Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Pressure stall information for CPU, memory and IO |
| 3 | * |
| 4 | * Copyright (c) 2018 Facebook, Inc. |
| 5 | * Author: Johannes Weiner <hannes@cmpxchg.org> |
| 6 | * |
| 7 | * When CPU, memory and IO are contended, tasks experience delays that |
| 8 | * reduce throughput and introduce latencies into the workload. Memory |
| 9 | * and IO contention, in addition, can cause a full loss of forward |
| 10 | * progress in which the CPU goes idle. |
| 11 | * |
| 12 | * This code aggregates individual task delays into resource pressure |
| 13 | * metrics that indicate problems with both workload health and |
| 14 | * resource utilization. |
| 15 | * |
| 16 | * Model |
| 17 | * |
| 18 | * The time in which a task can execute on a CPU is our baseline for |
| 19 | * productivity. Pressure expresses the amount of time in which this |
| 20 | * potential cannot be realized due to resource contention. |
| 21 | * |
| 22 | * This concept of productivity has two components: the workload and |
| 23 | * the CPU. To measure the impact of pressure on both, we define two |
| 24 | * contention states for a resource: SOME and FULL. |
| 25 | * |
| 26 | * In the SOME state of a given resource, one or more tasks are |
| 27 | * delayed on that resource. This affects the workload's ability to |
| 28 | * perform work, but the CPU may still be executing other tasks. |
| 29 | * |
| 30 | * In the FULL state of a given resource, all non-idle tasks are |
| 31 | * delayed on that resource such that nobody is advancing and the CPU |
| 32 | * goes idle. This leaves both workload and CPU unproductive. |
| 33 | * |
| 34 | * (Naturally, the FULL state doesn't exist for the CPU resource.) |
| 35 | * |
| 36 | * SOME = nr_delayed_tasks != 0 |
| 37 | * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0 |
| 38 | * |
| 39 | * The percentage of wallclock time spent in those compound stall |
| 40 | * states gives pressure numbers between 0 and 100 for each resource, |
| 41 | * where the SOME percentage indicates workload slowdowns and the FULL |
| 42 | * percentage indicates reduced CPU utilization: |
| 43 | * |
| 44 | * %SOME = time(SOME) / period |
| 45 | * %FULL = time(FULL) / period |
| 46 | * |
| 47 | * Multiple CPUs |
| 48 | * |
| 49 | * The more tasks and available CPUs there are, the more work can be |
| 50 | * performed concurrently. This means that the potential that can go |
| 51 | * unrealized due to resource contention *also* scales with non-idle |
| 52 | * tasks and CPUs. |
| 53 | * |
| 54 | * Consider a scenario where 257 number crunching tasks are trying to |
| 55 | * run concurrently on 256 CPUs. If we simply aggregated the task |
| 56 | * states, we would have to conclude a CPU SOME pressure number of |
| 57 | * 100%, since *somebody* is waiting on a runqueue at all |
| 58 | * times. However, that is clearly not the amount of contention the |
| 59 | * workload is experiencing: only one out of 256 possible exceution |
| 60 | * threads will be contended at any given time, or about 0.4%. |
| 61 | * |
| 62 | * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any |
| 63 | * given time *one* of the tasks is delayed due to a lack of memory. |
| 64 | * Again, looking purely at the task state would yield a memory FULL |
| 65 | * pressure number of 0%, since *somebody* is always making forward |
| 66 | * progress. But again this wouldn't capture the amount of execution |
| 67 | * potential lost, which is 1 out of 4 CPUs, or 25%. |
| 68 | * |
| 69 | * To calculate wasted potential (pressure) with multiple processors, |
| 70 | * we have to base our calculation on the number of non-idle tasks in |
| 71 | * conjunction with the number of available CPUs, which is the number |
| 72 | * of potential execution threads. SOME becomes then the proportion of |
| 73 | * delayed tasks to possibe threads, and FULL is the share of possible |
| 74 | * threads that are unproductive due to delays: |
