blob: cc2a2405bd1df5a2c28d519a0b2cf20328c0fe5d [file] [log] [blame]
Mika Westerberg011f23a2010-05-06 04:47:04 +00001/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
Mika Westerberg626a96d2011-05-29 13:10:06 +03004 * Copyright (C) 2010-2011 Mika Westerberg
Mika Westerberg011f23a2010-05-06 04:47:04 +00005 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
Mika Westerberg626a96d2011-05-29 13:10:06 +030024#include <linux/dmaengine.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000025#include <linux/bitops.h>
26#include <linux/interrupt.h>
Mika Westerberg5bdb76132011-10-15 21:40:09 +030027#include <linux/module.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000028#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/sched.h>
Mika Westerberg626a96d2011-05-29 13:10:06 +030031#include <linux/scatterlist.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000032#include <linux/spi/spi.h>
33
Arnd Bergmanna3b29242012-08-24 15:12:11 +020034#include <linux/platform_data/dma-ep93xx.h>
35#include <linux/platform_data/spi-ep93xx.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000036
37#define SSPCR0 0x0000
38#define SSPCR0_MODE_SHIFT 6
39#define SSPCR0_SCR_SHIFT 8
40
41#define SSPCR1 0x0004
42#define SSPCR1_RIE BIT(0)
43#define SSPCR1_TIE BIT(1)
44#define SSPCR1_RORIE BIT(2)
45#define SSPCR1_LBM BIT(3)
46#define SSPCR1_SSE BIT(4)
47#define SSPCR1_MS BIT(5)
48#define SSPCR1_SOD BIT(6)
49
50#define SSPDR 0x0008
51
52#define SSPSR 0x000c
53#define SSPSR_TFE BIT(0)
54#define SSPSR_TNF BIT(1)
55#define SSPSR_RNE BIT(2)
56#define SSPSR_RFF BIT(3)
57#define SSPSR_BSY BIT(4)
58#define SSPCPSR 0x0010
59
60#define SSPIIR 0x0014
61#define SSPIIR_RIS BIT(0)
62#define SSPIIR_TIS BIT(1)
63#define SSPIIR_RORIS BIT(2)
64#define SSPICR SSPIIR
65
66/* timeout in milliseconds */
67#define SPI_TIMEOUT 5
68/* maximum depth of RX/TX FIFO */
69#define SPI_FIFO_SIZE 8
70
71/**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
Mika Westerberg626a96d2011-05-29 13:10:06 +030078 * @sspdr_phys: physical address of the SSPDR register
Mika Westerberg011f23a2010-05-06 04:47:04 +000079 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
Mika Westerberg626a96d2011-05-29 13:10:06 +030091 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98 * the client
Mika Westerberg011f23a2010-05-06 04:47:04 +000099 *
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
104 * on.
105 *
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
109 */
110struct ep93xx_spi {
111 spinlock_t lock;
112 const struct platform_device *pdev;
113 struct clk *clk;
114 void __iomem *regs_base;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300115 unsigned long sspdr_phys;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000116 unsigned long min_rate;
117 unsigned long max_rate;
118 bool running;
119 struct workqueue_struct *wq;
120 struct work_struct msg_work;
121 struct completion wait;
122 struct list_head msg_queue;
123 struct spi_message *current_msg;
124 size_t tx;
125 size_t rx;
126 size_t fifo_level;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300127 struct dma_chan *dma_rx;
128 struct dma_chan *dma_tx;
129 struct ep93xx_dma_data dma_rx_data;
130 struct ep93xx_dma_data dma_tx_data;
131 struct sg_table rx_sgt;
132 struct sg_table tx_sgt;
133 void *zeropage;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000134};
135
136/**
137 * struct ep93xx_spi_chip - SPI device hardware settings
138 * @spi: back pointer to the SPI device
139 * @rate: max rate in hz this chip supports
140 * @div_cpsr: cpsr (pre-scaler) divider
141 * @div_scr: scr divider
Mika Westerberg011f23a2010-05-06 04:47:04 +0000142 * @ops: private chip operations
143 *
144 * This structure is used to store hardware register specific settings for each
145 * SPI device. Settings are written to hardware by function
146 * ep93xx_spi_chip_setup().
