blob: a66fa97046ee1d8f17f0d11ed5e3fb688e37a87b [file] [log] [blame]
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001// SPDX-License-Identifier: GPL-2.0+
2
3/*
4 * NXP FlexSPI(FSPI) controller driver.
5 *
kuldip dwivedi55ab8482020-09-11 18:33:31 +05306 * Copyright 2019-2020 NXP
7 * Copyright 2020 Puresoftware Ltd.
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00008 *
9 * FlexSPI is a flexsible SPI host controller which supports two SPI
10 * channels and up to 4 external devices. Each channel supports
11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12 * data lines).
13 *
14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
15 * LUT registers are a look-up-table for sequences of instructions.
16 * A valid sequence consists of four LUT registers.
17 * Maximum 32 LUT sequences can be programmed simultaneously.
18 *
19 * LUTs are being created at run-time based on the commands passed
20 * from the spi-mem framework, thus using single LUT index.
21 *
22 * Software triggered Flash read/write access by IP Bus.
23 *
24 * Memory mapped read access by AHB Bus.
25 *
26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27 *
28 * Author:
29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
Yogesh Narayan Gaurce6f0692019-01-29 09:49:22 +000030 * Boris Brezillon <bbrezillon@kernel.org>
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +000031 * Frieder Schrempf <frieder.schrempf@kontron.de>
32 */
33
kuldip dwivedi55ab8482020-09-11 18:33:31 +053034#include <linux/acpi.h>
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +000035#include <linux/bitops.h>
36#include <linux/clk.h>
37#include <linux/completion.h>
38#include <linux/delay.h>
39#include <linux/err.h>
40#include <linux/errno.h>
41#include <linux/interrupt.h>
42#include <linux/io.h>
43#include <linux/iopoll.h>
44#include <linux/jiffies.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/mutex.h>
48#include <linux/of.h>
49#include <linux/of_device.h>
50#include <linux/platform_device.h>
51#include <linux/pm_qos.h>
Kuldeep Singh82ce7d02021-03-02 18:19:36 +053052#include <linux/regmap.h>
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +000053#include <linux/sizes.h>
Kuldeep Singh82ce7d02021-03-02 18:19:36 +053054#include <linux/sys_soc.h>
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +000055
Kuldeep Singh82ce7d02021-03-02 18:19:36 +053056#include <linux/mfd/syscon.h>
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +000057#include <linux/spi/spi.h>
58#include <linux/spi/spi-mem.h>
59
60/*
61 * The driver only uses one single LUT entry, that is updated on
62 * each call of exec_op(). Index 0 is preset at boot with a basic
63 * read operation, so let's use the last entry (31).
64 */
65#define SEQID_LUT 31
66
67/* Registers used by the driver */
68#define FSPI_MCR0 0x00
69#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
70#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
71#define FSPI_MCR0_LEARN_EN BIT(15)
72#define FSPI_MCR0_SCRFRUN_EN BIT(14)
73#define FSPI_MCR0_OCTCOMB_EN BIT(13)
74#define FSPI_MCR0_DOZE_EN BIT(12)
75#define FSPI_MCR0_HSEN BIT(11)
76#define FSPI_MCR0_SERCLKDIV BIT(8)
77#define FSPI_MCR0_ATDF_EN BIT(7)
78#define FSPI_MCR0_ARDF_EN BIT(6)
79#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
80#define FSPI_MCR0_END_CFG(x) ((x) << 2)
81#define FSPI_MCR0_MDIS BIT(1)
82#define FSPI_MCR0_SWRST BIT(0)
83
84#define FSPI_MCR1 0x04
85#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
86#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
87
88#define FSPI_MCR2 0x08
89#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
90#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
91#define FSPI_MCR2_CLRLRPHS BIT(14)
92#define FSPI_MCR2_ABRDATSZ BIT(8)
93#define FSPI_MCR2_ABRLEARN BIT(7)
94#define FSPI_MCR2_ABR_READ BIT(6)
95#define FSPI_MCR2_ABRWRITE BIT(5)
96#define FSPI_MCR2_ABRDUMMY BIT(4)
97#define FSPI_MCR2_ABR_MODE BIT(3)
98#define FSPI_MCR2_ABRCADDR BIT(2)
99#define FSPI_MCR2_ABRRADDR BIT(1)
100#define FSPI_MCR2_ABR_CMD BIT(0)
101
102#define FSPI_AHBCR 0x0c
103#define FSPI_AHBCR_RDADDROPT BIT(6)
104#define FSPI_AHBCR_PREF_EN BIT(5)
105#define FSPI_AHBCR_BUFF_EN BIT(4)
106#define FSPI_AHBCR_CACH_EN BIT(3)
107#define FSPI_AHBCR_CLRTXBUF BIT(2)
108#define FSPI_AHBCR_CLRRXBUF BIT(1)
109#define FSPI_AHBCR_PAR_EN BIT(0)
110
111#define FSPI_INTEN 0x10
112#define FSPI_INTEN_SCLKSBWR BIT(9)
113#define FSPI_INTEN_SCLKSBRD BIT(8)
114#define FSPI_INTEN_DATALRNFL BIT(7)
115#define FSPI_INTEN_IPTXWE BIT(6)
116#define FSPI_INTEN_IPRXWA BIT(5)
117#define FSPI_INTEN_AHBCMDERR BIT(4)
118#define FSPI_INTEN_IPCMDERR BIT(3)
119#define FSPI_INTEN_AHBCMDGE BIT(2)
