be unstable due to cpufreq or due to unsynced TSCs
36 */
Ingo Molnarf24ade32009-03-10 19:02:30 +010037static int __read_mostly tsc_unstable;
Alok Kataria0ef95532008-07-01 11:43:18 -070038
39/* native_sched_clock() is called before tsc_init(), so
40 we must start with the TSC soft disabled to prevent
Borislav Petkov59e21e32016-04-04 22:24:59 +020041 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
Ingo Molnarf24ade32009-03-10 19:02:30 +010042static int __read_mostly tsc_disabled = -1;
Alok Kataria0ef95532008-07-01 11:43:18 -070043
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +020044static DEFINE_STATIC_KEY_FALSE(__use_tsc);
Peter Zijlstra10b033d2013-11-28 19:01:40 +010045
Suresh Siddha28a00182011-11-04 15:42:17 -070046int tsc_clocksource_reliable;
Peter Zijlstra57c67da2013-11-29 15:39:25 +010047
Christopher S. Hallf9677e02016-02-29 06:33:47 -080048static u32 art_to_tsc_numerator;
49static u32 art_to_tsc_denominator;
50static u64 art_to_tsc_offset;
51struct clocksource *art_related_clocksource;
52
Peter Zijlstra20d1c862013-11-29 15:40:29 +010053/*
54 * Use a ring-buffer like data structure, where a writer advances the head by
55 * writing a new data entry and a reader advances the tail when it observes a
56 * new entry.
57 *
58 * Writers are made to wait on readers until there's space to write a new
59 * entry.
60 *
61 * This means that we can always use an {offset, mul} pair to compute a ns
62 * value that is 'roughly' in the right direction, even if we're writing a new
63 * {offset, mul} pair during the clock read.
64 *
65 * The down-side is that we can no longer guarantee strict monotonicity anymore
66 * (assuming the TSC was that to begin with), because while we compute the
67 * intersection point of the two clock slopes and make sure the time is
68 * continuous at the point of switching; we can no longer guarantee a reader is
69 * strictly before or after the switch point.
70 *
71 * It does mean a reader no longer needs to disable IRQs in order to avoid
72 * CPU-Freq updates messing with his times, and similarly an NMI reader will
73 * no longer run the risk of hitting half-written state.
74 */
75
76struct cyc2ns {
77 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
78 struct cyc2ns_data *head; /* 48 + 8 = 56 */
79 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
80}; /* exactly fits one cacheline */
81
82static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
83
84struct cyc2ns_data *cyc2ns_read_begin(void)
85{
86 struct cyc2ns_data *head;
87
88 preempt_disable();
89
90 head = this_cpu_read(cyc2ns.head);
91 /*
92 * Ensure we observe the entry when we observe the pointer to it.
93 * matches the wmb from cyc2ns_write_end().
94 */
95 smp_read_barrier_depends();
96 head->__count++;
97 barrier();
98
99 return head;
100}
101
102void cyc2ns_read_end(struct cyc2ns_data *head)
103{
104 barrier();
105 /*
106 * If we're the outer most nested read; update the tail pointer
107 * when we're done. This notifies possible pending writers
108 * that we've observed the head pointer and that the other
109 * entry is now free.
110 */
111 if (!--head->__count) {
112 /*
113 * x86-TSO does not reorder writes with older reads;
114 * therefore once this write becomes visible to another
115 * cpu, we must be finished reading the cyc2ns_data.
116 *
117 * matches with cyc2ns_write_begin().
118 */
119 this_cpu_write(cyc2ns.tail, head);
120 }
121 preempt_enable();
122}
123
124/*
125 * Begin writing a new @data entry for @cpu.
126 *
127 * Assumes some sort of write side lock; currently 'provided' by the assumption
128 * that cpufreq will call its notifiers sequentially.
129 */
130static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
131{
132 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
133 struct cyc2ns_data *data = c2n->data;
134
135 if (data == c2n->head)
136 data++;
137
138 /* XXX send an IPI to @cpu in order to guarantee a read? */
139
140 /*
141 * When we observe the tail write from cyc2ns_read_end(),
142 * the cpu must be done with that entry and its safe
143 * to start writing to it.
144 */
145 while (c2n->tail == data)
146 cpu_relax();
147
148 return data;
149}
150
151static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
152{
153 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
154
155 /*
156 * Ensure the @data writes are visible before we publish the
157 * entry. Matches the data-depencency in cyc2ns_read_begin().
158 */
159 smp_wmb();
160
161 ACCESS_ONCE(c2n->head) = data;
162}
163
164/*
165 * Accelerators for sched_clock()
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100166 * convert from cycles(64bits) => nanoseconds (64bits)
167 * basic equation:
168 * ns = cycles / (freq / ns_per_sec)
169 * ns = cycles * (ns_per_sec / freq)
170 * ns = cycles * (10^9 / (cpu_khz * 10^3))
171 * ns = cycles * (10^6 / cpu_khz)
172 *
173 * Then we use scaling math (suggested by george@mvista.com) to get:
174 * ns = cycles * (10^6 * SC / cpu_khz) / SC
175 * ns = cycles * cyc2ns_scale / SC
176 *
177 * And since SC is a constant power of two, we can convert the div
Adrian Hunterb20112e2015-08-21 12:05:18 +0300178 * into a shift. The larger SC is, the more accurate the conversion, but
179 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
180 * (64-bit result) can be used.
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100181 *
Adrian Hunterb20112e2015-08-21 12:05:18 +0300182 * We can use khz divisor instead of mhz to keep a better precision.
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100183 * (mathieu.desnoyers@polymtl.ca)
184 *
185 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
186 */
187
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100188static void cyc2ns_data_init(struct cyc2ns_data *data)
189{
Peter Zijlstra5e3c1af2014-01-22 22:08:14 +0100190 data->cyc2ns_mul = 0;
Adrian Hunterb20112e2015-08-21 12:05:18 +0300191 data->cyc2ns_shift = 0;
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100192 data->cyc2ns_offset = 0;
193 data->__count = 0;
194}
195
196static void cyc2ns_init(int cpu)
197{
198 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
199
200 cyc2ns_data_init(&c2n->data[0]);
201 cyc2ns_data_init(&c2n->data[1]);
202
203 c2n->head = c2n->data;
204 c2n->tail = c2n->data;
205}
206
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100207static inline unsigned long long cycles_2_ns(unsigned long long cyc)
208{
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100209 struct cyc2ns_data *data, *tail;
210 unsigned long long ns;
211
212 /*
213 * See cyc2ns_read_*() for details; replicated in order to avoid
214 * an extra few instructions that came with the abstraction.
215 * Notable, it allows us to only do the __count and tail update
216 * dance when its actually needed.
