blob: 7307a37cf26f304bf68fe787492299f72a75bedf [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 */
19
20/*
21 * Preemption granularity:
22 * (default: 2 msec, units: nanoseconds)
23 *
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
28 * field)
29 *
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
33 */
34unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
35
36/*
37 * SCHED_BATCH wake-up granularity.
38 * (default: 10 msec, units: nanoseconds)
39 *
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
43 */
44unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
45 10000000000ULL/HZ;
46
47/*
48 * SCHED_OTHER wake-up granularity.
49 * (default: 1 msec, units: nanoseconds)
50 *
51 * This option delays the preemption effects of decoupled workloads
52 * and reduces their over-scheduling. Synchronous workloads will still
53 * have immediate wakeup/sleep latencies.
54 */
55unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
56
57unsigned int sysctl_sched_stat_granularity __read_mostly;
58
59/*
60 * Initialized in sched_init_granularity():
61 */
62unsigned int sysctl_sched_runtime_limit __read_mostly;
63
64/*
65 * Debugging: various feature bits
66 */
67enum {
68 SCHED_FEAT_FAIR_SLEEPERS = 1,
69 SCHED_FEAT_SLEEPER_AVG = 2,
70 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
71 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
72 SCHED_FEAT_START_DEBIT = 16,
73 SCHED_FEAT_SKIP_INITIAL = 32,
74};
75
76unsigned int sysctl_sched_features __read_mostly =
77 SCHED_FEAT_FAIR_SLEEPERS *1 |
78 SCHED_FEAT_SLEEPER_AVG *1 |
79 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
80 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
81 SCHED_FEAT_START_DEBIT *1 |
82 SCHED_FEAT_SKIP_INITIAL *0;
83
84extern struct sched_class fair_sched_class;
85
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90#ifdef CONFIG_FAIR_GROUP_SCHED
91
92/* cpu runqueue to which this cfs_rq is attached */
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
95 return cfs_rq->rq;
96}
97
98/* currently running entity (if any) on this cfs_rq */
99static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
100{
101 return cfs_rq->curr;
102}
103
104/* An entity is a task if it doesn't "own" a runqueue */
105#define entity_is_task(se) (!se->my_q)
106
107static inline void
108set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
109{
110 cfs_rq->curr = se;
111}
112
113#else /* CONFIG_FAIR_GROUP_SCHED */
114
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
117 return container_of(cfs_rq, struct rq, cfs);
118}
119
120static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
121{
122 struct rq *rq = rq_of(cfs_rq);
123
124 if (unlikely(rq->curr->sched_class != &fair_sched_class))
125 return NULL;
126
127 return &rq->curr->se;
128}
129
130#define entity_is_task(se) 1
131
132static inline void
133set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
134
135#endif /* CONFIG_FAIR_GROUP_SCHED */
136
137static inline struct task_struct *task_of(struct sched_entity *se)
138{
139 return container_of(se, struct task_struct, se);
140}
141
142
143/**************************************************************
144 * Scheduling class tree data structure manipulation methods:
145 */
146
147/*
148 * Enqueue an entity into the rb-tree:
149 */
150static inline void
151__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
152{
153 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
154 struct rb_node *parent = NULL;
155 struct sched_entity *entry;
156 s64 key = se->fair_key;
157 int leftmost = 1;
158
159 /*
160 * Find the right place in the rbtree:
161 */
162 while (*link) {
163 parent = *link;
164 entry = rb_entry(parent, struct sched_entity, run_node);
165 /*
166 * We dont care about collisions. Nodes with
167 * the same key stay together.