120#define FSPI_INTEN_IPCMDGE BIT(1)
121#define FSPI_INTEN_IPCMDDONE BIT(0)
122
123#define FSPI_INTR 0x14
124#define FSPI_INTR_SCLKSBWR BIT(9)
125#define FSPI_INTR_SCLKSBRD BIT(8)
126#define FSPI_INTR_DATALRNFL BIT(7)
127#define FSPI_INTR_IPTXWE BIT(6)
128#define FSPI_INTR_IPRXWA BIT(5)
129#define FSPI_INTR_AHBCMDERR BIT(4)
130#define FSPI_INTR_IPCMDERR BIT(3)
131#define FSPI_INTR_AHBCMDGE BIT(2)
132#define FSPI_INTR_IPCMDGE BIT(1)
133#define FSPI_INTR_IPCMDDONE BIT(0)
134
135#define FSPI_LUTKEY 0x18
136#define FSPI_LUTKEY_VALUE 0x5AF05AF0
137
138#define FSPI_LCKCR 0x1C
139
140#define FSPI_LCKER_LOCK 0x1
141#define FSPI_LCKER_UNLOCK 0x2
142
143#define FSPI_BUFXCR_INVALID_MSTRID 0xE
144#define FSPI_AHBRX_BUF0CR0 0x20
145#define FSPI_AHBRX_BUF1CR0 0x24
146#define FSPI_AHBRX_BUF2CR0 0x28
147#define FSPI_AHBRX_BUF3CR0 0x2C
148#define FSPI_AHBRX_BUF4CR0 0x30
149#define FSPI_AHBRX_BUF5CR0 0x34
150#define FSPI_AHBRX_BUF6CR0 0x38
151#define FSPI_AHBRX_BUF7CR0 0x3C
152#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
153
154#define FSPI_AHBRX_BUF0CR1 0x40
155#define FSPI_AHBRX_BUF1CR1 0x44
156#define FSPI_AHBRX_BUF2CR1 0x48
157#define FSPI_AHBRX_BUF3CR1 0x4C
158#define FSPI_AHBRX_BUF4CR1 0x50
159#define FSPI_AHBRX_BUF5CR1 0x54
160#define FSPI_AHBRX_BUF6CR1 0x58
161#define FSPI_AHBRX_BUF7CR1 0x5C
162
163#define FSPI_FLSHA1CR0 0x60
164#define FSPI_FLSHA2CR0 0x64
165#define FSPI_FLSHB1CR0 0x68
166#define FSPI_FLSHB2CR0 0x6C
167#define FSPI_FLSHXCR0_SZ_KB 10
168#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
169
170#define FSPI_FLSHA1CR1 0x70
171#define FSPI_FLSHA2CR1 0x74
172#define FSPI_FLSHB1CR1 0x78
173#define FSPI_FLSHB2CR1 0x7C
174#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
175#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
176#define FSPI_FLSHXCR1_WA BIT(10)
177#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
178#define FSPI_FLSHXCR1_TCSS(x) (x)
179
180#define FSPI_FLSHA1CR2 0x80
181#define FSPI_FLSHA2CR2 0x84
182#define FSPI_FLSHB1CR2 0x88
183#define FSPI_FLSHB2CR2 0x8C
184#define FSPI_FLSHXCR2_CLRINSP BIT(24)
185#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
186#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
187#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
188#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
189#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
190
191#define FSPI_IPCR0 0xA0
192
193#define FSPI_IPCR1 0xA4
194#define FSPI_IPCR1_IPAREN BIT(31)
195#define FSPI_IPCR1_SEQNUM_SHIFT 24
196#define FSPI_IPCR1_SEQID_SHIFT 16
197#define FSPI_IPCR1_IDATSZ(x) (x)
198
199#define FSPI_IPCMD 0xB0
200#define FSPI_IPCMD_TRG BIT(0)
201
202#define FSPI_DLPR 0xB4
203
204#define FSPI_IPRXFCR 0xB8
205#define FSPI_IPRXFCR_CLR BIT(0)
206#define FSPI_IPRXFCR_DMA_EN BIT(1)
207#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
208
209#define FSPI_IPTXFCR 0xBC
210#define FSPI_IPTXFCR_CLR BIT(0)
211#define FSPI_IPTXFCR_DMA_EN BIT(1)
212#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
213
214#define FSPI_DLLACR 0xC0
215#define FSPI_DLLACR_OVRDEN BIT(8)
216
217#define FSPI_DLLBCR 0xC4
218#define FSPI_DLLBCR_OVRDEN BIT(8)
219
220#define FSPI_STS0 0xE0
221#define FSPI_STS0_DLPHB(x) ((x) << 8)
222#define FSPI_STS0_DLPHA(x) ((x) << 4)
223#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
224#define FSPI_STS0_ARB_IDLE BIT(1)
225#define FSPI_STS0_SEQ_IDLE BIT(0)
226
227#define FSPI_STS1 0xE4
228#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
229#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
230#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
231#define FSPI_STS1_AHB_ERRID(x) (x)
232
233#define FSPI_AHBSPNST 0xEC
234#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
235#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
236#define FSPI_AHBSPNST_ACTIVE BIT(0)
237
238#define FSPI_IPRXFSTS 0xF0
239#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
240#define FSPI_IPRXFSTS_FILL(x) (x)
241
242#define FSPI_IPTXFSTS 0xF4
243#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
244#define FSPI_IPTXFSTS_FILL(x) (x)
245
246#define FSPI_RFDR 0x100
247#define FSPI_TFDR 0x180
248
249#define FSPI_LUT_BASE 0x200
250#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
251#define FSPI_LUT_REG(idx) \
252 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
253
254/* register map end */
255
256/* Instruction set for the LUT register. */
257#define LUT_STOP 0x00
258#define LUT_CMD 0x01
259#define LUT_ADDR 0x02
260#define LUT_CADDR_SDR 0x03
261#define LUT_MODE 0x04
262#define LUT_MODE2 0x05
263#define LUT_MODE4 0x06
264#define LUT_MODE8 0x07
265#define LUT_NXP_WRITE 0x08
266#define LUT_NXP_READ 0x09