217 */
218
Steven Rostedt569d6552014-02-04 14:13:15 -0500219 preempt_disable_notrace();
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100220 data = this_cpu_read(cyc2ns.head);
221 tail = this_cpu_read(cyc2ns.tail);
222
223 if (likely(data == tail)) {
224 ns = data->cyc2ns_offset;
Adrian Hunterb20112e2015-08-21 12:05:18 +0300225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100226 } else {
227 data->__count++;
228
229 barrier();
230
231 ns = data->cyc2ns_offset;
Adrian Hunterb20112e2015-08-21 12:05:18 +0300232 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100233
234 barrier();
235
236 if (!--data->__count)
237 this_cpu_write(cyc2ns.tail, data);
238 }
Steven Rostedt569d6552014-02-04 14:13:15 -0500239 preempt_enable_notrace();
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100240
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100241 return ns;
242}
243
Len Brownaa297292016-06-17 01:22:51 -0400244static void set_cyc2ns_scale(unsigned long khz, int cpu)
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100245{
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100246 unsigned long long tsc_now, ns_now;
247 struct cyc2ns_data *data;
248 unsigned long flags;
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100249
250 local_irq_save(flags);
251 sched_clock_idle_sleep_event();
252
Len Brownaa297292016-06-17 01:22:51 -0400253 if (!khz)
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100254 goto done;
255
256 data = cyc2ns_write_begin(cpu);
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100257
Andy Lutomirski4ea16362015-06-25 18:44:07 +0200258 tsc_now = rdtsc();
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100259 ns_now = cycles_2_ns(tsc_now);
260
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100261 /*
262 * Compute a new multiplier as per the above comment and ensure our
263 * time function is continuous; see the comment near struct
264 * cyc2ns_data.
265 */
Len Brownaa297292016-06-17 01:22:51 -0400266 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
Adrian Hunterb20112e2015-08-21 12:05:18 +0300267 NSEC_PER_MSEC, 0);
268
Adrian Hunterb9511cd2015-10-16 16:24:05 +0300269 /*
270 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
271 * not expected to be greater than 31 due to the original published
272 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
273 * value) - refer perf_event_mmap_page documentation in perf_event.h.
274 */
275 if (data->cyc2ns_shift == 32) {
276 data->cyc2ns_shift = 31;
277 data->cyc2ns_mul >>= 1;
278 }
279
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100280 data->cyc2ns_offset = ns_now -
Adrian Hunterb20112e2015-08-21 12:05:18 +0300281 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100282
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100283 cyc2ns_write_end(cpu, data);
284
285done:
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100286 sched_clock_idle_wakeup_event(0);
287 local_irq_restore(flags);
288}
Alok Kataria0ef95532008-07-01 11:43:18 -0700289/*
290 * Scheduler clock - returns current time in nanosec units.
291 */
292u64 native_sched_clock(void)
293{
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +0200294 if (static_branch_likely(&__use_tsc)) {
295 u64 tsc_now = rdtsc();
296
297 /* return the value in ns */
298 return cycles_2_ns(tsc_now);
299 }
Alok Kataria0ef95532008-07-01 11:43:18 -0700300
301 /*
302 * Fall back to jiffies if there's no TSC available:
303 * ( But note that we still use it if the TSC is marked
304 * unstable. We do this because unlike Time Of Day,
305 * the scheduler clock tolerates small errors and it's
306 * very important for it to be as fast as the platform
Daniel Mack3ad2f3f2010-02-03 08:01:28 +0800307 * can achieve it. )
Alok Kataria0ef95532008-07-01 11:43:18 -0700308 */
Alok Kataria0ef95532008-07-01 11:43:18 -0700309
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +0200310 /* No locking but a rare wrong value is not a big deal: */
311 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
Alok Kataria0ef95532008-07-01 11:43:18 -0700312}
313
Andi Kleena94cab22015-05-10 12:22:39 -0700314/*
315 * Generate a sched_clock if you already have a TSC value.
316 */
317u64 native_sched_clock_from_tsc(u64 tsc)
318{
319 return cycles_2_ns(tsc);
320}
321
Alok Kataria0ef95532008-07-01 11:43:18 -0700322/* We need to define a real function for sched_clock, to override the
323 weak default version */
324#ifdef CONFIG_PARAVIRT
325unsigned long long sched_clock(void)
326{
327 return paravirt_sched_clock();
328}
329#else
330unsigned long long
331sched_clock(void) __attribute__((alias("native_sched_clock")));
332#endif
333
334int check_tsc_unstable(void)
335{
336 return tsc_unstable;
337}
338EXPORT_SYMBOL_GPL(check_tsc_unstable);
339
340#ifdef CONFIG_X86_TSC
341int __init notsc_setup(char *str)
342{
Joe Perchesc767a542012-05-21 19:50:07 -0700343 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
Alok Kataria0ef95532008-07-01 11:43:18 -0700344 tsc_disabled = 1;
345 return 1;
346}
347#else
348/*
349 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
350 * in cpu/common.c
351 */
352int __init notsc_setup(char *str)
353{
354 setup_clear_cpu_cap(X86_FEATURE_TSC);
355 return 1;
356}
357#endif
358
359__setup("notsc", notsc_setup);
Alok Katariabfc0f592008-07-01 11:43:24 -0700360
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -0700361static int no_sched_irq_time;
362
Alok Kataria395628e2008-10-24 17:22:01 -0700363static int __init tsc_setup(char *str)
364{
365 if (!strcmp(str, "reliable"))
366 tsc_clocksource_reliable = 1;
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -0700367 if (!strncmp(str, "noirqtime", 9))
368 no_sched_irq_time = 1;
Peter Zijlstrac4f8fbc2017-04-13 14:56:44 +0200369 if (!strcmp(str, "unstable"))
370 mark_tsc_unstable("boot parameter");
Alok Kataria395628e2008-10-24 17:22:01 -0700371 return 1;
372}
373
374__setup("tsc=", tsc_setup);
375
Alok Katariabfc0f592008-07-01 11:43:24 -0700376#define MAX_RETRIES 5
377#define SMI_TRESHOLD 50000
378
379/*
380 * Read TSC and the reference counters. Take care of SMI disturbance
381 */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000382static u64 tsc_read_refs(u64 *p, int hpet)
Alok Katariabfc0f592008-07-01 11:43:24 -0700383{
384 u64 t1, t2;
385 int i;
386
387 for (i = 0; i < MAX_RETRIES; i++) {
388 t1 = get_cycles();
389 if (hpet)
Thomas Gleixner827014b2008-09-04 15:18:53 +0000390 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
Alok Katariabfc0f592008-07-01 11:43:24 -0700391 else
Thomas Gleixner827014b2008-09-04 15:18:53 +0000392 *p = acpi_pm_read_early();
Alok Katariabfc0f592008-07-01 11:43:24 -0700393 t2 = get_cycles();
394 if ((t2 - t1) < SMI_TRESHOLD)
395 return t2;
396 }
397 return ULLONG_MAX;
398}
399
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700400/*
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000401 * Calculate the TSC frequency from HPET reference
402 */
403static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
404{
405 u64 tmp;
406
407 if (hpet2 < hpet1)
408 hpet2 += 0x100000000ULL;
409 hpet2 -= hpet1;
410 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
411 do_div(tmp, 1000000);
412 do_div(deltatsc, tmp);
413
414 return (unsigned long) deltatsc;
415}
416
417/*
418 * Calculate the TSC frequency from PMTimer reference
419 */
420static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
421{
422 u64 tmp;
423
424 if (!pm1 && !pm2)
425 return ULONG_MAX;
426
427 if (pm2 < pm1)
428 pm2 += (u64)ACPI_PM_OVRRUN;
429 pm2 -= pm1;
430 tmp = pm2 * 1000000000LL;
431 do_div(tmp, PMTMR_TICKS_PER_SEC);
432 do_div(deltatsc, tmp);
433
434 return (unsigned long) deltatsc;
435}
436
Thomas Gleixnera977c402008-09-04 15:18:59 +0000437#define CAL_MS 10
Deepak Saxenab7743972011-11-01 14:25:07 -0700438#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
Thomas Gleixnera977c402008-09-04 15:18:59 +0000439#define CAL_PIT_LOOPS 1000
440
441#define CAL2_MS 50
Deepak Saxenab7743972011-11-01 14:25:07 -0700442#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
Thomas Gleixnera977c402008-09-04 15:18:59 +0000443#define CAL2_PIT_LOOPS 5000
444
Thomas Gleixnercce3e052008-09-04 15:18:44 +0000445
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700446/*
447 * Try to calibrate the TSC against the Programmable
448 * Interrupt Timer and return the frequency of the TSC
449 * in kHz.