168 */
169 if (key - entry->fair_key < 0) {
170 link = &parent->rb_left;
171 } else {
172 link = &parent->rb_right;
173 leftmost = 0;
174 }
175 }
176
177 /*
178 * Maintain a cache of leftmost tree entries (it is frequently
179 * used):
180 */
181 if (leftmost)
182 cfs_rq->rb_leftmost = &se->run_node;
183
184 rb_link_node(&se->run_node, parent, link);
185 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
186 update_load_add(&cfs_rq->load, se->load.weight);
187 cfs_rq->nr_running++;
188 se->on_rq = 1;
189}
190
191static inline void
192__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193{
194 if (cfs_rq->rb_leftmost == &se->run_node)
195 cfs_rq->rb_leftmost = rb_next(&se->run_node);
196 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
197 update_load_sub(&cfs_rq->load, se->load.weight);
198 cfs_rq->nr_running--;
199 se->on_rq = 0;
200}
201
202static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
203{
204 return cfs_rq->rb_leftmost;
205}
206
207static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
208{
209 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
210}
211
212/**************************************************************
213 * Scheduling class statistics methods:
214 */
215
216/*
217 * We rescale the rescheduling granularity of tasks according to their
218 * nice level, but only linearly, not exponentially:
219 */
220static long
221niced_granularity(struct sched_entity *curr, unsigned long granularity)
222{
223 u64 tmp;
224
225 /*
226 * Negative nice levels get the same granularity as nice-0:
227 */
228 if (likely(curr->load.weight >= NICE_0_LOAD))
229 return granularity;
230 /*
231 * Positive nice level tasks get linearly finer
232 * granularity:
233 */
234 tmp = curr->load.weight * (u64)granularity;
235
236 /*
237 * It will always fit into 'long':
238 */
239 return (long) (tmp >> NICE_0_SHIFT);
240}
241
242static inline void
243limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
244{
245 long limit = sysctl_sched_runtime_limit;
246
247 /*
248 * Niced tasks have the same history dynamic range as
249 * non-niced tasks:
250 */
251 if (unlikely(se->wait_runtime > limit)) {
252 se->wait_runtime = limit;
253 schedstat_inc(se, wait_runtime_overruns);
254 schedstat_inc(cfs_rq, wait_runtime_overruns);
255 }
256 if (unlikely(se->wait_runtime < -limit)) {
257 se->wait_runtime = -limit;
258 schedstat_inc(se, wait_runtime_underruns);
259 schedstat_inc(cfs_rq, wait_runtime_underruns);
260 }
261}
262
263static inline void
264__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
265{
266 se->wait_runtime += delta;
267 schedstat_add(se, sum_wait_runtime, delta);
268 limit_wait_runtime(cfs_rq, se);
269}
270
271static void
272add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
273{
274 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
275 __add_wait_runtime(cfs_rq, se, delta);
276 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
277}
278
279/*
280 * Update the current task's runtime statistics. Skip current tasks that
281 * are not in our scheduling class.
282 */
283static inline void
284__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, u64 now)
285{
286 unsigned long delta, delta_exec, delta_fair;
287 long delta_mine;
288 struct load_weight *lw = &cfs_rq->load;
289 unsigned long load = lw->weight;
290
291 if (unlikely(!load))
292 return;
293
294 delta_exec = curr->delta_exec;
Ingo Molnar8179ca232007-08-02 17:41:40 +0200295 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200296
297 curr->sum_exec_runtime += delta_exec;
298 cfs_rq->exec_clock += delta_exec;
299
300 delta_fair = calc_delta_fair(delta_exec, lw);
301 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
302
Ingo Molnar0915c4e2007-08-09 11:16:45 +0200303 if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200304 delta = calc_delta_mine(cfs_rq->sleeper_bonus,
305 curr->load.weight, lw);
306 if (unlikely(delta > cfs_rq->sleeper_bonus))
307 delta = cfs_rq->sleeper_bonus;
308
309 cfs_rq->sleeper_bonus -= delta;
310 delta_mine -= delta;
311 }
312
313 cfs_rq->fair_clock += delta_fair;
314 /*
315 * We executed delta_exec amount of time on the CPU,
316 * but we were only entitled to delta_mine amount of
317 * time during that period (if nr_running == 1 then
318 * the two values are equal)
319 * [Note: delta_mine - delta_exec is negative]:
320 */
321 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
322}
323
324static void update_curr(struct cfs_rq *cfs_rq, u64 now)
325{
326 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
327 unsigned long delta_exec;
328
329 if (unlikely(!curr))
330 return;
331
332 /*
333 * Get the amount of time the current task was running
334 * since the last time we changed load (this cannot
