blob: 1ccda82da206303d280c4b369b80748330f25214 [file] [log] [blame]
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001// SPDX-License-Identifier: GPL-2.0+
2
3/*
4 * NXP FlexSPI(FSPI) controller driver.
5 *
6 * Copyright 2019 NXP.
7 *
8 * FlexSPI is a flexsible SPI host controller which supports two SPI
9 * channels and up to 4 external devices. Each channel supports
10 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
11 * data lines).
12 *
13 * FlexSPI controller is driven by the LUT(Look-up Table) registers
14 * LUT registers are a look-up-table for sequences of instructions.
15 * A valid sequence consists of four LUT registers.
16 * Maximum 32 LUT sequences can be programmed simultaneously.
17 *
18 * LUTs are being created at run-time based on the commands passed
19 * from the spi-mem framework, thus using single LUT index.
20 *
21 * Software triggered Flash read/write access by IP Bus.
22 *
23 * Memory mapped read access by AHB Bus.
24 *
25 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
26 *
27 * Author:
28 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
Yogesh Narayan Gaurce6f0692019-01-29 09:49:22 +000029 * Boris Brezillon <bbrezillon@kernel.org>
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +000030 * Frieder Schrempf <frieder.schrempf@kontron.de>
31 */
32
33#include <linux/bitops.h>
34#include <linux/clk.h>
35#include <linux/completion.h>
36#include <linux/delay.h>
37#include <linux/err.h>
38#include <linux/errno.h>
39#include <linux/interrupt.h>
40#include <linux/io.h>
41#include <linux/iopoll.h>
42#include <linux/jiffies.h>
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/mutex.h>
46#include <linux/of.h>
47#include <linux/of_device.h>
48#include <linux/platform_device.h>
49#include <linux/pm_qos.h>
50#include <linux/sizes.h>
51
52#include <linux/spi/spi.h>
53#include <linux/spi/spi-mem.h>
54
55/*
56 * The driver only uses one single LUT entry, that is updated on
57 * each call of exec_op(). Index 0 is preset at boot with a basic
58 * read operation, so let's use the last entry (31).
59 */
60#define SEQID_LUT 31
61
62/* Registers used by the driver */
63#define FSPI_MCR0 0x00
64#define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24)
65#define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16)
66#define FSPI_MCR0_LEARN_EN BIT(15)
67#define FSPI_MCR0_SCRFRUN_EN BIT(14)
68#define FSPI_MCR0_OCTCOMB_EN BIT(13)
69#define FSPI_MCR0_DOZE_EN BIT(12)
70#define FSPI_MCR0_HSEN BIT(11)
71#define FSPI_MCR0_SERCLKDIV BIT(8)
72#define FSPI_MCR0_ATDF_EN BIT(7)
73#define FSPI_MCR0_ARDF_EN BIT(6)
74#define FSPI_MCR0_RXCLKSRC(x) ((x) << 4)
75#define FSPI_MCR0_END_CFG(x) ((x) << 2)
76#define FSPI_MCR0_MDIS BIT(1)
77#define FSPI_MCR0_SWRST BIT(0)
78
79#define FSPI_MCR1 0x04
80#define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16)
81#define FSPI_MCR1_AHB_TIMEOUT(x) (x)
82
83#define FSPI_MCR2 0x08
84#define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24)
85#define FSPI_MCR2_SAMEDEVICEEN BIT(15)
86#define FSPI_MCR2_CLRLRPHS BIT(14)
87#define FSPI_MCR2_ABRDATSZ BIT(8)
88#define FSPI_MCR2_ABRLEARN BIT(7)