450 *
451 * Return ULONG_MAX on failure to calibrate.
452 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000453static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700454{
455 u64 tsc, t1, t2, delta;
456 unsigned long tscmin, tscmax;
457 int pitcnt;
458
459 /* Set the Gate high, disable speaker */
460 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
461
462 /*
463 * Setup CTC channel 2* for mode 0, (interrupt on terminal
464 * count mode), binary count. Set the latch register to 50ms
465 * (LSB then MSB) to begin countdown.
466 */
467 outb(0xb0, 0x43);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000468 outb(latch & 0xff, 0x42);
469 outb(latch >> 8, 0x42);
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700470
471 tsc = t1 = t2 = get_cycles();
472
473 pitcnt = 0;
474 tscmax = 0;
475 tscmin = ULONG_MAX;
476 while ((inb(0x61) & 0x20) == 0) {
477 t2 = get_cycles();
478 delta = t2 - tsc;
479 tsc = t2;
480 if ((unsigned long) delta < tscmin)
481 tscmin = (unsigned int) delta;
482 if ((unsigned long) delta > tscmax)
483 tscmax = (unsigned int) delta;
484 pitcnt++;
485 }
486
487 /*
488 * Sanity checks:
489 *
Thomas Gleixnera977c402008-09-04 15:18:59 +0000490 * If we were not able to read the PIT more than loopmin
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700491 * times, then we have been hit by a massive SMI
492 *
493 * If the maximum is 10 times larger than the minimum,
494 * then we got hit by an SMI as well.
495 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000496 if (pitcnt < loopmin || tscmax > 10 * tscmin)
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700497 return ULONG_MAX;
498
499 /* Calculate the PIT value */
500 delta = t2 - t1;
Thomas Gleixnera977c402008-09-04 15:18:59 +0000501 do_div(delta, ms);
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700502 return delta;
503}
504
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700505/*
506 * This reads the current MSB of the PIT counter, and
507 * checks if we are running on sufficiently fast and
508 * non-virtualized hardware.
509 *
510 * Our expectations are:
511 *
512 * - the PIT is running at roughly 1.19MHz
513 *
514 * - each IO is going to take about 1us on real hardware,
515 * but we allow it to be much faster (by a factor of 10) or
516 * _slightly_ slower (ie we allow up to a 2us read+counter
517 * update - anything else implies a unacceptably slow CPU
518 * or PIT for the fast calibration to work.
519 *
520 * - with 256 PIT ticks to read the value, we have 214us to
521 * see the same MSB (and overhead like doing a single TSC
522 * read per MSB value etc).
523 *
524 * - We're doing 2 reads per loop (LSB, MSB), and we expect
525 * them each to take about a microsecond on real hardware.
526 * So we expect a count value of around 100. But we'll be
527 * generous, and accept anything over 50.
528 *
529 * - if the PIT is stuck, and we see *many* more reads, we
530 * return early (and the next caller of pit_expect_msb()
531 * then consider it a failure when they don't see the
532 * next expected value).
533 *
534 * These expectations mean that we know that we have seen the
535 * transition from one expected value to another with a fairly
536 * high accuracy, and we didn't miss any events. We can thus
537 * use the TSC value at the transitions to calculate a pretty
538 * good value for the TSC frequencty.
539 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700540static inline int pit_verify_msb(unsigned char val)
541{
542 /* Ignore LSB */
543 inb(0x42);
544 return inb(0x42) == val;
545}
546
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700547static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700548{
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700549 int count;
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800550 u64 tsc = 0, prev_tsc = 0;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700551
552 for (count = 0; count < 50000; count++) {
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700553 if (!pit_verify_msb(val))
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700554 break;
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800555 prev_tsc = tsc;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700556 tsc = get_cycles();
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700557 }
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800558 *deltap = get_cycles() - prev_tsc;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700559 *tscp = tsc;
560
561 /*
562 * We require _some_ success, but the quality control
563 * will be based on the error terms on the TSC values.
564 */
565 return count > 5;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700566}
567
568/*
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700569 * How many MSB values do we want to see? We aim for
570 * a maximum error rate of 500ppm (in practice the
571 * real error is much smaller), but refuse to spend
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800572 * more than 50ms on it.
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700573 */
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800574#define MAX_QUICK_PIT_MS 50
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700575#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700576
577static unsigned long quick_pit_calibrate(void)
578{
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700579 int i;
580 u64 tsc, delta;
581 unsigned long d1, d2;
582
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700583 /* Set the Gate high, disable speaker */
584 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
585
586 /*
587 * Counter 2, mode 0 (one-shot), binary count
588 *
589 * NOTE! Mode 2 decrements by two (and then the
590 * output is flipped each time, giving the same
591 * final output frequency as a decrement-by-one),
592 * so mode 0 is much better when looking at the
593 * individual counts.