147 */
148struct ep93xx_spi_chip {
149 const struct spi_device *spi;
150 unsigned long rate;
151 u8 div_cpsr;
152 u8 div_scr;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000153 struct ep93xx_spi_chip_ops *ops;
154};
155
156/* converts bits per word to CR0.DSS value */
157#define bits_per_word_to_dss(bpw) ((bpw) - 1)
158
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700159static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
160 u16 reg, u8 value)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000161{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700162 writeb(value, espi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000163}
164
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700165static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000166{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700167 return readb(spi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000168}
169
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700170static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
171 u16 reg, u16 value)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000172{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700173 writew(value, espi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000174}
175
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700176static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000177{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700178 return readw(spi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000179}
180
181static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
182{
183 u8 regval;
184 int err;
185
186 err = clk_enable(espi->clk);
187 if (err)
188 return err;
189
190 regval = ep93xx_spi_read_u8(espi, SSPCR1);
191 regval |= SSPCR1_SSE;
192 ep93xx_spi_write_u8(espi, SSPCR1, regval);
193
194 return 0;
195}
196
197static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
198{
199 u8 regval;
200
201 regval = ep93xx_spi_read_u8(espi, SSPCR1);
202 regval &= ~SSPCR1_SSE;
203 ep93xx_spi_write_u8(espi, SSPCR1, regval);
204
205 clk_disable(espi->clk);
206}
207
208static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
209{
210 u8 regval;
211
212 regval = ep93xx_spi_read_u8(espi, SSPCR1);
213 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
214 ep93xx_spi_write_u8(espi, SSPCR1, regval);
215}
216
217static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
218{
219 u8 regval;
220
221 regval = ep93xx_spi_read_u8(espi, SSPCR1);
222 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
223 ep93xx_spi_write_u8(espi, SSPCR1, regval);
224}
225
226/**
227 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
228 * @espi: ep93xx SPI controller struct
229 * @chip: divisors are calculated for this chip
230 * @rate: desired SPI output clock rate
231 *
232 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
233 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
234 * for some reason, divisors cannot be calculated nothing is stored and
235 * %-EINVAL is returned.
236 */
237static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
238 struct ep93xx_spi_chip *chip,
239 unsigned long rate)
240{
241 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
242 int cpsr, scr;
243
244 /*
245 * Make sure that max value is between values supported by the
246 * controller. Note that minimum value is already checked in
247 * ep93xx_spi_transfer().
248 */
249 rate = clamp(rate, espi->min_rate, espi->max_rate);
250
251 /*
252 * Calculate divisors so that we can get speed according the
253 * following formula:
254 * rate = spi_clock_rate / (cpsr * (1 + scr))
255 *
256 * cpsr must be even number and starts from 2, scr can be any number
257 * between 0 and 255.
258 */
259 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
260 for (scr = 0; scr <= 255; scr++) {
261 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
262 chip->div_scr = (u8)scr;
263 chip->div_cpsr = (u8)cpsr;
264 return 0;
265 }
266 }
267 }
268
269 return -EINVAL;
270}
271
272static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
273{
274 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
275 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
276
277 if (chip->ops && chip->ops->cs_control)
278 chip->ops->cs_control(spi, value);
279}
280
281/**
282 * ep93xx_spi_setup() - setup an SPI device
283 * @spi: SPI device to setup
284 *
285 * This function sets up SPI device mode, speed etc. Can be called multiple
286 * times for a single device. Returns %0 in case of success, negative error in
287 * case of failure. When this function returns success, the device is
288 * deselected.
289 */
290static int ep93xx_spi_setup(struct spi_device *spi)
291{
292 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
293 struct ep93xx_spi_chip *chip;
294
Mika Westerberg011f23a2010-05-06 04:47:04 +0000295 chip = spi_get_ctldata(spi);
296 if (!chip) {
297 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
298 spi->modalias);
299
300 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
301 if (!chip)
302 return -ENOMEM;
303
304 chip->spi = spi;
305 chip->ops = spi->controller_data;
306
307 if (chip->ops && chip->ops->setup) {
308 int ret = chip->ops->setup(spi);
309 if (ret) {
310 kfree(chip);
311 return ret;
312 }
313 }
314
315 spi_set_ctldata(spi, chip);
316 }
317
318 if (spi->max_speed_hz != chip->rate) {
319 int err;
320
321 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
322 if (err != 0) {
323 spi_set_ctldata(spi, NULL);
324 kfree(chip);
325 return err;
326 }
327 chip->rate = spi->max_speed_hz;
328 }
329
Mika Westerberg011f23a2010-05-06 04:47:04 +0000330 ep93xx_spi_cs_control(spi, false);
331 return 0;
332}
333
334/**
335 * ep93xx_spi_transfer() - queue message to be transferred
336 * @spi: target SPI device
337 * @msg: message to be transferred
338 *
339 * This function is called by SPI device drivers when they are going to transfer
340 * a new message. It simply puts the message in the queue and schedules
341 * workqueue to perform the actual transfer later on.