89#define FSPI_MCR2_ABR_READ BIT(6)
90#define FSPI_MCR2_ABRWRITE BIT(5)
91#define FSPI_MCR2_ABRDUMMY BIT(4)
92#define FSPI_MCR2_ABR_MODE BIT(3)
93#define FSPI_MCR2_ABRCADDR BIT(2)
94#define FSPI_MCR2_ABRRADDR BIT(1)
95#define FSPI_MCR2_ABR_CMD BIT(0)
96
97#define FSPI_AHBCR 0x0c
98#define FSPI_AHBCR_RDADDROPT BIT(6)
99#define FSPI_AHBCR_PREF_EN BIT(5)
100#define FSPI_AHBCR_BUFF_EN BIT(4)
101#define FSPI_AHBCR_CACH_EN BIT(3)
102#define FSPI_AHBCR_CLRTXBUF BIT(2)
103#define FSPI_AHBCR_CLRRXBUF BIT(1)
104#define FSPI_AHBCR_PAR_EN BIT(0)
105
106#define FSPI_INTEN 0x10
107#define FSPI_INTEN_SCLKSBWR BIT(9)
108#define FSPI_INTEN_SCLKSBRD BIT(8)
109#define FSPI_INTEN_DATALRNFL BIT(7)
110#define FSPI_INTEN_IPTXWE BIT(6)
111#define FSPI_INTEN_IPRXWA BIT(5)
112#define FSPI_INTEN_AHBCMDERR BIT(4)
113#define FSPI_INTEN_IPCMDERR BIT(3)
114#define FSPI_INTEN_AHBCMDGE BIT(2)
115#define FSPI_INTEN_IPCMDGE BIT(1)
116#define FSPI_INTEN_IPCMDDONE BIT(0)
117
118#define FSPI_INTR 0x14
119#define FSPI_INTR_SCLKSBWR BIT(9)
120#define FSPI_INTR_SCLKSBRD BIT(8)
121#define FSPI_INTR_DATALRNFL BIT(7)
122#define FSPI_INTR_IPTXWE BIT(6)
123#define FSPI_INTR_IPRXWA BIT(5)
124#define FSPI_INTR_AHBCMDERR BIT(4)
125#define FSPI_INTR_IPCMDERR BIT(3)
126#define FSPI_INTR_AHBCMDGE BIT(2)
127#define FSPI_INTR_IPCMDGE BIT(1)
128#define FSPI_INTR_IPCMDDONE BIT(0)
129
130#define FSPI_LUTKEY 0x18
131#define FSPI_LUTKEY_VALUE 0x5AF05AF0
132
133#define FSPI_LCKCR 0x1C
134
135#define FSPI_LCKER_LOCK 0x1
136#define FSPI_LCKER_UNLOCK 0x2
137
138#define FSPI_BUFXCR_INVALID_MSTRID 0xE
139#define FSPI_AHBRX_BUF0CR0 0x20
140#define FSPI_AHBRX_BUF1CR0 0x24
141#define FSPI_AHBRX_BUF2CR0 0x28
142#define FSPI_AHBRX_BUF3CR0 0x2C
143#define FSPI_AHBRX_BUF4CR0 0x30
144#define FSPI_AHBRX_BUF5CR0 0x34
145#define FSPI_AHBRX_BUF6CR0 0x38
146#define FSPI_AHBRX_BUF7CR0 0x3C
147#define FSPI_AHBRXBUF0CR7_PREF BIT(31)
148
149#define FSPI_AHBRX_BUF0CR1 0x40
150#define FSPI_AHBRX_BUF1CR1 0x44
151#define FSPI_AHBRX_BUF2CR1 0x48
152#define FSPI_AHBRX_BUF3CR1 0x4C
153#define FSPI_AHBRX_BUF4CR1 0x50
154#define FSPI_AHBRX_BUF5CR1 0x54
155#define FSPI_AHBRX_BUF6CR1 0x58
156#define FSPI_AHBRX_BUF7CR1 0x5C
157
158#define FSPI_FLSHA1CR0 0x60
159#define FSPI_FLSHA2CR0 0x64
160#define FSPI_FLSHB1CR0 0x68
161#define FSPI_FLSHB2CR0 0x6C
162#define FSPI_FLSHXCR0_SZ_KB 10
163#define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB)
164
165#define FSPI_FLSHA1CR1 0x70
166#define FSPI_FLSHA2CR1 0x74
167#define FSPI_FLSHB1CR1 0x78
168#define FSPI_FLSHB2CR1 0x7C
169#define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16)
170#define FSPI_FLSHXCR1_CAS(x) ((x) << 11)
171#define FSPI_FLSHXCR1_WA BIT(10)
172#define FSPI_FLSHXCR1_TCSH(x) ((x) << 5)
173#define FSPI_FLSHXCR1_TCSS(x) (x)
174
175#define FSPI_FLSHA1CR2 0x80
176#define FSPI_FLSHA2CR2 0x84
177#define FSPI_FLSHB1CR2 0x88
178#define FSPI_FLSHB2CR2 0x8C
179#define FSPI_FLSHXCR2_CLRINSP BIT(24)
180#define FSPI_FLSHXCR2_AWRWAIT BIT(16)
181#define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13
182#define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8
183#define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5