594 */
595 outb(0xb0, 0x43);
596
597 /* Start at 0xffff */
598 outb(0xff, 0x42);
599 outb(0xff, 0x42);
600
Linus Torvaldsa6a80e12009-03-17 07:58:26 -0700601 /*
602 * The PIT starts counting at the next edge, so we
603 * need to delay for a microsecond. The easiest way
604 * to do that is to just read back the 16-bit counter
605 * once from the PIT.
606 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700607 pit_verify_msb(0);
Linus Torvaldsa6a80e12009-03-17 07:58:26 -0700608
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700609 if (pit_expect_msb(0xff, &tsc, &d1)) {
610 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
611 if (!pit_expect_msb(0xff-i, &delta, &d2))
612 break;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700613
Adrian Hunter5aac6442015-06-03 10:39:46 +0300614 delta -= tsc;
615
616 /*
617 * Extrapolate the error and fail fast if the error will
618 * never be below 500 ppm.
619 */
620 if (i == 1 &&
621 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
622 return 0;
623
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700624 /*
625 * Iterate until the error is less than 500 ppm
626 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700627 if (d1+d2 >= delta >> 11)
628 continue;
629
630 /*
631 * Check the PIT one more time to verify that
632 * all TSC reads were stable wrt the PIT.
633 *
634 * This also guarantees serialization of the
635 * last cycle read ('d2') in pit_expect_msb.
636 */
637 if (!pit_verify_msb(0xfe - i))
638 break;
639 goto success;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700640 }
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700641 }
Alexandre Demers52045212014-12-09 01:27:50 -0500642 pr_info("Fast TSC calibration failed\n");
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700643 return 0;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700644
645success:
646 /*
647 * Ok, if we get here, then we've seen the
648 * MSB of the PIT decrement 'i' times, and the
649 * error has shrunk to less than 500 ppm.
650 *
651 * As a result, we can depend on there not being
652 * any odd delays anywhere, and the TSC reads are
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800653 * reliable (within the error).
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700654 *
655 * kHz = ticks / time-in-seconds / 1000;
656 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
657 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
658 */
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700659 delta *= PIT_TICK_RATE;
660 do_div(delta, i*256*1000);
Joe Perchesc767a542012-05-21 19:50:07 -0700661 pr_info("Fast TSC calibration using PIT\n");
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700662 return delta;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700663}
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700664
Alok Katariabfc0f592008-07-01 11:43:24 -0700665/**
Len Brownaa297292016-06-17 01:22:51 -0400666 * native_calibrate_tsc
667 * Determine TSC frequency via CPUID, else return 0.
Alok Katariabfc0f592008-07-01 11:43:24 -0700668 */
Alok Katariae93ef942008-07-01 11:43:36 -0700669unsigned long native_calibrate_tsc(void)
Alok Katariabfc0f592008-07-01 11:43:24 -0700670{
Len Brownaa297292016-06-17 01:22:51 -0400671 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
672 unsigned int crystal_khz;
673
674 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
675 return 0;
676
677 if (boot_cpu_data.cpuid_level < 0x15)
678 return 0;
679
680 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
681
682 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
683 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
684
685 if (ebx_numerator == 0 || eax_denominator == 0)
686 return 0;
687
688 crystal_khz = ecx_hz / 1000;
689
690 if (crystal_khz == 0) {
691 switch (boot_cpu_data.x86_model) {
Prarit Bhargava655e52d2016-09-19 08:51:40 -0400692 case INTEL_FAM6_SKYLAKE_MOBILE:
693 case INTEL_FAM6_SKYLAKE_DESKTOP:
Prarit Bhargava6baf3d62016-09-19 08:51:41 -0400694 case INTEL_FAM6_KABYLAKE_MOBILE:
695 case INTEL_FAM6_KABYLAKE_DESKTOP:
Len Brownff4c8662016-06-17 01:22:52 -0400696 crystal_khz = 24000; /* 24.0 MHz */
697 break;
Len Brown283994072017-01-13 01:11:18 -0500698 case INTEL_FAM6_ATOM_DENVERTON:
Prarit Bhargava6baf3d62016-09-19 08:51:41 -0400699 crystal_khz = 25000; /* 25.0 MHz */
700 break;
Prarit Bhargava655e52d2016-09-19 08:51:40 -0400701 case INTEL_FAM6_ATOM_GOLDMONT:
Len Brownff4c8662016-06-17 01:22:52 -0400702 crystal_khz = 19200; /* 19.2 MHz */
703 break;
Len Brownaa297292016-06-17 01:22:51 -0400704 }
705 }
706
707 return crystal_khz * ebx_numerator / eax_denominator;
708}
709
710static unsigned long cpu_khz_from_cpuid(void)
711{
712 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
713
714 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
715 return 0;
716
717 if (boot_cpu_data.cpuid_level < 0x16)
718 return 0;
719
720 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
721
722 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
723
724 return eax_base_mhz * 1000;
725}
726
727/**
728 * native_calibrate_cpu - calibrate the cpu on boot
729 */
730unsigned long native_calibrate_cpu(void)
731{
Thomas Gleixner827014b2008-09-04 15:18:53 +0000732 u64 tsc1, tsc2, delta, ref1, ref2;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200733 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
Thomas Gleixner2d826402009-08-20 17:06:25 +0200734 unsigned long flags, latch, ms, fast_calibrate;
Thomas Gleixnera977c402008-09-04 15:18:59 +0000735 int hpet = is_hpet_enabled(), i, loopmin;
Alok Katariabfc0f592008-07-01 11:43:24 -0700736
Len Brownaa297292016-06-17 01:22:51 -0400737 fast_calibrate = cpu_khz_from_cpuid();
738 if (fast_calibrate)
739 return fast_calibrate;
740
Len Brown02c0cd22016-06-17 01:22:50 -0400741 fast_calibrate = cpu_khz_from_msr();
Thomas Gleixner5f0e0302014-02-19 13:52:29 +0200742 if (fast_calibrate)
Bin Gao7da7c152013-10-21 09:16:33 -0700743 return fast_calibrate;
Bin Gao7da7c152013-10-21 09:16:33 -0700744
Alok Katariabfc0f592008-07-01 11:43:24 -0700745 local_irq_save(flags);
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700746 fast_calibrate = quick_pit_calibrate();
Alok Katariabfc0f592008-07-01 11:43:24 -0700747 local_irq_restore(flags);
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700748 if (fast_calibrate)
749 return fast_calibrate;
Alok Katariabfc0f592008-07-01 11:43:24 -0700750
751 /*
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200752 * Run 5 calibration loops to get the lowest frequency value
753 * (the best estimate). We use two different calibration modes
754 * here:
755 *
756 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
757 * load a timeout of 50ms. We read the time right after we
758 * started the timer and wait until the PIT count down reaches
759 * zero. In each wait loop iteration we read the TSC and check
760 * the delta to the previous read. We keep track of the min
761 * and max values of that delta. The delta is mostly defined
762 * by the IO time of the PIT access, so we can detect when a
Lucas De Marchi0d2eb442011-03-17 16:24:16 -0300763 * SMI/SMM disturbance happened between the two reads. If the
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200764 * maximum time is significantly larger than the minimum time,
765 * then we discard the result and have another try.