342 *
343 * Returns %0 on success and negative error in case of failure.
344 */
345static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
346{
347 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
348 struct spi_transfer *t;
349 unsigned long flags;
350
351 if (!msg || !msg->complete)
352 return -EINVAL;
353
354 /* first validate each transfer */
355 list_for_each_entry(t, &msg->transfers, transfer_list) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000356 if (t->speed_hz && t->speed_hz < espi->min_rate)
357 return -EINVAL;
358 }
359
360 /*
361 * Now that we own the message, let's initialize it so that it is
362 * suitable for us. We use @msg->status to signal whether there was
363 * error in transfer and @msg->state is used to hold pointer to the
364 * current transfer (or %NULL if no active current transfer).
365 */
366 msg->state = NULL;
367 msg->status = 0;
368 msg->actual_length = 0;
369
370 spin_lock_irqsave(&espi->lock, flags);
371 if (!espi->running) {
372 spin_unlock_irqrestore(&espi->lock, flags);
373 return -ESHUTDOWN;
374 }
375 list_add_tail(&msg->queue, &espi->msg_queue);
376 queue_work(espi->wq, &espi->msg_work);
377 spin_unlock_irqrestore(&espi->lock, flags);
378
379 return 0;
380}
381
382/**
383 * ep93xx_spi_cleanup() - cleans up master controller specific state
384 * @spi: SPI device to cleanup
385 *
386 * This function releases master controller specific state for given @spi
387 * device.
388 */
389static void ep93xx_spi_cleanup(struct spi_device *spi)
390{
391 struct ep93xx_spi_chip *chip;
392
393 chip = spi_get_ctldata(spi);
394 if (chip) {
395 if (chip->ops && chip->ops->cleanup)
396 chip->ops->cleanup(spi);
397 spi_set_ctldata(spi, NULL);
398 kfree(chip);
399 }
400}
401
402/**
403 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
404 * @espi: ep93xx SPI controller struct
405 * @chip: chip specific settings
H Hartley Sweetend9b65df2013-07-02 10:09:29 -0700406 * @bits_per_word: transfer bits_per_word
Mika Westerberg011f23a2010-05-06 04:47:04 +0000407 *
408 * This function sets up the actual hardware registers with settings given in
409 * @chip. Note that no validation is done so make sure that callers validate
410 * settings before calling this.
411 */
412static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
H Hartley Sweetend9b65df2013-07-02 10:09:29 -0700413 const struct ep93xx_spi_chip *chip,
414 u8 bits_per_word)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000415{
H Hartley Sweetend9b65df2013-07-02 10:09:29 -0700416 u8 dss = bits_per_word_to_dss(bits_per_word);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000417 u16 cr0;
418
419 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
420 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
H Hartley Sweetend9b65df2013-07-02 10:09:29 -0700421 cr0 |= dss;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000422
423 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
H Hartley Sweetend9b65df2013-07-02 10:09:29 -0700424 chip->spi->mode, chip->div_cpsr, chip->div_scr, dss);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000425 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
426
427 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
428 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
429}
430
Mika Westerberg011f23a2010-05-06 04:47:04 +0000431static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
432{
H Hartley Sweeten701c3582013-07-02 10:07:01 -0700433 if (t->bits_per_word > 8) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000434 u16 tx_val = 0;
435
436 if (t->tx_buf)
437 tx_val = ((u16 *)t->tx_buf)[espi->tx];
438 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
439 espi->tx += sizeof(tx_val);
440 } else {
441 u8 tx_val = 0;
442
443 if (t->tx_buf)
444 tx_val = ((u8 *)t->tx_buf)[espi->tx];
445 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
446 espi->tx += sizeof(tx_val);
447 }
448}
449
450static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
451{
H Hartley Sweeten701c3582013-07-02 10:07:01 -0700452 if (t->bits_per_word > 8) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000453 u16 rx_val;
454
455 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
456 if (t->rx_buf)
457 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
458 espi->rx += sizeof(rx_val);
459 } else {
460 u8 rx_val;
461
462 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
463 if (t->rx_buf)
464 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
465 espi->rx += sizeof(rx_val);
466 }
467}
468
469/**
470 * ep93xx_spi_read_write() - perform next RX/TX transfer
471 * @espi: ep93xx SPI controller struct
472 *
473 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
474 * called several times, the whole transfer will be completed. Returns
475 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
476 *
477 * When this function is finished, RX FIFO should be empty and TX FIFO should be
478 * full.