| 75 | * |
| 76 | * threads = min(nr_nonidle_tasks, nr_cpus) |
| 77 | * SOME = min(nr_delayed_tasks / threads, 1) |
| 78 | * FULL = (threads - min(nr_running_tasks, threads)) / threads |
| 79 | * |
| 80 | * For the 257 number crunchers on 256 CPUs, this yields: |
| 81 | * |
| 82 | * threads = min(257, 256) |
| 83 | * SOME = min(1 / 256, 1) = 0.4% |
| 84 | * FULL = (256 - min(257, 256)) / 256 = 0% |
| 85 | * |
| 86 | * For the 1 out of 4 memory-delayed tasks, this yields: |
| 87 | * |
| 88 | * threads = min(4, 4) |
| 89 | * SOME = min(1 / 4, 1) = 25% |
| 90 | * FULL = (4 - min(3, 4)) / 4 = 25% |
| 91 | * |
| 92 | * [ Substitute nr_cpus with 1, and you can see that it's a natural |
| 93 | * extension of the single-CPU model. ] |
| 94 | * |
| 95 | * Implementation |
| 96 | * |
| 97 | * To assess the precise time spent in each such state, we would have |
| 98 | * to freeze the system on task changes and start/stop the state |
| 99 | * clocks accordingly. Obviously that doesn't scale in practice. |
| 100 | * |
| 101 | * Because the scheduler aims to distribute the compute load evenly |
| 102 | * among the available CPUs, we can track task state locally to each |
| 103 | * CPU and, at much lower frequency, extrapolate the global state for |
| 104 | * the cumulative stall times and the running averages. |
| 105 | * |
| 106 | * For each runqueue, we track: |
| 107 | * |
| 108 | * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) |
| 109 | * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu]) |
| 110 | * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) |
| 111 | * |
| 112 | * and then periodically aggregate: |
| 113 | * |
| 114 | * tNONIDLE = sum(tNONIDLE[i]) |
| 115 | * |
| 116 | * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE |
| 117 | * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE |
| 118 | * |
| 119 | * %SOME = tSOME / period |
| 120 | * %FULL = tFULL / period |
| 121 | * |
| 122 | * This gives us an approximation of pressure that is practical |
| 123 | * cost-wise, yet way more sensitive and accurate than periodic |
| 124 | * sampling of the aggregate task states would be. |
| 125 | */ |
| 126 | |
Johannes Weiner | 1b69ac6 | 2019-02-01 14:20:42 -0800 | [diff] [blame] | 127 | #include "../workqueue_internal.h" |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 128 | #include <linux/sched/loadavg.h> |
| 129 | #include <linux/seq_file.h> |
| 130 | #include <linux/proc_fs.h> |
| 131 | #include <linux/seqlock.h> |
| 132 | #include <linux/cgroup.h> |
| 133 | #include <linux/module.h> |
| 134 | #include <linux/sched.h> |
| 135 | #include <linux/psi.h> |
| 136 | #include "sched.h" |
| 137 | |
| 138 | static int psi_bug __read_mostly; |
| 139 | |
Johannes Weiner | e0c2744 | 2018-11-30 14:09:58 -0800 | [diff] [blame] | 140 | DEFINE_STATIC_KEY_FALSE(psi_disabled); |
| 141 | |
| 142 | #ifdef CONFIG_PSI_DEFAULT_DISABLED |
| 143 | bool psi_enable; |
| 144 | #else |
| 145 | bool psi_enable = true; |
| 146 | #endif |
| 147 | static int __init setup_psi(char *str) |
| 148 | { |
| 149 | return kstrtobool(str, &psi_enable) == 0; |
| 150 | } |
| 151 | __setup("psi=", setup_psi); |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 152 | |
| 153 | /* Running averages - we need to be higher-res than loadavg */ |
| 154 | #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ |
| 155 | #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ |
| 156 | #define EXP_60s 1981 /* 1/exp(2s/60s) */ |
| 157 | #define EXP_300s 2034 /* 1/exp(2s/300s) */ |
| 158 | |
| 159 | /* Sampling frequency in nanoseconds */ |
| 160 | static u64 psi_period __read_mostly; |
| 161 | |
| 162 | /* System-level pressure and stall tracking */ |
| 163 | static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); |
| 164 | static struct psi_group psi_system = { |
| 165 | .pcpu = &system_group_pcpu, |
| 166 | }; |
| 167 | |
| 168 | static void psi_update_work(struct work_struct *work); |
| 169 | |
