Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 1 | #include <linux/kernel.h> |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 2 | #include <linux/sched.h> |
| 3 | #include <linux/init.h> |
| 4 | #include <linux/module.h> |
| 5 | #include <linux/timer.h> |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 6 | #include <linux/acpi_pmtmr.h> |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame] | 7 | #include <linux/cpufreq.h> |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 8 | #include <linux/dmi.h> |
| 9 | #include <linux/delay.h> |
| 10 | #include <linux/clocksource.h> |
| 11 | #include <linux/percpu.h> |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 12 | |
| 13 | #include <asm/hpet.h> |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 14 | #include <asm/timer.h> |
| 15 | #include <asm/vgtod.h> |
| 16 | #include <asm/time.h> |
| 17 | #include <asm/delay.h> |
Alok Kataria | 88b094f | 2008-10-27 10:41:46 -0700 | [diff] [blame] | 18 | #include <asm/hypervisor.h> |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 19 | |
Ingo Molnar | f24ade3 | 2009-03-10 19:02:30 +0100 | [diff] [blame^] | 20 | unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 21 | EXPORT_SYMBOL(cpu_khz); |
Ingo Molnar | f24ade3 | 2009-03-10 19:02:30 +0100 | [diff] [blame^] | 22 | |
| 23 | unsigned int __read_mostly tsc_khz; |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 24 | EXPORT_SYMBOL(tsc_khz); |
| 25 | |
| 26 | /* |
| 27 | * TSC can be unstable due to cpufreq or due to unsynced TSCs |
| 28 | */ |
Ingo Molnar | f24ade3 | 2009-03-10 19:02:30 +0100 | [diff] [blame^] | 29 | static int __read_mostly tsc_unstable; |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 30 | |
| 31 | /* native_sched_clock() is called before tsc_init(), so |
| 32 | we must start with the TSC soft disabled to prevent |
| 33 | erroneous rdtsc usage on !cpu_has_tsc processors */ |
Ingo Molnar | f24ade3 | 2009-03-10 19:02:30 +0100 | [diff] [blame^] | 34 | static int __read_mostly tsc_disabled = -1; |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 35 | |
Alok Kataria | 395628e | 2008-10-24 17:22:01 -0700 | [diff] [blame] | 36 | static int tsc_clocksource_reliable; |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 37 | /* |
| 38 | * Scheduler clock - returns current time in nanosec units. |
| 39 | */ |
| 40 | u64 native_sched_clock(void) |
| 41 | { |
| 42 | u64 this_offset; |
| 43 | |
| 44 | /* |
| 45 | * Fall back to jiffies if there's no TSC available: |
| 46 | * ( But note that we still use it if the TSC is marked |
| 47 | * unstable. We do this because unlike Time Of Day, |
| 48 | * the scheduler clock tolerates small errors and it's |
| 49 | * very important for it to be as fast as the platform |
| 50 | * can achive it. ) |
| 51 | */ |
| 52 | if (unlikely(tsc_disabled)) { |
| 53 | /* No locking but a rare wrong value is not a big deal: */ |
| 54 | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); |
| 55 | } |
| 56 | |
| 57 | /* read the Time Stamp Counter: */ |
| 58 | rdtscll(this_offset); |
| 59 | |
| 60 | /* return the value in ns */ |
Ingo Molnar | 7cbaef9 | 2008-11-08 17:05:38 +0100 | [diff] [blame] | 61 | return __cycles_2_ns(this_offset); |
Alok Kataria | 0ef9553 | 2008-07-01 11:43:18 -0700 | [diff] [blame] | 62 | } |
| 63 | |
| 64 | /* We need to define a real function for sched_clock, to override the |
| 65 | weak default version */ |
| 66 | #ifdef CONFIG_PARAVIRT |
| 67 | unsigned long long sched_clock(void) |
| 68 | { |
| 69 | return paravirt_sched_clock(); |
| 70 | } |
| 71 | #else |
| 72 | unsigned long long |
| 73 | sched_clock(void) __attribute__((alias("native_sched_clock"))); |
| 74 | #endif |
| 75 | |
| 76 | int check_tsc_unstable(void) |
| 77 | { |
| 78 | return tsc_unstable; |
| 79 | } |
| 80 | EXPORT_SYMBOL_GPL(check_tsc_unstable); |
| 81 | |
| 82 | #ifdef CONFIG_X86_TSC |
| 83 | int __init notsc_setup(char *str) |
| 84 | { |
| 85 | printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, " |
| 86 | "cannot disable TSC completely.\n"); |
| 87 | tsc_disabled = 1; |
| 88 | return 1; |
| 89 | } |
| 90 | #else |
| 91 | /* |
| 92 | * disable flag for tsc. Takes effect by clearing the TSC cpu flag |
| 93 | * in cpu/common.c |
| 94 | */ |
| 95 | int __init notsc_setup(char *str) |
| 96 | { |
| 97 | setup_clear_cpu_cap(X86_FEATURE_TSC); |
| 98 | return 1; |
| 99 | } |
| 100 | #endif |
| 101 | |
| 102 | __setup("notsc", notsc_setup); |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 103 | |
Alok Kataria | 395628e | 2008-10-24 17:22:01 -0700 | [diff] [blame] | 104 | static int __init tsc_setup(char *str) |
| 105 | { |
| 106 | if (!strcmp(str, "reliable")) |
| 107 | tsc_clocksource_reliable = 1; |
| 108 | return 1; |