479 */
480static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
481{
482 struct spi_message *msg = espi->current_msg;
483 struct spi_transfer *t = msg->state;
484
485 /* read as long as RX FIFO has frames in it */
486 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
487 ep93xx_do_read(espi, t);
488 espi->fifo_level--;
489 }
490
491 /* write as long as TX FIFO has room */
492 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
493 ep93xx_do_write(espi, t);
494 espi->fifo_level++;
495 }
496
Mika Westerberg626a96d2011-05-29 13:10:06 +0300497 if (espi->rx == t->len)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000498 return 0;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000499
500 return -EINPROGRESS;
501}
502
Mika Westerberg626a96d2011-05-29 13:10:06 +0300503static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
504{
505 /*
506 * Now everything is set up for the current transfer. We prime the TX
507 * FIFO, enable interrupts, and wait for the transfer to complete.
508 */
509 if (ep93xx_spi_read_write(espi)) {
510 ep93xx_spi_enable_interrupts(espi);
511 wait_for_completion(&espi->wait);
512 }
513}
514
515/**
516 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
517 * @espi: ep93xx SPI controller struct
518 * @dir: DMA transfer direction
519 *
520 * Function configures the DMA, maps the buffer and prepares the DMA
521 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
522 * in case of failure.
523 */
524static struct dma_async_tx_descriptor *
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700525ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300526{
527 struct spi_transfer *t = espi->current_msg->state;
528 struct dma_async_tx_descriptor *txd;
529 enum dma_slave_buswidth buswidth;
530 struct dma_slave_config conf;
531 struct scatterlist *sg;
532 struct sg_table *sgt;
533 struct dma_chan *chan;
534 const void *buf, *pbuf;
535 size_t len = t->len;
536 int i, ret, nents;
537
H Hartley Sweeten701c3582013-07-02 10:07:01 -0700538 if (t->bits_per_word > 8)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300539 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
540 else
541 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
542
543 memset(&conf, 0, sizeof(conf));
544 conf.direction = dir;
545
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700546 if (dir == DMA_DEV_TO_MEM) {
Mika Westerberg626a96d2011-05-29 13:10:06 +0300547 chan = espi->dma_rx;
548 buf = t->rx_buf;
549 sgt = &espi->rx_sgt;
550
551 conf.src_addr = espi->sspdr_phys;
552 conf.src_addr_width = buswidth;
553 } else {
554 chan = espi->dma_tx;
555 buf = t->tx_buf;
556 sgt = &espi->tx_sgt;
557
558 conf.dst_addr = espi->sspdr_phys;
559 conf.dst_addr_width = buswidth;
560 }
561
562 ret = dmaengine_slave_config(chan, &conf);
563 if (ret)
564 return ERR_PTR(ret);
565
566 /*
567 * We need to split the transfer into PAGE_SIZE'd chunks. This is
568 * because we are using @espi->zeropage to provide a zero RX buffer
569 * for the TX transfers and we have only allocated one page for that.
570 *
571 * For performance reasons we allocate a new sg_table only when
572 * needed. Otherwise we will re-use the current one. Eventually the
573 * last sg_table is released in ep93xx_spi_release_dma().
574 */
575
576 nents = DIV_ROUND_UP(len, PAGE_SIZE);
577 if (nents != sgt->nents) {
578 sg_free_table(sgt);
579
580 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
581 if (ret)
582 return ERR_PTR(ret);
583 }
584
585 pbuf = buf;
586 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
587 size_t bytes = min_t(size_t, len, PAGE_SIZE);
588
589 if (buf) {
590 sg_set_page(sg, virt_to_page(pbuf), bytes,
591 offset_in_page(pbuf));
592 } else {
593 sg_set_page(sg, virt_to_page(espi->zeropage),
594 bytes, 0);
595 }
596
597 pbuf += bytes;
598 len -= bytes;
599 }
600
601 if (WARN_ON(len)) {
602 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
603 return ERR_PTR(-EINVAL);
604 }
605
606 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
607 if (!nents)
608 return ERR_PTR(-ENOMEM);
609
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700610 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300611 if (!txd) {
612 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
613 return ERR_PTR(-ENOMEM);
614 }
615 return txd;
616}
617
618/**
619 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
620 * @espi: ep93xx SPI controller struct
621 * @dir: DMA transfer direction
622 *
623 * Function finishes with the DMA transfer. After this, the DMA buffer is
624 * unmapped.