| 170 | static void group_init(struct psi_group *group) |
| 171 | { |
| 172 | int cpu; |
| 173 | |
| 174 | for_each_possible_cpu(cpu) |
| 175 | seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); |
| 176 | group->next_update = sched_clock() + psi_period; |
| 177 | INIT_DELAYED_WORK(&group->clock_work, psi_update_work); |
| 178 | mutex_init(&group->stat_lock); |
| 179 | } |
| 180 | |
| 181 | void __init psi_init(void) |
| 182 | { |
Johannes Weiner | e0c2744 | 2018-11-30 14:09:58 -0800 | [diff] [blame] | 183 | if (!psi_enable) { |
| 184 | static_branch_enable(&psi_disabled); |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 185 | return; |
Johannes Weiner | e0c2744 | 2018-11-30 14:09:58 -0800 | [diff] [blame] | 186 | } |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 187 | |
| 188 | psi_period = jiffies_to_nsecs(PSI_FREQ); |
| 189 | group_init(&psi_system); |
| 190 | } |
| 191 | |
| 192 | static bool test_state(unsigned int *tasks, enum psi_states state) |
| 193 | { |
| 194 | switch (state) { |
| 195 | case PSI_IO_SOME: |
| 196 | return tasks[NR_IOWAIT]; |
| 197 | case PSI_IO_FULL: |
| 198 | return tasks[NR_IOWAIT] && !tasks[NR_RUNNING]; |
| 199 | case PSI_MEM_SOME: |
| 200 | return tasks[NR_MEMSTALL]; |
| 201 | case PSI_MEM_FULL: |
| 202 | return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]; |
| 203 | case PSI_CPU_SOME: |
| 204 | return tasks[NR_RUNNING] > 1; |
| 205 | case PSI_NONIDLE: |
| 206 | return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || |
| 207 | tasks[NR_RUNNING]; |
| 208 | default: |
| 209 | return false; |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | static void get_recent_times(struct psi_group *group, int cpu, u32 *times) |
| 214 | { |
| 215 | struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); |
| 216 | unsigned int tasks[NR_PSI_TASK_COUNTS]; |
| 217 | u64 now, state_start; |
| 218 | unsigned int seq; |
| 219 | int s; |
| 220 | |
| 221 | /* Snapshot a coherent view of the CPU state */ |
| 222 | do { |
| 223 | seq = read_seqcount_begin(&groupc->seq); |
| 224 | now = cpu_clock(cpu); |
| 225 | memcpy(times, groupc->times, sizeof(groupc->times)); |
| 226 | memcpy(tasks, groupc->tasks, sizeof(groupc->tasks)); |
| 227 | state_start = groupc->state_start; |
| 228 | } while (read_seqcount_retry(&groupc->seq, seq)); |
| 229 | |
| 230 | /* Calculate state time deltas against the previous snapshot */ |
| 231 | for (s = 0; s < NR_PSI_STATES; s++) { |
| 232 | u32 delta; |
| 233 | /* |
| 234 | * In addition to already concluded states, we also |
| 235 | * incorporate currently active states on the CPU, |
| 236 | * since states may last for many sampling periods. |
| 237 | * |
| 238 | * This way we keep our delta sampling buckets small |
| 239 | * (u32) and our reported pressure close to what's |
| 240 | * actually happening. |
| 241 | */ |
| 242 | if (test_state(tasks, s)) |
| 243 | times[s] += now - state_start; |
| 244 | |
| 245 | delta = times[s] - groupc->times_prev[s]; |
| 246 | groupc->times_prev[s] = times[s]; |
| 247 | |
| 248 | times[s] = delta; |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | static void calc_avgs(unsigned long avg[3], int missed_periods, |
| 253 | u64 time, u64 period) |
| 254 | { |
| 255 | unsigned long pct; |
| 256 | |
| 257 | /* Fill in zeroes for periods of no activity */ |
| 258 | if (missed_periods) { |
| 259 | avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); |
| 260 | avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); |
| 261 | avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); |
| 262 | } |
| 263 | |
| 264 | /* Sample the most recent active period */ |
| 265 | pct = div_u64(time * 100, period); |
| 266 | pct *= FIXED_1; |
| 267 | avg[0] = calc_load(avg[0], EXP_10s, pct); |
| 268 | avg[1] = calc_load(avg[1], EXP_60s, pct); |
| 269 | avg[2] = calc_load(avg[2], EXP_300s, pct); |
| 270 | } |
| 271 | |
| 272 | static bool update_stats(struct psi_group *group) |
| 273 | { |
| 274 | u64 deltas[NR_PSI_STATES - 1] = { 0, }; |
