blob: c2660c24c0ab8a35f62c675dcfc384674193b11d [file] [log] [blame]
Mika Westerberg011f23a2010-05-06 04:47:04 +00001/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
Mika Westerberg626a96d2011-05-29 13:10:06 +03004 * Copyright (C) 2010-2011 Mika Westerberg
Mika Westerberg011f23a2010-05-06 04:47:04 +00005 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
Mika Westerberg626a96d2011-05-29 13:10:06 +030024#include <linux/dmaengine.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000025#include <linux/bitops.h>
26#include <linux/interrupt.h>
Mika Westerberg5bdb76132011-10-15 21:40:09 +030027#include <linux/module.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000028#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/sched.h>
Mika Westerberg626a96d2011-05-29 13:10:06 +030031#include <linux/scatterlist.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000032#include <linux/spi/spi.h>
33
Arnd Bergmanna3b29242012-08-24 15:12:11 +020034#include <linux/platform_data/dma-ep93xx.h>
35#include <linux/platform_data/spi-ep93xx.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000036
37#define SSPCR0 0x0000
38#define SSPCR0_MODE_SHIFT 6
39#define SSPCR0_SCR_SHIFT 8
40
41#define SSPCR1 0x0004
42#define SSPCR1_RIE BIT(0)
43#define SSPCR1_TIE BIT(1)
44#define SSPCR1_RORIE BIT(2)
45#define SSPCR1_LBM BIT(3)
46#define SSPCR1_SSE BIT(4)
47#define SSPCR1_MS BIT(5)
48#define SSPCR1_SOD BIT(6)
49
50#define SSPDR 0x0008
51
52#define SSPSR 0x000c
53#define SSPSR_TFE BIT(0)
54#define SSPSR_TNF BIT(1)
55#define SSPSR_RNE BIT(2)
56#define SSPSR_RFF BIT(3)
57#define SSPSR_BSY BIT(4)
58#define SSPCPSR 0x0010
59
60#define SSPIIR 0x0014
61#define SSPIIR_RIS BIT(0)
62#define SSPIIR_TIS BIT(1)
63#define SSPIIR_RORIS BIT(2)
64#define SSPICR SSPIIR
65
66/* timeout in milliseconds */
67#define SPI_TIMEOUT 5
68/* maximum depth of RX/TX FIFO */
69#define SPI_FIFO_SIZE 8
70
71/**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
Mika Westerberg626a96d2011-05-29 13:10:06 +030078 * @sspdr_phys: physical address of the SSPDR register
Mika Westerberg011f23a2010-05-06 04:47:04 +000079 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
Mika Westerberg626a96d2011-05-29 13:10:06 +030091 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98 * the client
Mika Westerberg011f23a2010-05-06 04:47:04 +000099 *
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
104 * on.
105 *
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
109 */
110struct ep93xx_spi {
111 spinlock_t lock;
112 const struct platform_device *pdev;
113 struct clk *clk;
114 void __iomem *regs_base;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300115 unsigned long sspdr_phys;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000116 unsigned long min_rate;
117 unsigned long max_rate;
118 bool running;
119 struct workqueue_struct *wq;
120 struct work_struct msg_work;
121 struct completion wait;
122 struct list_head msg_queue;
123 struct spi_message *current_msg;
124 size_t tx;
125 size_t rx;
126 size_t fifo_level;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300127 struct dma_chan *dma_rx;
128 struct dma_chan *dma_tx;
129 struct ep93xx_dma_data dma_rx_data;
130 struct ep93xx_dma_data dma_tx_data;
131 struct sg_table rx_sgt;
132 struct sg_table tx_sgt;
133 void *zeropage;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000134};
135
136/**
137 * struct ep93xx_spi_chip - SPI device hardware settings
138 * @spi: back pointer to the SPI device
139 * @rate: max rate in hz this chip supports
140 * @div_cpsr: cpsr (pre-scaler) divider
141 * @div_scr: scr divider
142 * @dss: bits per word (4 - 16 bits)
143 * @ops: private chip operations
144 *
145 * This structure is used to store hardware register specific settings for each
146 * SPI device. Settings are written to hardware by function
147 * ep93xx_spi_chip_setup().