267#define LUT_LEARN_SDR 0x0A
268#define LUT_DATSZ_SDR 0x0B
269#define LUT_DUMMY 0x0C
270#define LUT_DUMMY_RWDS_SDR 0x0D
271#define LUT_JMP_ON_CS 0x1F
272#define LUT_CMD_DDR 0x21
273#define LUT_ADDR_DDR 0x22
274#define LUT_CADDR_DDR 0x23
275#define LUT_MODE_DDR 0x24
276#define LUT_MODE2_DDR 0x25
277#define LUT_MODE4_DDR 0x26
278#define LUT_MODE8_DDR 0x27
279#define LUT_WRITE_DDR 0x28
280#define LUT_READ_DDR 0x29
281#define LUT_LEARN_DDR 0x2A
282#define LUT_DATSZ_DDR 0x2B
283#define LUT_DUMMY_DDR 0x2C
284#define LUT_DUMMY_RWDS_DDR 0x2D
285
286/*
287 * Calculate number of required PAD bits for LUT register.
288 *
289 * The pad stands for the number of IO lines [0:7].
290 * For example, the octal read needs eight IO lines,
291 * so you should use LUT_PAD(8). This macro
292 * returns 3 i.e. use eight (2^3) IP lines for read.
293 */
294#define LUT_PAD(x) (fls(x) - 1)
295
296/*
297 * Macro for constructing the LUT entries with the following
298 * register layout:
299 *
300 * ---------------------------------------------------
301 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
302 * ---------------------------------------------------
303 */
304#define PAD_SHIFT 8
305#define INSTR_SHIFT 10
306#define OPRND_SHIFT 16
307
308/* Macros for constructing the LUT register. */
309#define LUT_DEF(idx, ins, pad, opr) \
310 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
311 (opr)) << (((idx) % 2) * OPRND_SHIFT))
312
313#define POLL_TOUT 5000
314#define NXP_FSPI_MAX_CHIPSELECT 4
Han Xud166a732020-01-26 08:09:09 -0600315#define NXP_FSPI_MIN_IOMAP SZ_4M
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000316
Kuldeep Singh82ce7d02021-03-02 18:19:36 +0530317#define DCFG_RCWSR1 0x100
318
Kuldeep Singh31e92cb2021-03-02 18:19:33 +0530319/* Access flash memory using IP bus only */
320#define FSPI_QUIRK_USE_IP_ONLY BIT(0)
321
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000322struct nxp_fspi_devtype_data {
323 unsigned int rxfifo;
324 unsigned int txfifo;
325 unsigned int ahb_buf_size;
326 unsigned int quirks;
327 bool little_endian;
328};
329
Kuldeep Singh82ce7d02021-03-02 18:19:36 +0530330static struct nxp_fspi_devtype_data lx2160a_data = {
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000331 .rxfifo = SZ_512, /* (64 * 64 bits) */
332 .txfifo = SZ_1K, /* (128 * 64 bits) */
333 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
334 .quirks = 0,
335 .little_endian = true, /* little-endian */
336};
337
Kuldeep Singh82ce7d02021-03-02 18:19:36 +0530338static struct nxp_fspi_devtype_data imx8mm_data = {
Han Xu941be8a2020-01-26 08:09:08 -0600339 .rxfifo = SZ_512, /* (64 * 64 bits) */
340 .txfifo = SZ_1K, /* (128 * 64 bits) */
341 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
342 .quirks = 0,
343 .little_endian = true, /* little-endian */
344};
345
Kuldeep Singh82ce7d02021-03-02 18:19:36 +0530346static struct nxp_fspi_devtype_data imx8qxp_data = {
Han Xu941be8a2020-01-26 08:09:08 -0600347 .rxfifo = SZ_512, /* (64 * 64 bits) */
348 .txfifo = SZ_1K, /* (128 * 64 bits) */
349 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
350 .quirks = 0,
351 .little_endian = true, /* little-endian */
352};
353
Kuldeep Singh82ce7d02021-03-02 18:19:36 +0530354static struct nxp_fspi_devtype_data imx8dxl_data = {
Han Xuc791e3c2021-03-02 18:19:35 +0530355 .rxfifo = SZ_512, /* (64 * 64 bits) */
356 .txfifo = SZ_1K, /* (128 * 64 bits) */
357 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
358 .quirks = FSPI_QUIRK_USE_IP_ONLY,
359 .little_endian = true, /* little-endian */
360};
361
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000362struct nxp_fspi {
363 void __iomem *iobase;
364 void __iomem *ahb_addr;
365 u32 memmap_phy;
366 u32 memmap_phy_size;
Han Xud166a732020-01-26 08:09:09 -0600367 u32 memmap_start;
368 u32 memmap_len;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000369 struct clk *clk, *clk_en;
370 struct device *dev;
371 struct completion c;
Kuldeep Singh82ce7d02021-03-02 18:19:36 +0530372 struct nxp_fspi_devtype_data *devtype_data;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000373 struct mutex lock;
374 struct pm_qos_request pm_qos_req;
375 int selected;
376};
377
Kuldeep Singh31e92cb2021-03-02 18:19:33 +0530378static inline int needs_ip_only(struct nxp_fspi *f)
379{
380 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
381}
382
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000383/*
384 * R/W functions for big- or little-endian registers:
385 * The FSPI controller's endianness is independent of
386 * the CPU core's endianness. So far, although the CPU
387 * core is little-endian the FSPI controller can use
388 * big-endian or little-endian.