| 275 | unsigned long missed_periods = 0; |
| 276 | unsigned long nonidle_total = 0; |
| 277 | u64 now, expires, period; |
| 278 | int cpu; |
| 279 | int s; |
| 280 | |
| 281 | mutex_lock(&group->stat_lock); |
| 282 | |
| 283 | /* |
| 284 | * Collect the per-cpu time buckets and average them into a |
| 285 | * single time sample that is normalized to wallclock time. |
| 286 | * |
| 287 | * For averaging, each CPU is weighted by its non-idle time in |
| 288 | * the sampling period. This eliminates artifacts from uneven |
| 289 | * loading, or even entirely idle CPUs. |
| 290 | */ |
| 291 | for_each_possible_cpu(cpu) { |
| 292 | u32 times[NR_PSI_STATES]; |
| 293 | u32 nonidle; |
| 294 | |
| 295 | get_recent_times(group, cpu, times); |
| 296 | |
| 297 | nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); |
| 298 | nonidle_total += nonidle; |
| 299 | |
| 300 | for (s = 0; s < PSI_NONIDLE; s++) |
| 301 | deltas[s] += (u64)times[s] * nonidle; |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | * Integrate the sample into the running statistics that are |
| 306 | * reported to userspace: the cumulative stall times and the |
| 307 | * decaying averages. |
| 308 | * |
| 309 | * Pressure percentages are sampled at PSI_FREQ. We might be |
| 310 | * called more often when the user polls more frequently than |
| 311 | * that; we might be called less often when there is no task |
| 312 | * activity, thus no data, and clock ticks are sporadic. The |
| 313 | * below handles both. |
| 314 | */ |
| 315 | |
| 316 | /* total= */ |
| 317 | for (s = 0; s < NR_PSI_STATES - 1; s++) |
| 318 | group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL)); |
| 319 | |
| 320 | /* avgX= */ |
| 321 | now = sched_clock(); |
| 322 | expires = group->next_update; |
| 323 | if (now < expires) |
| 324 | goto out; |
Johannes Weiner | 4e37504 | 2019-02-20 22:19:59 -0800 | [diff] [blame^] | 325 | if (now - expires >= psi_period) |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 326 | missed_periods = div_u64(now - expires, psi_period); |
| 327 | |
| 328 | /* |
| 329 | * The periodic clock tick can get delayed for various |
| 330 | * reasons, especially on loaded systems. To avoid clock |
| 331 | * drift, we schedule the clock in fixed psi_period intervals. |
| 332 | * But the deltas we sample out of the per-cpu buckets above |
| 333 | * are based on the actual time elapsing between clock ticks. |
| 334 | */ |
| 335 | group->next_update = expires + ((1 + missed_periods) * psi_period); |
| 336 | period = now - (group->last_update + (missed_periods * psi_period)); |
| 337 | group->last_update = now; |
| 338 | |
| 339 | for (s = 0; s < NR_PSI_STATES - 1; s++) { |
| 340 | u32 sample; |
| 341 | |
| 342 | sample = group->total[s] - group->total_prev[s]; |
| 343 | /* |
| 344 | * Due to the lockless sampling of the time buckets, |
| 345 | * recorded time deltas can slip into the next period, |
| 346 | * which under full pressure can result in samples in |
| 347 | * excess of the period length. |
| 348 | * |
| 349 | * We don't want to report non-sensical pressures in |
| 350 | * excess of 100%, nor do we want to drop such events |
| 351 | * on the floor. Instead we punt any overage into the |
| 352 | * future until pressure subsides. By doing this we |
| 353 | * don't underreport the occurring pressure curve, we |
| 354 | * just report it delayed by one period length. |
| 355 | * |
| 356 | * The error isn't cumulative. As soon as another |
| 357 | * delta slips from a period P to P+1, by definition |
| 358 | * it frees up its time T in P. |
| 359 | */ |
| 360 | if (sample > period) |
| 361 | sample = period; |
| 362 | group->total_prev[s] += sample; |
| 363 | calc_avgs(group->avg[s], missed_periods, sample, period); |
| 364 | } |
| 365 | out: |
| 366 | mutex_unlock(&group->stat_lock); |
| 367 | return nonidle_total; |
| 368 | } |
| 369 | |
| 370 | static void psi_update_work(struct work_struct *work) |