148 */
149struct ep93xx_spi_chip {
150 const struct spi_device *spi;
151 unsigned long rate;
152 u8 div_cpsr;
153 u8 div_scr;
154 u8 dss;
155 struct ep93xx_spi_chip_ops *ops;
156};
157
158/* converts bits per word to CR0.DSS value */
159#define bits_per_word_to_dss(bpw) ((bpw) - 1)
160
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700161static void ep93xx_spi_write_u8(const struct ep93xx_spi *espi,
162 u16 reg, u8 value)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000163{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700164 writeb(value, espi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000165}
166
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700167static u8 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000168{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700169 return readb(spi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000170}
171
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700172static void ep93xx_spi_write_u16(const struct ep93xx_spi *espi,
173 u16 reg, u16 value)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000174{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700175 writew(value, espi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000176}
177
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700178static u16 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000179{
H Hartley Sweeten8d7586b2013-07-02 10:06:26 -0700180 return readw(spi->regs_base + reg);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000181}
182
183static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
184{
185 u8 regval;
186 int err;
187
188 err = clk_enable(espi->clk);
189 if (err)
190 return err;
191
192 regval = ep93xx_spi_read_u8(espi, SSPCR1);
193 regval |= SSPCR1_SSE;
194 ep93xx_spi_write_u8(espi, SSPCR1, regval);
195
196 return 0;
197}
198
199static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
200{
201 u8 regval;
202
203 regval = ep93xx_spi_read_u8(espi, SSPCR1);
204 regval &= ~SSPCR1_SSE;
205 ep93xx_spi_write_u8(espi, SSPCR1, regval);
206
207 clk_disable(espi->clk);
208}
209
210static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
211{
212 u8 regval;
213
214 regval = ep93xx_spi_read_u8(espi, SSPCR1);
215 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
216 ep93xx_spi_write_u8(espi, SSPCR1, regval);
217}
218
219static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
220{
221 u8 regval;
222
223 regval = ep93xx_spi_read_u8(espi, SSPCR1);
224 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
225 ep93xx_spi_write_u8(espi, SSPCR1, regval);
226}
227
228/**
229 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
230 * @espi: ep93xx SPI controller struct
231 * @chip: divisors are calculated for this chip
232 * @rate: desired SPI output clock rate
233 *
234 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
235 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
236 * for some reason, divisors cannot be calculated nothing is stored and
237 * %-EINVAL is returned.
238 */
239static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
240 struct ep93xx_spi_chip *chip,
241 unsigned long rate)
242{
243 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
244 int cpsr, scr;
245
246 /*
247 * Make sure that max value is between values supported by the
248 * controller. Note that minimum value is already checked in
249 * ep93xx_spi_transfer().
250 */
251 rate = clamp(rate, espi->min_rate, espi->max_rate);
252
253 /*
254 * Calculate divisors so that we can get speed according the
255 * following formula:
256 * rate = spi_clock_rate / (cpsr * (1 + scr))
257 *
258 * cpsr must be even number and starts from 2, scr can be any number
259 * between 0 and 255.
260 */
261 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
262 for (scr = 0; scr <= 255; scr++) {
263 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
264 chip->div_scr = (u8)scr;
265 chip->div_cpsr = (u8)cpsr;
266 return 0;
267 }
268 }
269 }
270
271 return -EINVAL;
272}
273
274static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
275{
276 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
277 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
278
279 if (chip->ops && chip->ops->cs_control)
280 chip->ops->cs_control(spi, value);
281}
282
283/**
284 * ep93xx_spi_setup() - setup an SPI device
285 * @spi: SPI device to setup
286 *
287 * This function sets up SPI device mode, speed etc. Can be called multiple
288 * times for a single device. Returns %0 in case of success, negative error in
289 * case of failure. When this function returns success, the device is
290 * deselected.