389 */
390static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
391{
392 if (f->devtype_data->little_endian)
393 iowrite32(val, addr);
394 else
395 iowrite32be(val, addr);
396}
397
398static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
399{
400 if (f->devtype_data->little_endian)
401 return ioread32(addr);
402 else
403 return ioread32be(addr);
404}
405
406static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
407{
408 struct nxp_fspi *f = dev_id;
409 u32 reg;
410
411 /* clear interrupt */
412 reg = fspi_readl(f, f->iobase + FSPI_INTR);
413 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
414
415 if (reg & FSPI_INTR_IPCMDDONE)
416 complete(&f->c);
417
418 return IRQ_HANDLED;
419}
420
421static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
422{
423 switch (width) {
424 case 1:
425 case 2:
426 case 4:
427 case 8:
428 return 0;
429 }
430
431 return -ENOTSUPP;
432}
433
434static bool nxp_fspi_supports_op(struct spi_mem *mem,
435 const struct spi_mem_op *op)
436{
437 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
438 int ret;
439
440 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
441
442 if (op->addr.nbytes)
443 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
444
445 if (op->dummy.nbytes)
446 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
447
448 if (op->data.nbytes)
449 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
450
451 if (ret)
452 return false;
453
454 /*
455 * The number of address bytes should be equal to or less than 4 bytes.
456 */
457 if (op->addr.nbytes > 4)
458 return false;
459
460 /*
461 * If requested address value is greater than controller assigned
462 * memory mapped space, return error as it didn't fit in the range
463 * of assigned address space.
464 */
465 if (op->addr.val >= f->memmap_phy_size)
466 return false;
467
468 /* Max 64 dummy clock cycles supported */
469 if (op->dummy.buswidth &&
470 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
471 return false;
472
473 /* Max data length, check controller limits and alignment */
474 if (op->data.dir == SPI_MEM_DATA_IN &&
475 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
476 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
477 !IS_ALIGNED(op->data.nbytes, 8))))
478 return false;
479
480 if (op->data.dir == SPI_MEM_DATA_OUT &&
481 op->data.nbytes > f->devtype_data->txfifo)
482 return false;
483
Michael Walle007773e2019-12-11 20:57:30 +0100484 return spi_mem_default_supports_op(mem, op);
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000485}
486
487/* Instead of busy looping invoke readl_poll_timeout functionality. */
488static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
489 u32 mask, u32 delay_us,
490 u32 timeout_us, bool c)
491{
492 u32 reg;
493
494 if (!f->devtype_data->little_endian)
495 mask = (u32)cpu_to_be32(mask);
496
497 if (c)
498 return readl_poll_timeout(base, reg, (reg & mask),
499 delay_us, timeout_us);
500 else
501 return readl_poll_timeout(base, reg, !(reg & mask),
502 delay_us, timeout_us);
503}
504
505/*
506 * If the slave device content being changed by Write/Erase, need to
507 * invalidate the AHB buffer. This can be achieved by doing the reset
508 * of controller after setting MCR0[SWRESET] bit.
509 */
510static inline void nxp_fspi_invalid(struct nxp_fspi *f)
511{
512 u32 reg;
513 int ret;
514
515 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
516 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
517
518 /* w1c register, wait unit clear */
519 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
520 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
521 WARN_ON(ret);
522}
523
524static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
525 const struct spi_mem_op *op)
526{
527 void __iomem *base = f->iobase;
528 u32 lutval[4] = {};
529 int lutidx = 1, i;
530
531 /* cmd */
532 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
533 op->cmd.opcode);
534
535 /* addr bytes */
536 if (op->addr.nbytes) {
537 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
538 LUT_PAD(op->addr.buswidth),
539 op->addr.nbytes * 8);
540 lutidx++;
541 }
542
543 /* dummy bytes, if needed */
544 if (op->dummy.nbytes) {
545 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
546 /*
547 * Due to FlexSPI controller limitation number of PAD for dummy
548 * buswidth needs to be programmed as equal to data buswidth.
549 */
550 LUT_PAD(op->data.buswidth),
551 op->dummy.nbytes * 8 /
552 op->dummy.buswidth);
553 lutidx++;
554 }
555
556 /* read/write data bytes */
557 if (op->data.nbytes) {
558 lutval[lutidx / 2] |= LUT_DEF(lutidx,
559 op->data.dir == SPI_MEM_DATA_IN ?