| 371 | { |
| 372 | struct delayed_work *dwork; |
| 373 | struct psi_group *group; |
| 374 | bool nonidle; |
| 375 | |
| 376 | dwork = to_delayed_work(work); |
| 377 | group = container_of(dwork, struct psi_group, clock_work); |
| 378 | |
| 379 | /* |
| 380 | * If there is task activity, periodically fold the per-cpu |
| 381 | * times and feed samples into the running averages. If things |
| 382 | * are idle and there is no data to process, stop the clock. |
| 383 | * Once restarted, we'll catch up the running averages in one |
| 384 | * go - see calc_avgs() and missed_periods. |
| 385 | */ |
| 386 | |
| 387 | nonidle = update_stats(group); |
| 388 | |
| 389 | if (nonidle) { |
| 390 | unsigned long delay = 0; |
| 391 | u64 now; |
| 392 | |
| 393 | now = sched_clock(); |
| 394 | if (group->next_update > now) |
| 395 | delay = nsecs_to_jiffies(group->next_update - now) + 1; |
| 396 | schedule_delayed_work(dwork, delay); |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | static void record_times(struct psi_group_cpu *groupc, int cpu, |
| 401 | bool memstall_tick) |
| 402 | { |
| 403 | u32 delta; |
| 404 | u64 now; |
| 405 | |
| 406 | now = cpu_clock(cpu); |
| 407 | delta = now - groupc->state_start; |
| 408 | groupc->state_start = now; |
| 409 | |
| 410 | if (test_state(groupc->tasks, PSI_IO_SOME)) { |
| 411 | groupc->times[PSI_IO_SOME] += delta; |
| 412 | if (test_state(groupc->tasks, PSI_IO_FULL)) |
| 413 | groupc->times[PSI_IO_FULL] += delta; |
| 414 | } |
| 415 | |
| 416 | if (test_state(groupc->tasks, PSI_MEM_SOME)) { |
| 417 | groupc->times[PSI_MEM_SOME] += delta; |
| 418 | if (test_state(groupc->tasks, PSI_MEM_FULL)) |
| 419 | groupc->times[PSI_MEM_FULL] += delta; |
| 420 | else if (memstall_tick) { |
| 421 | u32 sample; |
| 422 | /* |
| 423 | * Since we care about lost potential, a |
| 424 | * memstall is FULL when there are no other |
| 425 | * working tasks, but also when the CPU is |
| 426 | * actively reclaiming and nothing productive |
| 427 | * could run even if it were runnable. |
| 428 | * |
| 429 | * When the timer tick sees a reclaiming CPU, |
| 430 | * regardless of runnable tasks, sample a FULL |
| 431 | * tick (or less if it hasn't been a full tick |
| 432 | * since the last state change). |
| 433 | */ |
| 434 | sample = min(delta, (u32)jiffies_to_nsecs(1)); |
| 435 | groupc->times[PSI_MEM_FULL] += sample; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | if (test_state(groupc->tasks, PSI_CPU_SOME)) |
| 440 | groupc->times[PSI_CPU_SOME] += delta; |
| 441 | |
| 442 | if (test_state(groupc->tasks, PSI_NONIDLE)) |
| 443 | groupc->times[PSI_NONIDLE] += delta; |
| 444 | } |
| 445 | |
| 446 | static void psi_group_change(struct psi_group *group, int cpu, |
| 447 | unsigned int clear, unsigned int set) |
| 448 | { |
| 449 | struct psi_group_cpu *groupc; |
| 450 | unsigned int t, m; |
| 451 | |
| 452 | groupc = per_cpu_ptr(group->pcpu, cpu); |
| 453 | |
| 454 | /* |
| 455 | * First we assess the aggregate resource states this CPU's |
| 456 | * tasks have been in since the last change, and account any |
| 457 | * SOME and FULL time these may have resulted in. |
| 458 | * |
| 459 | * Then we update the task counts according to the state |
| 460 | * change requested through the @clear and @set bits. |
| 461 | */ |
| 462 | write_seqcount_begin(&groupc->seq); |
| 463 | |
| 464 | record_times(groupc, cpu, false); |
| 465 | |
| 466 | for (t = 0, m = clear; m; m &= ~(1 << t), t++) { |
| 467 | if (!(m & (1 << t))) |
| 468 | continue; |
| 469 | if (groupc->tasks[t] == 0 && !psi_bug) { |
| 470 | printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n", |
| 471 | cpu, t, groupc->tasks[0], |
| 472 | groupc->tasks[1], groupc->tasks[2], |
| 473 | clear, set); |
| 474 | psi_bug = 1; |
| 475 | } |
| 476 | groupc->tasks[t]--; |
| 477 | } |
| 478 | |
| 479 | for (t = 0; set; set &= ~(1 << t), t++) |
| 480 | if (set & (1 << t)) |
| 481 | groupc->tasks[t]++; |
| 482 | |