| 109 | } |
| 110 | |
| 111 | __setup("tsc=", tsc_setup); |
| 112 | |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 113 | #define MAX_RETRIES 5 |
| 114 | #define SMI_TRESHOLD 50000 |
| 115 | |
| 116 | /* |
| 117 | * Read TSC and the reference counters. Take care of SMI disturbance |
| 118 | */ |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 119 | static u64 tsc_read_refs(u64 *p, int hpet) |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 120 | { |
| 121 | u64 t1, t2; |
| 122 | int i; |
| 123 | |
| 124 | for (i = 0; i < MAX_RETRIES; i++) { |
| 125 | t1 = get_cycles(); |
| 126 | if (hpet) |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 127 | *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 128 | else |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 129 | *p = acpi_pm_read_early(); |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 130 | t2 = get_cycles(); |
| 131 | if ((t2 - t1) < SMI_TRESHOLD) |
| 132 | return t2; |
| 133 | } |
| 134 | return ULLONG_MAX; |
| 135 | } |
| 136 | |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 137 | /* |
Thomas Gleixner | d683ef7 | 2008-09-04 15:18:48 +0000 | [diff] [blame] | 138 | * Calculate the TSC frequency from HPET reference |
| 139 | */ |
| 140 | static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) |
| 141 | { |
| 142 | u64 tmp; |
| 143 | |
| 144 | if (hpet2 < hpet1) |
| 145 | hpet2 += 0x100000000ULL; |
| 146 | hpet2 -= hpet1; |
| 147 | tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); |
| 148 | do_div(tmp, 1000000); |
| 149 | do_div(deltatsc, tmp); |
| 150 | |
| 151 | return (unsigned long) deltatsc; |
| 152 | } |
| 153 | |
| 154 | /* |
| 155 | * Calculate the TSC frequency from PMTimer reference |
| 156 | */ |
| 157 | static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) |
| 158 | { |
| 159 | u64 tmp; |
| 160 | |
| 161 | if (!pm1 && !pm2) |
| 162 | return ULONG_MAX; |
| 163 | |
| 164 | if (pm2 < pm1) |
| 165 | pm2 += (u64)ACPI_PM_OVRRUN; |
| 166 | pm2 -= pm1; |
| 167 | tmp = pm2 * 1000000000LL; |
| 168 | do_div(tmp, PMTMR_TICKS_PER_SEC); |
| 169 | do_div(deltatsc, tmp); |
| 170 | |
| 171 | return (unsigned long) deltatsc; |
| 172 | } |
| 173 | |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 174 | #define CAL_MS 10 |
Thomas Gleixner | cce3e05 | 2008-09-04 15:18:44 +0000 | [diff] [blame] | 175 | #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS)) |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 176 | #define CAL_PIT_LOOPS 1000 |
| 177 | |
| 178 | #define CAL2_MS 50 |
| 179 | #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS)) |
| 180 | #define CAL2_PIT_LOOPS 5000 |
| 181 | |
Thomas Gleixner | cce3e05 | 2008-09-04 15:18:44 +0000 | [diff] [blame] | 182 | |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 183 | /* |
| 184 | * Try to calibrate the TSC against the Programmable |
| 185 | * Interrupt Timer and return the frequency of the TSC |
| 186 | * in kHz. |
| 187 | * |
| 188 | * Return ULONG_MAX on failure to calibrate. |
| 189 | */ |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 190 | static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 191 | { |
| 192 | u64 tsc, t1, t2, delta; |
| 193 | unsigned long tscmin, tscmax; |
| 194 | int pitcnt; |
| 195 | |
| 196 | /* Set the Gate high, disable speaker */ |
| 197 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| 198 | |
| 199 | /* |
| 200 | * Setup CTC channel 2* for mode 0, (interrupt on terminal |
| 201 | * count mode), binary count. Set the latch register to 50ms |
| 202 | * (LSB then MSB) to begin countdown. |
| 203 | */ |
| 204 | outb(0xb0, 0x43); |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 205 | outb(latch & 0xff, 0x42); |
| 206 | outb(latch >> 8, 0x42); |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 207 | |
| 208 | tsc = t1 = t2 = get_cycles(); |
| 209 | |
| 210 | pitcnt = 0; |
| 211 | tscmax = 0; |
| 212 | tscmin = ULONG_MAX; |
| 213 | while ((inb(0x61) & 0x20) == 0) { |
| 214 | t2 = get_cycles(); |
| 215 | delta = t2 - tsc; |
| 216 | tsc = t2; |
| 217 | if ((unsigned long) delta < tscmin) |
| 218 | tscmin = (unsigned int) delta; |
| 219 | if ((unsigned long) delta > tscmax) |
| 220 | tscmax = (unsigned int) delta; |
| 221 | pitcnt++; |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | * Sanity checks: |
| 226 | * |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 227 | * If we were not able to read the PIT more than loopmin |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 228 | * times, then we have been hit by a massive SMI |
| 229 | * |
| 230 | * If the maximum is 10 times larger than the minimum, |
| 231 | * then we got hit by an SMI as well. |