560 LUT_NXP_READ : LUT_NXP_WRITE,
561 LUT_PAD(op->data.buswidth),
562 0);
563 lutidx++;
564 }
565
566 /* stop condition. */
567 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
568
569 /* unlock LUT */
570 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
571 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
572
573 /* fill LUT */
574 for (i = 0; i < ARRAY_SIZE(lutval); i++)
575 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
576
Kuldeep Singh31e92cb2021-03-02 18:19:33 +0530577 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
578 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000579
580 /* lock LUT */
581 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
582 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
583}
584
585static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
586{
587 int ret;
588
kuldip dwivedi55ab8482020-09-11 18:33:31 +0530589 if (is_acpi_node(f->dev->fwnode))
590 return 0;
591
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000592 ret = clk_prepare_enable(f->clk_en);
593 if (ret)
594 return ret;
595
596 ret = clk_prepare_enable(f->clk);
597 if (ret) {
598 clk_disable_unprepare(f->clk_en);
599 return ret;
600 }
601
602 return 0;
603}
604
kuldip dwivedi55ab8482020-09-11 18:33:31 +0530605static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000606{
kuldip dwivedi55ab8482020-09-11 18:33:31 +0530607 if (is_acpi_node(f->dev->fwnode))
608 return 0;
609
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000610 clk_disable_unprepare(f->clk);
611 clk_disable_unprepare(f->clk_en);
kuldip dwivedi55ab8482020-09-11 18:33:31 +0530612
613 return 0;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000614}
615
616/*
617 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
618 * register and start base address of the slave device.
619 *
620 * (Higher address)
621 * -------- <-- FLSHB2CR0
622 * | B2 |
623 * | |
624 * B2 start address --> -------- <-- FLSHB1CR0
625 * | B1 |
626 * | |
627 * B1 start address --> -------- <-- FLSHA2CR0
628 * | A2 |
629 * | |
630 * A2 start address --> -------- <-- FLSHA1CR0
631 * | A1 |
632 * | |
633 * A1 start address --> -------- (Lower address)
634 *
635 *
636 * Start base address defines the starting address range for given CS and
637 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
638 *
639 * But, different targets are having different combinations of number of CS,
640 * some targets only have single CS or two CS covering controller's full
641 * memory mapped space area.
642 * Thus, implementation is being done as independent of the size and number
643 * of the connected slave device.
644 * Assign controller memory mapped space size as the size to the connected
645 * slave device.
646 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
647 * chip-select Flash configuration register.
648 *
649 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
650 * memory mapped size of the controller.
651 * Value for rest of the CS FLSHxxCR0 register would be zero.
652 *
653 */
654static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
655{
656 unsigned long rate = spi->max_speed_hz;
657 int ret;
658 uint64_t size_kb;
659
660 /*
661 * Return, if previously selected slave device is same as current
662 * requested slave device.
663 */
664 if (f->selected == spi->chip_select)
665 return;
666
667 /* Reset FLSHxxCR0 registers */
668 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
669 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
670 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
671 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
672
673 /* Assign controller memory mapped space as size, KBytes, of flash. */
674 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
675
676 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
677 4 * spi->chip_select);
678
679 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
680
681 nxp_fspi_clk_disable_unprep(f);
682
683 ret = clk_set_rate(f->clk, rate);
684 if (ret)
685 return;
686
687 ret = nxp_fspi_clk_prep_enable(f);
688 if (ret)
689 return;
690
691 f->selected = spi->chip_select;
692}
693
Han Xud166a732020-01-26 08:09:09 -0600694static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000695{
Han Xud166a732020-01-26 08:09:09 -0600696 u32 start = op->addr.val;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000697 u32 len = op->data.nbytes;
698
Han Xud166a732020-01-26 08:09:09 -0600699 /* if necessary, ioremap before AHB read */
700 if ((!f->ahb_addr) || start < f->memmap_start ||
701 start + len > f->memmap_start + f->memmap_len) {
702 if (f->ahb_addr)
703 iounmap(f->ahb_addr);
704
705 f->memmap_start = start;
706 f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
707 len : NXP_FSPI_MIN_IOMAP;
708
709 f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
710 f->memmap_len);
711
712 if (!f->ahb_addr) {
713 dev_err(f->dev, "failed to alloc memory\n");
714 return -ENOMEM;
715 }
716 }
717
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000718 /* Read out the data directly from the AHB buffer. */
Han Xud166a732020-01-26 08:09:09 -0600719 memcpy_fromio(op->data.buf.in,
720 f->ahb_addr + start - f->memmap_start, len);
721
722 return 0;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000723}
724
725static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
726 const struct spi_mem_op *op)
727{
728 void __iomem *base = f->iobase;
729 int i, ret;
730 u8 *buf = (u8 *) op->data.buf.out;
731
732 /* clear the TX FIFO. */
733 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
734
735 /*
736 * Default value of water mark level is 8 bytes, hence in single
737 * write request controller can write max 8 bytes of data.
738 */
739
740 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
741 /* Wait for TXFIFO empty */
742 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
743 FSPI_INTR_IPTXWE, 0,
744 POLL_TOUT, true);
745 WARN_ON(ret);
746
747 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
748 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
749 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
750 }
751
752 if (i < op->data.nbytes) {
753 u32 data = 0;
754 int j;
755 /* Wait for TXFIFO empty */
756 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
757 FSPI_INTR_IPTXWE, 0,
758 POLL_TOUT, true);
759 WARN_ON(ret);
760
761 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
762 memcpy(&data, buf + i + j, 4);
763 fspi_writel(f, data, base + FSPI_TFDR + j);
764 }
765 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
766 }
767}
768
769static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
770 const struct spi_mem_op *op)
771{
772 void __iomem *base = f->iobase;
773 int i, ret;
774 int len = op->data.nbytes;
775 u8 *buf = (u8 *) op->data.buf.in;
776
777 /*
778 * Default value of water mark level is 8 bytes, hence in single
779 * read request controller can read max 8 bytes of data.