766 *
767 * 2) Reference counter. If available we use the HPET or the
768 * PMTIMER as a reference to check the sanity of that value.
769 * We use separate TSC readouts and check inside of the
770 * reference read for a SMI/SMM disturbance. We dicard
771 * disturbed values here as well. We do that around the PIT
772 * calibration delay loop as we have to wait for a certain
773 * amount of time anyway.
Alok Katariabfc0f592008-07-01 11:43:24 -0700774 */
Alok Katariabfc0f592008-07-01 11:43:24 -0700775
Thomas Gleixnera977c402008-09-04 15:18:59 +0000776 /* Preset PIT loop values */
777 latch = CAL_LATCH;
778 ms = CAL_MS;
779 loopmin = CAL_PIT_LOOPS;
780
781 for (i = 0; i < 3; i++) {
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700782 unsigned long tsc_pit_khz;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200783
784 /*
785 * Read the start value and the reference count of
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700786 * hpet/pmtimer when available. Then do the PIT
787 * calibration, which will take at least 50ms, and
788 * read the end value.
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200789 */
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700790 local_irq_save(flags);
Thomas Gleixner827014b2008-09-04 15:18:53 +0000791 tsc1 = tsc_read_refs(&ref1, hpet);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000792 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
Thomas Gleixner827014b2008-09-04 15:18:53 +0000793 tsc2 = tsc_read_refs(&ref2, hpet);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200794 local_irq_restore(flags);
795
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700796 /* Pick the lowest PIT TSC calibration so far */
797 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200798
799 /* hpet or pmtimer available ? */
John Stultz62627be2011-01-14 09:06:28 -0800800 if (ref1 == ref2)
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200801 continue;
802
803 /* Check, whether the sampling was disturbed by an SMI */
804 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
805 continue;
806
807 tsc2 = (tsc2 - tsc1) * 1000000LL;
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000808 if (hpet)
Thomas Gleixner827014b2008-09-04 15:18:53 +0000809 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000810 else
Thomas Gleixner827014b2008-09-04 15:18:53 +0000811 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200812
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200813 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000814
815 /* Check the reference deviation */
816 delta = ((u64) tsc_pit_min) * 100;
817 do_div(delta, tsc_ref_min);
818
819 /*
820 * If both calibration results are inside a 10% window
821 * then we can be sure, that the calibration
822 * succeeded. We break out of the loop right away. We
823 * use the reference value, as it is more precise.
824 */
825 if (delta >= 90 && delta <= 110) {
Joe Perchesc767a542012-05-21 19:50:07 -0700826 pr_info("PIT calibration matches %s. %d loops\n",
827 hpet ? "HPET" : "PMTIMER", i + 1);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000828 return tsc_ref_min;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200829 }
830
Thomas Gleixnera977c402008-09-04 15:18:59 +0000831 /*
832 * Check whether PIT failed more than once. This
833 * happens in virtualized environments. We need to
834 * give the virtual PC a slightly longer timeframe for
835 * the HPET/PMTIMER to make the result precise.
836 */
837 if (i == 1 && tsc_pit_min == ULONG_MAX) {
838 latch = CAL2_LATCH;
839 ms = CAL2_MS;
840 loopmin = CAL2_PIT_LOOPS;
841 }
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200842 }
843
844 /*
845 * Now check the results.
846 */
847 if (tsc_pit_min == ULONG_MAX) {
848 /* PIT gave no useful value */
Joe Perchesc767a542012-05-21 19:50:07 -0700849 pr_warn("Unable to calibrate against PIT\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200850
851 /* We don't have an alternative source, disable TSC */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000852 if (!hpet && !ref1 && !ref2) {
Joe Perchesc767a542012-05-21 19:50:07 -0700853 pr_notice("No reference (HPET/PMTIMER) available\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200854 return 0;
855 }
856
857 /* The alternative source failed as well, disable TSC */
858 if (tsc_ref_min == ULONG_MAX) {
Joe Perchesc767a542012-05-21 19:50:07 -0700859 pr_warn("HPET/PMTIMER calibration failed\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200860 return 0;
861 }
862
863 /* Use the alternative source */
Joe Perchesc767a542012-05-21 19:50:07 -0700864 pr_info("using %s reference calibration\n",
865 hpet ? "HPET" : "PMTIMER");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200866
867 return tsc_ref_min;
868 }
869
870 /* We don't have an alternative source, use the PIT calibration value */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000871 if (!hpet && !ref1 && !ref2) {
Joe Perchesc767a542012-05-21 19:50:07 -0700872 pr_info("Using PIT calibration value\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200873 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700874 }
875
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200876 /* The alternative source failed, use the PIT calibration value */
877 if (tsc_ref_min == ULONG_MAX) {
Joe Perchesc767a542012-05-21 19:50:07 -0700878 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200879 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700880 }
881
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200882 /*
883 * The calibration values differ too much. In doubt, we use
884 * the PIT value as we know that there are PMTIMERs around
Thomas Gleixnera977c402008-09-04 15:18:59 +0000885 * running at double speed. At least we let the user know:
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200886 */
Joe Perchesc767a542012-05-21 19:50:07 -0700887 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
888 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
889 pr_info("Using PIT calibration value\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200890 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700891}
892
Alok Katariabfc0f592008-07-01 11:43:24 -0700893int recalibrate_cpu_khz(void)
894{
895#ifndef CONFIG_SMP
896 unsigned long cpu_khz_old = cpu_khz;
897
Borislav Petkoveff46772016-04-05 08:29:53 +0200898 if (!boot_cpu_has(X86_FEATURE_TSC))
Alok Katariabfc0f592008-07-01 11:43:24 -0700899 return -ENODEV;
Borislav Petkoveff46772016-04-05 08:29:53 +0200900
Len Brownaa297292016-06-17 01:22:51 -0400901 cpu_khz = x86_platform.calibrate_cpu();
Borislav Petkoveff46772016-04-05 08:29:53 +0200902 tsc_khz = x86_platform.calibrate_tsc();
Len Brownaa297292016-06-17 01:22:51 -0400903 if (tsc_khz == 0)
904 tsc_khz = cpu_khz;
Len Brownff4c8662016-06-17 01:22:52 -0400905 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
906 cpu_khz = tsc_khz;
Borislav Petkoveff46772016-04-05 08:29:53 +0200907 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
908 cpu_khz_old, cpu_khz);
909
910 return 0;
Alok Katariabfc0f592008-07-01 11:43:24 -0700911#else
912 return -ENODEV;
913#endif
914}
915
916EXPORT_SYMBOL(recalibrate_cpu_khz);
917
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700918
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700919static unsigned long long cyc2ns_suspend;
920
Marcelo Tosattib74f05d2012-02-13 11:07:27 -0200921void tsc_save_sched_clock_state(void)
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700922{
Peter Zijlstra35af99e2013-11-28 19:38:42 +0100923 if (!sched_clock_stable())
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700924 return;
925
926 cyc2ns_suspend = sched_clock();
927}
928
929/*
930 * Even on processors with invariant TSC, TSC gets reset in some the
931 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
932 * arbitrary value (still sync'd across cpu's) during resume from such sleep
933 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
934 * that sched_clock() continues from the point where it was left off during
935 * suspend.
