blob: 2293c45d289dca898bdcdc759ef71c21d4fa9427 [file] [log] [blame]
Johannes Weinereb414682018-10-26 15:06:27 -07001/*
2 * Pressure stall information for CPU, memory and IO
3 *
4 * Copyright (c) 2018 Facebook, Inc.
5 * Author: Johannes Weiner <hannes@cmpxchg.org>
6 *
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07007 * Polling support by Suren Baghdasaryan <surenb@google.com>
8 * Copyright (c) 2018 Google, Inc.
9 *
Johannes Weinereb414682018-10-26 15:06:27 -070010 * When CPU, memory and IO are contended, tasks experience delays that
11 * reduce throughput and introduce latencies into the workload. Memory
12 * and IO contention, in addition, can cause a full loss of forward
13 * progress in which the CPU goes idle.
14 *
15 * This code aggregates individual task delays into resource pressure
16 * metrics that indicate problems with both workload health and
17 * resource utilization.
18 *
19 * Model
20 *
21 * The time in which a task can execute on a CPU is our baseline for
22 * productivity. Pressure expresses the amount of time in which this
23 * potential cannot be realized due to resource contention.
24 *
25 * This concept of productivity has two components: the workload and
26 * the CPU. To measure the impact of pressure on both, we define two
27 * contention states for a resource: SOME and FULL.
28 *
29 * In the SOME state of a given resource, one or more tasks are
30 * delayed on that resource. This affects the workload's ability to
31 * perform work, but the CPU may still be executing other tasks.
32 *
33 * In the FULL state of a given resource, all non-idle tasks are
34 * delayed on that resource such that nobody is advancing and the CPU
35 * goes idle. This leaves both workload and CPU unproductive.
36 *
Chengming Zhoue7fcd762021-03-03 11:46:56 +080037 * Naturally, the FULL state doesn't exist for the CPU resource at the
38 * system level, but exist at the cgroup level, means all non-idle tasks
39 * in a cgroup are delayed on the CPU resource which used by others outside
40 * of the cgroup or throttled by the cgroup cpu.max configuration.
Johannes Weinereb414682018-10-26 15:06:27 -070041 *
42 * SOME = nr_delayed_tasks != 0
43 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
44 *
45 * The percentage of wallclock time spent in those compound stall
46 * states gives pressure numbers between 0 and 100 for each resource,
47 * where the SOME percentage indicates workload slowdowns and the FULL
48 * percentage indicates reduced CPU utilization:
49 *
50 * %SOME = time(SOME) / period
51 * %FULL = time(FULL) / period
52 *
53 * Multiple CPUs
54 *
55 * The more tasks and available CPUs there are, the more work can be
56 * performed concurrently. This means that the potential that can go
57 * unrealized due to resource contention *also* scales with non-idle
58 * tasks and CPUs.
59 *
60 * Consider a scenario where 257 number crunching tasks are trying to
61 * run concurrently on 256 CPUs. If we simply aggregated the task
62 * states, we would have to conclude a CPU SOME pressure number of
63 * 100%, since *somebody* is waiting on a runqueue at all
64 * times. However, that is clearly not the amount of contention the
65 * workload is experiencing: only one out of 256 possible exceution
66 * threads will be contended at any given time, or about 0.4%.
67 *
68 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
69 * given time *one* of the tasks is delayed due to a lack of memory.
70 * Again, looking purely at the task state would yield a memory FULL
71 * pressure number of 0%, since *somebody* is always making forward
72 * progress. But again this wouldn't capture the amount of execution
73 * potential lost, which is 1 out of 4 CPUs, or 25%.
74 *
75 * To calculate wasted potential (pressure) with multiple processors,
76 * we have to base our calculation on the number of non-idle tasks in
77 * conjunction with the number of available CPUs, which is the number
78 * of potential execution threads. SOME becomes then the proportion of
79 * delayed tasks to possibe threads, and FULL is the share of possible
80 * threads that are unproductive due to delays:
81 *
82 * threads = min(nr_nonidle_tasks, nr_cpus)
83 * SOME = min(nr_delayed_tasks / threads, 1)
84 * FULL = (threads - min(nr_running_tasks, threads)) / threads
85 *
86 * For the 257 number crunchers on 256 CPUs, this yields:
87 *
88 * threads = min(257, 256)
89 * SOME = min(1 / 256, 1) = 0.4%
90 * FULL = (256 - min(257, 256)) / 256 = 0%
91 *
92 * For the 1 out of 4 memory-delayed tasks, this yields:
93 *
94 * threads = min(4, 4)
95 * SOME = min(1 / 4, 1) = 25%
96 * FULL = (4 - min(3, 4)) / 4 = 25%
97 *
98 * [ Substitute nr_cpus with 1, and you can see that it's a natural
99 * extension of the single-CPU model. ]
100 *
101 * Implementation
102 *
103 * To assess the precise time spent in each such state, we would have
104 * to freeze the system on task changes and start/stop the state
105 * clocks accordingly. Obviously that doesn't scale in practice.
106 *
107 * Because the scheduler aims to distribute the compute load evenly
108 * among the available CPUs, we can track task state locally to each
109 * CPU and, at much lower frequency, extrapolate the global state for
110 * the cumulative stall times and the running averages.
111 *
112 * For each runqueue, we track:
113 *
114 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
115 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
116 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
117 *
118 * and then periodically aggregate:
119 *
120 * tNONIDLE = sum(tNONIDLE[i])
121 *
122 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
123 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
124 *
125 * %SOME = tSOME / period
126 * %FULL = tFULL / period
127 *
128 * This gives us an approximation of pressure that is practical
129 * cost-wise, yet way more sensitive and accurate than periodic
130 * sampling of the aggregate task states would be.
