blob: 16511e9e552877149e3af64563dbeba73421de9e [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 */
19
20/*
21 * Preemption granularity:
22 * (default: 2 msec, units: nanoseconds)
23 *
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
28 * field)
29 *
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
33 */
34unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
35
36/*
37 * SCHED_BATCH wake-up granularity.
38 * (default: 10 msec, units: nanoseconds)
39 *
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
43 */
44unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
45 10000000000ULL/HZ;
46
47/*
48 * SCHED_OTHER wake-up granularity.
49 * (default: 1 msec, units: nanoseconds)
50 *
51 * This option delays the preemption effects of decoupled workloads
52 * and reduces their over-scheduling. Synchronous workloads will still
53 * have immediate wakeup/sleep latencies.
54 */
55unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
56
57unsigned int sysctl_sched_stat_granularity __read_mostly;
58
59/*
60 * Initialized in sched_init_granularity():
61 */
62unsigned int sysctl_sched_runtime_limit __read_mostly;
63
64/*
65 * Debugging: various feature bits
66 */
67enum {
68 SCHED_FEAT_FAIR_SLEEPERS = 1,
69 SCHED_FEAT_SLEEPER_AVG = 2,
70 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
71 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
72 SCHED_FEAT_START_DEBIT = 16,
73 SCHED_FEAT_SKIP_INITIAL = 32,
74};
75
76unsigned int sysctl_sched_features __read_mostly =
77 SCHED_FEAT_FAIR_SLEEPERS *1 |
78 SCHED_FEAT_SLEEPER_AVG *1 |
79 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
80 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
81 SCHED_FEAT_START_DEBIT *1 |
82 SCHED_FEAT_SKIP_INITIAL *0;
83
84extern struct sched_class fair_sched_class;
85
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90#ifdef CONFIG_FAIR_GROUP_SCHED
91
92/* cpu runqueue to which this cfs_rq is attached */
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
95 return cfs_rq->rq;
96}
97
98/* currently running entity (if any) on this cfs_rq */
99static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
100{
101 return cfs_rq->curr;
102}
103
104/* An entity is a task if it doesn't "own" a runqueue */
105#define entity_is_task(se) (!se->my_q)
106
107static inline void
108set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
109{
110 cfs_rq->curr = se;
111}
112
113#else /* CONFIG_FAIR_GROUP_SCHED */
114
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
117 return container_of(cfs_rq, struct rq, cfs);
118}
119
120static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
121{
122 struct rq *rq = rq_of(cfs_rq);
123
124 if (unlikely(rq->curr->sched_class != &fair_sched_class))
125 return NULL;
126
127 return &rq->curr->se;
128}
129
130#define entity_is_task(se) 1
131
132static inline void
133set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
134
135#endif /* CONFIG_FAIR_GROUP_SCHED */
136
137static inline struct task_struct *task_of(struct sched_entity *se)
138{
139 return container_of(se, struct task_struct, se);
140}
141
142
143/**************************************************************
144 * Scheduling class tree data structure manipulation methods:
145 */
146
147/*
148 * Enqueue an entity into the rb-tree:
149 */
150static inline void
151__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
152{
153 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
154 struct rb_node *parent = NULL;
155 struct sched_entity *entry;
156 s64 key = se->fair_key;
157 int leftmost = 1;
158
159 /*
160 * Find the right place in the rbtree:
161 */
162 while (*link) {
163 parent = *link;
164 entry = rb_entry(parent, struct sched_entity, run_node);
165 /*
166 * We dont care about collisions. Nodes with
167 * the same key stay together.
