blob: b9cfd462f7e7b530458bde0c3595a8d97d862e67 [file] [log] [blame]
Joe Perchesc767a542012-05-21 19:50:07 -07001#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
Alok Katariabfc0f592008-07-01 11:43:24 -07003#include <linux/kernel.h>
Alok Kataria0ef95532008-07-01 11:43:18 -07004#include <linux/sched.h>
5#include <linux/init.h>
6#include <linux/module.h>
7#include <linux/timer.h>
Alok Katariabfc0f592008-07-01 11:43:24 -07008#include <linux/acpi_pmtmr.h>
Alok Kataria2dbe06f2008-07-01 11:43:31 -07009#include <linux/cpufreq.h>
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070010#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
Arnd Bergmann08604bd2009-06-16 15:31:12 -070013#include <linux/timex.h>
Peter Zijlstra10b033d2013-11-28 19:01:40 +010014#include <linux/static_key.h>
Alok Katariabfc0f592008-07-01 11:43:24 -070015
16#include <asm/hpet.h>
Alok Kataria8fbbc4b2008-07-01 11:43:34 -070017#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
Alok Kataria88b094f2008-10-27 10:41:46 -070021#include <asm/hypervisor.h>
Thomas Gleixner08047c42009-08-20 16:27:41 +020022#include <asm/nmi.h>
Thomas Gleixner2d826402009-08-20 17:06:25 +020023#include <asm/x86_init.h>
Alok Kataria0ef95532008-07-01 11:43:18 -070024
Ingo Molnarf24ade32009-03-10 19:02:30 +010025unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
Alok Kataria0ef95532008-07-01 11:43:18 -070026EXPORT_SYMBOL(cpu_khz);
Ingo Molnarf24ade32009-03-10 19:02:30 +010027
28unsigned int __read_mostly tsc_khz;
Alok Kataria0ef95532008-07-01 11:43:18 -070029EXPORT_SYMBOL(tsc_khz);
30
31/*
32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
33 */
Ingo Molnarf24ade32009-03-10 19:02:30 +010034static int __read_mostly tsc_unstable;
Alok Kataria0ef95532008-07-01 11:43:18 -070035
36/* native_sched_clock() is called before tsc_init(), so
37 we must start with the TSC soft disabled to prevent
38 erroneous rdtsc usage on !cpu_has_tsc processors */
Ingo Molnarf24ade32009-03-10 19:02:30 +010039static int __read_mostly tsc_disabled = -1;
Alok Kataria0ef95532008-07-01 11:43:18 -070040
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +020041static DEFINE_STATIC_KEY_FALSE(__use_tsc);
Peter Zijlstra10b033d2013-11-28 19:01:40 +010042
Suresh Siddha28a00182011-11-04 15:42:17 -070043int tsc_clocksource_reliable;
Peter Zijlstra57c67da2013-11-29 15:39:25 +010044
Peter Zijlstra20d1c862013-11-29 15:40:29 +010045/*
46 * Use a ring-buffer like data structure, where a writer advances the head by
47 * writing a new data entry and a reader advances the tail when it observes a
48 * new entry.
49 *
50 * Writers are made to wait on readers until there's space to write a new
51 * entry.
52 *
53 * This means that we can always use an {offset, mul} pair to compute a ns
54 * value that is 'roughly' in the right direction, even if we're writing a new
55 * {offset, mul} pair during the clock read.
56 *
57 * The down-side is that we can no longer guarantee strict monotonicity anymore
58 * (assuming the TSC was that to begin with), because while we compute the
59 * intersection point of the two clock slopes and make sure the time is
60 * continuous at the point of switching; we can no longer guarantee a reader is
61 * strictly before or after the switch point.
62 *
63 * It does mean a reader no longer needs to disable IRQs in order to avoid
64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
65 * no longer run the risk of hitting half-written state.
66 */
67
68struct cyc2ns {
69 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
70 struct cyc2ns_data *head; /* 48 + 8 = 56 */
71 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
72}; /* exactly fits one cacheline */
73
74static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
75
76struct cyc2ns_data *cyc2ns_read_begin(void)
77{
78 struct cyc2ns_data *head;
79
80 preempt_disable();
81
82 head = this_cpu_read(cyc2ns.head);
83 /*
84 * Ensure we observe the entry when we observe the pointer to it.
85 * matches the wmb from cyc2ns_write_end().
86 */
87 smp_read_barrier_depends();
88 head->__count++;
89 barrier();
90
91 return head;
92}
93
94void cyc2ns_read_end(struct cyc2ns_data *head)
95{
96 barrier();
97 /*
98 * If we're the outer most nested read; update the tail pointer
99 * when we're done. This notifies possible pending writers
100 * that we've observed the head pointer and that the other
101 * entry is now free.
102 */
103 if (!--head->__count) {
104 /*
105 * x86-TSO does not reorder writes with older reads;
106 * therefore once this write becomes visible to another
107 * cpu, we must be finished reading the cyc2ns_data.
108 *
109 * matches with cyc2ns_write_begin().
110 */
111 this_cpu_write(cyc2ns.tail, head);
112 }
113 preempt_enable();
114}
115
116/*
117 * Begin writing a new @data entry for @cpu.
118 *
119 * Assumes some sort of write side lock; currently 'provided' by the assumption
120 * that cpufreq will call its notifiers sequentially.
121 */
122static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
123{
124 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
125 struct cyc2ns_data *data = c2n->data;
126
127 if (data == c2n->head)
128 data++;
129
130 /* XXX send an IPI to @cpu in order to guarantee a read? */
131
132 /*
133 * When we observe the tail write from cyc2ns_read_end(),
134 * the cpu must be done with that entry and its safe
135 * to start writing to it.
136 */
137 while (c2n->tail == data)
138 cpu_relax();
139
140 return data;
141}
142
143static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
144{
145 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
146
147 /*
148 * Ensure the @data writes are visible before we publish the
149 * entry. Matches the data-depencency in cyc2ns_read_begin().