| 483 | write_seqcount_end(&groupc->seq); |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 484 | } |
| 485 | |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 486 | static struct psi_group *iterate_groups(struct task_struct *task, void **iter) |
| 487 | { |
| 488 | #ifdef CONFIG_CGROUPS |
| 489 | struct cgroup *cgroup = NULL; |
| 490 | |
| 491 | if (!*iter) |
| 492 | cgroup = task->cgroups->dfl_cgrp; |
| 493 | else if (*iter == &psi_system) |
| 494 | return NULL; |
| 495 | else |
| 496 | cgroup = cgroup_parent(*iter); |
| 497 | |
| 498 | if (cgroup && cgroup_parent(cgroup)) { |
| 499 | *iter = cgroup; |
| 500 | return cgroup_psi(cgroup); |
| 501 | } |
| 502 | #else |
| 503 | if (*iter) |
| 504 | return NULL; |
| 505 | #endif |
| 506 | *iter = &psi_system; |
| 507 | return &psi_system; |
| 508 | } |
| 509 | |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 510 | void psi_task_change(struct task_struct *task, int clear, int set) |
| 511 | { |
| 512 | int cpu = task_cpu(task); |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 513 | struct psi_group *group; |
Johannes Weiner | 1b69ac6 | 2019-02-01 14:20:42 -0800 | [diff] [blame] | 514 | bool wake_clock = true; |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 515 | void *iter = NULL; |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 516 | |
| 517 | if (!task->pid) |
| 518 | return; |
| 519 | |
| 520 | if (((task->psi_flags & set) || |
| 521 | (task->psi_flags & clear) != clear) && |
| 522 | !psi_bug) { |
| 523 | printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", |
| 524 | task->pid, task->comm, cpu, |
| 525 | task->psi_flags, clear, set); |
| 526 | psi_bug = 1; |
| 527 | } |
| 528 | |
| 529 | task->psi_flags &= ~clear; |
| 530 | task->psi_flags |= set; |
| 531 | |
Johannes Weiner | 1b69ac6 | 2019-02-01 14:20:42 -0800 | [diff] [blame] | 532 | /* |
| 533 | * Periodic aggregation shuts off if there is a period of no |
| 534 | * task changes, so we wake it back up if necessary. However, |
| 535 | * don't do this if the task change is the aggregation worker |
| 536 | * itself going to sleep, or we'll ping-pong forever. |
| 537 | */ |
| 538 | if (unlikely((clear & TSK_RUNNING) && |
| 539 | (task->flags & PF_WQ_WORKER) && |
| 540 | wq_worker_last_func(task) == psi_update_work)) |
| 541 | wake_clock = false; |
| 542 | |
| 543 | while ((group = iterate_groups(task, &iter))) { |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 544 | psi_group_change(group, cpu, clear, set); |
Johannes Weiner | 1b69ac6 | 2019-02-01 14:20:42 -0800 | [diff] [blame] | 545 | if (wake_clock && !delayed_work_pending(&group->clock_work)) |
| 546 | schedule_delayed_work(&group->clock_work, PSI_FREQ); |
| 547 | } |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 548 | } |
| 549 | |
| 550 | void psi_memstall_tick(struct task_struct *task, int cpu) |
| 551 | { |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 552 | struct psi_group *group; |
| 553 | void *iter = NULL; |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 554 | |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 555 | while ((group = iterate_groups(task, &iter))) { |
| 556 | struct psi_group_cpu *groupc; |
| 557 | |
| 558 | groupc = per_cpu_ptr(group->pcpu, cpu); |
| 559 | write_seqcount_begin(&groupc->seq); |
| 560 | record_times(groupc, cpu, true); |
| 561 | write_seqcount_end(&groupc->seq); |
| 562 | } |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 563 | } |
| 564 | |
| 565 | /** |
| 566 | * psi_memstall_enter - mark the beginning of a memory stall section |
| 567 | * @flags: flags to handle nested sections |
| 568 | * |
| 569 | * Marks the calling task as being stalled due to a lack of memory, |
| 570 | * such as waiting for a refault or performing reclaim. |
| 571 | */ |
| 572 | void psi_memstall_enter(unsigned long *flags) |
| 573 | { |
| 574 | struct rq_flags rf; |
| 575 | struct rq *rq; |
| 576 | |