625 */
626static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700627 enum dma_transfer_direction dir)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300628{
629 struct dma_chan *chan;
630 struct sg_table *sgt;
631
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700632 if (dir == DMA_DEV_TO_MEM) {
Mika Westerberg626a96d2011-05-29 13:10:06 +0300633 chan = espi->dma_rx;
634 sgt = &espi->rx_sgt;
635 } else {
636 chan = espi->dma_tx;
637 sgt = &espi->tx_sgt;
638 }
639
640 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
641}
642
643static void ep93xx_spi_dma_callback(void *callback_param)
644{
645 complete(callback_param);
646}
647
648static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
649{
650 struct spi_message *msg = espi->current_msg;
651 struct dma_async_tx_descriptor *rxd, *txd;
652
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700653 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300654 if (IS_ERR(rxd)) {
655 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
656 msg->status = PTR_ERR(rxd);
657 return;
658 }
659
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700660 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300661 if (IS_ERR(txd)) {
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700662 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300663 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
664 msg->status = PTR_ERR(txd);
665 return;
666 }
667
668 /* We are ready when RX is done */
669 rxd->callback = ep93xx_spi_dma_callback;
670 rxd->callback_param = &espi->wait;
671
672 /* Now submit both descriptors and wait while they finish */
673 dmaengine_submit(rxd);
674 dmaengine_submit(txd);
675
676 dma_async_issue_pending(espi->dma_rx);
677 dma_async_issue_pending(espi->dma_tx);
678
679 wait_for_completion(&espi->wait);
680
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700681 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
682 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300683}
684
Mika Westerberg011f23a2010-05-06 04:47:04 +0000685/**
686 * ep93xx_spi_process_transfer() - processes one SPI transfer
687 * @espi: ep93xx SPI controller struct
688 * @msg: current message
689 * @t: transfer to process
690 *
691 * This function processes one SPI transfer given in @t. Function waits until
692 * transfer is complete (may sleep) and updates @msg->status based on whether
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300693 * transfer was successfully processed or not.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000694 */
695static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
696 struct spi_message *msg,
697 struct spi_transfer *t)
698{
699 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700700 int err;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000701
702 msg->state = t;
703
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700704 err = ep93xx_spi_calc_divisors(espi, chip, t->speed_hz);
705 if (err) {
706 dev_err(&espi->pdev->dev, "failed to adjust speed\n");
707 msg->status = err;
708 return;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000709 }
710
H Hartley Sweetend9b65df2013-07-02 10:09:29 -0700711 ep93xx_spi_chip_setup(espi, chip, t->bits_per_word);
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700712
Mika Westerberg011f23a2010-05-06 04:47:04 +0000713 espi->rx = 0;
714 espi->tx = 0;
715
716 /*
Mika Westerberg626a96d2011-05-29 13:10:06 +0300717 * There is no point of setting up DMA for the transfers which will
718 * fit into the FIFO and can be transferred with a single interrupt.
719 * So in these cases we will be using PIO and don't bother for DMA.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000720 */
Mika Westerberg626a96d2011-05-29 13:10:06 +0300721 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
722 ep93xx_spi_dma_transfer(espi);
723 else
724 ep93xx_spi_pio_transfer(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000725
726 /*
727 * In case of error during transmit, we bail out from processing
728 * the message.
729 */
730 if (msg->status)
731 return;
732
Mika Westerberg626a96d2011-05-29 13:10:06 +0300733 msg->actual_length += t->len;
734
Mika Westerberg011f23a2010-05-06 04:47:04 +0000735 /*
736 * After this transfer is finished, perform any possible
737 * post-transfer actions requested by the protocol driver.
738 */
739 if (t->delay_usecs) {
740 set_current_state(TASK_UNINTERRUPTIBLE);
741 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
742 }
743 if (t->cs_change) {
744 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
745 /*
746 * In case protocol driver is asking us to drop the
747 * chipselect briefly, we let the scheduler to handle
748 * any "delay" here.