150 */
151 smp_wmb();
152
153 ACCESS_ONCE(c2n->head) = data;
154}
155
156/*
157 * Accelerators for sched_clock()
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100158 * convert from cycles(64bits) => nanoseconds (64bits)
159 * basic equation:
160 * ns = cycles / (freq / ns_per_sec)
161 * ns = cycles * (ns_per_sec / freq)
162 * ns = cycles * (10^9 / (cpu_khz * 10^3))
163 * ns = cycles * (10^6 / cpu_khz)
164 *
165 * Then we use scaling math (suggested by george@mvista.com) to get:
166 * ns = cycles * (10^6 * SC / cpu_khz) / SC
167 * ns = cycles * cyc2ns_scale / SC
168 *
169 * And since SC is a constant power of two, we can convert the div
170 * into a shift.
171 *
172 * We can use khz divisor instead of mhz to keep a better precision, since
173 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
174 * (mathieu.desnoyers@polymtl.ca)
175 *
176 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
177 */
178
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100179#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
180
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100181static void cyc2ns_data_init(struct cyc2ns_data *data)
182{
Peter Zijlstra5e3c1af2014-01-22 22:08:14 +0100183 data->cyc2ns_mul = 0;
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100184 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
185 data->cyc2ns_offset = 0;
186 data->__count = 0;
187}
188
189static void cyc2ns_init(int cpu)
190{
191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192
193 cyc2ns_data_init(&c2n->data[0]);
194 cyc2ns_data_init(&c2n->data[1]);
195
196 c2n->head = c2n->data;
197 c2n->tail = c2n->data;
198}
199
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100200static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201{
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100202 struct cyc2ns_data *data, *tail;
203 unsigned long long ns;
204
205 /*
206 * See cyc2ns_read_*() for details; replicated in order to avoid
207 * an extra few instructions that came with the abstraction.
208 * Notable, it allows us to only do the __count and tail update
209 * dance when its actually needed.
210 */
211
Steven Rostedt569d6552014-02-04 14:13:15 -0500212 preempt_disable_notrace();
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100213 data = this_cpu_read(cyc2ns.head);
214 tail = this_cpu_read(cyc2ns.tail);
215
216 if (likely(data == tail)) {
217 ns = data->cyc2ns_offset;
218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
219 } else {
220 data->__count++;
221
222 barrier();
223
224 ns = data->cyc2ns_offset;
225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
226
227 barrier();
228
229 if (!--data->__count)
230 this_cpu_write(cyc2ns.tail, data);
231 }
Steven Rostedt569d6552014-02-04 14:13:15 -0500232 preempt_enable_notrace();
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100233
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100234 return ns;
235}
236
237static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
238{
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100239 unsigned long long tsc_now, ns_now;
240 struct cyc2ns_data *data;
241 unsigned long flags;
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100242
243 local_irq_save(flags);
244 sched_clock_idle_sleep_event();
245
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100246 if (!cpu_khz)
247 goto done;
248
249 data = cyc2ns_write_begin(cpu);
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100250
Andy Lutomirski4ea16362015-06-25 18:44:07 +0200251 tsc_now = rdtsc();
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100252 ns_now = cycles_2_ns(tsc_now);
253
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100254 /*
255 * Compute a new multiplier as per the above comment and ensure our
256 * time function is continuous; see the comment near struct
257 * cyc2ns_data.
258 */
Michal Nazarewicz89171572014-06-19 03:58:36 +0200259 data->cyc2ns_mul =
260 DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
261 cpu_khz);
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100262 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
263 data->cyc2ns_offset = ns_now -
264 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100265
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100266 cyc2ns_write_end(cpu, data);
267
268done:
Peter Zijlstra57c67da2013-11-29 15:39:25 +0100269 sched_clock_idle_wakeup_event(0);
270 local_irq_restore(flags);
271}
Alok Kataria0ef95532008-07-01 11:43:18 -0700272/*
273 * Scheduler clock - returns current time in nanosec units.
274 */
275u64 native_sched_clock(void)
276{
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +0200277 if (static_branch_likely(&__use_tsc)) {
278 u64 tsc_now = rdtsc();
279
280 /* return the value in ns */
281 return cycles_2_ns(tsc_now);
282 }
Alok Kataria0ef95532008-07-01 11:43:18 -0700283
284 /*
285 * Fall back to jiffies if there's no TSC available:
286 * ( But note that we still use it if the TSC is marked
287 * unstable. We do this because unlike Time Of Day,
288 * the scheduler clock tolerates small errors and it's
289 * very important for it to be as fast as the platform
Daniel Mack3ad2f3f2010-02-03 08:01:28 +0800290 * can achieve it. )
Alok Kataria0ef95532008-07-01 11:43:18 -0700291 */
Alok Kataria0ef95532008-07-01 11:43:18 -0700292
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +0200293 /* No locking but a rare wrong value is not a big deal: */
294 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
Alok Kataria0ef95532008-07-01 11:43:18 -0700295}
296
297/* We need to define a real function for sched_clock, to override the
298 weak default version */
299#ifdef CONFIG_PARAVIRT
300unsigned long long sched_clock(void)
301{
302 return paravirt_sched_clock();
303}
304#else
305unsigned long long
306sched_clock(void) __attribute__((alias("native_sched_clock")));
307#endif
308
309int check_tsc_unstable(void)
310{
311 return tsc_unstable;
312}
313EXPORT_SYMBOL_GPL(check_tsc_unstable);
314
Adrian Hunterc73deb62013-06-28 16:22:18 +0300315int check_tsc_disabled(void)
316{
317 return tsc_disabled;
318}
319EXPORT_SYMBOL_GPL(check_tsc_disabled);
320