Johannes Weiner | e0c2744 | 2018-11-30 14:09:58 -0800 | [diff] [blame] | 577 | if (static_branch_likely(&psi_disabled)) |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 578 | return; |
| 579 | |
| 580 | *flags = current->flags & PF_MEMSTALL; |
| 581 | if (*flags) |
| 582 | return; |
| 583 | /* |
| 584 | * PF_MEMSTALL setting & accounting needs to be atomic wrt |
| 585 | * changes to the task's scheduling state, otherwise we can |
| 586 | * race with CPU migration. |
| 587 | */ |
| 588 | rq = this_rq_lock_irq(&rf); |
| 589 | |
| 590 | current->flags |= PF_MEMSTALL; |
| 591 | psi_task_change(current, 0, TSK_MEMSTALL); |
| 592 | |
| 593 | rq_unlock_irq(rq, &rf); |
| 594 | } |
| 595 | |
| 596 | /** |
| 597 | * psi_memstall_leave - mark the end of an memory stall section |
| 598 | * @flags: flags to handle nested memdelay sections |
| 599 | * |
| 600 | * Marks the calling task as no longer stalled due to lack of memory. |
| 601 | */ |
| 602 | void psi_memstall_leave(unsigned long *flags) |
| 603 | { |
| 604 | struct rq_flags rf; |
| 605 | struct rq *rq; |
| 606 | |
Johannes Weiner | e0c2744 | 2018-11-30 14:09:58 -0800 | [diff] [blame] | 607 | if (static_branch_likely(&psi_disabled)) |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 608 | return; |
| 609 | |
| 610 | if (*flags) |
| 611 | return; |
| 612 | /* |
| 613 | * PF_MEMSTALL clearing & accounting needs to be atomic wrt |
| 614 | * changes to the task's scheduling state, otherwise we could |
| 615 | * race with CPU migration. |
| 616 | */ |
| 617 | rq = this_rq_lock_irq(&rf); |
| 618 | |
| 619 | current->flags &= ~PF_MEMSTALL; |
| 620 | psi_task_change(current, TSK_MEMSTALL, 0); |
| 621 | |
| 622 | rq_unlock_irq(rq, &rf); |
| 623 | } |
| 624 | |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 625 | #ifdef CONFIG_CGROUPS |
| 626 | int psi_cgroup_alloc(struct cgroup *cgroup) |
| 627 | { |
Johannes Weiner | e0c2744 | 2018-11-30 14:09:58 -0800 | [diff] [blame] | 628 | if (static_branch_likely(&psi_disabled)) |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 629 | return 0; |
| 630 | |
| 631 | cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu); |
| 632 | if (!cgroup->psi.pcpu) |
| 633 | return -ENOMEM; |
| 634 | group_init(&cgroup->psi); |
| 635 | return 0; |
| 636 | } |
| 637 | |
| 638 | void psi_cgroup_free(struct cgroup *cgroup) |
| 639 | { |
Johannes Weiner | e0c2744 | 2018-11-30 14:09:58 -0800 | [diff] [blame] | 640 | if (static_branch_likely(&psi_disabled)) |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 641 | return; |
| 642 | |
| 643 | cancel_delayed_work_sync(&cgroup->psi.clock_work); |
| 644 | free_percpu(cgroup->psi.pcpu); |
| 645 | } |
| 646 | |
| 647 | /** |
| 648 | * cgroup_move_task - move task to a different cgroup |
| 649 | * @task: the task |
| 650 | * @to: the target css_set |
| 651 | * |
| 652 | * Move task to a new cgroup and safely migrate its associated stall |
| 653 | * state between the different groups. |
| 654 | * |
| 655 | * This function acquires the task's rq lock to lock out concurrent |
| 656 | * changes to the task's scheduling state and - in case the task is |
| 657 | * running - concurrent changes to its stall state. |
| 658 | */ |
| 659 | void cgroup_move_task(struct task_struct *task, struct css_set *to) |
| 660 | { |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 661 | unsigned int task_flags = 0; |
| 662 | struct rq_flags rf; |
| 663 | struct rq *rq; |
| 664 | |
Johannes Weiner | e0c2744 | 2018-11-30 14:09:58 -0800 | [diff] [blame] | 665 | if (static_branch_likely(&psi_disabled)) { |
Olof Johansson | 8fcb231 | 2018-11-16 15:08:00 -0800 | [diff] [blame] | 666 | /* |
| 667 | * Lame to do this here, but the scheduler cannot be locked |
| 668 | * from the outside, so we move cgroups from inside sched/. |
| 669 | */ |
| 670 | rcu_assign_pointer(task->cgroups, to); |
| 671 | return; |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 672 | } |
| 673 | |
Olof Johansson | 8fcb231 | 2018-11-16 15:08:00 -0800 | [diff] [blame] | 674 | rq = task_rq_lock(task, &rf); |