131 */
132
Johannes Weiner1b69ac62019-02-01 14:20:42 -0800133#include "../workqueue_internal.h"
Johannes Weinereb414682018-10-26 15:06:27 -0700134#include <linux/sched/loadavg.h>
135#include <linux/seq_file.h>
136#include <linux/proc_fs.h>
137#include <linux/seqlock.h>
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700138#include <linux/uaccess.h>
Johannes Weinereb414682018-10-26 15:06:27 -0700139#include <linux/cgroup.h>
140#include <linux/module.h>
141#include <linux/sched.h>
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700142#include <linux/ctype.h>
143#include <linux/file.h>
144#include <linux/poll.h>
Johannes Weinereb414682018-10-26 15:06:27 -0700145#include <linux/psi.h>
146#include "sched.h"
147
148static int psi_bug __read_mostly;
149
Johannes Weinere0c27442018-11-30 14:09:58 -0800150DEFINE_STATIC_KEY_FALSE(psi_disabled);
151
152#ifdef CONFIG_PSI_DEFAULT_DISABLED
Suren Baghdasaryan9289c5e2019-05-14 15:40:59 -0700153static bool psi_enable;
Johannes Weinere0c27442018-11-30 14:09:58 -0800154#else
Suren Baghdasaryan9289c5e2019-05-14 15:40:59 -0700155static bool psi_enable = true;
Johannes Weinere0c27442018-11-30 14:09:58 -0800156#endif
157static int __init setup_psi(char *str)
158{
159 return kstrtobool(str, &psi_enable) == 0;
160}
161__setup("psi=", setup_psi);
Johannes Weinereb414682018-10-26 15:06:27 -0700162
163/* Running averages - we need to be higher-res than loadavg */
164#define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
165#define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
166#define EXP_60s 1981 /* 1/exp(2s/60s) */
167#define EXP_300s 2034 /* 1/exp(2s/300s) */
168
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700169/* PSI trigger definitions */
170#define WINDOW_MIN_US 500000 /* Min window size is 500ms */
171#define WINDOW_MAX_US 10000000 /* Max window size is 10s */
172#define UPDATES_PER_WINDOW 10 /* 10 updates per window */
173
Johannes Weinereb414682018-10-26 15:06:27 -0700174/* Sampling frequency in nanoseconds */
175static u64 psi_period __read_mostly;
176
177/* System-level pressure and stall tracking */
178static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
Dan Schatzbergdf5ba5b2019-05-14 15:41:18 -0700179struct psi_group psi_system = {
Johannes Weinereb414682018-10-26 15:06:27 -0700180 .pcpu = &system_group_pcpu,
181};
182
Suren Baghdasaryanbcc78db2019-05-14 15:41:02 -0700183static void psi_avgs_work(struct work_struct *work);
Johannes Weinereb414682018-10-26 15:06:27 -0700184
185static void group_init(struct psi_group *group)
186{
187 int cpu;
188
189 for_each_possible_cpu(cpu)
190 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
Johannes Weiner3dfbe252019-12-03 13:35:23 -0500191 group->avg_last_update = sched_clock();
192 group->avg_next_update = group->avg_last_update + psi_period;
Suren Baghdasaryanbcc78db2019-05-14 15:41:02 -0700193 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
194 mutex_init(&group->avgs_lock);
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700195 /* Init trigger-related members */
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700196 mutex_init(&group->trigger_lock);
197 INIT_LIST_HEAD(&group->triggers);
198 memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
199 group->poll_states = 0;
200 group->poll_min_period = U32_MAX;
201 memset(group->polling_total, 0, sizeof(group->polling_total));
202 group->polling_next_update = ULLONG_MAX;
203 group->polling_until = 0;
Suren Baghdasaryan461daba2020-05-28 12:54:42 -0700204 rcu_assign_pointer(group->poll_task, NULL);
Johannes Weinereb414682018-10-26 15:06:27 -0700205}
206
207void __init psi_init(void)
208{
Johannes Weinere0c27442018-11-30 14:09:58 -0800209 if (!psi_enable) {
210 static_branch_enable(&psi_disabled);
Johannes Weinereb414682018-10-26 15:06:27 -0700211 return;
Johannes Weinere0c27442018-11-30 14:09:58 -0800212 }
Johannes Weinereb414682018-10-26 15:06:27 -0700213
214 psi_period = jiffies_to_nsecs(PSI_FREQ);
215 group_init(&psi_system);
216}
217
218static bool test_state(unsigned int *tasks, enum psi_states state)
219{
220 switch (state) {
221 case PSI_IO_SOME:
222 return tasks[NR_IOWAIT];
223 case PSI_IO_FULL:
224 return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
225 case PSI_MEM_SOME:
226 return tasks[NR_MEMSTALL];
227 case PSI_MEM_FULL:
228 return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
229 case PSI_CPU_SOME:
Johannes Weinerb05e75d2020-03-16 15:13:31 -0400230 return tasks[NR_RUNNING] > tasks[NR_ONCPU];
Chengming Zhoue7fcd762021-03-03 11:46:56 +0800231 case PSI_CPU_FULL:
232 return tasks[NR_RUNNING] && !tasks[NR_ONCPU];
Johannes Weinereb414682018-10-26 15:06:27 -0700233 case PSI_NONIDLE:
234 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
235 tasks[NR_RUNNING];
236 default:
237 return false;
238 }
239}
240
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700241static void get_recent_times(struct psi_group *group, int cpu,
242 enum psi_aggregators aggregator, u32 *times,
Suren Baghdasaryan333f3017c2019-05-14 15:41:09 -0700243 u32 *pchanged_states)
Johannes Weinereb414682018-10-26 15:06:27 -0700244{
245 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
Johannes Weinereb414682018-10-26 15:06:27 -0700246 u64 now, state_start;
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700247 enum psi_states s;
Johannes Weinereb414682018-10-26 15:06:27 -0700248 unsigned int seq;
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700249 u32 state_mask;
Johannes Weinereb414682018-10-26 15:06:27 -0700250
Suren Baghdasaryan333f3017c2019-05-14 15:41:09 -0700251 *pchanged_states = 0;
252
Johannes Weinereb414682018-10-26 15:06:27 -0700253 /* Snapshot a coherent view of the CPU state */
254 do {
255 seq = read_seqcount_begin(&groupc->seq);
256 now = cpu_clock(cpu);
257 memcpy(times, groupc->times, sizeof(groupc->times));
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700258 state_mask = groupc->state_mask;
Johannes Weinereb414682018-10-26 15:06:27 -0700259 state_start = groupc->state_start;
260 } while (read_seqcount_retry(&groupc->seq, seq));
261
262 /* Calculate state time deltas against the previous snapshot */
263 for (s = 0; s < NR_PSI_STATES; s++) {
264 u32 delta;
265 /*
266 * In addition to already concluded states, we also
267 * incorporate currently active states on the CPU,
268 * since states may last for many sampling periods.
269 *
270 * This way we keep our delta sampling buckets small
271 * (u32) and our reported pressure close to what's
272 * actually happening.
273 */
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700274 if (state_mask & (1 << s))
Johannes Weinereb414682018-10-26 15:06:27 -0700275 times[s] += now - state_start;
276
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700277 delta = times[s] - groupc->times_prev[aggregator][s];
278 groupc->times_prev[aggregator][s] = times[s];
Johannes Weinereb414682018-10-26 15:06:27 -0700279
280 times[s] = delta;
Suren Baghdasaryan333f3017c2019-05-14 15:41:09 -0700281 if (delta)
282 *pchanged_states |= (1 << s);
Johannes Weinereb414682018-10-26 15:06:27 -0700283 }
284}
285
286static void calc_avgs(unsigned long avg[3], int missed_periods,
287 u64 time, u64 period)
288{
289 unsigned long pct;
290
291 /* Fill in zeroes for periods of no activity */
292 if (missed_periods) {
293 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
294 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
295 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
296 }
297
298 /* Sample the most recent active period */
299 pct = div_u64(time * 100, period);
300 pct *= FIXED_1;
301 avg[0] = calc_load(avg[0], EXP_10s, pct);
302 avg[1] = calc_load(avg[1], EXP_60s, pct);
303 avg[2] = calc_load(avg[2], EXP_300s, pct);
304}
305
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700306static void collect_percpu_times(struct psi_group *group,
307 enum psi_aggregators aggregator,
308 u32 *pchanged_states)
Johannes Weinereb414682018-10-26 15:06:27 -0700309{
310 u64 deltas[NR_PSI_STATES - 1] = { 0, };
Johannes Weinereb414682018-10-26 15:06:27 -0700311 unsigned long nonidle_total = 0;
Suren Baghdasaryan333f3017c2019-05-14 15:41:09 -0700312 u32 changed_states = 0;
Johannes Weinereb414682018-10-26 15:06:27 -0700313 int cpu;
314 int s;
315
Johannes Weinereb414682018-10-26 15:06:27 -0700316 /*
317 * Collect the per-cpu time buckets and average them into a
318 * single time sample that is normalized to wallclock time.