291 */
292static int ep93xx_spi_setup(struct spi_device *spi)
293{
294 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
295 struct ep93xx_spi_chip *chip;
296
Mika Westerberg011f23a2010-05-06 04:47:04 +0000297 chip = spi_get_ctldata(spi);
298 if (!chip) {
299 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
300 spi->modalias);
301
302 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
303 if (!chip)
304 return -ENOMEM;
305
306 chip->spi = spi;
307 chip->ops = spi->controller_data;
308
309 if (chip->ops && chip->ops->setup) {
310 int ret = chip->ops->setup(spi);
311 if (ret) {
312 kfree(chip);
313 return ret;
314 }
315 }
316
317 spi_set_ctldata(spi, chip);
318 }
319
320 if (spi->max_speed_hz != chip->rate) {
321 int err;
322
323 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
324 if (err != 0) {
325 spi_set_ctldata(spi, NULL);
326 kfree(chip);
327 return err;
328 }
329 chip->rate = spi->max_speed_hz;
330 }
331
332 chip->dss = bits_per_word_to_dss(spi->bits_per_word);
333
334 ep93xx_spi_cs_control(spi, false);
335 return 0;
336}
337
338/**
339 * ep93xx_spi_transfer() - queue message to be transferred
340 * @spi: target SPI device
341 * @msg: message to be transferred
342 *
343 * This function is called by SPI device drivers when they are going to transfer
344 * a new message. It simply puts the message in the queue and schedules
345 * workqueue to perform the actual transfer later on.
346 *
347 * Returns %0 on success and negative error in case of failure.
348 */
349static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
350{
351 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
352 struct spi_transfer *t;
353 unsigned long flags;
354
355 if (!msg || !msg->complete)
356 return -EINVAL;
357
358 /* first validate each transfer */
359 list_for_each_entry(t, &msg->transfers, transfer_list) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000360 if (t->speed_hz && t->speed_hz < espi->min_rate)
361 return -EINVAL;
362 }
363
364 /*
365 * Now that we own the message, let's initialize it so that it is
366 * suitable for us. We use @msg->status to signal whether there was
367 * error in transfer and @msg->state is used to hold pointer to the
368 * current transfer (or %NULL if no active current transfer).
369 */
370 msg->state = NULL;
371 msg->status = 0;
372 msg->actual_length = 0;
373
374 spin_lock_irqsave(&espi->lock, flags);
375 if (!espi->running) {
376 spin_unlock_irqrestore(&espi->lock, flags);
377 return -ESHUTDOWN;
378 }
379 list_add_tail(&msg->queue, &espi->msg_queue);
380 queue_work(espi->wq, &espi->msg_work);
381 spin_unlock_irqrestore(&espi->lock, flags);
382
383 return 0;
384}
385
386/**
387 * ep93xx_spi_cleanup() - cleans up master controller specific state
388 * @spi: SPI device to cleanup
389 *
390 * This function releases master controller specific state for given @spi
391 * device.
392 */
393static void ep93xx_spi_cleanup(struct spi_device *spi)
394{
395 struct ep93xx_spi_chip *chip;
396
397 chip = spi_get_ctldata(spi);
398 if (chip) {
399 if (chip->ops && chip->ops->cleanup)
400 chip->ops->cleanup(spi);
401 spi_set_ctldata(spi, NULL);
402 kfree(chip);
403 }
404}
405
406/**
407 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
408 * @espi: ep93xx SPI controller struct
409 * @chip: chip specific settings
410 *
411 * This function sets up the actual hardware registers with settings given in
412 * @chip. Note that no validation is done so make sure that callers validate
413 * settings before calling this.