749 */
750 ep93xx_spi_cs_control(msg->spi, false);
751 cond_resched();
752 ep93xx_spi_cs_control(msg->spi, true);
753 }
754 }
Mika Westerberg011f23a2010-05-06 04:47:04 +0000755}
756
757/*
758 * ep93xx_spi_process_message() - process one SPI message
759 * @espi: ep93xx SPI controller struct
760 * @msg: message to process
761 *
762 * This function processes a single SPI message. We go through all transfers in
763 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
764 * asserted during the whole message (unless per transfer cs_change is set).
765 *
766 * @msg->status contains %0 in case of success or negative error code in case of
767 * failure.
768 */
769static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
770 struct spi_message *msg)
771{
772 unsigned long timeout;
773 struct spi_transfer *t;
774 int err;
775
776 /*
777 * Enable the SPI controller and its clock.
778 */
779 err = ep93xx_spi_enable(espi);
780 if (err) {
781 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
782 msg->status = err;
783 return;
784 }
785
786 /*
787 * Just to be sure: flush any data from RX FIFO.
788 */
789 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
790 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
791 if (time_after(jiffies, timeout)) {
792 dev_warn(&espi->pdev->dev,
793 "timeout while flushing RX FIFO\n");
794 msg->status = -ETIMEDOUT;
795 return;
796 }
797 ep93xx_spi_read_u16(espi, SSPDR);
798 }
799
800 /*
801 * We explicitly handle FIFO level. This way we don't have to check TX
802 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
803 */
804 espi->fifo_level = 0;
805
806 /*
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700807 * Assert the chipselect.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000808 */
Mika Westerberg011f23a2010-05-06 04:47:04 +0000809 ep93xx_spi_cs_control(msg->spi, true);
810
811 list_for_each_entry(t, &msg->transfers, transfer_list) {
812 ep93xx_spi_process_transfer(espi, msg, t);
813 if (msg->status)
814 break;
815 }
816
817 /*
818 * Now the whole message is transferred (or failed for some reason). We
819 * deselect the device and disable the SPI controller.
820 */
821 ep93xx_spi_cs_control(msg->spi, false);
822 ep93xx_spi_disable(espi);
823}
824
825#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
826
827/**
828 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
829 * @work: work struct
830 *
831 * Workqueue worker function. This function is called when there are new
832 * SPI messages to be processed. Message is taken out from the queue and then
833 * passed to ep93xx_spi_process_message().
834 *
835 * After message is transferred, protocol driver is notified by calling
836 * @msg->complete(). In case of error, @msg->status is set to negative error
837 * number, otherwise it contains zero (and @msg->actual_length is updated).
838 */
839static void ep93xx_spi_work(struct work_struct *work)
840{
841 struct ep93xx_spi *espi = work_to_espi(work);
842 struct spi_message *msg;
843
844 spin_lock_irq(&espi->lock);
845 if (!espi->running || espi->current_msg ||
846 list_empty(&espi->msg_queue)) {
847 spin_unlock_irq(&espi->lock);
848 return;
849 }
850 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
851 list_del_init(&msg->queue);
852 espi->current_msg = msg;
853 spin_unlock_irq(&espi->lock);
854
855 ep93xx_spi_process_message(espi, msg);
856
857 /*
858 * Update the current message and re-schedule ourselves if there are
859 * more messages in the queue.
860 */
861 spin_lock_irq(&espi->lock);
862 espi->current_msg = NULL;
863 if (espi->running && !list_empty(&espi->msg_queue))
864 queue_work(espi->wq, &espi->msg_work);
865 spin_unlock_irq(&espi->lock);
866
867 /* notify the protocol driver that we are done with this message */
868 msg->complete(msg->context);
869}
870
871static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
872{
873 struct ep93xx_spi *espi = dev_id;
874 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
875
876 /*
877 * If we got ROR (receive overrun) interrupt we know that something is
878 * wrong. Just abort the message.
879 */
880 if (unlikely(irq_status & SSPIIR_RORIS)) {
881 /* clear the overrun interrupt */
882 ep93xx_spi_write_u8(espi, SSPICR, 0);
883 dev_warn(&espi->pdev->dev,
884 "receive overrun, aborting the message\n");
885 espi->current_msg->status = -EIO;
886 } else {
887 /*
888 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
889 * simply execute next data transfer.
890 */
891 if (ep93xx_spi_read_write(espi)) {
892 /*
893 * In normal case, there still is some processing left
894 * for current transfer. Let's wait for the next
895 * interrupt then.