319 *
320 * For averaging, each CPU is weighted by its non-idle time in
321 * the sampling period. This eliminates artifacts from uneven
322 * loading, or even entirely idle CPUs.
323 */
324 for_each_possible_cpu(cpu) {
325 u32 times[NR_PSI_STATES];
326 u32 nonidle;
Suren Baghdasaryan333f3017c2019-05-14 15:41:09 -0700327 u32 cpu_changed_states;
Johannes Weinereb414682018-10-26 15:06:27 -0700328
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700329 get_recent_times(group, cpu, aggregator, times,
Suren Baghdasaryan333f3017c2019-05-14 15:41:09 -0700330 &cpu_changed_states);
331 changed_states |= cpu_changed_states;
Johannes Weinereb414682018-10-26 15:06:27 -0700332
333 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
334 nonidle_total += nonidle;
335
336 for (s = 0; s < PSI_NONIDLE; s++)
337 deltas[s] += (u64)times[s] * nonidle;
338 }
339
340 /*
341 * Integrate the sample into the running statistics that are
342 * reported to userspace: the cumulative stall times and the
343 * decaying averages.
344 *
345 * Pressure percentages are sampled at PSI_FREQ. We might be
346 * called more often when the user polls more frequently than
347 * that; we might be called less often when there is no task
348 * activity, thus no data, and clock ticks are sporadic. The
349 * below handles both.
350 */
351
352 /* total= */
353 for (s = 0; s < NR_PSI_STATES - 1; s++)
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700354 group->total[aggregator][s] +=
355 div_u64(deltas[s], max(nonidle_total, 1UL));
Johannes Weinereb414682018-10-26 15:06:27 -0700356
Suren Baghdasaryan333f3017c2019-05-14 15:41:09 -0700357 if (pchanged_states)
358 *pchanged_states = changed_states;
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -0700359}
360
361static u64 update_averages(struct psi_group *group, u64 now)
362{
363 unsigned long missed_periods = 0;
364 u64 expires, period;
365 u64 avg_next_update;
366 int s;
367
Johannes Weinereb414682018-10-26 15:06:27 -0700368 /* avgX= */
Suren Baghdasaryanbcc78db2019-05-14 15:41:02 -0700369 expires = group->avg_next_update;
Johannes Weiner4e375042019-02-20 22:19:59 -0800370 if (now - expires >= psi_period)
Johannes Weinereb414682018-10-26 15:06:27 -0700371 missed_periods = div_u64(now - expires, psi_period);
372
373 /*
374 * The periodic clock tick can get delayed for various
375 * reasons, especially on loaded systems. To avoid clock
376 * drift, we schedule the clock in fixed psi_period intervals.
377 * But the deltas we sample out of the per-cpu buckets above
378 * are based on the actual time elapsing between clock ticks.
379 */
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -0700380 avg_next_update = expires + ((1 + missed_periods) * psi_period);
Suren Baghdasaryanbcc78db2019-05-14 15:41:02 -0700381 period = now - (group->avg_last_update + (missed_periods * psi_period));
382 group->avg_last_update = now;
Johannes Weinereb414682018-10-26 15:06:27 -0700383
384 for (s = 0; s < NR_PSI_STATES - 1; s++) {
385 u32 sample;
386
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700387 sample = group->total[PSI_AVGS][s] - group->avg_total[s];
Johannes Weinereb414682018-10-26 15:06:27 -0700388 /*
389 * Due to the lockless sampling of the time buckets,
390 * recorded time deltas can slip into the next period,
391 * which under full pressure can result in samples in
392 * excess of the period length.
393 *
394 * We don't want to report non-sensical pressures in
395 * excess of 100%, nor do we want to drop such events
396 * on the floor. Instead we punt any overage into the
397 * future until pressure subsides. By doing this we
398 * don't underreport the occurring pressure curve, we
399 * just report it delayed by one period length.
400 *
401 * The error isn't cumulative. As soon as another
402 * delta slips from a period P to P+1, by definition
403 * it frees up its time T in P.
404 */
405 if (sample > period)
406 sample = period;
Suren Baghdasaryanbcc78db2019-05-14 15:41:02 -0700407 group->avg_total[s] += sample;
Johannes Weinereb414682018-10-26 15:06:27 -0700408 calc_avgs(group->avg[s], missed_periods, sample, period);
409 }
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -0700410
411 return avg_next_update;
Johannes Weinereb414682018-10-26 15:06:27 -0700412}
413
Suren Baghdasaryanbcc78db2019-05-14 15:41:02 -0700414static void psi_avgs_work(struct work_struct *work)
Johannes Weinereb414682018-10-26 15:06:27 -0700415{
416 struct delayed_work *dwork;
417 struct psi_group *group;
Suren Baghdasaryan333f3017c2019-05-14 15:41:09 -0700418 u32 changed_states;
Johannes Weinereb414682018-10-26 15:06:27 -0700419 bool nonidle;
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -0700420 u64 now;
Johannes Weinereb414682018-10-26 15:06:27 -0700421
422 dwork = to_delayed_work(work);
Suren Baghdasaryanbcc78db2019-05-14 15:41:02 -0700423 group = container_of(dwork, struct psi_group, avgs_work);
Johannes Weinereb414682018-10-26 15:06:27 -0700424
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -0700425 mutex_lock(&group->avgs_lock);
426
427 now = sched_clock();
428
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700429 collect_percpu_times(group, PSI_AVGS, &changed_states);
Suren Baghdasaryan333f3017c2019-05-14 15:41:09 -0700430 nonidle = changed_states & (1 << PSI_NONIDLE);
Johannes Weinereb414682018-10-26 15:06:27 -0700431 /*
432 * If there is task activity, periodically fold the per-cpu
433 * times and feed samples into the running averages. If things
434 * are idle and there is no data to process, stop the clock.
435 * Once restarted, we'll catch up the running averages in one
436 * go - see calc_avgs() and missed_periods.
437 */
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -0700438 if (now >= group->avg_next_update)
439 group->avg_next_update = update_averages(group, now);
Johannes Weinereb414682018-10-26 15:06:27 -0700440
441 if (nonidle) {
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -0700442 schedule_delayed_work(dwork, nsecs_to_jiffies(
443 group->avg_next_update - now) + 1);
Johannes Weinereb414682018-10-26 15:06:27 -0700444 }
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -0700445
446 mutex_unlock(&group->avgs_lock);
Johannes Weinereb414682018-10-26 15:06:27 -0700447}
448
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700449/* Trigger tracking window manupulations */
450static void window_reset(struct psi_window *win, u64 now, u64 value,
451 u64 prev_growth)
452{
453 win->start_time = now;
454 win->start_value = value;
455 win->prev_growth = prev_growth;
456}
457
458/*
459 * PSI growth tracking window update and growth calculation routine.
460 *
461 * This approximates a sliding tracking window by interpolating
462 * partially elapsed windows using historical growth data from the
463 * previous intervals. This minimizes memory requirements (by not storing
464 * all the intermediate values in the previous window) and simplifies
465 * the calculations. It works well because PSI signal changes only in
466 * positive direction and over relatively small window sizes the growth
467 * is close to linear.