184#define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0
185
186#define FSPI_IPCR0 0xA0
187
188#define FSPI_IPCR1 0xA4
189#define FSPI_IPCR1_IPAREN BIT(31)
190#define FSPI_IPCR1_SEQNUM_SHIFT 24
191#define FSPI_IPCR1_SEQID_SHIFT 16
192#define FSPI_IPCR1_IDATSZ(x) (x)
193
194#define FSPI_IPCMD 0xB0
195#define FSPI_IPCMD_TRG BIT(0)
196
197#define FSPI_DLPR 0xB4
198
199#define FSPI_IPRXFCR 0xB8
200#define FSPI_IPRXFCR_CLR BIT(0)
201#define FSPI_IPRXFCR_DMA_EN BIT(1)
202#define FSPI_IPRXFCR_WMRK(x) ((x) << 2)
203
204#define FSPI_IPTXFCR 0xBC
205#define FSPI_IPTXFCR_CLR BIT(0)
206#define FSPI_IPTXFCR_DMA_EN BIT(1)
207#define FSPI_IPTXFCR_WMRK(x) ((x) << 2)
208
209#define FSPI_DLLACR 0xC0
210#define FSPI_DLLACR_OVRDEN BIT(8)
211
212#define FSPI_DLLBCR 0xC4
213#define FSPI_DLLBCR_OVRDEN BIT(8)
214
215#define FSPI_STS0 0xE0
216#define FSPI_STS0_DLPHB(x) ((x) << 8)
217#define FSPI_STS0_DLPHA(x) ((x) << 4)
218#define FSPI_STS0_CMD_SRC(x) ((x) << 2)
219#define FSPI_STS0_ARB_IDLE BIT(1)
220#define FSPI_STS0_SEQ_IDLE BIT(0)
221
222#define FSPI_STS1 0xE4
223#define FSPI_STS1_IP_ERRCD(x) ((x) << 24)
224#define FSPI_STS1_IP_ERRID(x) ((x) << 16)
225#define FSPI_STS1_AHB_ERRCD(x) ((x) << 8)
226#define FSPI_STS1_AHB_ERRID(x) (x)
227
228#define FSPI_AHBSPNST 0xEC
229#define FSPI_AHBSPNST_DATLFT(x) ((x) << 16)
230#define FSPI_AHBSPNST_BUFID(x) ((x) << 1)
231#define FSPI_AHBSPNST_ACTIVE BIT(0)
232
233#define FSPI_IPRXFSTS 0xF0
234#define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16)
235#define FSPI_IPRXFSTS_FILL(x) (x)
236
237#define FSPI_IPTXFSTS 0xF4
238#define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16)
239#define FSPI_IPTXFSTS_FILL(x) (x)
240
241#define FSPI_RFDR 0x100
242#define FSPI_TFDR 0x180
243
244#define FSPI_LUT_BASE 0x200
245#define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
246#define FSPI_LUT_REG(idx) \
247 (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
248
249/* register map end */
250
251/* Instruction set for the LUT register. */
252#define LUT_STOP 0x00
253#define LUT_CMD 0x01
254#define LUT_ADDR 0x02
255#define LUT_CADDR_SDR 0x03
256#define LUT_MODE 0x04
257#define LUT_MODE2 0x05
258#define LUT_MODE4 0x06
259#define LUT_MODE8 0x07
260#define LUT_NXP_WRITE 0x08
261#define LUT_NXP_READ 0x09
262#define LUT_LEARN_SDR 0x0A
263#define LUT_DATSZ_SDR 0x0B
264#define LUT_DUMMY 0x0C
265#define LUT_DUMMY_RWDS_SDR 0x0D
266#define LUT_JMP_ON_CS 0x1F
267#define LUT_CMD_DDR 0x21
268#define LUT_ADDR_DDR 0x22
269#define LUT_CADDR_DDR 0x23
270#define LUT_MODE_DDR 0x24
271#define LUT_MODE2_DDR 0x25
272#define LUT_MODE4_DDR 0x26
273#define LUT_MODE8_DDR 0x27
274#define LUT_WRITE_DDR 0x28
275#define LUT_READ_DDR 0x29
276#define LUT_LEARN_DDR 0x2A
277#define LUT_DATSZ_DDR 0x2B
278#define LUT_DUMMY_DDR 0x2C
279#define LUT_DUMMY_RWDS_DDR 0x2D
280
281/*
282 * Calculate number of required PAD bits for LUT register.
283 *
284 * The pad stands for the number of IO lines [0:7].
285 * For example, the octal read needs eight IO lines,
286 * so you should use LUT_PAD(8). This macro
287 * returns 3 i.e. use eight (2^3) IP lines for read.