414 */
415static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
416 const struct ep93xx_spi_chip *chip)
417{
418 u16 cr0;
419
420 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
421 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
422 cr0 |= chip->dss;
423
424 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
425 chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
426 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
427
428 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
429 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
430}
431
Mika Westerberg011f23a2010-05-06 04:47:04 +0000432static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
433{
H Hartley Sweeten701c3582013-07-02 10:07:01 -0700434 if (t->bits_per_word > 8) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000435 u16 tx_val = 0;
436
437 if (t->tx_buf)
438 tx_val = ((u16 *)t->tx_buf)[espi->tx];
439 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
440 espi->tx += sizeof(tx_val);
441 } else {
442 u8 tx_val = 0;
443
444 if (t->tx_buf)
445 tx_val = ((u8 *)t->tx_buf)[espi->tx];
446 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
447 espi->tx += sizeof(tx_val);
448 }
449}
450
451static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
452{
H Hartley Sweeten701c3582013-07-02 10:07:01 -0700453 if (t->bits_per_word > 8) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000454 u16 rx_val;
455
456 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
457 if (t->rx_buf)
458 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
459 espi->rx += sizeof(rx_val);
460 } else {
461 u8 rx_val;
462
463 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
464 if (t->rx_buf)
465 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
466 espi->rx += sizeof(rx_val);
467 }
468}
469
470/**
471 * ep93xx_spi_read_write() - perform next RX/TX transfer
472 * @espi: ep93xx SPI controller struct
473 *
474 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
475 * called several times, the whole transfer will be completed. Returns
476 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
477 *
478 * When this function is finished, RX FIFO should be empty and TX FIFO should be
479 * full.
480 */
481static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
482{
483 struct spi_message *msg = espi->current_msg;
484 struct spi_transfer *t = msg->state;
485
486 /* read as long as RX FIFO has frames in it */
487 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
488 ep93xx_do_read(espi, t);
489 espi->fifo_level--;
490 }
491
492 /* write as long as TX FIFO has room */
493 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
494 ep93xx_do_write(espi, t);
495 espi->fifo_level++;
496 }
497
Mika Westerberg626a96d2011-05-29 13:10:06 +0300498 if (espi->rx == t->len)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000499 return 0;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000500
501 return -EINPROGRESS;
502}
503
Mika Westerberg626a96d2011-05-29 13:10:06 +0300504static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
505{
506 /*
507 * Now everything is set up for the current transfer. We prime the TX
508 * FIFO, enable interrupts, and wait for the transfer to complete.
509 */
510 if (ep93xx_spi_read_write(espi)) {
511 ep93xx_spi_enable_interrupts(espi);
512 wait_for_completion(&espi->wait);
513 }
514}
515
516/**
517 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
518 * @espi: ep93xx SPI controller struct
519 * @dir: DMA transfer direction
520 *
521 * Function configures the DMA, maps the buffer and prepares the DMA
522 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
523 * in case of failure.
524 */
525static struct dma_async_tx_descriptor *
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700526ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300527{
528 struct spi_transfer *t = espi->current_msg->state;
529 struct dma_async_tx_descriptor *txd;
530 enum dma_slave_buswidth buswidth;
531 struct dma_slave_config conf;
532 struct scatterlist *sg;
533 struct sg_table *sgt;
534 struct dma_chan *chan;
535 const void *buf, *pbuf;
536 size_t len = t->len;
537 int i, ret, nents;
538
H Hartley Sweeten701c3582013-07-02 10:07:01 -0700539 if (t->bits_per_word > 8)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300540 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
541 else
542 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
543
544 memset(&conf, 0, sizeof(conf));
545 conf.direction = dir;
546
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700547 if (dir == DMA_DEV_TO_MEM) {
Mika Westerberg626a96d2011-05-29 13:10:06 +0300548 chan = espi->dma_rx;
549 buf = t->rx_buf;
550 sgt = &espi->rx_sgt;
551
552 conf.src_addr = espi->sspdr_phys;
553 conf.src_addr_width = buswidth;
554 } else {
555 chan = espi->dma_tx;
556 buf = t->tx_buf;
557 sgt = &espi->tx_sgt;
558
559 conf.dst_addr = espi->sspdr_phys;
560 conf.dst_addr_width = buswidth;
561 }
562
563 ret = dmaengine_slave_config(chan, &conf);
564 if (ret)
565 return ERR_PTR(ret);
566
567 /*
568 * We need to split the transfer into PAGE_SIZE'd chunks. This is
569 * because we are using @espi->zeropage to provide a zero RX buffer
570 * for the TX transfers and we have only allocated one page for that.
571 *
572 * For performance reasons we allocate a new sg_table only when
573 * needed. Otherwise we will re-use the current one. Eventually the
574 * last sg_table is released in ep93xx_spi_release_dma().