Alok Kataria0ef95532008-07-01 11:43:18 -0700321#ifdef CONFIG_X86_TSC
322int __init notsc_setup(char *str)
323{
Joe Perchesc767a542012-05-21 19:50:07 -0700324 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
Alok Kataria0ef95532008-07-01 11:43:18 -0700325 tsc_disabled = 1;
326 return 1;
327}
328#else
329/*
330 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
331 * in cpu/common.c
332 */
333int __init notsc_setup(char *str)
334{
335 setup_clear_cpu_cap(X86_FEATURE_TSC);
336 return 1;
337}
338#endif
339
340__setup("notsc", notsc_setup);
Alok Katariabfc0f592008-07-01 11:43:24 -0700341
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -0700342static int no_sched_irq_time;
343
Alok Kataria395628e2008-10-24 17:22:01 -0700344static int __init tsc_setup(char *str)
345{
346 if (!strcmp(str, "reliable"))
347 tsc_clocksource_reliable = 1;
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -0700348 if (!strncmp(str, "noirqtime", 9))
349 no_sched_irq_time = 1;
Alok Kataria395628e2008-10-24 17:22:01 -0700350 return 1;
351}
352
353__setup("tsc=", tsc_setup);
354
Alok Katariabfc0f592008-07-01 11:43:24 -0700355#define MAX_RETRIES 5
356#define SMI_TRESHOLD 50000
357
358/*
359 * Read TSC and the reference counters. Take care of SMI disturbance
360 */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000361static u64 tsc_read_refs(u64 *p, int hpet)
Alok Katariabfc0f592008-07-01 11:43:24 -0700362{
363 u64 t1, t2;
364 int i;
365
366 for (i = 0; i < MAX_RETRIES; i++) {
367 t1 = get_cycles();
368 if (hpet)
Thomas Gleixner827014b2008-09-04 15:18:53 +0000369 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
Alok Katariabfc0f592008-07-01 11:43:24 -0700370 else
Thomas Gleixner827014b2008-09-04 15:18:53 +0000371 *p = acpi_pm_read_early();
Alok Katariabfc0f592008-07-01 11:43:24 -0700372 t2 = get_cycles();
373 if ((t2 - t1) < SMI_TRESHOLD)
374 return t2;
375 }
376 return ULLONG_MAX;
377}
378
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700379/*
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000380 * Calculate the TSC frequency from HPET reference
381 */
382static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
383{
384 u64 tmp;
385
386 if (hpet2 < hpet1)
387 hpet2 += 0x100000000ULL;
388 hpet2 -= hpet1;
389 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
390 do_div(tmp, 1000000);
391 do_div(deltatsc, tmp);
392
393 return (unsigned long) deltatsc;
394}
395
396/*
397 * Calculate the TSC frequency from PMTimer reference
398 */
399static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
400{
401 u64 tmp;
402
403 if (!pm1 && !pm2)
404 return ULONG_MAX;
405
406 if (pm2 < pm1)
407 pm2 += (u64)ACPI_PM_OVRRUN;
408 pm2 -= pm1;
409 tmp = pm2 * 1000000000LL;
410 do_div(tmp, PMTMR_TICKS_PER_SEC);
411 do_div(deltatsc, tmp);
412
413 return (unsigned long) deltatsc;
414}
415
Thomas Gleixnera977c402008-09-04 15:18:59 +0000416#define CAL_MS 10
Deepak Saxenab7743972011-11-01 14:25:07 -0700417#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
Thomas Gleixnera977c402008-09-04 15:18:59 +0000418#define CAL_PIT_LOOPS 1000
419
420#define CAL2_MS 50
Deepak Saxenab7743972011-11-01 14:25:07 -0700421#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
Thomas Gleixnera977c402008-09-04 15:18:59 +0000422#define CAL2_PIT_LOOPS 5000
423
Thomas Gleixnercce3e052008-09-04 15:18:44 +0000424
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700425/*
426 * Try to calibrate the TSC against the Programmable
427 * Interrupt Timer and return the frequency of the TSC
428 * in kHz.
429 *
430 * Return ULONG_MAX on failure to calibrate.
431 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000432static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700433{
434 u64 tsc, t1, t2, delta;
435 unsigned long tscmin, tscmax;
436 int pitcnt;
437
438 /* Set the Gate high, disable speaker */
439 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
440
441 /*
442 * Setup CTC channel 2* for mode 0, (interrupt on terminal
443 * count mode), binary count. Set the latch register to 50ms
444 * (LSB then MSB) to begin countdown.
445 */
446 outb(0xb0, 0x43);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000447 outb(latch & 0xff, 0x42);
448 outb(latch >> 8, 0x42);
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700449
450 tsc = t1 = t2 = get_cycles();
451
452 pitcnt = 0;
453 tscmax = 0;
454 tscmin = ULONG_MAX;
455 while ((inb(0x61) & 0x20) == 0) {
456 t2 = get_cycles();
457 delta = t2 - tsc;
458 tsc = t2;
459 if ((unsigned long) delta < tscmin)
460 tscmin = (unsigned int) delta;
461 if ((unsigned long) delta > tscmax)
462 tscmax = (unsigned int) delta;
463 pitcnt++;
464 }
465
466 /*
467 * Sanity checks:
468 *
Thomas Gleixnera977c402008-09-04 15:18:59 +0000469 * If we were not able to read the PIT more than loopmin
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700470 * times, then we have been hit by a massive SMI
471 *
472 * If the maximum is 10 times larger than the minimum,
473 * then we got hit by an SMI as well.
474 */
Thomas Gleixnera977c402008-09-04 15:18:59 +0000475 if (pitcnt < loopmin || tscmax > 10 * tscmin)
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700476 return ULONG_MAX;
477
478 /* Calculate the PIT value */
479 delta = t2 - t1;
Thomas Gleixnera977c402008-09-04 15:18:59 +0000480 do_div(delta, ms);
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700481 return delta;
482}
483
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700484/*
485 * This reads the current MSB of the PIT counter, and
486 * checks if we are running on sufficiently fast and
487 * non-virtualized hardware.
488 *
489 * Our expectations are:
490 *
491 * - the PIT is running at roughly 1.19MHz
492 *
493 * - each IO is going to take about 1us on real hardware,
494 * but we allow it to be much faster (by a factor of 10) or
495 * _slightly_ slower (ie we allow up to a 2us read+counter
496 * update - anything else implies a unacceptably slow CPU
497 * or PIT for the fast calibration to work.
498 *
499 * - with 256 PIT ticks to read the value, we have 214us to
500 * see the same MSB (and overhead like doing a single TSC
501 * read per MSB value etc).