896 */
897 return IRQ_HANDLED;
898 }
899 }
900
901 /*
902 * Current transfer is finished, either with error or with success. In
903 * any case we disable interrupts and notify the worker to handle
904 * any post-processing of the message.
905 */
906 ep93xx_spi_disable_interrupts(espi);
907 complete(&espi->wait);
908 return IRQ_HANDLED;
909}
910
Mika Westerberg626a96d2011-05-29 13:10:06 +0300911static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
912{
913 if (ep93xx_dma_chan_is_m2p(chan))
914 return false;
915
916 chan->private = filter_param;
917 return true;
918}
919
920static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
921{
922 dma_cap_mask_t mask;
923 int ret;
924
925 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
926 if (!espi->zeropage)
927 return -ENOMEM;
928
929 dma_cap_zero(mask);
930 dma_cap_set(DMA_SLAVE, mask);
931
932 espi->dma_rx_data.port = EP93XX_DMA_SSP;
Vinod Koula485df42011-10-14 10:47:38 +0530933 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300934 espi->dma_rx_data.name = "ep93xx-spi-rx";
935
936 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
937 &espi->dma_rx_data);
938 if (!espi->dma_rx) {
939 ret = -ENODEV;
940 goto fail_free_page;
941 }
942
943 espi->dma_tx_data.port = EP93XX_DMA_SSP;
Vinod Koula485df42011-10-14 10:47:38 +0530944 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300945 espi->dma_tx_data.name = "ep93xx-spi-tx";
946
947 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
948 &espi->dma_tx_data);
949 if (!espi->dma_tx) {
950 ret = -ENODEV;
951 goto fail_release_rx;
952 }
953
954 return 0;
955
956fail_release_rx:
957 dma_release_channel(espi->dma_rx);
958 espi->dma_rx = NULL;
959fail_free_page:
960 free_page((unsigned long)espi->zeropage);
961
962 return ret;
963}
964
965static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
966{
967 if (espi->dma_rx) {
968 dma_release_channel(espi->dma_rx);
969 sg_free_table(&espi->rx_sgt);
970 }
971 if (espi->dma_tx) {
972 dma_release_channel(espi->dma_tx);
973 sg_free_table(&espi->tx_sgt);
974 }
975
976 if (espi->zeropage)
977 free_page((unsigned long)espi->zeropage);
978}
979
Grant Likelyfd4a3192012-12-07 16:57:14 +0000980static int ep93xx_spi_probe(struct platform_device *pdev)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000981{
982 struct spi_master *master;
983 struct ep93xx_spi_info *info;
984 struct ep93xx_spi *espi;
985 struct resource *res;
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +0300986 int irq;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000987 int error;
988
989 info = pdev->dev.platform_data;
990
H Hartley Sweeten48a77762013-07-02 10:07:53 -0700991 irq = platform_get_irq(pdev, 0);
992 if (irq < 0) {
993 dev_err(&pdev->dev, "failed to get irq resources\n");
994 return -EBUSY;
995 }
996
997 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
998 if (!res) {
999 dev_err(&pdev->dev, "unable to get iomem resource\n");
1000 return -ENODEV;
1001 }
1002
Mika Westerberg011f23a2010-05-06 04:47:04 +00001003 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
H Hartley Sweetenb2d185e2013-07-02 10:08:59 -07001004 if (!master)
Mika Westerberg011f23a2010-05-06 04:47:04 +00001005 return -ENOMEM;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001006
1007 master->setup = ep93xx_spi_setup;
1008 master->transfer = ep93xx_spi_transfer;
1009 master->cleanup = ep93xx_spi_cleanup;
1010 master->bus_num = pdev->id;
1011 master->num_chipselect = info->num_chipselect;
1012 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
Stephen Warren24778be2013-05-21 20:36:35 -06001013 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001014
1015 platform_set_drvdata(pdev, master);
1016
1017 espi = spi_master_get_devdata(master);
1018
H Hartley Sweetene6eb8d92013-07-02 10:08:21 -07001019 espi->clk = devm_clk_get(&pdev->dev, NULL);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001020 if (IS_ERR(espi->clk)) {
1021 dev_err(&pdev->dev, "unable to get spi clock\n");
1022 error = PTR_ERR(espi->clk);
1023 goto fail_release_master;
1024 }
1025
1026 spin_lock_init(&espi->lock);
1027 init_completion(&espi->wait);
1028
1029 /*
1030 * Calculate maximum and minimum supported clock rates
1031 * for the controller.