575 */
576
577 nents = DIV_ROUND_UP(len, PAGE_SIZE);
578 if (nents != sgt->nents) {
579 sg_free_table(sgt);
580
581 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
582 if (ret)
583 return ERR_PTR(ret);
584 }
585
586 pbuf = buf;
587 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
588 size_t bytes = min_t(size_t, len, PAGE_SIZE);
589
590 if (buf) {
591 sg_set_page(sg, virt_to_page(pbuf), bytes,
592 offset_in_page(pbuf));
593 } else {
594 sg_set_page(sg, virt_to_page(espi->zeropage),
595 bytes, 0);
596 }
597
598 pbuf += bytes;
599 len -= bytes;
600 }
601
602 if (WARN_ON(len)) {
603 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
604 return ERR_PTR(-EINVAL);
605 }
606
607 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
608 if (!nents)
609 return ERR_PTR(-ENOMEM);
610
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700611 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300612 if (!txd) {
613 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
614 return ERR_PTR(-ENOMEM);
615 }
616 return txd;
617}
618
619/**
620 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
621 * @espi: ep93xx SPI controller struct
622 * @dir: DMA transfer direction
623 *
624 * Function finishes with the DMA transfer. After this, the DMA buffer is
625 * unmapped.
626 */
627static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700628 enum dma_transfer_direction dir)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300629{
630 struct dma_chan *chan;
631 struct sg_table *sgt;
632
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700633 if (dir == DMA_DEV_TO_MEM) {
Mika Westerberg626a96d2011-05-29 13:10:06 +0300634 chan = espi->dma_rx;
635 sgt = &espi->rx_sgt;
636 } else {
637 chan = espi->dma_tx;
638 sgt = &espi->tx_sgt;
639 }
640
641 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
642}
643
644static void ep93xx_spi_dma_callback(void *callback_param)
645{
646 complete(callback_param);
647}
648
649static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
650{
651 struct spi_message *msg = espi->current_msg;
652 struct dma_async_tx_descriptor *rxd, *txd;
653
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700654 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300655 if (IS_ERR(rxd)) {
656 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
657 msg->status = PTR_ERR(rxd);
658 return;
659 }
660
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700661 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300662 if (IS_ERR(txd)) {
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700663 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300664 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
665 msg->status = PTR_ERR(txd);
666 return;
667 }
668
669 /* We are ready when RX is done */
670 rxd->callback = ep93xx_spi_dma_callback;
671 rxd->callback_param = &espi->wait;
672
673 /* Now submit both descriptors and wait while they finish */
674 dmaengine_submit(rxd);
675 dmaengine_submit(txd);
676
677 dma_async_issue_pending(espi->dma_rx);
678 dma_async_issue_pending(espi->dma_tx);
679
680 wait_for_completion(&espi->wait);
681
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700682 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
683 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300684}
685
Mika Westerberg011f23a2010-05-06 04:47:04 +0000686/**
687 * ep93xx_spi_process_transfer() - processes one SPI transfer
688 * @espi: ep93xx SPI controller struct
689 * @msg: current message
690 * @t: transfer to process
691 *
692 * This function processes one SPI transfer given in @t. Function waits until
693 * transfer is complete (may sleep) and updates @msg->status based on whether
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300694 * transfer was successfully processed or not.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000695 */
696static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
697 struct spi_message *msg,
698 struct spi_transfer *t)
699{
700 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700701 int err;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000702
703 msg->state = t;
704
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700705 err = ep93xx_spi_calc_divisors(espi, chip, t->speed_hz);
706 if (err) {
707 dev_err(&espi->pdev->dev, "failed to adjust speed\n");
708 msg->status = err;
709 return;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000710 }
711
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700712 chip->dss = bits_per_word_to_dss(t->bits_per_word);
713
714 ep93xx_spi_chip_setup(espi, chip);
715
Mika Westerberg011f23a2010-05-06 04:47:04 +0000716 espi->rx = 0;
717 espi->tx = 0;
718
719 /*
Mika Westerberg626a96d2011-05-29 13:10:06 +0300720 * There is no point of setting up DMA for the transfers which will
721 * fit into the FIFO and can be transferred with a single interrupt.