502 *
503 * - We're doing 2 reads per loop (LSB, MSB), and we expect
504 * them each to take about a microsecond on real hardware.
505 * So we expect a count value of around 100. But we'll be
506 * generous, and accept anything over 50.
507 *
508 * - if the PIT is stuck, and we see *many* more reads, we
509 * return early (and the next caller of pit_expect_msb()
510 * then consider it a failure when they don't see the
511 * next expected value).
512 *
513 * These expectations mean that we know that we have seen the
514 * transition from one expected value to another with a fairly
515 * high accuracy, and we didn't miss any events. We can thus
516 * use the TSC value at the transitions to calculate a pretty
517 * good value for the TSC frequencty.
518 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700519static inline int pit_verify_msb(unsigned char val)
520{
521 /* Ignore LSB */
522 inb(0x42);
523 return inb(0x42) == val;
524}
525
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700526static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700527{
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700528 int count;
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800529 u64 tsc = 0, prev_tsc = 0;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700530
531 for (count = 0; count < 50000; count++) {
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700532 if (!pit_verify_msb(val))
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700533 break;
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800534 prev_tsc = tsc;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700535 tsc = get_cycles();
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700536 }
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800537 *deltap = get_cycles() - prev_tsc;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700538 *tscp = tsc;
539
540 /*
541 * We require _some_ success, but the quality control
542 * will be based on the error terms on the TSC values.
543 */
544 return count > 5;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700545}
546
547/*
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700548 * How many MSB values do we want to see? We aim for
549 * a maximum error rate of 500ppm (in practice the
550 * real error is much smaller), but refuse to spend
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800551 * more than 50ms on it.
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700552 */
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800553#define MAX_QUICK_PIT_MS 50
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700554#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700555
556static unsigned long quick_pit_calibrate(void)
557{
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700558 int i;
559 u64 tsc, delta;
560 unsigned long d1, d2;
561
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700562 /* Set the Gate high, disable speaker */
563 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
564
565 /*
566 * Counter 2, mode 0 (one-shot), binary count
567 *
568 * NOTE! Mode 2 decrements by two (and then the
569 * output is flipped each time, giving the same
570 * final output frequency as a decrement-by-one),
571 * so mode 0 is much better when looking at the
572 * individual counts.
573 */
574 outb(0xb0, 0x43);
575
576 /* Start at 0xffff */
577 outb(0xff, 0x42);
578 outb(0xff, 0x42);
579
Linus Torvaldsa6a80e12009-03-17 07:58:26 -0700580 /*
581 * The PIT starts counting at the next edge, so we
582 * need to delay for a microsecond. The easiest way
583 * to do that is to just read back the 16-bit counter
584 * once from the PIT.
585 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700586 pit_verify_msb(0);
Linus Torvaldsa6a80e12009-03-17 07:58:26 -0700587
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700588 if (pit_expect_msb(0xff, &tsc, &d1)) {
589 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
590 if (!pit_expect_msb(0xff-i, &delta, &d2))
591 break;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700592
Adrian Hunter5aac6442015-06-03 10:39:46 +0300593 delta -= tsc;
594
595 /*
596 * Extrapolate the error and fail fast if the error will
597 * never be below 500 ppm.
598 */
599 if (i == 1 &&
600 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
601 return 0;
602
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700603 /*
604 * Iterate until the error is less than 500 ppm
605 */
Linus Torvaldsb6e61ee2009-07-31 12:45:41 -0700606 if (d1+d2 >= delta >> 11)
607 continue;
608
609 /*
610 * Check the PIT one more time to verify that
611 * all TSC reads were stable wrt the PIT.
612 *
613 * This also guarantees serialization of the
614 * last cycle read ('d2') in pit_expect_msb.
615 */
616 if (!pit_verify_msb(0xfe - i))
617 break;
618 goto success;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700619 }
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700620 }
Alexandre Demers52045212014-12-09 01:27:50 -0500621 pr_info("Fast TSC calibration failed\n");
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700622 return 0;
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700623
624success:
625 /*
626 * Ok, if we get here, then we've seen the
627 * MSB of the PIT decrement 'i' times, and the
628 * error has shrunk to less than 500 ppm.
629 *
630 * As a result, we can depend on there not being
631 * any odd delays anywhere, and the TSC reads are
Linus Torvalds68f30fb2012-01-17 15:35:37 -0800632 * reliable (within the error).
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700633 *
634 * kHz = ticks / time-in-seconds / 1000;
635 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
636 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
637 */
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700638 delta *= PIT_TICK_RATE;
639 do_div(delta, i*256*1000);
Joe Perchesc767a542012-05-21 19:50:07 -0700640 pr_info("Fast TSC calibration using PIT\n");
Linus Torvalds9e8912e2009-03-17 08:13:17 -0700641 return delta;
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700642}
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700643
Alok Katariabfc0f592008-07-01 11:43:24 -0700644/**
Alok Katariae93ef942008-07-01 11:43:36 -0700645 * native_calibrate_tsc - calibrate the tsc on boot
Alok Katariabfc0f592008-07-01 11:43:24 -0700646 */
Alok Katariae93ef942008-07-01 11:43:36 -0700647unsigned long native_calibrate_tsc(void)
Alok Katariabfc0f592008-07-01 11:43:24 -0700648{
Thomas Gleixner827014b2008-09-04 15:18:53 +0000649 u64 tsc1, tsc2, delta, ref1, ref2;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200650 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
Thomas Gleixner2d826402009-08-20 17:06:25 +0200651 unsigned long flags, latch, ms, fast_calibrate;
Thomas Gleixnera977c402008-09-04 15:18:59 +0000652 int hpet = is_hpet_enabled(), i, loopmin;
Alok Katariabfc0f592008-07-01 11:43:24 -0700653
Bin Gao7da7c152013-10-21 09:16:33 -0700654 /* Calibrate TSC using MSR for Intel Atom SoCs */
655 local_irq_save(flags);
Thomas Gleixner5f0e0302014-02-19 13:52:29 +0200656 fast_calibrate = try_msr_calibrate_tsc();
Bin Gao7da7c152013-10-21 09:16:33 -0700657 local_irq_restore(flags);
Thomas Gleixner5f0e0302014-02-19 13:52:29 +0200658 if (fast_calibrate)
Bin Gao7da7c152013-10-21 09:16:33 -0700659 return fast_calibrate;
Bin Gao7da7c152013-10-21 09:16:33 -0700660
Alok Katariabfc0f592008-07-01 11:43:24 -0700661 local_irq_save(flags);
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700662 fast_calibrate = quick_pit_calibrate();
Alok Katariabfc0f592008-07-01 11:43:24 -0700663 local_irq_restore(flags);
Linus Torvalds6ac40ed2008-09-04 10:41:22 -0700664 if (fast_calibrate)
665 return fast_calibrate;
Alok Katariabfc0f592008-07-01 11:43:24 -0700666
667 /*
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200668 * Run 5 calibration loops to get the lowest frequency value
669 * (the best estimate). We use two different calibration modes
670 * here:
671 *
672 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
673 * load a timeout of 50ms. We read the time right after we
674 * started the timer and wait until the PIT count down reaches
675 * zero. In each wait loop iteration we read the TSC and check
676 * the delta to the previous read. We keep track of the min
677 * and max values of that delta. The delta is mostly defined
678 * by the IO time of the PIT access, so we can detect when a
Lucas De Marchi0d2eb442011-03-17 16:24:16 -0300679 * SMI/SMM disturbance happened between the two reads. If the
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200680 * maximum time is significantly larger than the minimum time,
681 * then we discard the result and have another try.