780 */
781 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
782 /* Wait for RXFIFO available */
783 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
784 FSPI_INTR_IPRXWA, 0,
785 POLL_TOUT, true);
786 WARN_ON(ret);
787
788 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
789 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
790 /* move the FIFO pointer */
791 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
792 }
793
794 if (i < len) {
795 u32 tmp;
796 int size, j;
797
798 buf = op->data.buf.in + i;
799 /* Wait for RXFIFO available */
800 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
801 FSPI_INTR_IPRXWA, 0,
802 POLL_TOUT, true);
803 WARN_ON(ret);
804
805 len = op->data.nbytes - i;
806 for (j = 0; j < op->data.nbytes - i; j += 4) {
807 tmp = fspi_readl(f, base + FSPI_RFDR + j);
808 size = min(len, 4);
809 memcpy(buf + j, &tmp, size);
810 len -= size;
811 }
812 }
813
814 /* invalid the RXFIFO */
815 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
816 /* move the FIFO pointer */
817 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
818}
819
820static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
821{
822 void __iomem *base = f->iobase;
823 int seqnum = 0;
824 int err = 0;
825 u32 reg;
826
827 reg = fspi_readl(f, base + FSPI_IPRXFCR);
828 /* invalid RXFIFO first */
829 reg &= ~FSPI_IPRXFCR_DMA_EN;
830 reg = reg | FSPI_IPRXFCR_CLR;
831 fspi_writel(f, reg, base + FSPI_IPRXFCR);
832
833 init_completion(&f->c);
834
835 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
836 /*
837 * Always start the sequence at the same index since we update
838 * the LUT at each exec_op() call. And also specify the DATA
839 * length, since it's has not been specified in the LUT.
840 */
841 fspi_writel(f, op->data.nbytes |
842 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
843 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
844 base + FSPI_IPCR1);
845
846 /* Trigger the LUT now. */
847 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
848
849 /* Wait for the interrupt. */
850 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
851 err = -ETIMEDOUT;
852
853 /* Invoke IP data read, if request is of data read. */
854 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
855 nxp_fspi_read_rxfifo(f, op);
856
857 return err;
858}
859
860static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
861{
862 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
863 int err = 0;
864
865 mutex_lock(&f->lock);
866
867 /* Wait for controller being ready. */
868 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
869 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
870 WARN_ON(err);
871
872 nxp_fspi_select_mem(f, mem->spi);
873
874 nxp_fspi_prepare_lut(f, op);
875 /*
Kuldeep Singh31e92cb2021-03-02 18:19:33 +0530876 * If we have large chunks of data, we read them through the AHB bus by
877 * accessing the mapped memory. In all other cases we use IP commands
878 * to access the flash. Read via AHB bus may be corrupted due to
879 * existence of an errata and therefore discard AHB read in such cases.
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000880 */
881 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
Kuldeep Singh31e92cb2021-03-02 18:19:33 +0530882 op->data.dir == SPI_MEM_DATA_IN &&
883 !needs_ip_only(f)) {
Han Xud166a732020-01-26 08:09:09 -0600884 err = nxp_fspi_read_ahb(f, op);
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000885 } else {
886 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
887 nxp_fspi_fill_txfifo(f, op);
888
889 err = nxp_fspi_do_op(f, op);
890 }
891
892 /* Invalidate the data in the AHB buffer. */
893 nxp_fspi_invalid(f);
894
895 mutex_unlock(&f->lock);
896
897 return err;
898}
899
900static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
901{
902 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
903
904 if (op->data.dir == SPI_MEM_DATA_OUT) {
905 if (op->data.nbytes > f->devtype_data->txfifo)
906 op->data.nbytes = f->devtype_data->txfifo;
907 } else {
908 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
909 op->data.nbytes = f->devtype_data->ahb_buf_size;
910 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
911 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
912 }
913
Kuldeep Singh31e92cb2021-03-02 18:19:33 +0530914 /* Limit data bytes to RX FIFO in case of IP read only */
915 if (op->data.dir == SPI_MEM_DATA_IN &&
916 needs_ip_only(f) &&
917 op->data.nbytes > f->devtype_data->rxfifo)
918 op->data.nbytes = f->devtype_data->rxfifo;
919
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000920 return 0;
921}
922
Kuldeep Singh82ce7d02021-03-02 18:19:36 +0530923static void erratum_err050568(struct nxp_fspi *f)
924{
925 const struct soc_device_attribute ls1028a_soc_attr[] = {
926 { .family = "QorIQ LS1028A" },
927 { /* sentinel */ }
928 };
929 struct device_node *np;
930 struct regmap *map;
931 u32 val = 0, sysclk = 0;
932 int ret;
933
934 /* Check for LS1028A family */
935 if (!soc_device_match(ls1028a_soc_attr)) {
936 dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
937 return;
938 }
939
940 /* Compute system clock frequency multiplier ratio */
941 map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
942 if (IS_ERR(map)) {
943 dev_err(f->dev, "No syscon regmap\n");
944 goto err;
945 }
946
947 ret = regmap_read(map, DCFG_RCWSR1, &val);
948 if (ret < 0)
949 goto err;
950
951 /* Strap bits 6:2 define SYS_PLL_RAT i.e frequency multiplier ratio */
952 val = (val >> 2) & 0x1F;
953 WARN(val == 0, "Strapping is zero: Cannot determine ratio");
954
955 /* Compute system clock frequency */
956 np = of_find_node_by_name(NULL, "clock-sysclk");
957 if (!np)
958 goto err;
959
960 if (of_property_read_u32(np, "clock-frequency", &sysclk))
961 goto err;
962
963 sysclk = (sysclk * val) / 1000000; /* Convert sysclk to Mhz */
964 dev_dbg(f->dev, "val: 0x%08x, sysclk: %dMhz\n", val, sysclk);
965
966 /* Use IP bus only if PLL is 300MHz */
967 if (sysclk == 300)
968 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
969
970 return;
971
972err:
973 dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
974}
975
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000976static int nxp_fspi_default_setup(struct nxp_fspi *f)
977{
978 void __iomem *base = f->iobase;
979 int ret, i;
980 u32 reg;
981
982 /* disable and unprepare clock to avoid glitch pass to controller */
983 nxp_fspi_clk_disable_unprep(f);
984
985 /* the default frequency, we will change it later if necessary. */
986 ret = clk_set_rate(f->clk, 20000000);
987 if (ret)
988 return ret;
989
990 ret = nxp_fspi_clk_prep_enable(f);
991 if (ret)
992 return ret;
993
Kuldeep Singh82ce7d02021-03-02 18:19:36 +0530994 /*
995 * ERR050568: Flash access by FlexSPI AHB command may not work with
996 * platform frequency equal to 300 MHz on LS1028A.