168 */
169 if (key - entry->fair_key < 0) {
170 link = &parent->rb_left;
171 } else {
172 link = &parent->rb_right;
173 leftmost = 0;
174 }
175 }
176
177 /*
178 * Maintain a cache of leftmost tree entries (it is frequently
179 * used):
180 */
181 if (leftmost)
182 cfs_rq->rb_leftmost = &se->run_node;
183
184 rb_link_node(&se->run_node, parent, link);
185 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
186 update_load_add(&cfs_rq->load, se->load.weight);
187 cfs_rq->nr_running++;
188 se->on_rq = 1;
189}
190
191static inline void
192__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193{
194 if (cfs_rq->rb_leftmost == &se->run_node)
195 cfs_rq->rb_leftmost = rb_next(&se->run_node);
196 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
197 update_load_sub(&cfs_rq->load, se->load.weight);
198 cfs_rq->nr_running--;
199 se->on_rq = 0;
200}
201
202static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
203{
204 return cfs_rq->rb_leftmost;
205}
206
207static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
208{
209 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
210}
211
212/**************************************************************
213 * Scheduling class statistics methods:
214 */
215
216/*
217 * We rescale the rescheduling granularity of tasks according to their
218 * nice level, but only linearly, not exponentially:
219 */
220static long
221niced_granularity(struct sched_entity *curr, unsigned long granularity)
222{
223 u64 tmp;
224
225 /*
226 * Negative nice levels get the same granularity as nice-0:
227 */
228 if (likely(curr->load.weight >= NICE_0_LOAD))
229 return granularity;
230 /*
231 * Positive nice level tasks get linearly finer
232 * granularity:
233 */
234 tmp = curr->load.weight * (u64)granularity;
235
236 /*
237 * It will always fit into 'long':
238 */
239 return (long) (tmp >> NICE_0_SHIFT);
240}
241
242static inline void
243limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
244{
245 long limit = sysctl_sched_runtime_limit;
246
247 /*
248 * Niced tasks have the same history dynamic range as
249 * non-niced tasks:
250 */
251 if (unlikely(se->wait_runtime > limit)) {
252 se->wait_runtime = limit;
253 schedstat_inc(se, wait_runtime_overruns);
254 schedstat_inc(cfs_rq, wait_runtime_overruns);
255 }
256 if (unlikely(se->wait_runtime < -limit)) {
257 se->wait_runtime = -limit;
258 schedstat_inc(se, wait_runtime_underruns);
259 schedstat_inc(cfs_rq, wait_runtime_underruns);
260 }
261}
262
263static inline void
264__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
265{
266 se->wait_runtime += delta;
267 schedstat_add(se, sum_wait_runtime, delta);
268 limit_wait_runtime(cfs_rq, se);
269}
270
271static void
272add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
273{
274 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
275 __add_wait_runtime(cfs_rq, se, delta);
276 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
277}
278
279/*
280 * Update the current task's runtime statistics. Skip current tasks that
281 * are not in our scheduling class.
282 */
283static inline void
284__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, u64 now)
285{
Ingo Molnarc5dcfe72007-08-09 11:16:46 +0200286 unsigned long delta, delta_exec, delta_fair, delta_mine;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200287 struct load_weight *lw = &cfs_rq->load;
288 unsigned long load = lw->weight;
289
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200290 delta_exec = curr->delta_exec;
Ingo Molnar8179ca232007-08-02 17:41:40 +0200291 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200292
293 curr->sum_exec_runtime += delta_exec;
294 cfs_rq->exec_clock += delta_exec;
295
Ingo Molnarfd8bb432007-08-09 11:16:46 +0200296 if (unlikely(!load))
297 return;
298
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200299 delta_fair = calc_delta_fair(delta_exec, lw);
300 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
301
Ingo Molnar0915c4e2007-08-09 11:16:45 +0200302 if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200303 delta = calc_delta_mine(cfs_rq->sleeper_bonus,
304 curr->load.weight, lw);
305 if (unlikely(delta > cfs_rq->sleeper_bonus))
306 delta = cfs_rq->sleeper_bonus;
307
308 cfs_rq->sleeper_bonus -= delta;
309 delta_mine -= delta;
310 }
311
312 cfs_rq->fair_clock += delta_fair;
313 /*
314 * We executed delta_exec amount of time on the CPU,
315 * but we were only entitled to delta_mine amount of
316 * time during that period (if nr_running == 1 then
317 * the two values are equal)
318 * [Note: delta_mine - delta_exec is negative]:
319 */
320 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
321}
322
323static void update_curr(struct cfs_rq *cfs_rq, u64 now)
324{
325 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
326 unsigned long delta_exec;