335 * overflow on 32 bits):
336 */
337 delta_exec = (unsigned long)(now - curr->exec_start);
338
339 curr->delta_exec += delta_exec;
340
341 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
342 __update_curr(cfs_rq, curr, now);
343 curr->delta_exec = 0;
344 }
345 curr->exec_start = now;
346}
347
348static inline void
349update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
350{
351 se->wait_start_fair = cfs_rq->fair_clock;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +0200352 schedstat_set(se->wait_start, now);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200353}
354
355/*
356 * We calculate fair deltas here, so protect against the random effects
357 * of a multiplication overflow by capping it to the runtime limit:
358 */
359#if BITS_PER_LONG == 32
360static inline unsigned long
361calc_weighted(unsigned long delta, unsigned long weight, int shift)
362{
363 u64 tmp = (u64)delta * weight >> shift;
364
365 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
366 return sysctl_sched_runtime_limit*2;
367 return tmp;
368}
369#else
370static inline unsigned long
371calc_weighted(unsigned long delta, unsigned long weight, int shift)
372{
373 return delta * weight >> shift;
374}
375#endif
376
377/*
378 * Task is being enqueued - update stats:
379 */
380static void
381update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
382{
383 s64 key;
384
385 /*
386 * Are we enqueueing a waiting task? (for current tasks
387 * a dequeue/enqueue event is a NOP)
388 */
389 if (se != cfs_rq_curr(cfs_rq))
390 update_stats_wait_start(cfs_rq, se, now);
391 /*
392 * Update the key:
393 */
394 key = cfs_rq->fair_clock;
395
396 /*
397 * Optimize the common nice 0 case:
398 */
399 if (likely(se->load.weight == NICE_0_LOAD)) {
400 key -= se->wait_runtime;
401 } else {
402 u64 tmp;
403
404 if (se->wait_runtime < 0) {
405 tmp = -se->wait_runtime;
406 key += (tmp * se->load.inv_weight) >>
407 (WMULT_SHIFT - NICE_0_SHIFT);
408 } else {
409 tmp = se->wait_runtime;
410 key -= (tmp * se->load.weight) >> NICE_0_SHIFT;
411 }
412 }
413
414 se->fair_key = key;
415}
416
417/*
418 * Note: must be called with a freshly updated rq->fair_clock.
419 */
420static inline void
421__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
422{
423 unsigned long delta_fair = se->delta_fair_run;
424
Ingo Molnar8179ca232007-08-02 17:41:40 +0200425 schedstat_set(se->wait_max, max(se->wait_max, now - se->wait_start));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200426
427 if (unlikely(se->load.weight != NICE_0_LOAD))
428 delta_fair = calc_weighted(delta_fair, se->load.weight,
429 NICE_0_SHIFT);
430
431 add_wait_runtime(cfs_rq, se, delta_fair);
432}
433
434static void
435update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
436{
437 unsigned long delta_fair;
438
439 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
440 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
441
442 se->delta_fair_run += delta_fair;
443 if (unlikely(abs(se->delta_fair_run) >=
444 sysctl_sched_stat_granularity)) {
445 __update_stats_wait_end(cfs_rq, se, now);
446 se->delta_fair_run = 0;
447 }
448
449 se->wait_start_fair = 0;
Ingo Molnar6cfb0d52007-08-02 17:41:40 +0200450 schedstat_set(se->wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200451}
452
453static inline void
454update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
455{
456 update_curr(cfs_rq, now);
457 /*
458 * Mark the end of the wait period if dequeueing a
459 * waiting task:
460 */
461 if (se != cfs_rq_curr(cfs_rq))
462 update_stats_wait_end(cfs_rq, se, now);
463}
464
465/*
466 * We are picking a new current task - update its stats:
467 */
468static inline void
469update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
470{
471 /*
472 * We are starting a new run period:
473 */
474 se->exec_start = now;
475}
476
477/*
478 * We are descheduling a task - update its stats:
479 */
480static inline void
481update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
482{
483 se->exec_start = 0;
484}
485
486/**************************************************
487 * Scheduling class queueing methods:
488 */
489
490static void
491__enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
492{
493 unsigned long load = cfs_rq->load.weight, delta_fair;
494 long prev_runtime;
495
496 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
497 load = rq_of(cfs_rq)->cpu_load[2];
498
499 delta_fair = se->delta_fair_sleep;
500
501 /*
502 * Fix up delta_fair with the effect of us running
503 * during the whole sleep period:
504 */
505 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
506 delta_fair = div64_likely32((u64)delta_fair * load,
507 load + se->load.weight);