| 232 | */ |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 233 | if (pitcnt < loopmin || tscmax > 10 * tscmin) |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 234 | return ULONG_MAX; |
| 235 | |
| 236 | /* Calculate the PIT value */ |
| 237 | delta = t2 - t1; |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 238 | do_div(delta, ms); |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 239 | return delta; |
| 240 | } |
| 241 | |
Linus Torvalds | 6ac40ed | 2008-09-04 10:41:22 -0700 | [diff] [blame] | 242 | /* |
| 243 | * This reads the current MSB of the PIT counter, and |
| 244 | * checks if we are running on sufficiently fast and |
| 245 | * non-virtualized hardware. |
| 246 | * |
| 247 | * Our expectations are: |
| 248 | * |
| 249 | * - the PIT is running at roughly 1.19MHz |
| 250 | * |
| 251 | * - each IO is going to take about 1us on real hardware, |
| 252 | * but we allow it to be much faster (by a factor of 10) or |
| 253 | * _slightly_ slower (ie we allow up to a 2us read+counter |
| 254 | * update - anything else implies a unacceptably slow CPU |
| 255 | * or PIT for the fast calibration to work. |
| 256 | * |
| 257 | * - with 256 PIT ticks to read the value, we have 214us to |
| 258 | * see the same MSB (and overhead like doing a single TSC |
| 259 | * read per MSB value etc). |
| 260 | * |
| 261 | * - We're doing 2 reads per loop (LSB, MSB), and we expect |
| 262 | * them each to take about a microsecond on real hardware. |
| 263 | * So we expect a count value of around 100. But we'll be |
| 264 | * generous, and accept anything over 50. |
| 265 | * |
| 266 | * - if the PIT is stuck, and we see *many* more reads, we |
| 267 | * return early (and the next caller of pit_expect_msb() |
| 268 | * then consider it a failure when they don't see the |
| 269 | * next expected value). |
| 270 | * |
| 271 | * These expectations mean that we know that we have seen the |
| 272 | * transition from one expected value to another with a fairly |
| 273 | * high accuracy, and we didn't miss any events. We can thus |
| 274 | * use the TSC value at the transitions to calculate a pretty |
| 275 | * good value for the TSC frequencty. |
| 276 | */ |
| 277 | static inline int pit_expect_msb(unsigned char val) |
| 278 | { |
| 279 | int count = 0; |
| 280 | |
| 281 | for (count = 0; count < 50000; count++) { |
| 282 | /* Ignore LSB */ |
| 283 | inb(0x42); |
| 284 | if (inb(0x42) != val) |
| 285 | break; |
| 286 | } |
| 287 | return count > 50; |
| 288 | } |
| 289 | |
| 290 | /* |
| 291 | * How many MSB values do we want to see? We aim for a |
| 292 | * 15ms calibration, which assuming a 2us counter read |
| 293 | * error should give us roughly 150 ppm precision for |
| 294 | * the calibration. |
| 295 | */ |
| 296 | #define QUICK_PIT_MS 15 |
| 297 | #define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) |
| 298 | |
| 299 | static unsigned long quick_pit_calibrate(void) |
| 300 | { |
| 301 | /* Set the Gate high, disable speaker */ |
| 302 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| 303 | |
| 304 | /* |
| 305 | * Counter 2, mode 0 (one-shot), binary count |
| 306 | * |
| 307 | * NOTE! Mode 2 decrements by two (and then the |
| 308 | * output is flipped each time, giving the same |
| 309 | * final output frequency as a decrement-by-one), |
| 310 | * so mode 0 is much better when looking at the |
| 311 | * individual counts. |
| 312 | */ |
| 313 | outb(0xb0, 0x43); |
| 314 | |
| 315 | /* Start at 0xffff */ |
| 316 | outb(0xff, 0x42); |
| 317 | outb(0xff, 0x42); |
| 318 | |
| 319 | if (pit_expect_msb(0xff)) { |
| 320 | int i; |
| 321 | u64 t1, t2, delta; |
| 322 | unsigned char expect = 0xfe; |
| 323 | |
| 324 | t1 = get_cycles(); |
| 325 | for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) { |
| 326 | if (!pit_expect_msb(expect)) |
| 327 | goto failed; |
| 328 | } |
| 329 | t2 = get_cycles(); |
| 330 | |
| 331 | /* |
Ingo Molnar | 4156e9a | 2008-09-04 22:47:47 +0200 | [diff] [blame] | 332 | * Make sure we can rely on the second TSC timestamp: |
| 333 | */ |
Ingo Molnar | 5df4551 | 2008-09-06 23:55:40 +0200 | [diff] [blame] | 334 | if (!pit_expect_msb(expect)) |
Ingo Molnar | 4156e9a | 2008-09-04 22:47:47 +0200 | [diff] [blame] | 335 | goto failed; |
| 336 | |
| 337 | /* |
Linus Torvalds | 6ac40ed | 2008-09-04 10:41:22 -0700 | [diff] [blame] | 338 | * Ok, if we get here, then we've seen the |
| 339 | * MSB of the PIT decrement QUICK_PIT_ITERATIONS |
| 340 | * times, and each MSB had many hits, so we never |
| 341 | * had any sudden jumps. |
| 342 | * |
| 343 | * As a result, we can depend on there not being |
| 344 | * any odd delays anywhere, and the TSC reads are |
| 345 | * reliable. |
| 346 | * |
| 347 | * kHz = ticks / time-in-seconds / 1000; |