468 */
469static u64 window_update(struct psi_window *win, u64 now, u64 value)
470{
471 u64 elapsed;
472 u64 growth;
473
474 elapsed = now - win->start_time;
475 growth = value - win->start_value;
476 /*
477 * After each tracking window passes win->start_value and
478 * win->start_time get reset and win->prev_growth stores
479 * the average per-window growth of the previous window.
480 * win->prev_growth is then used to interpolate additional
481 * growth from the previous window assuming it was linear.
482 */
483 if (elapsed > win->size)
484 window_reset(win, now, value, growth);
485 else {
486 u32 remaining;
487
488 remaining = win->size - elapsed;
Johannes Weinerc3466952019-12-03 13:35:24 -0500489 growth += div64_u64(win->prev_growth * remaining, win->size);
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700490 }
491
492 return growth;
493}
494
495static void init_triggers(struct psi_group *group, u64 now)
496{
497 struct psi_trigger *t;
498
499 list_for_each_entry(t, &group->triggers, node)
500 window_reset(&t->win, now,
501 group->total[PSI_POLL][t->state], 0);
502 memcpy(group->polling_total, group->total[PSI_POLL],
503 sizeof(group->polling_total));
504 group->polling_next_update = now + group->poll_min_period;
505}
506
507static u64 update_triggers(struct psi_group *group, u64 now)
508{
509 struct psi_trigger *t;
510 bool new_stall = false;
511 u64 *total = group->total[PSI_POLL];
512
513 /*
514 * On subsequent updates, calculate growth deltas and let
515 * watchers know when their specified thresholds are exceeded.
516 */
517 list_for_each_entry(t, &group->triggers, node) {
518 u64 growth;
519
520 /* Check for stall activity */
521 if (group->polling_total[t->state] == total[t->state])
522 continue;
523
524 /*
525 * Multiple triggers might be looking at the same state,
526 * remember to update group->polling_total[] once we've
527 * been through all of them. Also remember to extend the
528 * polling time if we see new stall activity.
529 */
530 new_stall = true;
531
532 /* Calculate growth since last update */
533 growth = window_update(&t->win, now, total[t->state]);
534 if (growth < t->threshold)
535 continue;
536
537 /* Limit event signaling to once per window */
538 if (now < t->last_event_time + t->win.size)
539 continue;
540
541 /* Generate an event */
542 if (cmpxchg(&t->event, 0, 1) == 0)
543 wake_up_interruptible(&t->event_wait);
544 t->last_event_time = now;
545 }
546
547 if (new_stall)
548 memcpy(group->polling_total, total,
549 sizeof(group->polling_total));
550
551 return now + group->poll_min_period;
552}
553
Suren Baghdasaryan461daba2020-05-28 12:54:42 -0700554/* Schedule polling if it's not already scheduled. */
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700555static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
556{
Suren Baghdasaryan461daba2020-05-28 12:54:42 -0700557 struct task_struct *task;
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700558
Suren Baghdasaryan461daba2020-05-28 12:54:42 -0700559 /*
560 * Do not reschedule if already scheduled.
561 * Possible race with a timer scheduled after this check but before
562 * mod_timer below can be tolerated because group->polling_next_update
563 * will keep updates on schedule.
564 */
565 if (timer_pending(&group->poll_timer))
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700566 return;
567
568 rcu_read_lock();
569
Suren Baghdasaryan461daba2020-05-28 12:54:42 -0700570 task = rcu_dereference(group->poll_task);
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700571 /*
572 * kworker might be NULL in case psi_trigger_destroy races with
573 * psi_task_change (hotpath) which can't use locks
574 */
Suren Baghdasaryan461daba2020-05-28 12:54:42 -0700575 if (likely(task))
576 mod_timer(&group->poll_timer, jiffies + delay);
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700577
578 rcu_read_unlock();
579}
580
Suren Baghdasaryan461daba2020-05-28 12:54:42 -0700581static void psi_poll_work(struct psi_group *group)
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700582{
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700583 u32 changed_states;
584 u64 now;
585
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700586 mutex_lock(&group->trigger_lock);
587
588 now = sched_clock();
589
590 collect_percpu_times(group, PSI_POLL, &changed_states);
591
592 if (changed_states & group->poll_states) {
593 /* Initialize trigger windows when entering polling mode */
594 if (now > group->polling_until)
595 init_triggers(group, now);
596
597 /*
598 * Keep the monitor active for at least the duration of the
599 * minimum tracking window as long as monitor states are
600 * changing.
601 */
602 group->polling_until = now +
603 group->poll_min_period * UPDATES_PER_WINDOW;
604 }
605
606 if (now > group->polling_until) {
607 group->polling_next_update = ULLONG_MAX;
608 goto out;
609 }
610
611 if (now >= group->polling_next_update)
612 group->polling_next_update = update_triggers(group, now);
613
614 psi_schedule_poll_work(group,
615 nsecs_to_jiffies(group->polling_next_update - now) + 1);
616
617out:
618 mutex_unlock(&group->trigger_lock);
619}
620
Suren Baghdasaryan461daba2020-05-28 12:54:42 -0700621static int psi_poll_worker(void *data)
622{
623 struct psi_group *group = (struct psi_group *)data;
Suren Baghdasaryan461daba2020-05-28 12:54:42 -0700624
Peter Zijlstra2cca5422020-04-21 12:09:13 +0200625 sched_set_fifo_low(current);
Suren Baghdasaryan461daba2020-05-28 12:54:42 -0700626
627 while (true) {
628 wait_event_interruptible(group->poll_wait,
629 atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
630 kthread_should_stop());
631 if (kthread_should_stop())
632 break;
633
634 psi_poll_work(group);
635 }
636 return 0;
637}
638
639static void poll_timer_fn(struct timer_list *t)
640{
641 struct psi_group *group = from_timer(group, t, poll_timer);
642
643 atomic_set(&group->poll_wakeup, 1);
644 wake_up_interruptible(&group->poll_wait);
645}
646
Johannes Weinereb414682018-10-26 15:06:27 -0700647static void record_times(struct psi_group_cpu *groupc, int cpu,
648 bool memstall_tick)
649{
650 u32 delta;
651 u64 now;
652
653 now = cpu_clock(cpu);
654 delta = now - groupc->state_start;
655 groupc->state_start = now;
656
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700657 if (groupc->state_mask & (1 << PSI_IO_SOME)) {
Johannes Weinereb414682018-10-26 15:06:27 -0700658 groupc->times[PSI_IO_SOME] += delta;
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700659 if (groupc->state_mask & (1 << PSI_IO_FULL))
Johannes Weinereb414682018-10-26 15:06:27 -0700660 groupc->times[PSI_IO_FULL] += delta;
661 }
662
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700663 if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
Johannes Weinereb414682018-10-26 15:06:27 -0700664 groupc->times[PSI_MEM_SOME] += delta;
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700665 if (groupc->state_mask & (1 << PSI_MEM_FULL))
Johannes Weinereb414682018-10-26 15:06:27 -0700666 groupc->times[PSI_MEM_FULL] += delta;
667 else if (memstall_tick) {
668 u32 sample;
669 /*
670 * Since we care about lost potential, a
671 * memstall is FULL when there are no other
672 * working tasks, but also when the CPU is
673 * actively reclaiming and nothing productive
674 * could run even if it were runnable.