508
509 if (unlikely(se->load.weight != NICE_0_LOAD))
510 delta_fair = calc_weighted(delta_fair, se->load.weight,
511 NICE_0_SHIFT);
512
513 prev_runtime = se->wait_runtime;
514 __add_wait_runtime(cfs_rq, se, delta_fair);
515 delta_fair = se->wait_runtime - prev_runtime;
516
517 /*
518 * Track the amount of bonus we've given to sleepers:
519 */
520 cfs_rq->sleeper_bonus += delta_fair;
521
522 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
523}
524
525static void
526enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
527{
528 struct task_struct *tsk = task_of(se);
529 unsigned long delta_fair;
530
531 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
532 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
533 return;
534
535 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
536 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
537
538 se->delta_fair_sleep += delta_fair;
539 if (unlikely(abs(se->delta_fair_sleep) >=
540 sysctl_sched_stat_granularity)) {
541 __enqueue_sleeper(cfs_rq, se, now);
542 se->delta_fair_sleep = 0;
543 }
544
545 se->sleep_start_fair = 0;
546
547#ifdef CONFIG_SCHEDSTATS
548 if (se->sleep_start) {
549 u64 delta = now - se->sleep_start;
550
551 if ((s64)delta < 0)
552 delta = 0;
553
554 if (unlikely(delta > se->sleep_max))
555 se->sleep_max = delta;
556
557 se->sleep_start = 0;
558 se->sum_sleep_runtime += delta;
559 }
560 if (se->block_start) {
561 u64 delta = now - se->block_start;
562
563 if ((s64)delta < 0)
564 delta = 0;
565
566 if (unlikely(delta > se->block_max))
567 se->block_max = delta;
568
569 se->block_start = 0;
570 se->sum_sleep_runtime += delta;
571 }
572#endif
573}
574
575static void
576enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
577 int wakeup, u64 now)
578{
579 /*
580 * Update the fair clock.
581 */
582 update_curr(cfs_rq, now);
583
584 if (wakeup)
585 enqueue_sleeper(cfs_rq, se, now);
586
587 update_stats_enqueue(cfs_rq, se, now);
588 __enqueue_entity(cfs_rq, se);
589}
590
591static void
592dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
593 int sleep, u64 now)
594{
595 update_stats_dequeue(cfs_rq, se, now);
596 if (sleep) {
597 se->sleep_start_fair = cfs_rq->fair_clock;
598#ifdef CONFIG_SCHEDSTATS
599 if (entity_is_task(se)) {
600 struct task_struct *tsk = task_of(se);
601
602 if (tsk->state & TASK_INTERRUPTIBLE)
603 se->sleep_start = now;
604 if (tsk->state & TASK_UNINTERRUPTIBLE)
605 se->block_start = now;
606 }
607 cfs_rq->wait_runtime -= se->wait_runtime;
608#endif
609 }
610 __dequeue_entity(cfs_rq, se);
611}
612
613/*
614 * Preempt the current task with a newly woken task if needed:
615 */
616static void
617__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
618 struct sched_entity *curr, unsigned long granularity)
619{
620 s64 __delta = curr->fair_key - se->fair_key;
621
622 /*
623 * Take scheduling granularity into account - do not
624 * preempt the current task unless the best task has
625 * a larger than sched_granularity fairness advantage:
626 */
627 if (__delta > niced_granularity(curr, granularity))
628 resched_task(rq_of(cfs_rq)->curr);
629}
630
631static inline void
632set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
633{
634 /*
635 * Any task has to be enqueued before it get to execute on
636 * a CPU. So account for the time it spent waiting on the
637 * runqueue. (note, here we rely on pick_next_task() having
638 * done a put_prev_task_fair() shortly before this, which
639 * updated rq->fair_clock - used by update_stats_wait_end())
640 */
641 update_stats_wait_end(cfs_rq, se, now);
642 update_stats_curr_start(cfs_rq, se, now);
643 set_cfs_rq_curr(cfs_rq, se);
644}
645
646static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq, u64 now)
647{
648 struct sched_entity *se = __pick_next_entity(cfs_rq);
649
650 set_next_entity(cfs_rq, se, now);
651
652 return se;
653}
654
655static void
656put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev, u64 now)
657{
658 /*
659 * If still on the runqueue then deactivate_task()
660 * was not called and update_curr() has to be done:
661 */
662 if (prev->on_rq)
663 update_curr(cfs_rq, now);
664
665 update_stats_curr_end(cfs_rq, prev, now);
666
667 if (prev->on_rq)
668 update_stats_wait_start(cfs_rq, prev, now);
669 set_cfs_rq_curr(cfs_rq, NULL);
670}
671
672static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
673{
674 struct rq *rq = rq_of(cfs_rq);
675 struct sched_entity *next;
676 u64 now = __rq_clock(rq);
677
678 /*
679 * Dequeue and enqueue the task to update its
680 * position within the tree:
681 */
682 dequeue_entity(cfs_rq, curr, 0, now);
683 enqueue_entity(cfs_rq, curr, 0, now);
684
685 /*
686 * Reschedule if another task tops the current one.