1032 */
1033 espi->max_rate = clk_get_rate(espi->clk) / 2;
1034 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1035 espi->pdev = pdev;
1036
Mika Westerberg626a96d2011-05-29 13:10:06 +03001037 espi->sspdr_phys = res->start + SSPDR;
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001038
Thierry Redingb0ee5602013-01-21 11:09:18 +01001039 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1040 if (IS_ERR(espi->regs_base)) {
1041 error = PTR_ERR(espi->regs_base);
H Hartley Sweetene6eb8d92013-07-02 10:08:21 -07001042 goto fail_release_master;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001043 }
1044
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001045 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1046 0, "ep93xx-spi", espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001047 if (error) {
1048 dev_err(&pdev->dev, "failed to request irq\n");
H Hartley Sweetene6eb8d92013-07-02 10:08:21 -07001049 goto fail_release_master;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001050 }
1051
Mika Westerberg626a96d2011-05-29 13:10:06 +03001052 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1053 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1054
Mika Westerberg011f23a2010-05-06 04:47:04 +00001055 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1056 if (!espi->wq) {
1057 dev_err(&pdev->dev, "unable to create workqueue\n");
Wei Yongjun27474d22013-05-16 12:08:56 +08001058 error = -ENOMEM;
Mika Westerberg626a96d2011-05-29 13:10:06 +03001059 goto fail_free_dma;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001060 }
1061 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1062 INIT_LIST_HEAD(&espi->msg_queue);
1063 espi->running = true;
1064
1065 /* make sure that the hardware is disabled */
1066 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1067
1068 error = spi_register_master(master);
1069 if (error) {
1070 dev_err(&pdev->dev, "failed to register SPI master\n");
1071 goto fail_free_queue;
1072 }
1073
1074 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001075 (unsigned long)res->start, irq);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001076
1077 return 0;
1078
1079fail_free_queue:
1080 destroy_workqueue(espi->wq);
Mika Westerberg626a96d2011-05-29 13:10:06 +03001081fail_free_dma:
1082 ep93xx_spi_release_dma(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001083fail_release_master:
1084 spi_master_put(master);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001085
1086 return error;
1087}
1088
Grant Likelyfd4a3192012-12-07 16:57:14 +00001089static int ep93xx_spi_remove(struct platform_device *pdev)
Mika Westerberg011f23a2010-05-06 04:47:04 +00001090{
1091 struct spi_master *master = platform_get_drvdata(pdev);
1092 struct ep93xx_spi *espi = spi_master_get_devdata(master);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001093
1094 spin_lock_irq(&espi->lock);
1095 espi->running = false;
1096 spin_unlock_irq(&espi->lock);
1097
1098 destroy_workqueue(espi->wq);
1099
1100 /*
1101 * Complete remaining messages with %-ESHUTDOWN status.
1102 */
1103 spin_lock_irq(&espi->lock);
1104 while (!list_empty(&espi->msg_queue)) {
1105 struct spi_message *msg;
1106
1107 msg = list_first_entry(&espi->msg_queue,
1108 struct spi_message, queue);
1109 list_del_init(&msg->queue);
1110 msg->status = -ESHUTDOWN;
1111 spin_unlock_irq(&espi->lock);
1112 msg->complete(msg->context);
1113 spin_lock_irq(&espi->lock);
1114 }
1115 spin_unlock_irq(&espi->lock);
1116
Mika Westerberg626a96d2011-05-29 13:10:06 +03001117 ep93xx_spi_release_dma(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001118
1119 spi_unregister_master(master);
1120 return 0;
1121}
1122
1123static struct platform_driver ep93xx_spi_driver = {
1124 .driver = {
1125 .name = "ep93xx-spi",
1126 .owner = THIS_MODULE,
1127 },
Grant Likely940ab882011-10-05 11:29:49 -06001128 .probe = ep93xx_spi_probe,
Grant Likelyfd4a3192012-12-07 16:57:14 +00001129 .remove = ep93xx_spi_remove,
Mika Westerberg011f23a2010-05-06 04:47:04 +00001130};
Grant Likely940ab882011-10-05 11:29:49 -06001131module_platform_driver(ep93xx_spi_driver);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001132
1133MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1134MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1135MODULE_LICENSE("GPL");
1136MODULE_ALIAS("platform:ep93xx-spi");