327
328 if (unlikely(!curr))
329 return;
330
331 /*
332 * Get the amount of time the current task was running
333 * since the last time we changed load (this cannot
334 * overflow on 32 bits):
335 */
336 delta_exec = (unsigned long)(now - curr->exec_start);
337
338 curr->delta_exec += delta_exec;
339
340 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
341 __update_curr(cfs_rq, curr, now);
342 curr->delta_exec = 0;
343 }
344 curr->exec_start = now;
345}
346
347static inline void
348update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
349{
350 se->wait_start_fair = cfs_rq->fair_clock;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +0200351 schedstat_set(se->wait_start, now);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200352}
353
354/*
355 * We calculate fair deltas here, so protect against the random effects
356 * of a multiplication overflow by capping it to the runtime limit:
357 */
358#if BITS_PER_LONG == 32
359static inline unsigned long
360calc_weighted(unsigned long delta, unsigned long weight, int shift)
361{
362 u64 tmp = (u64)delta * weight >> shift;
363
364 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
365 return sysctl_sched_runtime_limit*2;
366 return tmp;
367}
368#else
369static inline unsigned long
370calc_weighted(unsigned long delta, unsigned long weight, int shift)
371{
372 return delta * weight >> shift;
373}
374#endif
375
376/*
377 * Task is being enqueued - update stats:
378 */
379static void
380update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
381{
382 s64 key;
383
384 /*
385 * Are we enqueueing a waiting task? (for current tasks
386 * a dequeue/enqueue event is a NOP)
387 */
388 if (se != cfs_rq_curr(cfs_rq))
389 update_stats_wait_start(cfs_rq, se, now);
390 /*
391 * Update the key:
392 */
393 key = cfs_rq->fair_clock;
394
395 /*
396 * Optimize the common nice 0 case:
397 */
398 if (likely(se->load.weight == NICE_0_LOAD)) {
399 key -= se->wait_runtime;
400 } else {
401 u64 tmp;
402
403 if (se->wait_runtime < 0) {
404 tmp = -se->wait_runtime;
405 key += (tmp * se->load.inv_weight) >>
406 (WMULT_SHIFT - NICE_0_SHIFT);
407 } else {
408 tmp = se->wait_runtime;
409 key -= (tmp * se->load.weight) >> NICE_0_SHIFT;
410 }
411 }
412
413 se->fair_key = key;
414}
415
416/*
417 * Note: must be called with a freshly updated rq->fair_clock.
418 */
419static inline void
420__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
421{
422 unsigned long delta_fair = se->delta_fair_run;
423
Ingo Molnar8179ca232007-08-02 17:41:40 +0200424 schedstat_set(se->wait_max, max(se->wait_max, now - se->wait_start));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200425
426 if (unlikely(se->load.weight != NICE_0_LOAD))
427 delta_fair = calc_weighted(delta_fair, se->load.weight,
428 NICE_0_SHIFT);
429
430 add_wait_runtime(cfs_rq, se, delta_fair);
431}
432
433static void
434update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
435{
436 unsigned long delta_fair;
437
438 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
439 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
440
441 se->delta_fair_run += delta_fair;
442 if (unlikely(abs(se->delta_fair_run) >=
443 sysctl_sched_stat_granularity)) {
444 __update_stats_wait_end(cfs_rq, se, now);
445 se->delta_fair_run = 0;
446 }
447
448 se->wait_start_fair = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +0200449 schedstat_set(se->wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200450}
451
452static inline void
453update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
454{
455 update_curr(cfs_rq, now);
456 /*
457 * Mark the end of the wait period if dequeueing a
458 * waiting task:
459 */
460 if (se != cfs_rq_curr(cfs_rq))
461 update_stats_wait_end(cfs_rq, se, now);
462}
463
464/*
465 * We are picking a new current task - update its stats:
466 */
467static inline void
468update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
469{
470 /*
471 * We are starting a new run period:
472 */
473 se->exec_start = now;
474}
475
476/*
477 * We are descheduling a task - update its stats:
478 */
479static inline void
480update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
481{
482 se->exec_start = 0;
483}
484
485/**************************************************
486 * Scheduling class queueing methods:
487 */
488
489static void
490__enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
491{
492 unsigned long load = cfs_rq->load.weight, delta_fair;
493 long prev_runtime;
494
495 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
496 load = rq_of(cfs_rq)->cpu_load[2];
497
498 delta_fair = se->delta_fair_sleep;
499
500 /*
501 * Fix up delta_fair with the effect of us running
502 * during the whole sleep period:
503 */
504 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