936 */
Marcelo Tosattib74f05d2012-02-13 11:07:27 -0200937void tsc_restore_sched_clock_state(void)
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700938{
939 unsigned long long offset;
940 unsigned long flags;
941 int cpu;
942
Peter Zijlstra35af99e2013-11-28 19:38:42 +0100943 if (!sched_clock_stable())
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700944 return;
945
946 local_irq_save(flags);
947
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100948 /*
Adam Buchbinder6a6256f2016-02-23 15:34:30 -0800949 * We're coming out of suspend, there's no concurrency yet; don't
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100950 * bother being nice about the RCU stuff, just write to both
951 * data fields.
952 */
953
954 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
955 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
956
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700957 offset = cyc2ns_suspend - sched_clock();
958
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100959 for_each_possible_cpu(cpu) {
960 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
961 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
962 }
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700963
964 local_irq_restore(flags);
965}
966
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700967#ifdef CONFIG_CPU_FREQ
968
969/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
970 * changes.
971 *
972 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
973 * not that important because current Opteron setups do not support
974 * scaling on SMP anyroads.
975 *
976 * Should fix up last_tsc too. Currently gettimeofday in the
977 * first tick after the change will be slightly wrong.
978 */
979
980static unsigned int ref_freq;
981static unsigned long loops_per_jiffy_ref;
982static unsigned long tsc_khz_ref;
983
984static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
985 void *data)
986{
987 struct cpufreq_freqs *freq = data;
Dave Jones931db6a2009-06-01 12:29:55 -0400988 unsigned long *lpj;
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700989
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700990 lpj = &boot_cpu_data.loops_per_jiffy;
Dave Jones931db6a2009-06-01 12:29:55 -0400991#ifdef CONFIG_SMP
992 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
993 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700994#endif
995
996 if (!ref_freq) {
997 ref_freq = freq->old;
998 loops_per_jiffy_ref = *lpj;
999 tsc_khz_ref = tsc_khz;
1000 }
1001 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
Viresh Kumar0b443ea2014-03-19 11:24:58 +05301002 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
Felipe Contreras878f4f52009-09-17 00:38:38 +03001003 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001004
1005 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1006 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1007 mark_tsc_unstable("cpufreq changes");
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001008
Peter Zijlstra3896c322014-06-24 14:48:19 +02001009 set_cyc2ns_scale(tsc_khz, freq->cpu);
1010 }
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001011
1012 return 0;
1013}
1014
1015static struct notifier_block time_cpufreq_notifier_block = {
1016 .notifier_call = time_cpufreq_notifier
1017};
1018
Borislav Petkova841cca2016-04-05 08:29:52 +02001019static int __init cpufreq_register_tsc_scaling(void)
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001020{
Borislav Petkov59e21e32016-04-04 22:24:59 +02001021 if (!boot_cpu_has(X86_FEATURE_TSC))
Linus Torvalds060700b2008-08-24 11:52:06 -07001022 return 0;
1023 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1024 return 0;
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001025 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1026 CPUFREQ_TRANSITION_NOTIFIER);
1027 return 0;
1028}
1029
Borislav Petkova841cca2016-04-05 08:29:52 +02001030core_initcall(cpufreq_register_tsc_scaling);
Alok Kataria2dbe06f2008-07-01 11:43:31 -07001031
1032#endif /* CONFIG_CPU_FREQ */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001033
Christopher S. Hallf9677e02016-02-29 06:33:47 -08001034#define ART_CPUID_LEAF (0x15)
1035#define ART_MIN_DENOMINATOR (1)
1036
1037
1038/*
1039 * If ART is present detect the numerator:denominator to convert to TSC
1040 */
1041static void detect_art(void)
1042{
1043 unsigned int unused[2];
1044
1045 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1046 return;
1047
1048 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1049 &art_to_tsc_numerator, unused, unused+1);
1050
1051 /* Don't enable ART in a VM, non-stop TSC required */
1052 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1053 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1054 art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1055 return;
1056
1057 if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
1058 return;
1059
1060 /* Make this sticky over multiple CPU init calls */
1061 setup_force_cpu_cap(X86_FEATURE_ART);
1062}
1063
1064
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001065/* clocksource code */
1066
1067static struct clocksource clocksource_tsc;
1068
1069/*
Thomas Gleixner09ec5442014-07-16 21:05:12 +00001070 * We used to compare the TSC to the cycle_last value in the clocksource
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001071 * structure to avoid a nasty time-warp. This can be observed in a
1072 * very small window right after one CPU updated cycle_last under
1073 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1074 * is smaller than the cycle_last reference value due to a TSC which
1075 * is slighty behind. This delta is nowhere else observable, but in
1076 * that case it results in a forward time jump in the range of hours
1077 * due to the unsigned delta calculation of the time keeping core
1078 * code, which is necessary to support wrapping clocksources like pm
1079 * timer.
Thomas Gleixner09ec5442014-07-16 21:05:12 +00001080 *
1081 * This sanity check is now done in the core timekeeping code.
1082 * checking the result of read_tsc() - cycle_last for being negative.