682 *
683 * 2) Reference counter. If available we use the HPET or the
684 * PMTIMER as a reference to check the sanity of that value.
685 * We use separate TSC readouts and check inside of the
686 * reference read for a SMI/SMM disturbance. We dicard
687 * disturbed values here as well. We do that around the PIT
688 * calibration delay loop as we have to wait for a certain
689 * amount of time anyway.
Alok Katariabfc0f592008-07-01 11:43:24 -0700690 */
Alok Katariabfc0f592008-07-01 11:43:24 -0700691
Thomas Gleixnera977c402008-09-04 15:18:59 +0000692 /* Preset PIT loop values */
693 latch = CAL_LATCH;
694 ms = CAL_MS;
695 loopmin = CAL_PIT_LOOPS;
696
697 for (i = 0; i < 3; i++) {
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700698 unsigned long tsc_pit_khz;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200699
700 /*
701 * Read the start value and the reference count of
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700702 * hpet/pmtimer when available. Then do the PIT
703 * calibration, which will take at least 50ms, and
704 * read the end value.
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200705 */
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700706 local_irq_save(flags);
Thomas Gleixner827014b2008-09-04 15:18:53 +0000707 tsc1 = tsc_read_refs(&ref1, hpet);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000708 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
Thomas Gleixner827014b2008-09-04 15:18:53 +0000709 tsc2 = tsc_read_refs(&ref2, hpet);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200710 local_irq_restore(flags);
711
Linus Torvaldsec0c15a2008-09-03 07:30:13 -0700712 /* Pick the lowest PIT TSC calibration so far */
713 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200714
715 /* hpet or pmtimer available ? */
John Stultz62627be2011-01-14 09:06:28 -0800716 if (ref1 == ref2)
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200717 continue;
718
719 /* Check, whether the sampling was disturbed by an SMI */
720 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
721 continue;
722
723 tsc2 = (tsc2 - tsc1) * 1000000LL;
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000724 if (hpet)
Thomas Gleixner827014b2008-09-04 15:18:53 +0000725 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
Thomas Gleixnerd683ef72008-09-04 15:18:48 +0000726 else
Thomas Gleixner827014b2008-09-04 15:18:53 +0000727 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200728
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200729 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000730
731 /* Check the reference deviation */
732 delta = ((u64) tsc_pit_min) * 100;
733 do_div(delta, tsc_ref_min);
734
735 /*
736 * If both calibration results are inside a 10% window
737 * then we can be sure, that the calibration
738 * succeeded. We break out of the loop right away. We
739 * use the reference value, as it is more precise.
740 */
741 if (delta >= 90 && delta <= 110) {
Joe Perchesc767a542012-05-21 19:50:07 -0700742 pr_info("PIT calibration matches %s. %d loops\n",
743 hpet ? "HPET" : "PMTIMER", i + 1);
Thomas Gleixnera977c402008-09-04 15:18:59 +0000744 return tsc_ref_min;
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200745 }
746
Thomas Gleixnera977c402008-09-04 15:18:59 +0000747 /*
748 * Check whether PIT failed more than once. This
749 * happens in virtualized environments. We need to
750 * give the virtual PC a slightly longer timeframe for
751 * the HPET/PMTIMER to make the result precise.
752 */
753 if (i == 1 && tsc_pit_min == ULONG_MAX) {
754 latch = CAL2_LATCH;
755 ms = CAL2_MS;
756 loopmin = CAL2_PIT_LOOPS;
757 }
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200758 }
759
760 /*
761 * Now check the results.