675 *
676 * When the timer tick sees a reclaiming CPU,
677 * regardless of runnable tasks, sample a FULL
678 * tick (or less if it hasn't been a full tick
679 * since the last state change).
680 */
681 sample = min(delta, (u32)jiffies_to_nsecs(1));
682 groupc->times[PSI_MEM_FULL] += sample;
683 }
684 }
685
Chengming Zhoue7fcd762021-03-03 11:46:56 +0800686 if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
Johannes Weinereb414682018-10-26 15:06:27 -0700687 groupc->times[PSI_CPU_SOME] += delta;
Chengming Zhoue7fcd762021-03-03 11:46:56 +0800688 if (groupc->state_mask & (1 << PSI_CPU_FULL))
689 groupc->times[PSI_CPU_FULL] += delta;
690 }
Johannes Weinereb414682018-10-26 15:06:27 -0700691
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700692 if (groupc->state_mask & (1 << PSI_NONIDLE))
Johannes Weinereb414682018-10-26 15:06:27 -0700693 groupc->times[PSI_NONIDLE] += delta;
694}
695
Johannes Weiner36b238d2020-03-16 15:13:32 -0400696static void psi_group_change(struct psi_group *group, int cpu,
697 unsigned int clear, unsigned int set,
698 bool wake_clock)
Johannes Weinereb414682018-10-26 15:06:27 -0700699{
700 struct psi_group_cpu *groupc;
Johannes Weiner36b238d2020-03-16 15:13:32 -0400701 u32 state_mask = 0;
Johannes Weinereb414682018-10-26 15:06:27 -0700702 unsigned int t, m;
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700703 enum psi_states s;
Johannes Weinereb414682018-10-26 15:06:27 -0700704
705 groupc = per_cpu_ptr(group->pcpu, cpu);
706
707 /*
708 * First we assess the aggregate resource states this CPU's
709 * tasks have been in since the last change, and account any
710 * SOME and FULL time these may have resulted in.
711 *
712 * Then we update the task counts according to the state
713 * change requested through the @clear and @set bits.
714 */
715 write_seqcount_begin(&groupc->seq);
716
717 record_times(groupc, cpu, false);
718
719 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
720 if (!(m & (1 << t)))
721 continue;
722 if (groupc->tasks[t] == 0 && !psi_bug) {
Johannes Weinerb05e75d2020-03-16 15:13:31 -0400723 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
Johannes Weinereb414682018-10-26 15:06:27 -0700724 cpu, t, groupc->tasks[0],
725 groupc->tasks[1], groupc->tasks[2],
Johannes Weinerb05e75d2020-03-16 15:13:31 -0400726 groupc->tasks[3], clear, set);
Johannes Weinereb414682018-10-26 15:06:27 -0700727 psi_bug = 1;
728 }
729 groupc->tasks[t]--;
730 }
731
732 for (t = 0; set; set &= ~(1 << t), t++)
733 if (set & (1 << t))
734 groupc->tasks[t]++;
735
Suren Baghdasaryan33b2d632019-05-14 15:40:56 -0700736 /* Calculate state mask representing active states */
737 for (s = 0; s < NR_PSI_STATES; s++) {
738 if (test_state(groupc->tasks, s))
739 state_mask |= (1 << s);
740 }
741 groupc->state_mask = state_mask;
742
Johannes Weinereb414682018-10-26 15:06:27 -0700743 write_seqcount_end(&groupc->seq);
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700744
Johannes Weiner36b238d2020-03-16 15:13:32 -0400745 if (state_mask & group->poll_states)
746 psi_schedule_poll_work(group, 1);
747
748 if (wake_clock && !delayed_work_pending(&group->avgs_work))
749 schedule_delayed_work(&group->avgs_work, PSI_FREQ);
Johannes Weinereb414682018-10-26 15:06:27 -0700750}
751
Johannes Weiner2ce71352018-10-26 15:06:31 -0700752static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
753{
754#ifdef CONFIG_CGROUPS
755 struct cgroup *cgroup = NULL;
756
757 if (!*iter)
758 cgroup = task->cgroups->dfl_cgrp;
759 else if (*iter == &psi_system)
760 return NULL;
761 else
762 cgroup = cgroup_parent(*iter);
763
764 if (cgroup && cgroup_parent(cgroup)) {
765 *iter = cgroup;
766 return cgroup_psi(cgroup);
767 }
768#else
769 if (*iter)
770 return NULL;
771#endif
772 *iter = &psi_system;
773 return &psi_system;
774}
775
Johannes Weiner36b238d2020-03-16 15:13:32 -0400776static void psi_flags_change(struct task_struct *task, int clear, int set)
777{
778 if (((task->psi_flags & set) ||
779 (task->psi_flags & clear) != clear) &&
780 !psi_bug) {
781 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
782 task->pid, task->comm, task_cpu(task),
783 task->psi_flags, clear, set);
784 psi_bug = 1;
785 }
786
787 task->psi_flags &= ~clear;
788 task->psi_flags |= set;
789}
790
Johannes Weinereb414682018-10-26 15:06:27 -0700791void psi_task_change(struct task_struct *task, int clear, int set)
792{
793 int cpu = task_cpu(task);
Johannes Weiner2ce71352018-10-26 15:06:31 -0700794 struct psi_group *group;
Johannes Weiner1b69ac62019-02-01 14:20:42 -0800795 bool wake_clock = true;
Johannes Weiner2ce71352018-10-26 15:06:31 -0700796 void *iter = NULL;
Johannes Weinereb414682018-10-26 15:06:27 -0700797
798 if (!task->pid)
799 return;
800
Johannes Weiner36b238d2020-03-16 15:13:32 -0400801 psi_flags_change(task, clear, set);
Johannes Weinereb414682018-10-26 15:06:27 -0700802
Johannes Weiner1b69ac62019-02-01 14:20:42 -0800803 /*
804 * Periodic aggregation shuts off if there is a period of no
805 * task changes, so we wake it back up if necessary. However,
806 * don't do this if the task change is the aggregation worker
807 * itself going to sleep, or we'll ping-pong forever.
808 */
809 if (unlikely((clear & TSK_RUNNING) &&
810 (task->flags & PF_WQ_WORKER) &&
Suren Baghdasaryanbcc78db2019-05-14 15:41:02 -0700811 wq_worker_last_func(task) == psi_avgs_work))
Johannes Weiner1b69ac62019-02-01 14:20:42 -0800812 wake_clock = false;
813
Johannes Weiner36b238d2020-03-16 15:13:32 -0400814 while ((group = iterate_groups(task, &iter)))
815 psi_group_change(group, cpu, clear, set, wake_clock);
816}
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700817
Johannes Weiner36b238d2020-03-16 15:13:32 -0400818void psi_task_switch(struct task_struct *prev, struct task_struct *next,
819 bool sleep)
820{
821 struct psi_group *group, *common = NULL;
822 int cpu = task_cpu(prev);
823 void *iter;
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700824
Johannes Weiner36b238d2020-03-16 15:13:32 -0400825 if (next->pid) {
826 psi_flags_change(next, 0, TSK_ONCPU);
827 /*
828 * When moving state between tasks, the group that
829 * contains them both does not change: we can stop
830 * updating the tree once we reach the first common
831 * ancestor. Iterate @next's ancestors until we
832 * encounter @prev's state.