| 348 | * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000 |
| 349 | * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000) |
| 350 | */ |
| 351 | delta = (t2 - t1)*PIT_TICK_RATE; |
| 352 | do_div(delta, QUICK_PIT_ITERATIONS*256*1000); |
| 353 | printk("Fast TSC calibration using PIT\n"); |
| 354 | return delta; |
| 355 | } |
| 356 | failed: |
| 357 | return 0; |
| 358 | } |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 359 | |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 360 | /** |
Alok Kataria | e93ef94 | 2008-07-01 11:43:36 -0700 | [diff] [blame] | 361 | * native_calibrate_tsc - calibrate the tsc on boot |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 362 | */ |
Alok Kataria | e93ef94 | 2008-07-01 11:43:36 -0700 | [diff] [blame] | 363 | unsigned long native_calibrate_tsc(void) |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 364 | { |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 365 | u64 tsc1, tsc2, delta, ref1, ref2; |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 366 | unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; |
Alok Kataria | 88b094f | 2008-10-27 10:41:46 -0700 | [diff] [blame] | 367 | unsigned long flags, latch, ms, fast_calibrate, tsc_khz; |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 368 | int hpet = is_hpet_enabled(), i, loopmin; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 369 | |
Alok Kataria | 88b094f | 2008-10-27 10:41:46 -0700 | [diff] [blame] | 370 | tsc_khz = get_hypervisor_tsc_freq(); |
| 371 | if (tsc_khz) { |
| 372 | printk(KERN_INFO "TSC: Frequency read from the hypervisor\n"); |
| 373 | return tsc_khz; |
| 374 | } |
| 375 | |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 376 | local_irq_save(flags); |
Linus Torvalds | 6ac40ed | 2008-09-04 10:41:22 -0700 | [diff] [blame] | 377 | fast_calibrate = quick_pit_calibrate(); |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 378 | local_irq_restore(flags); |
Linus Torvalds | 6ac40ed | 2008-09-04 10:41:22 -0700 | [diff] [blame] | 379 | if (fast_calibrate) |
| 380 | return fast_calibrate; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 381 | |
| 382 | /* |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 383 | * Run 5 calibration loops to get the lowest frequency value |
| 384 | * (the best estimate). We use two different calibration modes |
| 385 | * here: |
| 386 | * |
| 387 | * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and |
| 388 | * load a timeout of 50ms. We read the time right after we |
| 389 | * started the timer and wait until the PIT count down reaches |
| 390 | * zero. In each wait loop iteration we read the TSC and check |
| 391 | * the delta to the previous read. We keep track of the min |
| 392 | * and max values of that delta. The delta is mostly defined |
| 393 | * by the IO time of the PIT access, so we can detect when a |
| 394 | * SMI/SMM disturbance happend between the two reads. If the |
| 395 | * maximum time is significantly larger than the minimum time, |
| 396 | * then we discard the result and have another try. |
| 397 | * |
| 398 | * 2) Reference counter. If available we use the HPET or the |
| 399 | * PMTIMER as a reference to check the sanity of that value. |
| 400 | * We use separate TSC readouts and check inside of the |
| 401 | * reference read for a SMI/SMM disturbance. We dicard |
| 402 | * disturbed values here as well. We do that around the PIT |
| 403 | * calibration delay loop as we have to wait for a certain |
| 404 | * amount of time anyway. |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 405 | */ |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 406 | |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 407 | /* Preset PIT loop values */ |
| 408 | latch = CAL_LATCH; |
| 409 | ms = CAL_MS; |
| 410 | loopmin = CAL_PIT_LOOPS; |
| 411 | |
| 412 | for (i = 0; i < 3; i++) { |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 413 | unsigned long tsc_pit_khz; |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 414 | |
| 415 | /* |
| 416 | * Read the start value and the reference count of |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 417 | * hpet/pmtimer when available. Then do the PIT |
| 418 | * calibration, which will take at least 50ms, and |
| 419 | * read the end value. |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 420 | */ |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 421 | local_irq_save(flags); |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 422 | tsc1 = tsc_read_refs(&ref1, hpet); |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 423 | tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 424 | tsc2 = tsc_read_refs(&ref2, hpet); |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 425 | local_irq_restore(flags); |