762 */
763 if (tsc_pit_min == ULONG_MAX) {
764 /* PIT gave no useful value */
Joe Perchesc767a542012-05-21 19:50:07 -0700765 pr_warn("Unable to calibrate against PIT\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200766
767 /* We don't have an alternative source, disable TSC */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000768 if (!hpet && !ref1 && !ref2) {
Joe Perchesc767a542012-05-21 19:50:07 -0700769 pr_notice("No reference (HPET/PMTIMER) available\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200770 return 0;
771 }
772
773 /* The alternative source failed as well, disable TSC */
774 if (tsc_ref_min == ULONG_MAX) {
Joe Perchesc767a542012-05-21 19:50:07 -0700775 pr_warn("HPET/PMTIMER calibration failed\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200776 return 0;
777 }
778
779 /* Use the alternative source */
Joe Perchesc767a542012-05-21 19:50:07 -0700780 pr_info("using %s reference calibration\n",
781 hpet ? "HPET" : "PMTIMER");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200782
783 return tsc_ref_min;
784 }
785
786 /* We don't have an alternative source, use the PIT calibration value */
Thomas Gleixner827014b2008-09-04 15:18:53 +0000787 if (!hpet && !ref1 && !ref2) {
Joe Perchesc767a542012-05-21 19:50:07 -0700788 pr_info("Using PIT calibration value\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200789 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700790 }
791
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200792 /* The alternative source failed, use the PIT calibration value */
793 if (tsc_ref_min == ULONG_MAX) {
Joe Perchesc767a542012-05-21 19:50:07 -0700794 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200795 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700796 }
797
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200798 /*
799 * The calibration values differ too much. In doubt, we use
800 * the PIT value as we know that there are PMTIMERs around
Thomas Gleixnera977c402008-09-04 15:18:59 +0000801 * running at double speed. At least we let the user know:
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200802 */
Joe Perchesc767a542012-05-21 19:50:07 -0700803 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
804 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
805 pr_info("Using PIT calibration value\n");
Thomas Gleixnerfbb16e22008-09-03 00:54:47 +0200806 return tsc_pit_min;
Alok Katariabfc0f592008-07-01 11:43:24 -0700807}
808
Alok Katariabfc0f592008-07-01 11:43:24 -0700809int recalibrate_cpu_khz(void)
810{
811#ifndef CONFIG_SMP
812 unsigned long cpu_khz_old = cpu_khz;
813
814 if (cpu_has_tsc) {
Thomas Gleixner2d826402009-08-20 17:06:25 +0200815 tsc_khz = x86_platform.calibrate_tsc();
Alok Katariae93ef942008-07-01 11:43:36 -0700816 cpu_khz = tsc_khz;
Alok Katariabfc0f592008-07-01 11:43:24 -0700817 cpu_data(0).loops_per_jiffy =
818 cpufreq_scale(cpu_data(0).loops_per_jiffy,
819 cpu_khz_old, cpu_khz);
820 return 0;
821 } else
822 return -ENODEV;
823#else
824 return -ENODEV;
825#endif
826}
827
828EXPORT_SYMBOL(recalibrate_cpu_khz);
829
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700830
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700831static unsigned long long cyc2ns_suspend;
832
Marcelo Tosattib74f05d2012-02-13 11:07:27 -0200833void tsc_save_sched_clock_state(void)
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700834{
Peter Zijlstra35af99e2013-11-28 19:38:42 +0100835 if (!sched_clock_stable())
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700836 return;
837
838 cyc2ns_suspend = sched_clock();
839}
840
841/*
842 * Even on processors with invariant TSC, TSC gets reset in some the
843 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
844 * arbitrary value (still sync'd across cpu's) during resume from such sleep
845 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
846 * that sched_clock() continues from the point where it was left off during
847 * suspend.
848 */
Marcelo Tosattib74f05d2012-02-13 11:07:27 -0200849void tsc_restore_sched_clock_state(void)
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700850{
851 unsigned long long offset;
852 unsigned long flags;
853 int cpu;
854
Peter Zijlstra35af99e2013-11-28 19:38:42 +0100855 if (!sched_clock_stable())
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700856 return;
857
858 local_irq_save(flags);
859
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100860 /*
861 * We're comming out of suspend, there's no concurrency yet; don't
862 * bother being nice about the RCU stuff, just write to both
863 * data fields.
864 */
865
866 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
867 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
868
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700869 offset = cyc2ns_suspend - sched_clock();
870
Peter Zijlstra20d1c862013-11-29 15:40:29 +0100871 for_each_possible_cpu(cpu) {
872 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
873 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
874 }
Suresh Siddhacd7240c2010-08-19 17:03:38 -0700875
876 local_irq_restore(flags);
877}
878
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700879#ifdef CONFIG_CPU_FREQ
880
881/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
882 * changes.
883 *
884 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
885 * not that important because current Opteron setups do not support
886 * scaling on SMP anyroads.
887 *
888 * Should fix up last_tsc too. Currently gettimeofday in the
889 * first tick after the change will be slightly wrong.
890 */
891
892static unsigned int ref_freq;
893static unsigned long loops_per_jiffy_ref;
894static unsigned long tsc_khz_ref;
895
896static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
897 void *data)
898{
899 struct cpufreq_freqs *freq = data;
Dave Jones931db6a2009-06-01 12:29:55 -0400900 unsigned long *lpj;
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700901
902 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
903 return 0;
904
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700905 lpj = &boot_cpu_data.loops_per_jiffy;
Dave Jones931db6a2009-06-01 12:29:55 -0400906#ifdef CONFIG_SMP
907 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
908 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700909#endif
910
911 if (!ref_freq) {
912 ref_freq = freq->old;
913 loops_per_jiffy_ref = *lpj;
914 tsc_khz_ref = tsc_khz;
915 }
916 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
Viresh Kumar0b443ea2014-03-19 11:24:58 +0530917 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
Felipe Contreras878f4f52009-09-17 00:38:38 +0300918 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700919
920 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
921 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
922 mark_tsc_unstable("cpufreq changes");
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700923
Peter Zijlstra3896c322014-06-24 14:48:19 +0200924 set_cyc2ns_scale(tsc_khz, freq->cpu);
925 }
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700926
927 return 0;
928}
929
930static struct notifier_block time_cpufreq_notifier_block = {
931 .notifier_call = time_cpufreq_notifier
932};
933
934static int __init cpufreq_tsc(void)
935{
Linus Torvalds060700b2008-08-24 11:52:06 -0700936 if (!cpu_has_tsc)
937 return 0;
938 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
939 return 0;
Alok Kataria2dbe06f2008-07-01 11:43:31 -0700940 cpufreq_register_notifier(&time_cpufreq_notifier_block,
941 CPUFREQ_TRANSITION_NOTIFIER);
942 return 0;
943}
944
945core_initcall(cpufreq_tsc);
946
947#endif /* CONFIG_CPU_FREQ */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700948
949/* clocksource code */
950
951static struct clocksource clocksource_tsc;
952
953/*
Thomas Gleixner09ec5442014-07-16 21:05:12 +0000954 * We used to compare the TSC to the cycle_last value in the clocksource
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700955 * structure to avoid a nasty time-warp. This can be observed in a
956 * very small window right after one CPU updated cycle_last under
957 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
958 * is smaller than the cycle_last reference value due to a TSC which
959 * is slighty behind. This delta is nowhere else observable, but in
960 * that case it results in a forward time jump in the range of hours
961 * due to the unsigned delta calculation of the time keeping core
962 * code, which is necessary to support wrapping clocksources like pm
963 * timer.