833 */
834 iter = NULL;
835 while ((group = iterate_groups(next, &iter))) {
836 if (per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
837 common = group;
838 break;
839 }
840
841 psi_group_change(group, cpu, 0, TSK_ONCPU, true);
842 }
843 }
844
845 /*
846 * If this is a voluntary sleep, dequeue will have taken care
847 * of the outgoing TSK_ONCPU alongside TSK_RUNNING already. We
848 * only need to deal with it during preemption.
849 */
850 if (sleep)
851 return;
852
853 if (prev->pid) {
854 psi_flags_change(prev, TSK_ONCPU, 0);
855
856 iter = NULL;
857 while ((group = iterate_groups(prev, &iter)) && group != common)
858 psi_group_change(group, cpu, TSK_ONCPU, 0, true);
Johannes Weiner1b69ac62019-02-01 14:20:42 -0800859 }
Johannes Weinereb414682018-10-26 15:06:27 -0700860}
861
862void psi_memstall_tick(struct task_struct *task, int cpu)
863{
Johannes Weiner2ce71352018-10-26 15:06:31 -0700864 struct psi_group *group;
865 void *iter = NULL;
Johannes Weinereb414682018-10-26 15:06:27 -0700866
Johannes Weiner2ce71352018-10-26 15:06:31 -0700867 while ((group = iterate_groups(task, &iter))) {
868 struct psi_group_cpu *groupc;
869
870 groupc = per_cpu_ptr(group->pcpu, cpu);
871 write_seqcount_begin(&groupc->seq);
872 record_times(groupc, cpu, true);
873 write_seqcount_end(&groupc->seq);
874 }
Johannes Weinereb414682018-10-26 15:06:27 -0700875}
876
877/**
878 * psi_memstall_enter - mark the beginning of a memory stall section
879 * @flags: flags to handle nested sections
880 *
881 * Marks the calling task as being stalled due to a lack of memory,
882 * such as waiting for a refault or performing reclaim.
883 */
884void psi_memstall_enter(unsigned long *flags)
885{
886 struct rq_flags rf;
887 struct rq *rq;
888
Johannes Weinere0c27442018-11-30 14:09:58 -0800889 if (static_branch_likely(&psi_disabled))
Johannes Weinereb414682018-10-26 15:06:27 -0700890 return;
891
Yafang Shao1066d1b2020-03-16 21:28:05 -0400892 *flags = current->in_memstall;
Johannes Weinereb414682018-10-26 15:06:27 -0700893 if (*flags)
894 return;
895 /*
Yafang Shao1066d1b2020-03-16 21:28:05 -0400896 * in_memstall setting & accounting needs to be atomic wrt
Johannes Weinereb414682018-10-26 15:06:27 -0700897 * changes to the task's scheduling state, otherwise we can
898 * race with CPU migration.
899 */
900 rq = this_rq_lock_irq(&rf);
901
Yafang Shao1066d1b2020-03-16 21:28:05 -0400902 current->in_memstall = 1;
Johannes Weinereb414682018-10-26 15:06:27 -0700903 psi_task_change(current, 0, TSK_MEMSTALL);
904
905 rq_unlock_irq(rq, &rf);
906}
907
908/**
909 * psi_memstall_leave - mark the end of an memory stall section
910 * @flags: flags to handle nested memdelay sections
911 *
912 * Marks the calling task as no longer stalled due to lack of memory.
913 */
914void psi_memstall_leave(unsigned long *flags)
915{
916 struct rq_flags rf;
917 struct rq *rq;
918
Johannes Weinere0c27442018-11-30 14:09:58 -0800919 if (static_branch_likely(&psi_disabled))
Johannes Weinereb414682018-10-26 15:06:27 -0700920 return;
921
922 if (*flags)
923 return;
924 /*
Yafang Shao1066d1b2020-03-16 21:28:05 -0400925 * in_memstall clearing & accounting needs to be atomic wrt
Johannes Weinereb414682018-10-26 15:06:27 -0700926 * changes to the task's scheduling state, otherwise we could
927 * race with CPU migration.
928 */
929 rq = this_rq_lock_irq(&rf);
930
Yafang Shao1066d1b2020-03-16 21:28:05 -0400931 current->in_memstall = 0;
Johannes Weinereb414682018-10-26 15:06:27 -0700932 psi_task_change(current, TSK_MEMSTALL, 0);
933
934 rq_unlock_irq(rq, &rf);
935}
936
Johannes Weiner2ce71352018-10-26 15:06:31 -0700937#ifdef CONFIG_CGROUPS
938int psi_cgroup_alloc(struct cgroup *cgroup)
939{
Johannes Weinere0c27442018-11-30 14:09:58 -0800940 if (static_branch_likely(&psi_disabled))
Johannes Weiner2ce71352018-10-26 15:06:31 -0700941 return 0;
942
943 cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
944 if (!cgroup->psi.pcpu)
945 return -ENOMEM;
946 group_init(&cgroup->psi);
947 return 0;
948}
949
950void psi_cgroup_free(struct cgroup *cgroup)
951{
Johannes Weinere0c27442018-11-30 14:09:58 -0800952 if (static_branch_likely(&psi_disabled))
Johannes Weiner2ce71352018-10-26 15:06:31 -0700953 return;
954
Suren Baghdasaryanbcc78db2019-05-14 15:41:02 -0700955 cancel_delayed_work_sync(&cgroup->psi.avgs_work);
Johannes Weiner2ce71352018-10-26 15:06:31 -0700956 free_percpu(cgroup->psi.pcpu);
Suren Baghdasaryan0e946822019-05-14 15:41:15 -0700957 /* All triggers must be removed by now */
958 WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
Johannes Weiner2ce71352018-10-26 15:06:31 -0700959}
960
961/**
962 * cgroup_move_task - move task to a different cgroup
963 * @task: the task
964 * @to: the target css_set
965 *
966 * Move task to a new cgroup and safely migrate its associated stall
967 * state between the different groups.
968 *
969 * This function acquires the task's rq lock to lock out concurrent
970 * changes to the task's scheduling state and - in case the task is
971 * running - concurrent changes to its stall state.
972 */
973void cgroup_move_task(struct task_struct *task, struct css_set *to)
974{
Johannes Weiner2ce71352018-10-26 15:06:31 -0700975 unsigned int task_flags = 0;
976 struct rq_flags rf;
977 struct rq *rq;
978
Johannes Weinere0c27442018-11-30 14:09:58 -0800979 if (static_branch_likely(&psi_disabled)) {
Olof Johansson8fcb2312018-11-16 15:08:00 -0800980 /*
981 * Lame to do this here, but the scheduler cannot be locked
982 * from the outside, so we move cgroups from inside sched/.