| 426 | |
Linus Torvalds | ec0c15a | 2008-09-03 07:30:13 -0700 | [diff] [blame] | 427 | /* Pick the lowest PIT TSC calibration so far */ |
| 428 | tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 429 | |
| 430 | /* hpet or pmtimer available ? */ |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 431 | if (!hpet && !ref1 && !ref2) |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 432 | continue; |
| 433 | |
| 434 | /* Check, whether the sampling was disturbed by an SMI */ |
| 435 | if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) |
| 436 | continue; |
| 437 | |
| 438 | tsc2 = (tsc2 - tsc1) * 1000000LL; |
Thomas Gleixner | d683ef7 | 2008-09-04 15:18:48 +0000 | [diff] [blame] | 439 | if (hpet) |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 440 | tsc2 = calc_hpet_ref(tsc2, ref1, ref2); |
Thomas Gleixner | d683ef7 | 2008-09-04 15:18:48 +0000 | [diff] [blame] | 441 | else |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 442 | tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 443 | |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 444 | tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 445 | |
| 446 | /* Check the reference deviation */ |
| 447 | delta = ((u64) tsc_pit_min) * 100; |
| 448 | do_div(delta, tsc_ref_min); |
| 449 | |
| 450 | /* |
| 451 | * If both calibration results are inside a 10% window |
| 452 | * then we can be sure, that the calibration |
| 453 | * succeeded. We break out of the loop right away. We |
| 454 | * use the reference value, as it is more precise. |
| 455 | */ |
| 456 | if (delta >= 90 && delta <= 110) { |
| 457 | printk(KERN_INFO |
| 458 | "TSC: PIT calibration matches %s. %d loops\n", |
| 459 | hpet ? "HPET" : "PMTIMER", i + 1); |
| 460 | return tsc_ref_min; |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 461 | } |
| 462 | |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 463 | /* |
| 464 | * Check whether PIT failed more than once. This |
| 465 | * happens in virtualized environments. We need to |
| 466 | * give the virtual PC a slightly longer timeframe for |
| 467 | * the HPET/PMTIMER to make the result precise. |
| 468 | */ |
| 469 | if (i == 1 && tsc_pit_min == ULONG_MAX) { |
| 470 | latch = CAL2_LATCH; |
| 471 | ms = CAL2_MS; |
| 472 | loopmin = CAL2_PIT_LOOPS; |
| 473 | } |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 474 | } |
| 475 | |
| 476 | /* |
| 477 | * Now check the results. |
| 478 | */ |
| 479 | if (tsc_pit_min == ULONG_MAX) { |
| 480 | /* PIT gave no useful value */ |
Alok N Kataria | de014d6 | 2008-09-03 18:18:01 -0700 | [diff] [blame] | 481 | printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n"); |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 482 | |
| 483 | /* We don't have an alternative source, disable TSC */ |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 484 | if (!hpet && !ref1 && !ref2) { |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 485 | printk("TSC: No reference (HPET/PMTIMER) available\n"); |
| 486 | return 0; |
| 487 | } |
| 488 | |
| 489 | /* The alternative source failed as well, disable TSC */ |
| 490 | if (tsc_ref_min == ULONG_MAX) { |
| 491 | printk(KERN_WARNING "TSC: HPET/PMTIMER calibration " |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 492 | "failed.\n"); |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 493 | return 0; |
| 494 | } |
| 495 | |
| 496 | /* Use the alternative source */ |
| 497 | printk(KERN_INFO "TSC: using %s reference calibration\n", |
| 498 | hpet ? "HPET" : "PMTIMER"); |
| 499 | |
| 500 | return tsc_ref_min; |
| 501 | } |
| 502 | |
| 503 | /* We don't have an alternative source, use the PIT calibration value */ |
Thomas Gleixner | 827014b | 2008-09-04 15:18:53 +0000 | [diff] [blame] | 504 | if (!hpet && !ref1 && !ref2) { |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 505 | printk(KERN_INFO "TSC: Using PIT calibration value\n"); |
| 506 | return tsc_pit_min; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 507 | } |
| 508 | |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 509 | /* The alternative source failed, use the PIT calibration value */ |
| 510 | if (tsc_ref_min == ULONG_MAX) { |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 511 | printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. " |
| 512 | "Using PIT calibration\n"); |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 513 | return tsc_pit_min; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 514 | } |
| 515 | |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 516 | /* |
| 517 | * The calibration values differ too much. In doubt, we use |