687 */
688 next = __pick_next_entity(cfs_rq);
689 if (next == curr)
690 return;
691
692 __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
693}
694
695/**************************************************
696 * CFS operations on tasks:
697 */
698
699#ifdef CONFIG_FAIR_GROUP_SCHED
700
701/* Walk up scheduling entities hierarchy */
702#define for_each_sched_entity(se) \
703 for (; se; se = se->parent)
704
705static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
706{
707 return p->se.cfs_rq;
708}
709
710/* runqueue on which this entity is (to be) queued */
711static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
712{
713 return se->cfs_rq;
714}
715
716/* runqueue "owned" by this group */
717static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
718{
719 return grp->my_q;
720}
721
722/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
723 * another cpu ('this_cpu')
724 */
725static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
726{
727 /* A later patch will take group into account */
728 return &cpu_rq(this_cpu)->cfs;
729}
730
731/* Iterate thr' all leaf cfs_rq's on a runqueue */
732#define for_each_leaf_cfs_rq(rq, cfs_rq) \
733 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
734
735/* Do the two (enqueued) tasks belong to the same group ? */
736static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
737{
738 if (curr->se.cfs_rq == p->se.cfs_rq)
739 return 1;
740
741 return 0;
742}
743
744#else /* CONFIG_FAIR_GROUP_SCHED */
745
746#define for_each_sched_entity(se) \
747 for (; se; se = NULL)
748
749static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
750{
751 return &task_rq(p)->cfs;
752}
753
754static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
755{
756 struct task_struct *p = task_of(se);
757 struct rq *rq = task_rq(p);
758
759 return &rq->cfs;
760}
761
762/* runqueue "owned" by this group */
763static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
764{
765 return NULL;
766}
767
768static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
769{
770 return &cpu_rq(this_cpu)->cfs;
771}
772
773#define for_each_leaf_cfs_rq(rq, cfs_rq) \
774 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
775
776static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
777{
778 return 1;
779}
780
781#endif /* CONFIG_FAIR_GROUP_SCHED */
782
783/*
784 * The enqueue_task method is called before nr_running is
785 * increased. Here we update the fair scheduling stats and
786 * then put the task into the rbtree:
787 */
788static void
789enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
790{
791 struct cfs_rq *cfs_rq;
792 struct sched_entity *se = &p->se;
793
794 for_each_sched_entity(se) {
795 if (se->on_rq)
796 break;
797 cfs_rq = cfs_rq_of(se);
798 enqueue_entity(cfs_rq, se, wakeup, now);
799 }
800}
801
802/*
803 * The dequeue_task method is called before nr_running is
804 * decreased. We remove the task from the rbtree and
805 * update the fair scheduling stats:
806 */
807static void
808dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
809{
810 struct cfs_rq *cfs_rq;
811 struct sched_entity *se = &p->se;
812
813 for_each_sched_entity(se) {
814 cfs_rq = cfs_rq_of(se);
815 dequeue_entity(cfs_rq, se, sleep, now);
816 /* Don't dequeue parent if it has other entities besides us */
817 if (cfs_rq->load.weight)
818 break;
819 }
820}
821
822/*
823 * sched_yield() support is very simple - we dequeue and enqueue
824 */
825static void yield_task_fair(struct rq *rq, struct task_struct *p)
826{
827 struct cfs_rq *cfs_rq = task_cfs_rq(p);
828 u64 now = __rq_clock(rq);
829
830 /*
831 * Dequeue and enqueue the task to update its
832 * position within the tree:
833 */
834 dequeue_entity(cfs_rq, &p->se, 0, now);
835 enqueue_entity(cfs_rq, &p->se, 0, now);
836}
837
838/*
839 * Preempt the current task with a newly woken task if needed:
840 */
841static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
842{
843 struct task_struct *curr = rq->curr;
844 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
845 unsigned long gran;
846
847 if (unlikely(rt_prio(p->prio))) {