997 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
998 * Layerscape LS1028A platform.
999 */
1000 if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1001 erratum_err050568(f);
1002
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001003 /* Reset the module */
1004 /* w1c register, wait unit clear */
1005 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1006 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1007 WARN_ON(ret);
1008
1009 /* Disable the module */
1010 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1011
1012 /* Reset the DLL register to default value */
1013 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1014 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1015
1016 /* enable module */
Han Xub7461fa2020-01-26 08:09:10 -06001017 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1018 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1019 base + FSPI_MCR0);
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001020
1021 /*
1022 * Disable same device enable bit and configure all slave devices
1023 * independently.
1024 */
1025 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1026 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1027 fspi_writel(f, reg, base + FSPI_MCR2);
1028
1029 /* AHB configuration for access buffer 0~7. */
1030 for (i = 0; i < 7; i++)
1031 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1032
1033 /*
1034 * Set ADATSZ with the maximum AHB buffer size to improve the read
1035 * performance.
1036 */
1037 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1038 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1039
1040 /* prefetch and no start address alignment limitation */
1041 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1042 base + FSPI_AHBCR);
1043
1044 /* AHB Read - Set lut sequence ID for all CS. */
1045 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1046 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1047 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1048 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1049
1050 f->selected = -1;
1051
1052 /* enable the interrupt */
1053 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1054
1055 return 0;
1056}
1057
1058static const char *nxp_fspi_get_name(struct spi_mem *mem)
1059{
1060 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
1061 struct device *dev = &mem->spi->dev;
1062 const char *name;
1063
1064 // Set custom name derived from the platform_device of the controller.
1065 if (of_get_available_child_count(f->dev->of_node) == 1)
1066 return dev_name(f->dev);
1067
1068 name = devm_kasprintf(dev, GFP_KERNEL,
1069 "%s-%d", dev_name(f->dev),
1070 mem->spi->chip_select);
1071
1072 if (!name) {
1073 dev_err(dev, "failed to get memory for custom flash name\n");
1074 return ERR_PTR(-ENOMEM);
1075 }
1076
1077 return name;
1078}
1079
1080static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1081 .adjust_op_size = nxp_fspi_adjust_op_size,
1082 .supports_op = nxp_fspi_supports_op,
1083 .exec_op = nxp_fspi_exec_op,
1084 .get_name = nxp_fspi_get_name,
1085};
1086
1087static int nxp_fspi_probe(struct platform_device *pdev)
1088{
1089 struct spi_controller *ctlr;
1090 struct device *dev = &pdev->dev;
1091 struct device_node *np = dev->of_node;
1092 struct resource *res;
1093 struct nxp_fspi *f;
1094 int ret;
Ran Wang71d805632020-11-23 10:57:15 +08001095 u32 reg;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001096
1097 ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1098 if (!ctlr)
1099 return -ENOMEM;
1100
Yogesh Narayan Gaurb3281792019-01-15 10:05:29 +00001101 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1102 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001103
1104 f = spi_controller_get_devdata(ctlr);
1105 f->dev = dev;
Kuldeep Singh82ce7d02021-03-02 18:19:36 +05301106 f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001107 if (!f->devtype_data) {
1108 ret = -ENODEV;
1109 goto err_put_ctrl;
1110 }
1111
1112 platform_set_drvdata(pdev, f);
1113
1114 /* find the resources - configuration register address space */
kuldip dwivedi55ab8482020-09-11 18:33:31 +05301115 if (is_acpi_node(f->dev->fwnode))
1116 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1117 else
1118 res = platform_get_resource_byname(pdev,
1119 IORESOURCE_MEM, "fspi_base");
1120
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001121 f->iobase = devm_ioremap_resource(dev, res);
1122 if (IS_ERR(f->iobase)) {
1123 ret = PTR_ERR(f->iobase);
1124 goto err_put_ctrl;
1125 }
1126
1127 /* find the resources - controller memory mapped space */
kuldip dwivedi55ab8482020-09-11 18:33:31 +05301128 if (is_acpi_node(f->dev->fwnode))
1129 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1130 else
1131 res = platform_get_resource_byname(pdev,
1132 IORESOURCE_MEM, "fspi_mmap");
1133
Dan Carpenter1a421eb2020-03-12 14:31:54 +03001134 if (!res) {
1135 ret = -ENODEV;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001136 goto err_put_ctrl;