Thomas Gleixner09ec5442014-07-16 21:05:12 +0000964 *
965 * This sanity check is now done in the core timekeeping code.
966 * checking the result of read_tsc() - cycle_last for being negative.
967 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700968 */
Magnus Damm8e196082009-04-21 12:24:00 -0700969static cycle_t read_tsc(struct clocksource *cs)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700970{
Andy Lutomirski27c63402015-06-25 18:44:10 +0200971 return (cycle_t)rdtsc_ordered();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700972}
973
Thomas Gleixner09ec5442014-07-16 21:05:12 +0000974/*
975 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
976 */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700977static struct clocksource clocksource_tsc = {
978 .name = "tsc",
979 .rating = 300,
980 .read = read_tsc,
981 .mask = CLOCKSOURCE_MASK(64),
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700982 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
983 CLOCK_SOURCE_MUST_VERIFY,
Andy Lutomirski98d0ac32011-07-14 06:47:22 -0400984 .archdata = { .vclock_mode = VCLOCK_TSC },
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700985};
986
987void mark_tsc_unstable(char *reason)
988{
989 if (!tsc_unstable) {
990 tsc_unstable = 1;
Peter Zijlstra35af99e2013-11-28 19:38:42 +0100991 clear_sched_clock_stable();
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -0700992 disable_sched_clock_irqtime();
Joe Perchesc767a542012-05-21 19:50:07 -0700993 pr_info("Marking TSC unstable due to %s\n", reason);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700994 /* Change only the rating, when not registered */
995 if (clocksource_tsc.mult)
Thomas Gleixner7285dd72009-08-28 20:25:24 +0200996 clocksource_mark_unstable(&clocksource_tsc);
997 else {
998 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -0700999 clocksource_tsc.rating = 0;
Thomas Gleixner7285dd72009-08-28 20:25:24 +02001000 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001001 }
1002}
1003
1004EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1005
Alok Kataria395628e2008-10-24 17:22:01 -07001006static void __init check_system_tsc_reliable(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001007{
Alok Kataria395628e2008-10-24 17:22:01 -07001008#ifdef CONFIG_MGEODE_LX
1009 /* RTSC counts during suspend */
1010#define RTSC_SUSP 0x100
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001011 unsigned long res_low, res_high;
1012
1013 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
Thadeu Lima de Souza Cascardo00097c42010-01-17 19:44:44 -02001014 /* Geode_LX - the OLPC CPU has a very reliable TSC */
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001015 if (res_low & RTSC_SUSP)
Alok Kataria395628e2008-10-24 17:22:01 -07001016 tsc_clocksource_reliable = 1;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001017#endif
Alok Kataria395628e2008-10-24 17:22:01 -07001018 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1019 tsc_clocksource_reliable = 1;
1020}
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001021
1022/*
1023 * Make an educated guess if the TSC is trustworthy and synchronized
1024 * over all CPUs.
1025 */
Paul Gortmaker148f9bb2013-06-18 18:23:59 -04001026int unsynchronized_tsc(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001027{
1028 if (!cpu_has_tsc || tsc_unstable)
1029 return 1;
1030
Ingo Molnar3e5095d2009-01-27 17:07:08 +01001031#ifdef CONFIG_SMP
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001032 if (apic_is_clustered_box())
1033 return 1;
1034#endif
1035
1036 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1037 return 0;
john stultzd3b8f882009-08-17 16:40:47 -07001038
1039 if (tsc_clocksource_reliable)
1040 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001041 /*
1042 * Intel systems are normally all synchronized.
1043 * Exceptions must mark TSC as unstable:
1044 */
1045 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1046 /* assume multi socket systems are not synchronized: */
1047 if (num_possible_cpus() > 1)
john stultzd3b8f882009-08-17 16:40:47 -07001048 return 1;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001049 }
1050
john stultzd3b8f882009-08-17 16:40:47 -07001051 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001052}
1053
John Stultz08ec0c52010-07-27 17:00:00 -07001054
1055static void tsc_refine_calibration_work(struct work_struct *work);
1056static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1057/**
1058 * tsc_refine_calibration_work - Further refine tsc freq calibration
1059 * @work - ignored.
1060 *
1061 * This functions uses delayed work over a period of a
1062 * second to further refine the TSC freq value. Since this is
1063 * timer based, instead of loop based, we don't block the boot
1064 * process while this longer calibration is done.
1065 *
Lucas De Marchi0d2eb442011-03-17 16:24:16 -03001066 * If there are any calibration anomalies (too many SMIs, etc),
John Stultz08ec0c52010-07-27 17:00:00 -07001067 * or the refined calibration is off by 1% of the fast early
1068 * calibration, we throw out the new calibration and use the
1069 * early calibration.
1070 */
1071static void tsc_refine_calibration_work(struct work_struct *work)
1072{
1073 static u64 tsc_start = -1, ref_start;
1074 static int hpet;
1075 u64 tsc_stop, ref_stop, delta;
1076 unsigned long freq;
1077
1078 /* Don't bother refining TSC on unstable systems */
1079 if (check_tsc_unstable())
1080 goto out;
1081
1082 /*
1083 * Since the work is started early in boot, we may be
1084 * delayed the first time we expire. So set the workqueue
1085 * again once we know timers are working.
1086 */
1087 if (tsc_start == -1) {
1088 /*
1089 * Only set hpet once, to avoid mixing hardware
1090 * if the hpet becomes enabled later.