505 delta_fair = div64_likely32((u64)delta_fair * load,
506 load + se->load.weight);
507
508 if (unlikely(se->load.weight != NICE_0_LOAD))
509 delta_fair = calc_weighted(delta_fair, se->load.weight,
510 NICE_0_SHIFT);
511
512 prev_runtime = se->wait_runtime;
513 __add_wait_runtime(cfs_rq, se, delta_fair);
514 delta_fair = se->wait_runtime - prev_runtime;
515
516 /*
517 * Track the amount of bonus we've given to sleepers:
518 */
519 cfs_rq->sleeper_bonus += delta_fair;
520
521 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
522}
523
524static void
525enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
526{
527 struct task_struct *tsk = task_of(se);
528 unsigned long delta_fair;
529
530 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
531 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
532 return;
533
534 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
535 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
536
537 se->delta_fair_sleep += delta_fair;
538 if (unlikely(abs(se->delta_fair_sleep) >=
539 sysctl_sched_stat_granularity)) {
540 __enqueue_sleeper(cfs_rq, se, now);
541 se->delta_fair_sleep = 0;
542 }
543
544 se->sleep_start_fair = 0;
545
546#ifdef CONFIG_SCHEDSTATS
547 if (se->sleep_start) {
548 u64 delta = now - se->sleep_start;
549
550 if ((s64)delta < 0)
551 delta = 0;
552
553 if (unlikely(delta > se->sleep_max))
554 se->sleep_max = delta;
555
556 se->sleep_start = 0;
557 se->sum_sleep_runtime += delta;
558 }
559 if (se->block_start) {
560 u64 delta = now - se->block_start;
561
562 if ((s64)delta < 0)
563 delta = 0;
564
565 if (unlikely(delta > se->block_max))
566 se->block_max = delta;
567
568 se->block_start = 0;
569 se->sum_sleep_runtime += delta;
570 }
571#endif
572}
573
574static void
575enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
576 int wakeup, u64 now)
577{
578 /*
579 * Update the fair clock.
580 */
581 update_curr(cfs_rq, now);
582
583 if (wakeup)
584 enqueue_sleeper(cfs_rq, se, now);
585
586 update_stats_enqueue(cfs_rq, se, now);
587 __enqueue_entity(cfs_rq, se);
588}
589
590static void
591dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
592 int sleep, u64 now)
593{
594 update_stats_dequeue(cfs_rq, se, now);
595 if (sleep) {
596 se->sleep_start_fair = cfs_rq->fair_clock;
597#ifdef CONFIG_SCHEDSTATS
598 if (entity_is_task(se)) {
599 struct task_struct *tsk = task_of(se);
600
601 if (tsk->state & TASK_INTERRUPTIBLE)
602 se->sleep_start = now;
603 if (tsk->state & TASK_UNINTERRUPTIBLE)
604 se->block_start = now;
605 }
606 cfs_rq->wait_runtime -= se->wait_runtime;
607#endif
608 }
609 __dequeue_entity(cfs_rq, se);
610}
611
612/*
613 * Preempt the current task with a newly woken task if needed:
614 */
615static void
616__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
617 struct sched_entity *curr, unsigned long granularity)
618{
619 s64 __delta = curr->fair_key - se->fair_key;
620
621 /*
622 * Take scheduling granularity into account - do not
623 * preempt the current task unless the best task has
624 * a larger than sched_granularity fairness advantage:
625 */
626 if (__delta > niced_granularity(curr, granularity))
627 resched_task(rq_of(cfs_rq)->curr);
628}
629
630static inline void
631set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
632{
633 /*
634 * Any task has to be enqueued before it get to execute on
635 * a CPU. So account for the time it spent waiting on the
636 * runqueue. (note, here we rely on pick_next_task() having
637 * done a put_prev_task_fair() shortly before this, which
638 * updated rq->fair_clock - used by update_stats_wait_end())
639 */
640 update_stats_wait_end(cfs_rq, se, now);
641 update_stats_curr_start(cfs_rq, se, now);
642 set_cfs_rq_curr(cfs_rq, se);
643}
644
645static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq, u64 now)
646{
647 struct sched_entity *se = __pick_next_entity(cfs_rq);
648
649 set_next_entity(cfs_rq, se, now);
650
651 return se;
652}
653
654static void
655put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev, u64 now)
656{
657 /*
658 * If still on the runqueue then deactivate_task()
659 * was not called and update_curr() has to be done:
660 */
661 if (prev->on_rq)
662 update_curr(cfs_rq, now);
663
664 update_stats_curr_end(cfs_rq, prev, now);
665
666 if (prev->on_rq)
667 update_stats_wait_start(cfs_rq, prev, now);
668 set_cfs_rq_curr(cfs_rq, NULL);
669}
670
671static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
672{
673 struct rq *rq = rq_of(cfs_rq);
674 struct sched_entity *next;
675 u64 now = __rq_clock(rq);
676
677 /*
678 * Dequeue and enqueue the task to update its
679 * position within the tree:
680 */
681 dequeue_entity(cfs_rq, curr, 0, now);
682 enqueue_entity(cfs_rq, curr, 0, now);
683
684 /*
685 * Reschedule if another task tops the current one.