983 */
984 rcu_assign_pointer(task->cgroups, to);
985 return;
Johannes Weiner2ce71352018-10-26 15:06:31 -0700986 }
987
Olof Johansson8fcb2312018-11-16 15:08:00 -0800988 rq = task_rq_lock(task, &rf);
989
Johannes Weinerb05e75d2020-03-16 15:13:31 -0400990 if (task_on_rq_queued(task)) {
Olof Johansson8fcb2312018-11-16 15:08:00 -0800991 task_flags = TSK_RUNNING;
Johannes Weinerb05e75d2020-03-16 15:13:31 -0400992 if (task_current(rq, task))
993 task_flags |= TSK_ONCPU;
994 } else if (task->in_iowait)
Olof Johansson8fcb2312018-11-16 15:08:00 -0800995 task_flags = TSK_IOWAIT;
996
Yafang Shao1066d1b2020-03-16 21:28:05 -0400997 if (task->in_memstall)
Olof Johansson8fcb2312018-11-16 15:08:00 -0800998 task_flags |= TSK_MEMSTALL;
999
1000 if (task_flags)
1001 psi_task_change(task, task_flags, 0);
1002
1003 /* See comment above */
Johannes Weiner2ce71352018-10-26 15:06:31 -07001004 rcu_assign_pointer(task->cgroups, to);
1005
Olof Johansson8fcb2312018-11-16 15:08:00 -08001006 if (task_flags)
1007 psi_task_change(task, 0, task_flags);
Johannes Weiner2ce71352018-10-26 15:06:31 -07001008
Olof Johansson8fcb2312018-11-16 15:08:00 -08001009 task_rq_unlock(rq, task, &rf);
Johannes Weiner2ce71352018-10-26 15:06:31 -07001010}
1011#endif /* CONFIG_CGROUPS */
1012
1013int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
Johannes Weinereb414682018-10-26 15:06:27 -07001014{
1015 int full;
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -07001016 u64 now;
Johannes Weinereb414682018-10-26 15:06:27 -07001017
Johannes Weinere0c27442018-11-30 14:09:58 -08001018 if (static_branch_likely(&psi_disabled))
Johannes Weinereb414682018-10-26 15:06:27 -07001019 return -EOPNOTSUPP;
1020
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -07001021 /* Update averages before reporting them */
1022 mutex_lock(&group->avgs_lock);
1023 now = sched_clock();
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001024 collect_percpu_times(group, PSI_AVGS, NULL);
Suren Baghdasaryan7fc70a32019-05-14 15:41:06 -07001025 if (now >= group->avg_next_update)
1026 group->avg_next_update = update_averages(group, now);
1027 mutex_unlock(&group->avgs_lock);
Johannes Weinereb414682018-10-26 15:06:27 -07001028
Chengming Zhoue7fcd762021-03-03 11:46:56 +08001029 for (full = 0; full < 2; full++) {
Johannes Weinereb414682018-10-26 15:06:27 -07001030 unsigned long avg[3];
1031 u64 total;
1032 int w;
1033
1034 for (w = 0; w < 3; w++)
1035 avg[w] = group->avg[res * 2 + full][w];
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001036 total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1037 NSEC_PER_USEC);
Johannes Weinereb414682018-10-26 15:06:27 -07001038
1039 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1040 full ? "full" : "some",
1041 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1042 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1043 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1044 total);
1045 }
1046
1047 return 0;
1048}
1049
1050static int psi_io_show(struct seq_file *m, void *v)
1051{
1052 return psi_show(m, &psi_system, PSI_IO);
1053}
1054
1055static int psi_memory_show(struct seq_file *m, void *v)
1056{
1057 return psi_show(m, &psi_system, PSI_MEM);
1058}
1059
1060static int psi_cpu_show(struct seq_file *m, void *v)
1061{
1062 return psi_show(m, &psi_system, PSI_CPU);
1063}
1064
1065static int psi_io_open(struct inode *inode, struct file *file)
1066{
1067 return single_open(file, psi_io_show, NULL);
1068}
1069
1070static int psi_memory_open(struct inode *inode, struct file *file)
1071{
1072 return single_open(file, psi_memory_show, NULL);
1073}
1074
1075static int psi_cpu_open(struct inode *inode, struct file *file)
1076{
1077 return single_open(file, psi_cpu_show, NULL);
1078}
1079
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001080struct psi_trigger *psi_trigger_create(struct psi_group *group,
1081 char *buf, size_t nbytes, enum psi_res res)
1082{
1083 struct psi_trigger *t;
1084 enum psi_states state;
1085 u32 threshold_us;
1086 u32 window_us;
1087
1088 if (static_branch_likely(&psi_disabled))
1089 return ERR_PTR(-EOPNOTSUPP);
1090
1091 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1092 state = PSI_IO_SOME + res * 2;
1093 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1094 state = PSI_IO_FULL + res * 2;
1095 else
1096 return ERR_PTR(-EINVAL);
1097
1098 if (state >= PSI_NONIDLE)
1099 return ERR_PTR(-EINVAL);
1100
1101 if (window_us < WINDOW_MIN_US ||
1102 window_us > WINDOW_MAX_US)
1103 return ERR_PTR(-EINVAL);
1104
1105 /* Check threshold */
1106 if (threshold_us == 0 || threshold_us > window_us)
1107 return ERR_PTR(-EINVAL);
1108
1109 t = kmalloc(sizeof(*t), GFP_KERNEL);
1110 if (!t)
1111 return ERR_PTR(-ENOMEM);
1112
1113 t->group = group;
1114 t->state = state;
1115 t->threshold = threshold_us * NSEC_PER_USEC;
1116 t->win.size = window_us * NSEC_PER_USEC;
1117 window_reset(&t->win, 0, 0, 0);
1118
1119 t->event = 0;
1120 t->last_event_time = 0;
1121 init_waitqueue_head(&t->event_wait);
1122 kref_init(&t->refcount);
1123
1124 mutex_lock(&group->trigger_lock);
1125
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001126 if (!rcu_access_pointer(group->poll_task)) {
1127 struct task_struct *task;
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001128
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001129 task = kthread_create(psi_poll_worker, group, "psimon");
1130 if (IS_ERR(task)) {
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001131 kfree(t);
1132 mutex_unlock(&group->trigger_lock);
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001133 return ERR_CAST(task);
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001134 }
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001135 atomic_set(&group->poll_wakeup, 0);
1136 init_waitqueue_head(&group->poll_wait);
1137 wake_up_process(task);
1138 timer_setup(&group->poll_timer, poll_timer_fn, 0);
1139 rcu_assign_pointer(group->poll_task, task);
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001140 }
1141
1142 list_add(&t->node, &group->triggers);
1143 group->poll_min_period = min(group->poll_min_period,
1144 div_u64(t->win.size, UPDATES_PER_WINDOW));
1145 group->nr_triggers[t->state]++;
1146 group->poll_states |= (1 << t->state);
1147
1148 mutex_unlock(&group->trigger_lock);
1149
1150 return t;
1151}
1152
1153static void psi_trigger_destroy(struct kref *ref)
1154{
1155 struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1156 struct psi_group *group = t->group;
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001157 struct task_struct *task_to_destroy = NULL;
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001158
1159 if (static_branch_likely(&psi_disabled))
1160 return;
1161
1162 /*
1163 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1164 * from under a polling process.