| 518 | * the PIT value as we know that there are PMTIMERs around |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 519 | * running at double speed. At least we let the user know: |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 520 | */ |
Thomas Gleixner | a977c40 | 2008-09-04 15:18:59 +0000 | [diff] [blame] | 521 | printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n", |
| 522 | hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); |
Thomas Gleixner | fbb16e2 | 2008-09-03 00:54:47 +0200 | [diff] [blame] | 523 | printk(KERN_INFO "TSC: Using PIT calibration value\n"); |
| 524 | return tsc_pit_min; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 525 | } |
| 526 | |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 527 | #ifdef CONFIG_X86_32 |
| 528 | /* Only called from the Powernow K7 cpu freq driver */ |
| 529 | int recalibrate_cpu_khz(void) |
| 530 | { |
| 531 | #ifndef CONFIG_SMP |
| 532 | unsigned long cpu_khz_old = cpu_khz; |
| 533 | |
| 534 | if (cpu_has_tsc) { |
Alok Kataria | e93ef94 | 2008-07-01 11:43:36 -0700 | [diff] [blame] | 535 | tsc_khz = calibrate_tsc(); |
| 536 | cpu_khz = tsc_khz; |
Alok Kataria | bfc0f59 | 2008-07-01 11:43:24 -0700 | [diff] [blame] | 537 | cpu_data(0).loops_per_jiffy = |
| 538 | cpufreq_scale(cpu_data(0).loops_per_jiffy, |
| 539 | cpu_khz_old, cpu_khz); |
| 540 | return 0; |
| 541 | } else |
| 542 | return -ENODEV; |
| 543 | #else |
| 544 | return -ENODEV; |
| 545 | #endif |
| 546 | } |
| 547 | |
| 548 | EXPORT_SYMBOL(recalibrate_cpu_khz); |
| 549 | |
| 550 | #endif /* CONFIG_X86_32 */ |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame] | 551 | |
| 552 | /* Accelerators for sched_clock() |
| 553 | * convert from cycles(64bits) => nanoseconds (64bits) |
| 554 | * basic equation: |
| 555 | * ns = cycles / (freq / ns_per_sec) |
| 556 | * ns = cycles * (ns_per_sec / freq) |
| 557 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) |
| 558 | * ns = cycles * (10^6 / cpu_khz) |
| 559 | * |
| 560 | * Then we use scaling math (suggested by george@mvista.com) to get: |
| 561 | * ns = cycles * (10^6 * SC / cpu_khz) / SC |
| 562 | * ns = cycles * cyc2ns_scale / SC |
| 563 | * |
| 564 | * And since SC is a constant power of two, we can convert the div |
| 565 | * into a shift. |
| 566 | * |
| 567 | * We can use khz divisor instead of mhz to keep a better precision, since |
| 568 | * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. |
| 569 | * (mathieu.desnoyers@polymtl.ca) |
| 570 | * |
| 571 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" |
| 572 | */ |
| 573 | |
| 574 | DEFINE_PER_CPU(unsigned long, cyc2ns); |
| 575 | |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 576 | static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame] | 577 | { |
| 578 | unsigned long long tsc_now, ns_now; |
| 579 | unsigned long flags, *scale; |
| 580 | |
| 581 | local_irq_save(flags); |
| 582 | sched_clock_idle_sleep_event(); |
| 583 | |
| 584 | scale = &per_cpu(cyc2ns, cpu); |
| 585 | |
| 586 | rdtscll(tsc_now); |
| 587 | ns_now = __cycles_2_ns(tsc_now); |
| 588 | |
| 589 | if (cpu_khz) |
| 590 | *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz; |
| 591 | |
| 592 | sched_clock_idle_wakeup_event(0); |
| 593 | local_irq_restore(flags); |
| 594 | } |
| 595 | |
| 596 | #ifdef CONFIG_CPU_FREQ |
| 597 | |
| 598 | /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency |
| 599 | * changes. |
| 600 | * |
| 601 | * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's |
| 602 | * not that important because current Opteron setups do not support |
| 603 | * scaling on SMP anyroads. |
| 604 | * |
| 605 | * Should fix up last_tsc too. Currently gettimeofday in the |
| 606 | * first tick after the change will be slightly wrong. |
| 607 | */ |
| 608 | |
| 609 | static unsigned int ref_freq; |
| 610 | static unsigned long loops_per_jiffy_ref; |
| 611 | static unsigned long tsc_khz_ref; |
| 612 | |
| 613 | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| 614 | void *data) |
| 615 | { |
| 616 | struct cpufreq_freqs *freq = data; |
| 617 | unsigned long *lpj, dummy; |
| 618 | |
| 619 | if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) |
| 620 | return 0; |
| 621 | |
| 622 | lpj = &dummy; |
| 623 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 624 | #ifdef CONFIG_SMP |
| 625 | lpj = &cpu_data(freq->cpu).loops_per_jiffy; |
| 626 | #else |
| 627 | lpj = &boot_cpu_data.loops_per_jiffy; |
| 628 | #endif |
| 629 | |
| 630 | if (!ref_freq) { |
| 631 | ref_freq = freq->old; |
| 632 | loops_per_jiffy_ref = *lpj; |
| 633 | tsc_khz_ref = tsc_khz; |
| 634 | } |
| 635 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
| 636 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || |
| 637 | (val == CPUFREQ_RESUMECHANGE)) { |