1083 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001084 */
Magnus Damm8e196082009-04-21 12:24:00 -07001085static cycle_t read_tsc(struct clocksource *cs)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001086{
Andy Lutomirski27c63402015-06-25 18:44:10 +02001087 return (cycle_t)rdtsc_ordered();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001088}
1089
Thomas Gleixner09ec5442014-07-16 21:05:12 +00001090/*
1091 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1092 */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001093static struct clocksource clocksource_tsc = {
1094 .name = "tsc",
1095 .rating = 300,
1096 .read = read_tsc,
1097 .mask = CLOCKSOURCE_MASK(64),
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001098 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1099 CLOCK_SOURCE_MUST_VERIFY,
Andy Lutomirski98d0ac32011-07-14 06:47:22 -04001100 .archdata = { .vclock_mode = VCLOCK_TSC },
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001101};
1102
1103void mark_tsc_unstable(char *reason)
1104{
1105 if (!tsc_unstable) {
1106 tsc_unstable = 1;
Peter Zijlstra35af99e2013-11-28 19:38:42 +01001107 clear_sched_clock_stable();
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -07001108 disable_sched_clock_irqtime();
Joe Perchesc767a542012-05-21 19:50:07 -07001109 pr_info("Marking TSC unstable due to %s\n", reason);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001110 /* Change only the rating, when not registered */
1111 if (clocksource_tsc.mult)
Thomas Gleixner7285dd72009-08-28 20:25:24 +02001112 clocksource_mark_unstable(&clocksource_tsc);
1113 else {
1114 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001115 clocksource_tsc.rating = 0;
Thomas Gleixner7285dd72009-08-28 20:25:24 +02001116 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001117 }
1118}
1119
1120EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1121
Alok Kataria395628e2008-10-24 17:22:01 -07001122static void __init check_system_tsc_reliable(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001123{
David Woodhouse03da3ff2015-09-16 14:10:03 +01001124#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1125 if (is_geode_lx()) {
1126 /* RTSC counts during suspend */
Alok Kataria395628e2008-10-24 17:22:01 -07001127#define RTSC_SUSP 0x100
David Woodhouse03da3ff2015-09-16 14:10:03 +01001128 unsigned long res_low, res_high;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001129
David Woodhouse03da3ff2015-09-16 14:10:03 +01001130 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1131 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1132 if (res_low & RTSC_SUSP)
1133 tsc_clocksource_reliable = 1;
1134 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001135#endif
Alok Kataria395628e2008-10-24 17:22:01 -07001136 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1137 tsc_clocksource_reliable = 1;
1138}
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001139
1140/*
1141 * Make an educated guess if the TSC is trustworthy and synchronized
1142 * over all CPUs.
1143 */
Paul Gortmaker148f9bb2013-06-18 18:23:59 -04001144int unsynchronized_tsc(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001145{
Borislav Petkov59e21e32016-04-04 22:24:59 +02001146 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001147 return 1;
1148
Ingo Molnar3e5095d2009-01-27 17:07:08 +01001149#ifdef CONFIG_SMP
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001150 if (apic_is_clustered_box())
1151 return 1;
1152#endif
1153
1154 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1155 return 0;
john stultzd3b8f882009-08-17 16:40:47 -07001156
1157 if (tsc_clocksource_reliable)
1158 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001159 /*
1160 * Intel systems are normally all synchronized.
1161 * Exceptions must mark TSC as unstable:
1162 */
1163 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1164 /* assume multi socket systems are not synchronized: */
1165 if (num_possible_cpus() > 1)
john stultzd3b8f882009-08-17 16:40:47 -07001166 return 1;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001167 }
1168
john stultzd3b8f882009-08-17 16:40:47 -07001169 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001170}
1171
Christopher S. Hallf9677e02016-02-29 06:33:47 -08001172/*
1173 * Convert ART to TSC given numerator/denominator found in detect_art()
1174 */
1175struct system_counterval_t convert_art_to_tsc(cycle_t art)
1176{
1177 u64 tmp, res, rem;
1178
1179 rem = do_div(art, art_to_tsc_denominator);
1180
1181 res = art * art_to_tsc_numerator;
1182 tmp = rem * art_to_tsc_numerator;
1183
1184 do_div(tmp, art_to_tsc_denominator);
1185 res += tmp + art_to_tsc_offset;
1186
1187 return (struct system_counterval_t) {.cs = art_related_clocksource,
1188 .cycles = res};
1189}
1190EXPORT_SYMBOL(convert_art_to_tsc);
John Stultz08ec0c52010-07-27 17:00:00 -07001191
1192static void tsc_refine_calibration_work(struct work_struct *work);
1193static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1194/**
1195 * tsc_refine_calibration_work - Further refine tsc freq calibration
1196 * @work - ignored.
1197 *
1198 * This functions uses delayed work over a period of a
1199 * second to further refine the TSC freq value. Since this is
1200 * timer based, instead of loop based, we don't block the boot
1201 * process while this longer calibration is done.
1202 *
Lucas De Marchi0d2eb442011-03-17 16:24:16 -03001203 * If there are any calibration anomalies (too many SMIs, etc),
John Stultz08ec0c52010-07-27 17:00:00 -07001204 * or the refined calibration is off by 1% of the fast early
1205 * calibration, we throw out the new calibration and use the
1206 * early calibration.
1207 */
1208static void tsc_refine_calibration_work(struct work_struct *work)
1209{
1210 static u64 tsc_start = -1, ref_start;
1211 static int hpet;
1212 u64 tsc_stop, ref_stop, delta;
1213 unsigned long freq;
1214
1215 /* Don't bother refining TSC on unstable systems */
1216 if (check_tsc_unstable())
1217 goto out;
1218
1219 /*
1220 * Since the work is started early in boot, we may be
1221 * delayed the first time we expire. So set the workqueue
1222 * again once we know timers are working.
1223 */
1224 if (tsc_start == -1) {
1225 /*
1226 * Only set hpet once, to avoid mixing hardware
1227 * if the hpet becomes enabled later.
1228 */
1229 hpet = is_hpet_enabled();
1230 schedule_delayed_work(&tsc_irqwork, HZ);
1231 tsc_start = tsc_read_refs(&ref_start, hpet);
1232 return;
1233 }
1234
1235 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1236
1237 /* hpet or pmtimer available ? */
John Stultz62627be2011-01-14 09:06:28 -08001238 if (ref_start == ref_stop)
John Stultz08ec0c52010-07-27 17:00:00 -07001239 goto out;
1240
1241 /* Check, whether the sampling was disturbed by an SMI */
1242 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1243 goto out;
1244
1245 delta = tsc_stop - tsc_start;
1246 delta *= 1000000LL;
1247 if (hpet)
1248 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1249 else
1250 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1251
1252 /* Make sure we're within 1% */
1253 if (abs(tsc_khz - freq) > tsc_khz/100)
1254 goto out;
1255
1256 tsc_khz = freq;
Joe Perchesc767a542012-05-21 19:50:07 -07001257 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1258 (unsigned long)tsc_khz / 1000,
1259 (unsigned long)tsc_khz % 1000);
John Stultz08ec0c52010-07-27 17:00:00 -07001260
Nicolai Stange6731b0d2016-07-14 17:22:55 +02001261 /* Inform the TSC deadline clockevent devices about the recalibration */
1262 lapic_update_tsc_freq();
1263
John Stultz08ec0c52010-07-27 17:00:00 -07001264out:
Christopher S. Hallf9677e02016-02-29 06:33:47 -08001265 if (boot_cpu_has(X86_FEATURE_ART))
1266 art_related_clocksource = &clocksource_tsc;
John Stultz08ec0c52010-07-27 17:00:00 -07001267 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1268}
1269
1270
1271static int __init init_tsc_clocksource(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001272{
Borislav Petkov59e21e32016-04-04 22:24:59 +02001273 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
Thomas Gleixnera8760ec2010-12-13 11:28:02 +01001274 return 0;
1275
Alok Kataria395628e2008-10-24 17:22:01 -07001276 if (tsc_clocksource_reliable)
1277 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001278 /* lower the rating if we already know its unstable: */
1279 if (check_tsc_unstable()) {
1280 clocksource_tsc.rating = 0;
1281 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1282 }
Alok Kataria57779dc2012-02-21 18:19:55 -08001283
Feng Tang82f9c082013-03-12 11:56:47 +08001284 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1285 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1286
Alok Kataria57779dc2012-02-21 18:19:55 -08001287 /*
1288 * Trust the results of the earlier calibration on systems
1289 * exporting a reliable TSC.