686 */
687 next = __pick_next_entity(cfs_rq);
688 if (next == curr)
689 return;
690
691 __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
692}
693
694/**************************************************
695 * CFS operations on tasks:
696 */
697
698#ifdef CONFIG_FAIR_GROUP_SCHED
699
700/* Walk up scheduling entities hierarchy */
701#define for_each_sched_entity(se) \
702 for (; se; se = se->parent)
703
704static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
705{
706 return p->se.cfs_rq;
707}
708
709/* runqueue on which this entity is (to be) queued */
710static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
711{
712 return se->cfs_rq;
713}
714
715/* runqueue "owned" by this group */
716static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
717{
718 return grp->my_q;
719}
720
721/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
722 * another cpu ('this_cpu')
723 */
724static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
725{
726 /* A later patch will take group into account */
727 return &cpu_rq(this_cpu)->cfs;
728}
729
730/* Iterate thr' all leaf cfs_rq's on a runqueue */
731#define for_each_leaf_cfs_rq(rq, cfs_rq) \
732 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
733
734/* Do the two (enqueued) tasks belong to the same group ? */
735static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
736{
737 if (curr->se.cfs_rq == p->se.cfs_rq)
738 return 1;
739
740 return 0;
741}
742
743#else /* CONFIG_FAIR_GROUP_SCHED */
744
745#define for_each_sched_entity(se) \
746 for (; se; se = NULL)
747
748static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
749{
750 return &task_rq(p)->cfs;
751}
752
753static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
754{
755 struct task_struct *p = task_of(se);
756 struct rq *rq = task_rq(p);
757
758 return &rq->cfs;
759}
760
761/* runqueue "owned" by this group */
762static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
763{
764 return NULL;
765}
766
767static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
768{
769 return &cpu_rq(this_cpu)->cfs;
770}
771
772#define for_each_leaf_cfs_rq(rq, cfs_rq) \
773 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
774
775static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
776{
777 return 1;
778}
779
780#endif /* CONFIG_FAIR_GROUP_SCHED */
781
782/*
783 * The enqueue_task method is called before nr_running is
784 * increased. Here we update the fair scheduling stats and
785 * then put the task into the rbtree:
786 */
787static void
788enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
789{
790 struct cfs_rq *cfs_rq;
791 struct sched_entity *se = &p->se;
792
793 for_each_sched_entity(se) {
794 if (se->on_rq)
795 break;
796 cfs_rq = cfs_rq_of(se);
797 enqueue_entity(cfs_rq, se, wakeup, now);
798 }
799}
800
801/*
802 * The dequeue_task method is called before nr_running is
803 * decreased. We remove the task from the rbtree and
804 * update the fair scheduling stats:
805 */
806static void
807dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
808{
809 struct cfs_rq *cfs_rq;
810 struct sched_entity *se = &p->se;
811
812 for_each_sched_entity(se) {
813 cfs_rq = cfs_rq_of(se);
814 dequeue_entity(cfs_rq, se, sleep, now);
815 /* Don't dequeue parent if it has other entities besides us */
816 if (cfs_rq->load.weight)
817 break;
818 }
819}
820
821/*
822 * sched_yield() support is very simple - we dequeue and enqueue
823 */
824static void yield_task_fair(struct rq *rq, struct task_struct *p)
825{
826 struct cfs_rq *cfs_rq = task_cfs_rq(p);
827 u64 now = __rq_clock(rq);
828
829 /*
830 * Dequeue and enqueue the task to update its
831 * position within the tree:
832 */
833 dequeue_entity(cfs_rq, &p->se, 0, now);
834 enqueue_entity(cfs_rq, &p->se, 0, now);
835}
836
837/*
838 * Preempt the current task with a newly woken task if needed:
839 */
840static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
841{
842 struct task_struct *curr = rq->curr;
843 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
844 unsigned long gran;
845