1165 */
1166 wake_up_interruptible(&t->event_wait);
1167
1168 mutex_lock(&group->trigger_lock);
1169
1170 if (!list_empty(&t->node)) {
1171 struct psi_trigger *tmp;
1172 u64 period = ULLONG_MAX;
1173
1174 list_del(&t->node);
1175 group->nr_triggers[t->state]--;
1176 if (!group->nr_triggers[t->state])
1177 group->poll_states &= ~(1 << t->state);
1178 /* reset min update period for the remaining triggers */
1179 list_for_each_entry(tmp, &group->triggers, node)
1180 period = min(period, div_u64(tmp->win.size,
1181 UPDATES_PER_WINDOW));
1182 group->poll_min_period = period;
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001183 /* Destroy poll_task when the last trigger is destroyed */
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001184 if (group->poll_states == 0) {
1185 group->polling_until = 0;
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001186 task_to_destroy = rcu_dereference_protected(
1187 group->poll_task,
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001188 lockdep_is_held(&group->trigger_lock));
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001189 rcu_assign_pointer(group->poll_task, NULL);
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001190 }
1191 }
1192
1193 mutex_unlock(&group->trigger_lock);
1194
1195 /*
1196 * Wait for both *trigger_ptr from psi_trigger_replace and
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001197 * poll_task RCUs to complete their read-side critical sections
1198 * before destroying the trigger and optionally the poll_task
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001199 */
1200 synchronize_rcu();
1201 /*
1202 * Destroy the kworker after releasing trigger_lock to prevent a
1203 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1204 */
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001205 if (task_to_destroy) {
Jason Xing7b2b55d2019-08-24 17:54:53 -07001206 /*
1207 * After the RCU grace period has expired, the worker
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001208 * can no longer be found through group->poll_task.
Jason Xing7b2b55d2019-08-24 17:54:53 -07001209 * But it might have been already scheduled before
1210 * that - deschedule it cleanly before destroying it.
1211 */
Suren Baghdasaryan461daba2020-05-28 12:54:42 -07001212 del_timer_sync(&group->poll_timer);
1213 kthread_stop(task_to_destroy);
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001214 }
1215 kfree(t);
1216}
1217
1218void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1219{
1220 struct psi_trigger *old = *trigger_ptr;
1221
1222 if (static_branch_likely(&psi_disabled))
1223 return;
1224
1225 rcu_assign_pointer(*trigger_ptr, new);
1226 if (old)
1227 kref_put(&old->refcount, psi_trigger_destroy);
1228}
1229
1230__poll_t psi_trigger_poll(void **trigger_ptr,
1231 struct file *file, poll_table *wait)
1232{
1233 __poll_t ret = DEFAULT_POLLMASK;
1234 struct psi_trigger *t;
1235
1236 if (static_branch_likely(&psi_disabled))
1237 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1238
1239 rcu_read_lock();
1240
1241 t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1242 if (!t) {
1243 rcu_read_unlock();
1244 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1245 }
1246 kref_get(&t->refcount);
1247
1248 rcu_read_unlock();
1249
1250 poll_wait(file, &t->event_wait, wait);
1251
1252 if (cmpxchg(&t->event, 1, 0) == 1)
1253 ret |= EPOLLPRI;
1254
1255 kref_put(&t->refcount, psi_trigger_destroy);
1256
1257 return ret;
1258}
1259
1260static ssize_t psi_write(struct file *file, const char __user *user_buf,
1261 size_t nbytes, enum psi_res res)
1262{
1263 char buf[32];
1264 size_t buf_size;
1265 struct seq_file *seq;
1266 struct psi_trigger *new;
1267
1268 if (static_branch_likely(&psi_disabled))
1269 return -EOPNOTSUPP;
1270
Suren Baghdasaryan6fcca0f2020-02-03 13:22:16 -08001271 if (!nbytes)
1272 return -EINVAL;
1273
Miles Chen4adcdce2019-09-12 18:34:52 +08001274 buf_size = min(nbytes, sizeof(buf));
Suren Baghdasaryan0e946822019-05-14 15:41:15 -07001275 if (copy_from_user(buf, user_buf, buf_size))
1276 return -EFAULT;
1277
1278 buf[buf_size - 1] = '\0';
1279
1280 new = psi_trigger_create(&psi_system, buf, nbytes, res);
1281 if (IS_ERR(new))
1282 return PTR_ERR(new);
1283
1284 seq = file->private_data;
1285 /* Take seq->lock to protect seq->private from concurrent writes */
1286 mutex_lock(&seq->lock);
1287 psi_trigger_replace(&seq->private, new);
1288 mutex_unlock(&seq->lock);
1289
1290 return nbytes;
1291}
1292
1293static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1294 size_t nbytes, loff_t *ppos)
1295{
1296 return psi_write(file, user_buf, nbytes, PSI_IO);
1297}
1298
1299static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1300 size_t nbytes, loff_t *ppos)
1301{
1302 return psi_write(file, user_buf, nbytes, PSI_MEM);
1303}
1304
1305static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1306 size_t nbytes, loff_t *ppos)
1307{
1308 return psi_write(file, user_buf, nbytes, PSI_CPU);
1309}
1310
1311static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1312{
1313 struct seq_file *seq = file->private_data;
1314
1315 return psi_trigger_poll(&seq->private, file, wait);
1316}
1317
1318static int psi_fop_release(struct inode *inode, struct file *file)
1319{
1320 struct seq_file *seq = file->private_data;
1321
1322 psi_trigger_replace(&seq->private, NULL);
1323 return single_release(inode, file);
1324}
1325
Alexey Dobriyan97a32532020-02-03 17:37:17 -08001326static const struct proc_ops psi_io_proc_ops = {
1327 .proc_open = psi_io_open,
1328 .proc_read = seq_read,
1329 .proc_lseek = seq_lseek,
1330 .proc_write = psi_io_write,
1331 .proc_poll = psi_fop_poll,
1332 .proc_release = psi_fop_release,
Johannes Weinereb414682018-10-26 15:06:27 -07001333};
1334
Alexey Dobriyan97a32532020-02-03 17:37:17 -08001335static const struct proc_ops psi_memory_proc_ops = {
1336 .proc_open = psi_memory_open,
1337 .proc_read = seq_read,
1338 .proc_lseek = seq_lseek,
1339 .proc_write = psi_memory_write,
1340 .proc_poll = psi_fop_poll,
1341 .proc_release = psi_fop_release,
Johannes Weinereb414682018-10-26 15:06:27 -07001342};
1343
Alexey Dobriyan97a32532020-02-03 17:37:17 -08001344static const struct proc_ops psi_cpu_proc_ops = {
1345 .proc_open = psi_cpu_open,
1346 .proc_read = seq_read,
1347 .proc_lseek = seq_lseek,
1348 .proc_write = psi_cpu_write,
1349 .proc_poll = psi_fop_poll,
1350 .proc_release = psi_fop_release,
Johannes Weinereb414682018-10-26 15:06:27 -07001351};
1352
1353static int __init psi_proc_init(void)
1354{
Wang Long3d817682019-12-18 20:38:18 +08001355 if (psi_enable) {
1356 proc_mkdir("pressure", NULL);
Alexey Dobriyan97a32532020-02-03 17:37:17 -08001357 proc_create("pressure/io", 0, NULL, &psi_io_proc_ops);
1358 proc_create("pressure/memory", 0, NULL, &psi_memory_proc_ops);
1359 proc_create("pressure/cpu", 0, NULL, &psi_cpu_proc_ops);
Wang Long3d817682019-12-18 20:38:18 +08001360 }
Johannes Weinereb414682018-10-26 15:06:27 -07001361 return 0;
1362}
1363module_init(psi_proc_init);