848 update_curr(cfs_rq, rq_clock(rq));
849 resched_task(curr);
850 return;
851 }
852
853 gran = sysctl_sched_wakeup_granularity;
854 /*
855 * Batch tasks prefer throughput over latency:
856 */
857 if (unlikely(p->policy == SCHED_BATCH))
858 gran = sysctl_sched_batch_wakeup_granularity;
859
860 if (is_same_group(curr, p))
861 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
862}
863
864static struct task_struct *pick_next_task_fair(struct rq *rq, u64 now)
865{
866 struct cfs_rq *cfs_rq = &rq->cfs;
867 struct sched_entity *se;
868
869 if (unlikely(!cfs_rq->nr_running))
870 return NULL;
871
872 do {
873 se = pick_next_entity(cfs_rq, now);
874 cfs_rq = group_cfs_rq(se);
875 } while (cfs_rq);
876
877 return task_of(se);
878}
879
880/*
881 * Account for a descheduled task:
882 */
883static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
884{
885 struct sched_entity *se = &prev->se;
886 struct cfs_rq *cfs_rq;
887
888 for_each_sched_entity(se) {
889 cfs_rq = cfs_rq_of(se);
890 put_prev_entity(cfs_rq, se, now);
891 }
892}
893
894/**************************************************
895 * Fair scheduling class load-balancing methods:
896 */
897
898/*
899 * Load-balancing iterator. Note: while the runqueue stays locked
900 * during the whole iteration, the current task might be
901 * dequeued so the iterator has to be dequeue-safe. Here we
902 * achieve that by always pre-iterating before returning
903 * the current task:
904 */
905static inline struct task_struct *
906__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
907{
908 struct task_struct *p;
909
910 if (!curr)
911 return NULL;
912
913 p = rb_entry(curr, struct task_struct, se.run_node);
914 cfs_rq->rb_load_balance_curr = rb_next(curr);
915
916 return p;
917}
918
919static struct task_struct *load_balance_start_fair(void *arg)
920{
921 struct cfs_rq *cfs_rq = arg;
922
923 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
924}
925
926static struct task_struct *load_balance_next_fair(void *arg)
927{
928 struct cfs_rq *cfs_rq = arg;
929
930 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
931}
932
933static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
934{
935 struct sched_entity *curr;
936 struct task_struct *p;
937
938 if (!cfs_rq->nr_running)
939 return MAX_PRIO;
940
941 curr = __pick_next_entity(cfs_rq);
942 p = task_of(curr);
943
944 return p->prio;
945}
946
Peter Williams43010652007-08-09 11:16:46 +0200947static unsigned long
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200948load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
949 unsigned long max_nr_move, unsigned long max_load_move,
950 struct sched_domain *sd, enum cpu_idle_type idle,
Peter Williams43010652007-08-09 11:16:46 +0200951 int *all_pinned)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200952{
953 struct cfs_rq *busy_cfs_rq;
954 unsigned long load_moved, total_nr_moved = 0, nr_moved;
955 long rem_load_move = max_load_move;
956 struct rq_iterator cfs_rq_iterator;
957
958 cfs_rq_iterator.start = load_balance_start_fair;
959 cfs_rq_iterator.next = load_balance_next_fair;
960
961 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
962 struct cfs_rq *this_cfs_rq;
963 long imbalance;
964 unsigned long maxload;
965 int this_best_prio, best_prio, best_prio_seen = 0;
966
967 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
968
969 imbalance = busy_cfs_rq->load.weight -
970 this_cfs_rq->load.weight;
971 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
972 if (imbalance <= 0)
973 continue;
974
975 /* Don't pull more than imbalance/2 */
976 imbalance /= 2;
977 maxload = min(rem_load_move, imbalance);
978
979 this_best_prio = cfs_rq_best_prio(this_cfs_rq);
980 best_prio = cfs_rq_best_prio(busy_cfs_rq);
981
982 /*
983 * Enable handling of the case where there is more than one task
984 * with the best priority. If the current running task is one
985 * of those with prio==best_prio we know it won't be moved
986 * and therefore it's safe to override the skip (based on load)
987 * of any task we find with that prio.