288 */
289#define LUT_PAD(x) (fls(x) - 1)
290
291/*
292 * Macro for constructing the LUT entries with the following
293 * register layout:
294 *
295 * ---------------------------------------------------
296 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
297 * ---------------------------------------------------
298 */
299#define PAD_SHIFT 8
300#define INSTR_SHIFT 10
301#define OPRND_SHIFT 16
302
303/* Macros for constructing the LUT register. */
304#define LUT_DEF(idx, ins, pad, opr) \
305 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
306 (opr)) << (((idx) % 2) * OPRND_SHIFT))
307
308#define POLL_TOUT 5000
309#define NXP_FSPI_MAX_CHIPSELECT 4
Han Xud166a732020-01-26 08:09:09 -0600310#define NXP_FSPI_MIN_IOMAP SZ_4M
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000311
312struct nxp_fspi_devtype_data {
313 unsigned int rxfifo;
314 unsigned int txfifo;
315 unsigned int ahb_buf_size;
316 unsigned int quirks;
317 bool little_endian;
318};
319
320static const struct nxp_fspi_devtype_data lx2160a_data = {
321 .rxfifo = SZ_512, /* (64 * 64 bits) */
322 .txfifo = SZ_1K, /* (128 * 64 bits) */
323 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
324 .quirks = 0,
325 .little_endian = true, /* little-endian */
326};
327
Han Xu941be8a2020-01-26 08:09:08 -0600328static const struct nxp_fspi_devtype_data imx8mm_data = {
329 .rxfifo = SZ_512, /* (64 * 64 bits) */
330 .txfifo = SZ_1K, /* (128 * 64 bits) */
331 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
332 .quirks = 0,
333 .little_endian = true, /* little-endian */
334};
335
336static const struct nxp_fspi_devtype_data imx8qxp_data = {
337 .rxfifo = SZ_512, /* (64 * 64 bits) */
338 .txfifo = SZ_1K, /* (128 * 64 bits) */
339 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */
340 .quirks = 0,
341 .little_endian = true, /* little-endian */
342};
343
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000344struct nxp_fspi {
345 void __iomem *iobase;
346 void __iomem *ahb_addr;
347 u32 memmap_phy;
348 u32 memmap_phy_size;
Han Xud166a732020-01-26 08:09:09 -0600349 u32 memmap_start;
350 u32 memmap_len;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000351 struct clk *clk, *clk_en;
352 struct device *dev;
353 struct completion c;
354 const struct nxp_fspi_devtype_data *devtype_data;
355 struct mutex lock;
356 struct pm_qos_request pm_qos_req;
357 int selected;
358};
359
360/*
361 * R/W functions for big- or little-endian registers:
362 * The FSPI controller's endianness is independent of
363 * the CPU core's endianness. So far, although the CPU
364 * core is little-endian the FSPI controller can use
365 * big-endian or little-endian.
366 */
367static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
368{
369 if (f->devtype_data->little_endian)
370 iowrite32(val, addr);
371 else
372 iowrite32be(val, addr);
373}
374
375static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
376{
377 if (f->devtype_data->little_endian)
378 return ioread32(addr);
379 else
380 return ioread32be(addr);
381}
382
383static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
384{
385 struct nxp_fspi *f = dev_id;
386 u32 reg;
387
388 /* clear interrupt */
389 reg = fspi_readl(f, f->iobase + FSPI_INTR);
390 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
391
392 if (reg & FSPI_INTR_IPCMDDONE)
393 complete(&f->c);
394
395 return IRQ_HANDLED;
396}
397
398static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
399{
400 switch (width) {
401 case 1:
402 case 2:
403 case 4:
404 case 8:
405 return 0;
406 }
407
408 return -ENOTSUPP;
409}
410
411static bool nxp_fspi_supports_op(struct spi_mem *mem,
412 const struct spi_mem_op *op)
413{
414 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
415 int ret;
416
417 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
418
419 if (op->addr.nbytes)
420 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
421
422 if (op->dummy.nbytes)
423 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
424
425 if (op->data.nbytes)
426 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
427
428 if (ret)
429 return false;
430
431 /*
432 * The number of address bytes should be equal to or less than 4 bytes.
433 */
434 if (op->addr.nbytes > 4)
435 return false;
436
437 /*
438 * If requested address value is greater than controller assigned
439 * memory mapped space, return error as it didn't fit in the range
440 * of assigned address space.
441 */
442 if (op->addr.val >= f->memmap_phy_size)
443 return false;
444
445 /* Max 64 dummy clock cycles supported */
446 if (op->dummy.buswidth &&
447 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
448 return false;
449
450 /* Max data length, check controller limits and alignment */
451 if (op->data.dir == SPI_MEM_DATA_IN &&
452 (op->data.nbytes > f->devtype_data->ahb_buf_size ||
453 (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
454 !IS_ALIGNED(op->data.nbytes, 8))))
455 return false;
456
457 if (op->data.dir == SPI_MEM_DATA_OUT &&
458 op->data.nbytes > f->devtype_data->txfifo)
459 return false;
460
Michael Walle007773e2019-12-11 20:57:30 +0100461 return spi_mem_default_supports_op(mem, op);
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000462}
463
464/* Instead of busy looping invoke readl_poll_timeout functionality. */
465static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
466 u32 mask, u32 delay_us,
467 u32 timeout_us, bool c)
468{
469 u32 reg;
470
471 if (!f->devtype_data->little_endian)
472 mask = (u32)cpu_to_be32(mask);
473
474 if (c)
475 return readl_poll_timeout(base, reg, (reg & mask),
476 delay_us, timeout_us);
477 else
478 return readl_poll_timeout(base, reg, !(reg & mask),
479 delay_us, timeout_us);
480}
481
482/*
483 * If the slave device content being changed by Write/Erase, need to
484 * invalidate the AHB buffer. This can be achieved by doing the reset
485 * of controller after setting MCR0[SWRESET] bit.