| 638 | *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); |
| 639 | |
| 640 | tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); |
| 641 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
| 642 | mark_tsc_unstable("cpufreq changes"); |
| 643 | } |
| 644 | |
Peter Zijlstra | 52a8968 | 2008-08-25 13:35:06 +0200 | [diff] [blame] | 645 | set_cyc2ns_scale(tsc_khz, freq->cpu); |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame] | 646 | |
| 647 | return 0; |
| 648 | } |
| 649 | |
| 650 | static struct notifier_block time_cpufreq_notifier_block = { |
| 651 | .notifier_call = time_cpufreq_notifier |
| 652 | }; |
| 653 | |
| 654 | static int __init cpufreq_tsc(void) |
| 655 | { |
Linus Torvalds | 060700b | 2008-08-24 11:52:06 -0700 | [diff] [blame] | 656 | if (!cpu_has_tsc) |
| 657 | return 0; |
| 658 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| 659 | return 0; |
Alok Kataria | 2dbe06f | 2008-07-01 11:43:31 -0700 | [diff] [blame] | 660 | cpufreq_register_notifier(&time_cpufreq_notifier_block, |
| 661 | CPUFREQ_TRANSITION_NOTIFIER); |
| 662 | return 0; |
| 663 | } |
| 664 | |
| 665 | core_initcall(cpufreq_tsc); |
| 666 | |
| 667 | #endif /* CONFIG_CPU_FREQ */ |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 668 | |
| 669 | /* clocksource code */ |
| 670 | |
| 671 | static struct clocksource clocksource_tsc; |
| 672 | |
| 673 | /* |
| 674 | * We compare the TSC to the cycle_last value in the clocksource |
| 675 | * structure to avoid a nasty time-warp. This can be observed in a |
| 676 | * very small window right after one CPU updated cycle_last under |
| 677 | * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which |
| 678 | * is smaller than the cycle_last reference value due to a TSC which |
| 679 | * is slighty behind. This delta is nowhere else observable, but in |
| 680 | * that case it results in a forward time jump in the range of hours |
| 681 | * due to the unsigned delta calculation of the time keeping core |
| 682 | * code, which is necessary to support wrapping clocksources like pm |
| 683 | * timer. |
| 684 | */ |
| 685 | static cycle_t read_tsc(void) |
| 686 | { |
| 687 | cycle_t ret = (cycle_t)get_cycles(); |
| 688 | |
| 689 | return ret >= clocksource_tsc.cycle_last ? |
| 690 | ret : clocksource_tsc.cycle_last; |
| 691 | } |
| 692 | |
Thomas Gleixner | 431ceb8 | 2008-07-15 22:08:04 +0200 | [diff] [blame] | 693 | #ifdef CONFIG_X86_64 |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 694 | static cycle_t __vsyscall_fn vread_tsc(void) |
| 695 | { |
| 696 | cycle_t ret = (cycle_t)vget_cycles(); |
| 697 | |
| 698 | return ret >= __vsyscall_gtod_data.clock.cycle_last ? |
| 699 | ret : __vsyscall_gtod_data.clock.cycle_last; |
| 700 | } |
Thomas Gleixner | 431ceb8 | 2008-07-15 22:08:04 +0200 | [diff] [blame] | 701 | #endif |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 702 | |
| 703 | static struct clocksource clocksource_tsc = { |
| 704 | .name = "tsc", |
| 705 | .rating = 300, |
| 706 | .read = read_tsc, |
| 707 | .mask = CLOCKSOURCE_MASK(64), |
| 708 | .shift = 22, |
| 709 | .flags = CLOCK_SOURCE_IS_CONTINUOUS | |
| 710 | CLOCK_SOURCE_MUST_VERIFY, |
| 711 | #ifdef CONFIG_X86_64 |
| 712 | .vread = vread_tsc, |
| 713 | #endif |
| 714 | }; |
| 715 | |
| 716 | void mark_tsc_unstable(char *reason) |
| 717 | { |
| 718 | if (!tsc_unstable) { |
| 719 | tsc_unstable = 1; |
| 720 | printk("Marking TSC unstable due to %s\n", reason); |
| 721 | /* Change only the rating, when not registered */ |
| 722 | if (clocksource_tsc.mult) |
| 723 | clocksource_change_rating(&clocksource_tsc, 0); |
| 724 | else |
| 725 | clocksource_tsc.rating = 0; |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | EXPORT_SYMBOL_GPL(mark_tsc_unstable); |
| 730 | |
| 731 | static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d) |
| 732 | { |
| 733 | printk(KERN_NOTICE "%s detected: marking TSC unstable.\n", |
| 734 | d->ident); |
| 735 | tsc_unstable = 1; |
| 736 | return 0; |
| 737 | } |
| 738 | |
| 739 | /* List of systems that have known TSC problems */ |
| 740 | static struct dmi_system_id __initdata bad_tsc_dmi_table[] = { |
| 741 | { |
| 742 | .callback = dmi_mark_tsc_unstable, |
| 743 | .ident = "IBM Thinkpad 380XD", |
| 744 | .matches = { |
| 745 | DMI_MATCH(DMI_BOARD_VENDOR, "IBM"), |
| 746 | DMI_MATCH(DMI_BOARD_NAME, "2635FA0"), |
| 747 | }, |
| 748 | }, |
| 749 | {} |
| 750 | }; |
| 751 | |
Alok Kataria | 395628e | 2008-10-24 17:22:01 -0700 | [diff] [blame] | 752 | static void __init check_system_tsc_reliable(void) |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 753 | { |
Alok Kataria | 395628e | 2008-10-24 17:22:01 -0700 | [diff] [blame] | 754 | #ifdef CONFIG_MGEODE_LX |