988 */
989 if (cfs_rq_curr(busy_cfs_rq) == &busiest->curr->se)
990 best_prio_seen = 1;
991
992 /* pass busy_cfs_rq argument into
993 * load_balance_[start|next]_fair iterators
994 */
995 cfs_rq_iterator.arg = busy_cfs_rq;
996 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
997 max_nr_move, maxload, sd, idle, all_pinned,
998 &load_moved, this_best_prio, best_prio,
999 best_prio_seen, &cfs_rq_iterator);
1000
1001 total_nr_moved += nr_moved;
1002 max_nr_move -= nr_moved;
1003 rem_load_move -= load_moved;
1004
1005 if (max_nr_move <= 0 || rem_load_move <= 0)
1006 break;
1007 }
1008
Peter Williams43010652007-08-09 11:16:46 +02001009 return max_load_move - rem_load_move;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001010}
1011
1012/*
1013 * scheduler tick hitting a task of our scheduling class:
1014 */
1015static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1016{
1017 struct cfs_rq *cfs_rq;
1018 struct sched_entity *se = &curr->se;
1019
1020 for_each_sched_entity(se) {
1021 cfs_rq = cfs_rq_of(se);
1022 entity_tick(cfs_rq, se);
1023 }
1024}
1025
1026/*
1027 * Share the fairness runtime between parent and child, thus the
1028 * total amount of pressure for CPU stays equal - new tasks
1029 * get a chance to run but frequent forkers are not allowed to
1030 * monopolize the CPU. Note: the parent runqueue is locked,
1031 * the child is not running yet.
1032 */
Ingo Molnarcad60d92007-08-02 17:41:40 +02001033static void task_new_fair(struct rq *rq, struct task_struct *p, u64 now)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001034{
1035 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1036 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001037
1038 sched_info_queued(p);
1039
1040 update_stats_enqueue(cfs_rq, se, now);
1041 /*
1042 * Child runs first: we let it run before the parent
1043 * until it reschedules once. We set up the key so that
1044 * it will preempt the parent:
1045 */
1046 p->se.fair_key = current->se.fair_key -
1047 niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
1048 /*
1049 * The first wait is dominated by the child-runs-first logic,
1050 * so do not credit it with that waiting time yet:
1051 */
1052 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1053 p->se.wait_start_fair = 0;
1054
1055 /*
1056 * The statistical average of wait_runtime is about
1057 * -granularity/2, so initialize the task with that:
1058 */
1059 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1060 p->se.wait_runtime = -(sysctl_sched_granularity / 2);
1061
1062 __enqueue_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001063}
1064
1065#ifdef CONFIG_FAIR_GROUP_SCHED
1066/* Account for a task changing its policy or group.
1067 *
1068 * This routine is mostly called to set cfs_rq->curr field when a task
1069 * migrates between groups/classes.
1070 */
1071static void set_curr_task_fair(struct rq *rq)
1072{
1073 struct task_struct *curr = rq->curr;
1074 struct sched_entity *se = &curr->se;
1075 u64 now = rq_clock(rq);
1076 struct cfs_rq *cfs_rq;
1077
1078 for_each_sched_entity(se) {
1079 cfs_rq = cfs_rq_of(se);
1080 set_next_entity(cfs_rq, se, now);
1081 }
1082}
1083#else
1084static void set_curr_task_fair(struct rq *rq)
1085{
1086}
1087#endif
1088
1089/*
1090 * All the scheduling class methods:
1091 */
1092struct sched_class fair_sched_class __read_mostly = {
1093 .enqueue_task = enqueue_task_fair,
1094 .dequeue_task = dequeue_task_fair,
1095 .yield_task = yield_task_fair,
1096
1097 .check_preempt_curr = check_preempt_curr_fair,
1098
1099 .pick_next_task = pick_next_task_fair,
1100 .put_prev_task = put_prev_task_fair,
1101
1102 .load_balance = load_balance_fair,
1103
1104 .set_curr_task = set_curr_task_fair,
1105 .task_tick = task_tick_fair,
1106 .task_new = task_new_fair,
1107};
1108
1109#ifdef CONFIG_SCHED_DEBUG
1110void print_cfs_stats(struct seq_file *m, int cpu, u64 now)
1111{
1112 struct rq *rq = cpu_rq(cpu);
1113 struct cfs_rq *cfs_rq;
1114
1115 for_each_leaf_cfs_rq(rq, cfs_rq)
1116 print_cfs_rq(m, cpu, cfs_rq, now);
1117}
1118#endif