486 */
487static inline void nxp_fspi_invalid(struct nxp_fspi *f)
488{
489 u32 reg;
490 int ret;
491
492 reg = fspi_readl(f, f->iobase + FSPI_MCR0);
493 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
494
495 /* w1c register, wait unit clear */
496 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
497 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
498 WARN_ON(ret);
499}
500
501static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
502 const struct spi_mem_op *op)
503{
504 void __iomem *base = f->iobase;
505 u32 lutval[4] = {};
506 int lutidx = 1, i;
507
508 /* cmd */
509 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
510 op->cmd.opcode);
511
512 /* addr bytes */
513 if (op->addr.nbytes) {
514 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
515 LUT_PAD(op->addr.buswidth),
516 op->addr.nbytes * 8);
517 lutidx++;
518 }
519
520 /* dummy bytes, if needed */
521 if (op->dummy.nbytes) {
522 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
523 /*
524 * Due to FlexSPI controller limitation number of PAD for dummy
525 * buswidth needs to be programmed as equal to data buswidth.
526 */
527 LUT_PAD(op->data.buswidth),
528 op->dummy.nbytes * 8 /
529 op->dummy.buswidth);
530 lutidx++;
531 }
532
533 /* read/write data bytes */
534 if (op->data.nbytes) {
535 lutval[lutidx / 2] |= LUT_DEF(lutidx,
536 op->data.dir == SPI_MEM_DATA_IN ?
537 LUT_NXP_READ : LUT_NXP_WRITE,
538 LUT_PAD(op->data.buswidth),
539 0);
540 lutidx++;
541 }
542
543 /* stop condition. */
544 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
545
546 /* unlock LUT */
547 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
548 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
549
550 /* fill LUT */
551 for (i = 0; i < ARRAY_SIZE(lutval); i++)
552 fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
553
554 dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
555 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
556
557 /* lock LUT */
558 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
559 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
560}
561
562static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
563{
564 int ret;
565
566 ret = clk_prepare_enable(f->clk_en);
567 if (ret)
568 return ret;
569
570 ret = clk_prepare_enable(f->clk);
571 if (ret) {
572 clk_disable_unprepare(f->clk_en);
573 return ret;
574 }
575
576 return 0;
577}
578
579static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
580{
581 clk_disable_unprepare(f->clk);
582 clk_disable_unprepare(f->clk_en);
583}
584
585/*
586 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
587 * register and start base address of the slave device.
588 *
589 * (Higher address)
590 * -------- <-- FLSHB2CR0
591 * | B2 |
592 * | |
593 * B2 start address --> -------- <-- FLSHB1CR0
594 * | B1 |
595 * | |
596 * B1 start address --> -------- <-- FLSHA2CR0
597 * | A2 |
598 * | |
599 * A2 start address --> -------- <-- FLSHA1CR0
600 * | A1 |
601 * | |
602 * A1 start address --> -------- (Lower address)
603 *
604 *
605 * Start base address defines the starting address range for given CS and
606 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
607 *
608 * But, different targets are having different combinations of number of CS,
609 * some targets only have single CS or two CS covering controller's full
610 * memory mapped space area.
611 * Thus, implementation is being done as independent of the size and number
612 * of the connected slave device.
613 * Assign controller memory mapped space size as the size to the connected
614 * slave device.
615 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
616 * chip-select Flash configuration register.
617 *
618 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
619 * memory mapped size of the controller.
620 * Value for rest of the CS FLSHxxCR0 register would be zero.
621 *
622 */
623static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
624{
625 unsigned long rate = spi->max_speed_hz;
626 int ret;
627 uint64_t size_kb;
628
629 /*
630 * Return, if previously selected slave device is same as current
631 * requested slave device.