| 675 | |
| 676 | if (task_on_rq_queued(task)) |
| 677 | task_flags = TSK_RUNNING; |
| 678 | else if (task->in_iowait) |
| 679 | task_flags = TSK_IOWAIT; |
| 680 | |
| 681 | if (task->flags & PF_MEMSTALL) |
| 682 | task_flags |= TSK_MEMSTALL; |
| 683 | |
| 684 | if (task_flags) |
| 685 | psi_task_change(task, task_flags, 0); |
| 686 | |
| 687 | /* See comment above */ |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 688 | rcu_assign_pointer(task->cgroups, to); |
| 689 | |
Olof Johansson | 8fcb231 | 2018-11-16 15:08:00 -0800 | [diff] [blame] | 690 | if (task_flags) |
| 691 | psi_task_change(task, 0, task_flags); |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 692 | |
Olof Johansson | 8fcb231 | 2018-11-16 15:08:00 -0800 | [diff] [blame] | 693 | task_rq_unlock(rq, task, &rf); |
Johannes Weiner | 2ce7135 | 2018-10-26 15:06:31 -0700 | [diff] [blame] | 694 | } |
| 695 | #endif /* CONFIG_CGROUPS */ |
| 696 | |
| 697 | int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 698 | { |
| 699 | int full; |
| 700 | |
Johannes Weiner | e0c2744 | 2018-11-30 14:09:58 -0800 | [diff] [blame] | 701 | if (static_branch_likely(&psi_disabled)) |
Johannes Weiner | eb41468 | 2018-10-26 15:06:27 -0700 | [diff] [blame] | 702 | return -EOPNOTSUPP; |
| 703 | |
| 704 | update_stats(group); |
| 705 | |
| 706 | for (full = 0; full < 2 - (res == PSI_CPU); full++) { |
| 707 | unsigned long avg[3]; |
| 708 | u64 total; |
| 709 | int w; |
| 710 | |
| 711 | for (w = 0; w < 3; w++) |
| 712 | avg[w] = group->avg[res * 2 + full][w]; |
| 713 | total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC); |
| 714 | |
| 715 | seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", |
| 716 | full ? "full" : "some", |
| 717 | LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), |
| 718 | LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), |
| 719 | LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), |
| 720 | total); |
| 721 | } |
| 722 | |
| 723 | return 0; |
| 724 | } |
| 725 | |
| 726 | static int psi_io_show(struct seq_file *m, void *v) |
| 727 | { |
| 728 | return psi_show(m, &psi_system, PSI_IO); |
| 729 | } |
| 730 | |
| 731 | static int psi_memory_show(struct seq_file *m, void *v) |
| 732 | { |
| 733 | return psi_show(m, &psi_system, PSI_MEM); |
| 734 | } |
| 735 | |
| 736 | static int psi_cpu_show(struct seq_file *m, void *v) |
| 737 | { |
| 738 | return psi_show(m, &psi_system, PSI_CPU); |
| 739 | } |
| 740 | |
| 741 | static int psi_io_open(struct inode *inode, struct file *file) |
| 742 | { |
| 743 | return single_open(file, psi_io_show, NULL); |
| 744 | } |
| 745 | |
| 746 | static int psi_memory_open(struct inode *inode, struct file *file) |
| 747 | { |
| 748 | return single_open(file, psi_memory_show, NULL); |
| 749 | } |
| 750 | |
| 751 | static int psi_cpu_open(struct inode *inode, struct file *file) |
| 752 | { |
| 753 | return single_open(file, psi_cpu_show, NULL); |
| 754 | } |
| 755 | |
| 756 | static const struct file_operations psi_io_fops = { |
| 757 | .open = psi_io_open, |
| 758 | .read = seq_read, |
| 759 | .llseek = seq_lseek, |
| 760 | .release = single_release, |
| 761 | }; |
| 762 | |
| 763 | static const struct file_operations psi_memory_fops = { |
| 764 | .open = psi_memory_open, |
| 765 | .read = seq_read, |
| 766 | .llseek = seq_lseek, |
| 767 | .release = single_release, |
| 768 | }; |
| 769 | |
| 770 | static const struct file_operations psi_cpu_fops = { |
| 771 | .open = psi_cpu_open, |
| 772 | .read = seq_read, |
| 773 | .llseek = seq_lseek, |
| 774 | .release = single_release, |
| 775 | }; |
| 776 | |
| 777 | static int __init psi_proc_init(void) |
| 778 | { |
| 779 | proc_mkdir("pressure", NULL); |
| 780 | proc_create("pressure/io", 0, NULL, &psi_io_fops); |
| 781 | proc_create("pressure/memory", 0, NULL, &psi_memory_fops); |
| 782 | proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops); |
| 783 | return 0; |
| 784 | } |
| 785 | module_init(psi_proc_init); |