1137 }
1138
1139 /* assign memory mapped starting address and mapped size. */
1140 f->memmap_phy = res->start;
1141 f->memmap_phy_size = resource_size(res);
1142
1143 /* find the clocks */
kuldip dwivedi55ab8482020-09-11 18:33:31 +05301144 if (dev_of_node(&pdev->dev)) {
1145 f->clk_en = devm_clk_get(dev, "fspi_en");
1146 if (IS_ERR(f->clk_en)) {
1147 ret = PTR_ERR(f->clk_en);
1148 goto err_put_ctrl;
1149 }
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001150
kuldip dwivedi55ab8482020-09-11 18:33:31 +05301151 f->clk = devm_clk_get(dev, "fspi");
1152 if (IS_ERR(f->clk)) {
1153 ret = PTR_ERR(f->clk);
1154 goto err_put_ctrl;
1155 }
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001156
kuldip dwivedi55ab8482020-09-11 18:33:31 +05301157 ret = nxp_fspi_clk_prep_enable(f);
1158 if (ret) {
1159 dev_err(dev, "can not enable the clock\n");
1160 goto err_put_ctrl;
1161 }
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001162 }
1163
Haibo Chenf4223162021-06-10 17:24:33 +08001164 /* Clear potential interrupts */
1165 reg = fspi_readl(f, f->iobase + FSPI_INTR);
1166 if (reg)
1167 fspi_writel(f, reg, f->iobase + FSPI_INTR);
1168
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001169 /* find the irq */
1170 ret = platform_get_irq(pdev, 0);
Stephen Boyd6b8ac102019-07-30 11:15:41 -07001171 if (ret < 0)
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001172 goto err_disable_clk;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001173
1174 ret = devm_request_irq(dev, ret,
1175 nxp_fspi_irq_handler, 0, pdev->name, f);
1176 if (ret) {
1177 dev_err(dev, "failed to request irq: %d\n", ret);
1178 goto err_disable_clk;
1179 }
1180
1181 mutex_init(&f->lock);
1182
1183 ctlr->bus_num = -1;
1184 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1185 ctlr->mem_ops = &nxp_fspi_mem_ops;
1186
1187 nxp_fspi_default_setup(f);
1188
1189 ctlr->dev.of_node = np;
1190
Chuhong Yuan69c23db2019-11-09 15:55:17 +08001191 ret = devm_spi_register_controller(&pdev->dev, ctlr);
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001192 if (ret)
1193 goto err_destroy_mutex;
1194
1195 return 0;
1196
1197err_destroy_mutex:
1198 mutex_destroy(&f->lock);
1199
1200err_disable_clk:
1201 nxp_fspi_clk_disable_unprep(f);
1202
1203err_put_ctrl:
1204 spi_controller_put(ctlr);
1205
1206 dev_err(dev, "NXP FSPI probe failed\n");
1207 return ret;
1208}
1209
1210static int nxp_fspi_remove(struct platform_device *pdev)
1211{
1212 struct nxp_fspi *f = platform_get_drvdata(pdev);
1213
1214 /* disable the hardware */
1215 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1216
1217 nxp_fspi_clk_disable_unprep(f);
1218
1219 mutex_destroy(&f->lock);
1220
Han Xud166a732020-01-26 08:09:09 -06001221 if (f->ahb_addr)
1222 iounmap(f->ahb_addr);
1223
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001224 return 0;
1225}
1226
1227static int nxp_fspi_suspend(struct device *dev)
1228{
1229 return 0;
1230}
1231
1232static int nxp_fspi_resume(struct device *dev)
1233{
1234 struct nxp_fspi *f = dev_get_drvdata(dev);
1235
1236 nxp_fspi_default_setup(f);
1237
1238 return 0;
1239}
1240
1241static const struct of_device_id nxp_fspi_dt_ids[] = {
1242 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
Han Xu941be8a2020-01-26 08:09:08 -06001243 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
Heiko Schocher0467a9732021-03-16 08:59:27 +01001244 { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
Han Xu941be8a2020-01-26 08:09:08 -06001245 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
Han Xuc791e3c2021-03-02 18:19:35 +05301246 { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001247 { /* sentinel */ }
1248};
1249MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1250
kuldip dwivedi55ab8482020-09-11 18:33:31 +05301251#ifdef CONFIG_ACPI
1252static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1253 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1254 {}
1255};
1256MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1257#endif
1258
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001259static const struct dev_pm_ops nxp_fspi_pm_ops = {
1260 .suspend = nxp_fspi_suspend,
1261 .resume = nxp_fspi_resume,
1262};
1263
1264static struct platform_driver nxp_fspi_driver = {
1265 .driver = {
1266 .name = "nxp-fspi",
1267 .of_match_table = nxp_fspi_dt_ids,
kuldip dwivedi55ab8482020-09-11 18:33:31 +05301268 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001269 .pm = &nxp_fspi_pm_ops,
1270 },
1271 .probe = nxp_fspi_probe,
1272 .remove = nxp_fspi_remove,
1273};
1274module_platform_driver(nxp_fspi_driver);
1275
1276MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1277MODULE_AUTHOR("NXP Semiconductor");
1278MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
Yogesh Narayan Gaurce6f0692019-01-29 09:49:22 +00001279MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001280MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
Yogesh Narayan Gaurce6f0692019-01-29 09:49:22 +00001281MODULE_LICENSE("GPL v2");