632 */
633 if (f->selected == spi->chip_select)
634 return;
635
636 /* Reset FLSHxxCR0 registers */
637 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
638 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
639 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
640 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
641
642 /* Assign controller memory mapped space as size, KBytes, of flash. */
643 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
644
645 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
646 4 * spi->chip_select);
647
648 dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
649
650 nxp_fspi_clk_disable_unprep(f);
651
652 ret = clk_set_rate(f->clk, rate);
653 if (ret)
654 return;
655
656 ret = nxp_fspi_clk_prep_enable(f);
657 if (ret)
658 return;
659
660 f->selected = spi->chip_select;
661}
662
Han Xud166a732020-01-26 08:09:09 -0600663static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000664{
Han Xud166a732020-01-26 08:09:09 -0600665 u32 start = op->addr.val;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000666 u32 len = op->data.nbytes;
667
Han Xud166a732020-01-26 08:09:09 -0600668 /* if necessary, ioremap before AHB read */
669 if ((!f->ahb_addr) || start < f->memmap_start ||
670 start + len > f->memmap_start + f->memmap_len) {
671 if (f->ahb_addr)
672 iounmap(f->ahb_addr);
673
674 f->memmap_start = start;
675 f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
676 len : NXP_FSPI_MIN_IOMAP;
677
678 f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
679 f->memmap_len);
680
681 if (!f->ahb_addr) {
682 dev_err(f->dev, "failed to alloc memory\n");
683 return -ENOMEM;
684 }
685 }
686
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000687 /* Read out the data directly from the AHB buffer. */
Han Xud166a732020-01-26 08:09:09 -0600688 memcpy_fromio(op->data.buf.in,
689 f->ahb_addr + start - f->memmap_start, len);
690
691 return 0;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000692}
693
694static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
695 const struct spi_mem_op *op)
696{
697 void __iomem *base = f->iobase;
698 int i, ret;
699 u8 *buf = (u8 *) op->data.buf.out;
700
701 /* clear the TX FIFO. */
702 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
703
704 /*
705 * Default value of water mark level is 8 bytes, hence in single
706 * write request controller can write max 8 bytes of data.
707 */
708
709 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
710 /* Wait for TXFIFO empty */
711 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
712 FSPI_INTR_IPTXWE, 0,
713 POLL_TOUT, true);
714 WARN_ON(ret);
715
716 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
717 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
718 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
719 }
720
721 if (i < op->data.nbytes) {
722 u32 data = 0;
723 int j;
724 /* Wait for TXFIFO empty */
725 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
726 FSPI_INTR_IPTXWE, 0,
727 POLL_TOUT, true);
728 WARN_ON(ret);
729
730 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
731 memcpy(&data, buf + i + j, 4);
732 fspi_writel(f, data, base + FSPI_TFDR + j);
733 }
734 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
735 }
736}
737
738static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
739 const struct spi_mem_op *op)
740{
741 void __iomem *base = f->iobase;
742 int i, ret;
743 int len = op->data.nbytes;
744 u8 *buf = (u8 *) op->data.buf.in;
745
746 /*
747 * Default value of water mark level is 8 bytes, hence in single
748 * read request controller can read max 8 bytes of data.
749 */
750 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
751 /* Wait for RXFIFO available */
752 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
753 FSPI_INTR_IPRXWA, 0,
754 POLL_TOUT, true);
755 WARN_ON(ret);
756
757 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
758 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
759 /* move the FIFO pointer */
760 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
761 }
762
763 if (i < len) {
764 u32 tmp;
765 int size, j;
766
767 buf = op->data.buf.in + i;
768 /* Wait for RXFIFO available */
769 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
770 FSPI_INTR_IPRXWA, 0,
771 POLL_TOUT, true);
772 WARN_ON(ret);
773
774 len = op->data.nbytes - i;
775 for (j = 0; j < op->data.nbytes - i; j += 4) {
776 tmp = fspi_readl(f, base + FSPI_RFDR + j);
777 size = min(len, 4);
778 memcpy(buf + j, &tmp, size);
779 len -= size;
780 }
781 }
782
783 /* invalid the RXFIFO */
784 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
785 /* move the FIFO pointer */
786 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
787}
788
789static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
790{
791 void __iomem *base = f->iobase;
792 int seqnum = 0;
793 int err = 0;
794 u32 reg;
795
796 reg = fspi_readl(f, base + FSPI_IPRXFCR);
797 /* invalid RXFIFO first */
798 reg &= ~FSPI_IPRXFCR_DMA_EN;
799 reg = reg | FSPI_IPRXFCR_CLR;
800 fspi_writel(f, reg, base + FSPI_IPRXFCR);
801
802 init_completion(&f->c);
803
804 fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
805 /*
806 * Always start the sequence at the same index since we update
807 * the LUT at each exec_op() call. And also specify the DATA
808 * length, since it's has not been specified in the LUT.
809 */
810 fspi_writel(f, op->data.nbytes |
811 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
812 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
813 base + FSPI_IPCR1);
814
815 /* Trigger the LUT now. */
816 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
817
818 /* Wait for the interrupt. */
819 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
820 err = -ETIMEDOUT;
821
822 /* Invoke IP data read, if request is of data read. */
823 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
824 nxp_fspi_read_rxfifo(f, op);
825
826 return err;
827}
828
829static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
830{
831 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
832 int err = 0;
833
834 mutex_lock(&f->lock);
835
836 /* Wait for controller being ready. */
837 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
838 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
839 WARN_ON(err);
840
841 nxp_fspi_select_mem(f, mem->spi);
842
843 nxp_fspi_prepare_lut(f, op);
844 /*
845 * If we have large chunks of data, we read them through the AHB bus
846 * by accessing the mapped memory. In all other cases we use
847 * IP commands to access the flash.