846 if (unlikely(rt_prio(p->prio))) {
847 update_curr(cfs_rq, rq_clock(rq));
848 resched_task(curr);
849 return;
850 }
851
852 gran = sysctl_sched_wakeup_granularity;
853 /*
854 * Batch tasks prefer throughput over latency:
855 */
856 if (unlikely(p->policy == SCHED_BATCH))
857 gran = sysctl_sched_batch_wakeup_granularity;
858
859 if (is_same_group(curr, p))
860 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
861}
862
863static struct task_struct *pick_next_task_fair(struct rq *rq, u64 now)
864{
865 struct cfs_rq *cfs_rq = &rq->cfs;
866 struct sched_entity *se;
867
868 if (unlikely(!cfs_rq->nr_running))
869 return NULL;
870
871 do {
872 se = pick_next_entity(cfs_rq, now);
873 cfs_rq = group_cfs_rq(se);
874 } while (cfs_rq);
875
876 return task_of(se);
877}
878
879/*
880 * Account for a descheduled task:
881 */
882static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
883{
884 struct sched_entity *se = &prev->se;
885 struct cfs_rq *cfs_rq;
886
887 for_each_sched_entity(se) {
888 cfs_rq = cfs_rq_of(se);
889 put_prev_entity(cfs_rq, se, now);
890 }
891}
892
893/**************************************************
894 * Fair scheduling class load-balancing methods:
895 */
896
897/*
898 * Load-balancing iterator. Note: while the runqueue stays locked
899 * during the whole iteration, the current task might be
900 * dequeued so the iterator has to be dequeue-safe. Here we
901 * achieve that by always pre-iterating before returning
902 * the current task:
903 */
904static inline struct task_struct *
905__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
906{
907 struct task_struct *p;
908
909 if (!curr)
910 return NULL;
911
912 p = rb_entry(curr, struct task_struct, se.run_node);
913 cfs_rq->rb_load_balance_curr = rb_next(curr);
914
915 return p;
916}
917
918static struct task_struct *load_balance_start_fair(void *arg)
919{
920 struct cfs_rq *cfs_rq = arg;
921
922 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
923}
924
925static struct task_struct *load_balance_next_fair(void *arg)
926{
927 struct cfs_rq *cfs_rq = arg;
928
929 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
930}
931
932static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
933{
934 struct sched_entity *curr;
935 struct task_struct *p;
936
937 if (!cfs_rq->nr_running)
938 return MAX_PRIO;
939
940 curr = __pick_next_entity(cfs_rq);
941 p = task_of(curr);
942
943 return p->prio;
944}
945
Peter Williams43010652007-08-09 11:16:46 +0200946static unsigned long
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200947load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
948 unsigned long max_nr_move, unsigned long max_load_move,
949 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams43010652007-08-09 11:16:46 +0200950 int *all_pinned)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200951{
952 struct cfs_rq *busy_cfs_rq;
953 unsigned long load_moved, total_nr_moved = 0, nr_moved;
954 long rem_load_move = max_load_move;
955 struct rq_iterator cfs_rq_iterator;
956
957 cfs_rq_iterator.start = load_balance_start_fair;
958 cfs_rq_iterator.next = load_balance_next_fair;
959
960 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
961 struct cfs_rq *this_cfs_rq;
962 long imbalance;
963 unsigned long maxload;
964 int this_best_prio, best_prio, best_prio_seen = 0;
965
966 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
967
968 imbalance = busy_cfs_rq->load.weight -
969 this_cfs_rq->load.weight;
970 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
971 if (imbalance <= 0)
972 continue;
973
974 /* Don't pull more than imbalance/2 */
975 imbalance /= 2;
976 maxload = min(rem_load_move, imbalance);
977
978 this_best_prio = cfs_rq_best_prio(this_cfs_rq);
979 best_prio = cfs_rq_best_prio(busy_cfs_rq);
980
981 /*
982 * Enable handling of the case where there is more than one task
983 * with the best priority. If the current running task is one
984 * of those with prio==best_prio we know it won't be moved
985 * and therefore it's safe to override the skip (based on load)
986 * of any task we find with that prio.