| 755 | /* RTSC counts during suspend */ |
| 756 | #define RTSC_SUSP 0x100 |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 757 | unsigned long res_low, res_high; |
| 758 | |
| 759 | rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); |
Alok Kataria | 395628e | 2008-10-24 17:22:01 -0700 | [diff] [blame] | 760 | /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */ |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 761 | if (res_low & RTSC_SUSP) |
Alok Kataria | 395628e | 2008-10-24 17:22:01 -0700 | [diff] [blame] | 762 | tsc_clocksource_reliable = 1; |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 763 | #endif |
Alok Kataria | 395628e | 2008-10-24 17:22:01 -0700 | [diff] [blame] | 764 | if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) |
| 765 | tsc_clocksource_reliable = 1; |
| 766 | } |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 767 | |
| 768 | /* |
| 769 | * Make an educated guess if the TSC is trustworthy and synchronized |
| 770 | * over all CPUs. |
| 771 | */ |
| 772 | __cpuinit int unsynchronized_tsc(void) |
| 773 | { |
| 774 | if (!cpu_has_tsc || tsc_unstable) |
| 775 | return 1; |
| 776 | |
James Bottomley | 017d9d2 | 2008-10-30 16:05:39 -0500 | [diff] [blame] | 777 | #ifdef CONFIG_X86_SMP |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 778 | if (apic_is_clustered_box()) |
| 779 | return 1; |
| 780 | #endif |
| 781 | |
| 782 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
| 783 | return 0; |
| 784 | /* |
| 785 | * Intel systems are normally all synchronized. |
| 786 | * Exceptions must mark TSC as unstable: |
| 787 | */ |
| 788 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { |
| 789 | /* assume multi socket systems are not synchronized: */ |
| 790 | if (num_possible_cpus() > 1) |
| 791 | tsc_unstable = 1; |
| 792 | } |
| 793 | |
| 794 | return tsc_unstable; |
| 795 | } |
| 796 | |
| 797 | static void __init init_tsc_clocksource(void) |
| 798 | { |
| 799 | clocksource_tsc.mult = clocksource_khz2mult(tsc_khz, |
| 800 | clocksource_tsc.shift); |
Alok Kataria | 395628e | 2008-10-24 17:22:01 -0700 | [diff] [blame] | 801 | if (tsc_clocksource_reliable) |
| 802 | clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 803 | /* lower the rating if we already know its unstable: */ |
| 804 | if (check_tsc_unstable()) { |
| 805 | clocksource_tsc.rating = 0; |
| 806 | clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; |
| 807 | } |
| 808 | clocksource_register(&clocksource_tsc); |
| 809 | } |
| 810 | |
| 811 | void __init tsc_init(void) |
| 812 | { |
| 813 | u64 lpj; |
| 814 | int cpu; |
| 815 | |
| 816 | if (!cpu_has_tsc) |
| 817 | return; |
| 818 | |
Alok Kataria | e93ef94 | 2008-07-01 11:43:36 -0700 | [diff] [blame] | 819 | tsc_khz = calibrate_tsc(); |
| 820 | cpu_khz = tsc_khz; |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 821 | |
Alok Kataria | e93ef94 | 2008-07-01 11:43:36 -0700 | [diff] [blame] | 822 | if (!tsc_khz) { |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 823 | mark_tsc_unstable("could not calculate TSC khz"); |
| 824 | return; |
| 825 | } |
| 826 | |
| 827 | #ifdef CONFIG_X86_64 |
| 828 | if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) && |
| 829 | (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)) |
| 830 | cpu_khz = calibrate_cpu(); |
| 831 | #endif |
| 832 | |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 833 | printk("Detected %lu.%03lu MHz processor.\n", |
| 834 | (unsigned long)cpu_khz / 1000, |
| 835 | (unsigned long)cpu_khz % 1000); |
| 836 | |
| 837 | /* |
| 838 | * Secondary CPUs do not run through tsc_init(), so set up |
| 839 | * all the scale factors for all CPUs, assuming the same |
| 840 | * speed as the bootup CPU. (cpufreq notifiers will fix this |
| 841 | * up if their speed diverges) |
| 842 | */ |
| 843 | for_each_possible_cpu(cpu) |
| 844 | set_cyc2ns_scale(cpu_khz, cpu); |
| 845 | |
| 846 | if (tsc_disabled > 0) |
| 847 | return; |
| 848 | |
| 849 | /* now allow native_sched_clock() to use rdtsc */ |
| 850 | tsc_disabled = 0; |
| 851 | |
Alok Kataria | 70de9a97 | 2008-11-03 11:18:47 -0800 | [diff] [blame] | 852 | lpj = ((u64)tsc_khz * 1000); |
| 853 | do_div(lpj, HZ); |
| 854 | lpj_fine = lpj; |
| 855 | |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 856 | use_tsc_delay(); |
| 857 | /* Check and install the TSC clocksource */ |
| 858 | dmi_check_system(bad_tsc_dmi_table); |
| 859 | |
| 860 | if (unsynchronized_tsc()) |
| 861 | mark_tsc_unstable("TSCs unsynchronized"); |
| 862 | |
Alok Kataria | 395628e | 2008-10-24 17:22:01 -0700 | [diff] [blame] | 863 | check_system_tsc_reliable(); |
Alok Kataria | 8fbbc4b | 2008-07-01 11:43:34 -0700 | [diff] [blame] | 864 | init_tsc_clocksource(); |
| 865 | } |
| 866 | |