848 */
849 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
850 op->data.dir == SPI_MEM_DATA_IN) {
Han Xud166a732020-01-26 08:09:09 -0600851 err = nxp_fspi_read_ahb(f, op);
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000852 } else {
853 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
854 nxp_fspi_fill_txfifo(f, op);
855
856 err = nxp_fspi_do_op(f, op);
857 }
858
859 /* Invalidate the data in the AHB buffer. */
860 nxp_fspi_invalid(f);
861
862 mutex_unlock(&f->lock);
863
864 return err;
865}
866
867static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
868{
869 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
870
871 if (op->data.dir == SPI_MEM_DATA_OUT) {
872 if (op->data.nbytes > f->devtype_data->txfifo)
873 op->data.nbytes = f->devtype_data->txfifo;
874 } else {
875 if (op->data.nbytes > f->devtype_data->ahb_buf_size)
876 op->data.nbytes = f->devtype_data->ahb_buf_size;
877 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
878 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
879 }
880
881 return 0;
882}
883
884static int nxp_fspi_default_setup(struct nxp_fspi *f)
885{
886 void __iomem *base = f->iobase;
887 int ret, i;
888 u32 reg;
889
890 /* disable and unprepare clock to avoid glitch pass to controller */
891 nxp_fspi_clk_disable_unprep(f);
892
893 /* the default frequency, we will change it later if necessary. */
894 ret = clk_set_rate(f->clk, 20000000);
895 if (ret)
896 return ret;
897
898 ret = nxp_fspi_clk_prep_enable(f);
899 if (ret)
900 return ret;
901
902 /* Reset the module */
903 /* w1c register, wait unit clear */
904 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
905 FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
906 WARN_ON(ret);
907
908 /* Disable the module */
909 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
910
911 /* Reset the DLL register to default value */
912 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
913 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
914
915 /* enable module */
Han Xub7461fa2020-01-26 08:09:10 -0600916 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
917 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
918 base + FSPI_MCR0);
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +0000919
920 /*
921 * Disable same device enable bit and configure all slave devices
922 * independently.
923 */
924 reg = fspi_readl(f, f->iobase + FSPI_MCR2);
925 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
926 fspi_writel(f, reg, base + FSPI_MCR2);
927
928 /* AHB configuration for access buffer 0~7. */
929 for (i = 0; i < 7; i++)
930 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
931
932 /*
933 * Set ADATSZ with the maximum AHB buffer size to improve the read
934 * performance.
935 */
936 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
937 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
938
939 /* prefetch and no start address alignment limitation */
940 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
941 base + FSPI_AHBCR);
942
943 /* AHB Read - Set lut sequence ID for all CS. */
944 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
945 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
946 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
947 fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
948
949 f->selected = -1;
950
951 /* enable the interrupt */
952 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
953
954 return 0;
955}
956
957static const char *nxp_fspi_get_name(struct spi_mem *mem)
958{
959 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
960 struct device *dev = &mem->spi->dev;
961 const char *name;
962
963 // Set custom name derived from the platform_device of the controller.
964 if (of_get_available_child_count(f->dev->of_node) == 1)
965 return dev_name(f->dev);
966
967 name = devm_kasprintf(dev, GFP_KERNEL,
968 "%s-%d", dev_name(f->dev),
969 mem->spi->chip_select);
970
971 if (!name) {
972 dev_err(dev, "failed to get memory for custom flash name\n");
973 return ERR_PTR(-ENOMEM);
974 }
975
976 return name;
977}
978
979static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
980 .adjust_op_size = nxp_fspi_adjust_op_size,
981 .supports_op = nxp_fspi_supports_op,
982 .exec_op = nxp_fspi_exec_op,
983 .get_name = nxp_fspi_get_name,
984};
985
986static int nxp_fspi_probe(struct platform_device *pdev)
987{
988 struct spi_controller *ctlr;
989 struct device *dev = &pdev->dev;
990 struct device_node *np = dev->of_node;
991 struct resource *res;
992 struct nxp_fspi *f;
993 int ret;
994
995 ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
996 if (!ctlr)
997 return -ENOMEM;
998