987 */
988 if (cfs_rq_curr(busy_cfs_rq) == &busiest->curr->se)
989 best_prio_seen = 1;
990
991 /* pass busy_cfs_rq argument into
992 * load_balance_[start|next]_fair iterators
993 */
994 cfs_rq_iterator.arg = busy_cfs_rq;
995 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
996 max_nr_move, maxload, sd, idle, all_pinned,
997 &load_moved, this_best_prio, best_prio,
998 best_prio_seen, &cfs_rq_iterator);
999
1000 total_nr_moved += nr_moved;
1001 max_nr_move -= nr_moved;
1002 rem_load_move -= load_moved;
1003
1004 if (max_nr_move <= 0 || rem_load_move <= 0)
1005 break;
1006 }
1007
Peter Williams43010652007-08-09 11:16:46 +02001008 return max_load_move - rem_load_move;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001009}
1010
1011/*
1012 * scheduler tick hitting a task of our scheduling class:
1013 */
1014static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1015{
1016 struct cfs_rq *cfs_rq;
1017 struct sched_entity *se = &curr->se;
1018
1019 for_each_sched_entity(se) {
1020 cfs_rq = cfs_rq_of(se);
1021 entity_tick(cfs_rq, se);
1022 }
1023}
1024
1025/*
1026 * Share the fairness runtime between parent and child, thus the
1027 * total amount of pressure for CPU stays equal - new tasks
1028 * get a chance to run but frequent forkers are not allowed to
1029 * monopolize the CPU. Note: the parent runqueue is locked,
1030 * the child is not running yet.
1031 */
Ingo Molnarcad60d92007-08-02 17:41:40 +02001032static void task_new_fair(struct rq *rq, struct task_struct *p, u64 now)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001033{
1034 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1035 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001036
1037 sched_info_queued(p);
1038
1039 update_stats_enqueue(cfs_rq, se, now);
1040 /*
1041 * Child runs first: we let it run before the parent
1042 * until it reschedules once. We set up the key so that
1043 * it will preempt the parent:
1044 */
1045 p->se.fair_key = current->se.fair_key -
1046 niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
1047 /*
1048 * The first wait is dominated by the child-runs-first logic,
1049 * so do not credit it with that waiting time yet:
1050 */
1051 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1052 p->se.wait_start_fair = 0;
1053
1054 /*
1055 * The statistical average of wait_runtime is about
1056 * -granularity/2, so initialize the task with that:
1057 */
1058 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1059 p->se.wait_runtime = -(sysctl_sched_granularity / 2);
1060
1061 __enqueue_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001062}
1063
1064#ifdef CONFIG_FAIR_GROUP_SCHED
1065/* Account for a task changing its policy or group.
1066 *
1067 * This routine is mostly called to set cfs_rq->curr field when a task
1068 * migrates between groups/classes.
1069 */
1070static void set_curr_task_fair(struct rq *rq)
1071{
1072 struct task_struct *curr = rq->curr;
1073 struct sched_entity *se = &curr->se;
1074 u64 now = rq_clock(rq);
1075 struct cfs_rq *cfs_rq;
1076
1077 for_each_sched_entity(se) {
1078 cfs_rq = cfs_rq_of(se);
1079 set_next_entity(cfs_rq, se, now);
1080 }
1081}
1082#else
1083static void set_curr_task_fair(struct rq *rq)
1084{
1085}
1086#endif
1087
1088/*
1089 * All the scheduling class methods:
1090 */
1091struct sched_class fair_sched_class __read_mostly = {
1092 .enqueue_task = enqueue_task_fair,
1093 .dequeue_task = dequeue_task_fair,
1094 .yield_task = yield_task_fair,
1095
1096 .check_preempt_curr = check_preempt_curr_fair,
1097
1098 .pick_next_task = pick_next_task_fair,
1099 .put_prev_task = put_prev_task_fair,
1100
1101 .load_balance = load_balance_fair,
1102
1103 .set_curr_task = set_curr_task_fair,
1104 .task_tick = task_tick_fair,
1105 .task_new = task_new_fair,
1106};
1107
1108#ifdef CONFIG_SCHED_DEBUG
Josh Triplett291ae5a2007-08-09 11:16:46 +02001109static void print_cfs_stats(struct seq_file *m, int cpu, u64 now)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001110{
1111 struct rq *rq = cpu_rq(cpu);
1112 struct cfs_rq *cfs_rq;
1113
1114 for_each_leaf_cfs_rq(rq, cfs_rq)
1115 print_cfs_rq(m, cpu, cfs_rq, now);
1116}
1117#endif