1290 */
1291 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
Peter Zijlstra5ec98e62017-03-13 15:57:12 +01001292 if (boot_cpu_has(X86_FEATURE_ART))
1293 art_related_clocksource = &clocksource_tsc;
Alok Kataria57779dc2012-02-21 18:19:55 -08001294 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1295 return 0;
1296 }
1297
John Stultz08ec0c52010-07-27 17:00:00 -07001298 schedule_delayed_work(&tsc_irqwork, 0);
1299 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001300}
John Stultz08ec0c52010-07-27 17:00:00 -07001301/*
1302 * We use device_initcall here, to ensure we run after the hpet
1303 * is fully initialized, which may occur at fs_initcall time.
1304 */
1305device_initcall(init_tsc_clocksource);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001306
1307void __init tsc_init(void)
1308{
1309 u64 lpj;
1310 int cpu;
1311
Borislav Petkov59e21e32016-04-04 22:24:59 +02001312 if (!boot_cpu_has(X86_FEATURE_TSC)) {
Andy Lutomirskib47dcbd2014-10-15 10:12:07 -07001313 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001314 return;
Andy Lutomirskib47dcbd2014-10-15 10:12:07 -07001315 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001316
Len Brownaa297292016-06-17 01:22:51 -04001317 cpu_khz = x86_platform.calibrate_cpu();
Thomas Gleixner2d826402009-08-20 17:06:25 +02001318 tsc_khz = x86_platform.calibrate_tsc();
Len Brownff4c8662016-06-17 01:22:52 -04001319
1320 /*
1321 * Trust non-zero tsc_khz as authorative,
1322 * and use it to sanity check cpu_khz,
1323 * which will be off if system timer is off.
1324 */
Len Brownaa297292016-06-17 01:22:51 -04001325 if (tsc_khz == 0)
1326 tsc_khz = cpu_khz;
Len Brownff4c8662016-06-17 01:22:52 -04001327 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1328 cpu_khz = tsc_khz;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001329
Alok Katariae93ef942008-07-01 11:43:36 -07001330 if (!tsc_khz) {
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001331 mark_tsc_unstable("could not calculate TSC khz");
Andy Lutomirskib47dcbd2014-10-15 10:12:07 -07001332 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001333 return;
1334 }
1335
Joe Perchesc767a542012-05-21 19:50:07 -07001336 pr_info("Detected %lu.%03lu MHz processor\n",
1337 (unsigned long)cpu_khz / 1000,
1338 (unsigned long)cpu_khz % 1000);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001339
1340 /*
1341 * Secondary CPUs do not run through tsc_init(), so set up
1342 * all the scale factors for all CPUs, assuming the same
1343 * speed as the bootup CPU. (cpufreq notifiers will fix this
1344 * up if their speed diverges)
1345 */
Peter Zijlstra20d1c862013-11-29 15:40:29 +01001346 for_each_possible_cpu(cpu) {
1347 cyc2ns_init(cpu);
Len Brownaa297292016-06-17 01:22:51 -04001348 set_cyc2ns_scale(tsc_khz, cpu);
Peter Zijlstra20d1c862013-11-29 15:40:29 +01001349 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001350
1351 if (tsc_disabled > 0)
1352 return;
1353
1354 /* now allow native_sched_clock() to use rdtsc */
Peter Zijlstra10b033d2013-11-28 19:01:40 +01001355
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001356 tsc_disabled = 0;
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +02001357 static_branch_enable(&__use_tsc);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001358
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -07001359 if (!no_sched_irq_time)
1360 enable_sched_clock_irqtime();
1361
Alok Kataria70de9a972008-11-03 11:18:47 -08001362 lpj = ((u64)tsc_khz * 1000);
1363 do_div(lpj, HZ);
1364 lpj_fine = lpj;
1365
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001366 use_tsc_delay();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001367
1368 if (unsynchronized_tsc())
1369 mark_tsc_unstable("TSCs unsynchronized");
1370
Alok Kataria395628e2008-10-24 17:22:01 -07001371 check_system_tsc_reliable();
Christopher S. Hallf9677e02016-02-29 06:33:47 -08001372
1373 detect_art();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001374}
1375
Jack Steinerb5652012011-11-15 15:33:56 -08001376#ifdef CONFIG_SMP
1377/*
1378 * If we have a constant TSC and are using the TSC for the delay loop,
1379 * we can skip clock calibration if another cpu in the same socket has already
1380 * been calibrated. This assumes that CONSTANT_TSC applies to all
1381 * cpus in the socket - this should be a safe assumption.
1382 */
Paul Gortmaker148f9bb2013-06-18 18:23:59 -04001383unsigned long calibrate_delay_is_known(void)
Jack Steinerb5652012011-11-15 15:33:56 -08001384{
Thomas Gleixnerc25323c2016-02-18 20:53:43 +01001385 int sibling, cpu = smp_processor_id();
Pavel Tatashin9d5e5992017-10-27 20:11:00 -04001386 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1387 const struct cpumask *mask = topology_core_cpumask(cpu);
Jack Steinerb5652012011-11-15 15:33:56 -08001388
Pavel Tatashin9d5e5992017-10-27 20:11:00 -04001389 if (tsc_disabled || !constant_tsc || !mask)
Thomas Gleixnerf508a5b2016-03-18 08:35:29 +01001390 return 0;
1391
1392 sibling = cpumask_any_but(mask, cpu);
Thomas Gleixnerc25323c2016-02-18 20:53:43 +01001393 if (sibling < nr_cpu_ids)
1394 return cpu_data(sibling).loops_per_jiffy;
Jack Steinerb5652012011-11-15 15:33:56 -08001395 return 0;
1396}
1397#endif