Yogesh Narayan Gaurb3281792019-01-15 10:05:29 +0000999 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1000 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001001
1002 f = spi_controller_get_devdata(ctlr);
1003 f->dev = dev;
1004 f->devtype_data = of_device_get_match_data(dev);
1005 if (!f->devtype_data) {
1006 ret = -ENODEV;
1007 goto err_put_ctrl;
1008 }
1009
1010 platform_set_drvdata(pdev, f);
1011
1012 /* find the resources - configuration register address space */
1013 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_base");
1014 f->iobase = devm_ioremap_resource(dev, res);
1015 if (IS_ERR(f->iobase)) {
1016 ret = PTR_ERR(f->iobase);
1017 goto err_put_ctrl;
1018 }
1019
1020 /* find the resources - controller memory mapped space */
1021 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap");
Dan Carpenter1a421eb2020-03-12 14:31:54 +03001022 if (!res) {
1023 ret = -ENODEV;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001024 goto err_put_ctrl;
1025 }
1026
1027 /* assign memory mapped starting address and mapped size. */
1028 f->memmap_phy = res->start;
1029 f->memmap_phy_size = resource_size(res);
1030
1031 /* find the clocks */
1032 f->clk_en = devm_clk_get(dev, "fspi_en");
1033 if (IS_ERR(f->clk_en)) {
1034 ret = PTR_ERR(f->clk_en);
1035 goto err_put_ctrl;
1036 }
1037
1038 f->clk = devm_clk_get(dev, "fspi");
1039 if (IS_ERR(f->clk)) {
1040 ret = PTR_ERR(f->clk);
1041 goto err_put_ctrl;
1042 }
1043
1044 ret = nxp_fspi_clk_prep_enable(f);
1045 if (ret) {
1046 dev_err(dev, "can not enable the clock\n");
1047 goto err_put_ctrl;
1048 }
1049
1050 /* find the irq */
1051 ret = platform_get_irq(pdev, 0);
Stephen Boyd6b8ac102019-07-30 11:15:41 -07001052 if (ret < 0)
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001053 goto err_disable_clk;
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001054
1055 ret = devm_request_irq(dev, ret,
1056 nxp_fspi_irq_handler, 0, pdev->name, f);
1057 if (ret) {
1058 dev_err(dev, "failed to request irq: %d\n", ret);
1059 goto err_disable_clk;
1060 }
1061
1062 mutex_init(&f->lock);
1063
1064 ctlr->bus_num = -1;
1065 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1066 ctlr->mem_ops = &nxp_fspi_mem_ops;
1067
1068 nxp_fspi_default_setup(f);
1069
1070 ctlr->dev.of_node = np;
1071
Chuhong Yuan69c23db2019-11-09 15:55:17 +08001072 ret = devm_spi_register_controller(&pdev->dev, ctlr);
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001073 if (ret)
1074 goto err_destroy_mutex;
1075
1076 return 0;
1077
1078err_destroy_mutex:
1079 mutex_destroy(&f->lock);
1080
1081err_disable_clk:
1082 nxp_fspi_clk_disable_unprep(f);
1083
1084err_put_ctrl:
1085 spi_controller_put(ctlr);
1086
1087 dev_err(dev, "NXP FSPI probe failed\n");
1088 return ret;
1089}
1090
1091static int nxp_fspi_remove(struct platform_device *pdev)
1092{
1093 struct nxp_fspi *f = platform_get_drvdata(pdev);
1094
1095 /* disable the hardware */
1096 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1097
1098 nxp_fspi_clk_disable_unprep(f);
1099
1100 mutex_destroy(&f->lock);
1101
Han Xud166a732020-01-26 08:09:09 -06001102 if (f->ahb_addr)
1103 iounmap(f->ahb_addr);
1104
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001105 return 0;
1106}
1107
1108static int nxp_fspi_suspend(struct device *dev)
1109{
1110 return 0;
1111}
1112
1113static int nxp_fspi_resume(struct device *dev)
1114{
1115 struct nxp_fspi *f = dev_get_drvdata(dev);
1116
1117 nxp_fspi_default_setup(f);
1118
1119 return 0;
1120}
1121
1122static const struct of_device_id nxp_fspi_dt_ids[] = {
1123 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
Han Xu941be8a2020-01-26 08:09:08 -06001124 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1125 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001126 { /* sentinel */ }
1127};
1128MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1129
1130static const struct dev_pm_ops nxp_fspi_pm_ops = {
1131 .suspend = nxp_fspi_suspend,
1132 .resume = nxp_fspi_resume,
1133};
1134
1135static struct platform_driver nxp_fspi_driver = {
1136 .driver = {
1137 .name = "nxp-fspi",
1138 .of_match_table = nxp_fspi_dt_ids,
1139 .pm = &nxp_fspi_pm_ops,
1140 },
1141 .probe = nxp_fspi_probe,
1142 .remove = nxp_fspi_remove,
1143};
1144module_platform_driver(nxp_fspi_driver);
1145
1146MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1147MODULE_AUTHOR("NXP Semiconductor");
1148MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
Yogesh Narayan Gaurce6f0692019-01-29 09:49:22 +00001149MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
Yogesh Narayan Gaura5356ae2019-01-15 12:00:15 +00001150MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
Yogesh Narayan Gaurce6f0692019-01-29 09:49:22 +00001151MODULE_LICENSE("GPL v2");