1091 */
1092 hpet = is_hpet_enabled();
1093 schedule_delayed_work(&tsc_irqwork, HZ);
1094 tsc_start = tsc_read_refs(&ref_start, hpet);
1095 return;
1096 }
1097
1098 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1099
1100 /* hpet or pmtimer available ? */
John Stultz62627be2011-01-14 09:06:28 -08001101 if (ref_start == ref_stop)
John Stultz08ec0c52010-07-27 17:00:00 -07001102 goto out;
1103
1104 /* Check, whether the sampling was disturbed by an SMI */
1105 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1106 goto out;
1107
1108 delta = tsc_stop - tsc_start;
1109 delta *= 1000000LL;
1110 if (hpet)
1111 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1112 else
1113 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1114
1115 /* Make sure we're within 1% */
1116 if (abs(tsc_khz - freq) > tsc_khz/100)
1117 goto out;
1118
1119 tsc_khz = freq;
Joe Perchesc767a542012-05-21 19:50:07 -07001120 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1121 (unsigned long)tsc_khz / 1000,
1122 (unsigned long)tsc_khz % 1000);
John Stultz08ec0c52010-07-27 17:00:00 -07001123
1124out:
1125 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1126}
1127
1128
1129static int __init init_tsc_clocksource(void)
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001130{
Thomas Gleixner29fe3592011-01-11 11:40:48 +01001131 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
Thomas Gleixnera8760ec2010-12-13 11:28:02 +01001132 return 0;
1133
Alok Kataria395628e2008-10-24 17:22:01 -07001134 if (tsc_clocksource_reliable)
1135 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001136 /* lower the rating if we already know its unstable: */
1137 if (check_tsc_unstable()) {
1138 clocksource_tsc.rating = 0;
1139 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1140 }
Alok Kataria57779dc2012-02-21 18:19:55 -08001141
Feng Tang82f9c082013-03-12 11:56:47 +08001142 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1143 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1144
Alok Kataria57779dc2012-02-21 18:19:55 -08001145 /*
1146 * Trust the results of the earlier calibration on systems
1147 * exporting a reliable TSC.
1148 */
1149 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1150 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1151 return 0;
1152 }
1153
John Stultz08ec0c52010-07-27 17:00:00 -07001154 schedule_delayed_work(&tsc_irqwork, 0);
1155 return 0;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001156}
John Stultz08ec0c52010-07-27 17:00:00 -07001157/*
1158 * We use device_initcall here, to ensure we run after the hpet
1159 * is fully initialized, which may occur at fs_initcall time.
1160 */
1161device_initcall(init_tsc_clocksource);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001162
1163void __init tsc_init(void)
1164{
1165 u64 lpj;
1166 int cpu;
1167
Thomas Gleixner845b3942009-08-19 15:37:03 +02001168 x86_init.timers.tsc_pre_init();
1169
Andy Lutomirskib47dcbd2014-10-15 10:12:07 -07001170 if (!cpu_has_tsc) {
1171 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001172 return;
Andy Lutomirskib47dcbd2014-10-15 10:12:07 -07001173 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001174
Thomas Gleixner2d826402009-08-20 17:06:25 +02001175 tsc_khz = x86_platform.calibrate_tsc();
Alok Katariae93ef942008-07-01 11:43:36 -07001176 cpu_khz = tsc_khz;
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001177
Alok Katariae93ef942008-07-01 11:43:36 -07001178 if (!tsc_khz) {
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001179 mark_tsc_unstable("could not calculate TSC khz");
Andy Lutomirskib47dcbd2014-10-15 10:12:07 -07001180 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001181 return;
1182 }
1183
Joe Perchesc767a542012-05-21 19:50:07 -07001184 pr_info("Detected %lu.%03lu MHz processor\n",
1185 (unsigned long)cpu_khz / 1000,
1186 (unsigned long)cpu_khz % 1000);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001187
1188 /*
1189 * Secondary CPUs do not run through tsc_init(), so set up
1190 * all the scale factors for all CPUs, assuming the same
1191 * speed as the bootup CPU. (cpufreq notifiers will fix this
1192 * up if their speed diverges)
1193 */
Peter Zijlstra20d1c862013-11-29 15:40:29 +01001194 for_each_possible_cpu(cpu) {
1195 cyc2ns_init(cpu);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001196 set_cyc2ns_scale(cpu_khz, cpu);
Peter Zijlstra20d1c862013-11-29 15:40:29 +01001197 }
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001198
1199 if (tsc_disabled > 0)
1200 return;
1201
1202 /* now allow native_sched_clock() to use rdtsc */
Peter Zijlstra10b033d2013-11-28 19:01:40 +01001203
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001204 tsc_disabled = 0;
Peter Zijlstra3bbfafb2015-07-24 16:34:32 +02001205 static_branch_enable(&__use_tsc);
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001206
Venkatesh Pallipadie82b8e42010-10-04 17:03:20 -07001207 if (!no_sched_irq_time)
1208 enable_sched_clock_irqtime();
1209
Alok Kataria70de9a972008-11-03 11:18:47 -08001210 lpj = ((u64)tsc_khz * 1000);
1211 do_div(lpj, HZ);
1212 lpj_fine = lpj;
1213
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001214 use_tsc_delay();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001215
1216 if (unsynchronized_tsc())
1217 mark_tsc_unstable("TSCs unsynchronized");
1218
Alok Kataria395628e2008-10-24 17:22:01 -07001219 check_system_tsc_reliable();
Alok Kataria8fbbc4b2008-07-01 11:43:34 -07001220}
1221
Jack Steinerb5652012011-11-15 15:33:56 -08001222#ifdef CONFIG_SMP
1223/*
1224 * If we have a constant TSC and are using the TSC for the delay loop,
1225 * we can skip clock calibration if another cpu in the same socket has already
1226 * been calibrated. This assumes that CONSTANT_TSC applies to all
1227 * cpus in the socket - this should be a safe assumption.
1228 */
Paul Gortmaker148f9bb2013-06-18 18:23:59 -04001229unsigned long calibrate_delay_is_known(void)
Jack Steinerb5652012011-11-15 15:33:56 -08001230{
1231 int i, cpu = smp_processor_id();
1232
1233 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1234 return 0;
1235
1236 for_each_online_cpu(i)
1237 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1238 return cpu_data(i).loops_per_jiffy;
1239 return 0;
1240}
1241#endif