722 * So in these cases we will be using PIO and don't bother for DMA.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000723 */
Mika Westerberg626a96d2011-05-29 13:10:06 +0300724 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
725 ep93xx_spi_dma_transfer(espi);
726 else
727 ep93xx_spi_pio_transfer(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000728
729 /*
730 * In case of error during transmit, we bail out from processing
731 * the message.
732 */
733 if (msg->status)
734 return;
735
Mika Westerberg626a96d2011-05-29 13:10:06 +0300736 msg->actual_length += t->len;
737
Mika Westerberg011f23a2010-05-06 04:47:04 +0000738 /*
739 * After this transfer is finished, perform any possible
740 * post-transfer actions requested by the protocol driver.
741 */
742 if (t->delay_usecs) {
743 set_current_state(TASK_UNINTERRUPTIBLE);
744 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
745 }
746 if (t->cs_change) {
747 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
748 /*
749 * In case protocol driver is asking us to drop the
750 * chipselect briefly, we let the scheduler to handle
751 * any "delay" here.
752 */
753 ep93xx_spi_cs_control(msg->spi, false);
754 cond_resched();
755 ep93xx_spi_cs_control(msg->spi, true);
756 }
757 }
Mika Westerberg011f23a2010-05-06 04:47:04 +0000758}
759
760/*
761 * ep93xx_spi_process_message() - process one SPI message
762 * @espi: ep93xx SPI controller struct
763 * @msg: message to process
764 *
765 * This function processes a single SPI message. We go through all transfers in
766 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
767 * asserted during the whole message (unless per transfer cs_change is set).
768 *
769 * @msg->status contains %0 in case of success or negative error code in case of
770 * failure.
771 */
772static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
773 struct spi_message *msg)
774{
775 unsigned long timeout;
776 struct spi_transfer *t;
777 int err;
778
779 /*
780 * Enable the SPI controller and its clock.
781 */
782 err = ep93xx_spi_enable(espi);
783 if (err) {
784 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
785 msg->status = err;
786 return;
787 }
788
789 /*
790 * Just to be sure: flush any data from RX FIFO.
791 */
792 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
793 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
794 if (time_after(jiffies, timeout)) {
795 dev_warn(&espi->pdev->dev,
796 "timeout while flushing RX FIFO\n");
797 msg->status = -ETIMEDOUT;
798 return;
799 }
800 ep93xx_spi_read_u16(espi, SSPDR);
801 }
802
803 /*
804 * We explicitly handle FIFO level. This way we don't have to check TX
805 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
806 */
807 espi->fifo_level = 0;
808
809 /*
H Hartley Sweeten4870c212013-06-28 11:43:34 -0700810 * Assert the chipselect.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000811 */
Mika Westerberg011f23a2010-05-06 04:47:04 +0000812 ep93xx_spi_cs_control(msg->spi, true);
813
814 list_for_each_entry(t, &msg->transfers, transfer_list) {
815 ep93xx_spi_process_transfer(espi, msg, t);
816 if (msg->status)
817 break;
818 }
819
820 /*
821 * Now the whole message is transferred (or failed for some reason). We
822 * deselect the device and disable the SPI controller.
823 */
824 ep93xx_spi_cs_control(msg->spi, false);
825 ep93xx_spi_disable(espi);
826}
827
828#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
829
830/**
831 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
832 * @work: work struct
833 *
834 * Workqueue worker function. This function is called when there are new
835 * SPI messages to be processed. Message is taken out from the queue and then
836 * passed to ep93xx_spi_process_message().
837 *
838 * After message is transferred, protocol driver is notified by calling
839 * @msg->complete(). In case of error, @msg->status is set to negative error
840 * number, otherwise it contains zero (and @msg->actual_length is updated).
841 */
842static void ep93xx_spi_work(struct work_struct *work)
843{
844 struct ep93xx_spi *espi = work_to_espi(work);
845 struct spi_message *msg;
846
847 spin_lock_irq(&espi->lock);
848 if (!espi->running || espi->current_msg ||
849 list_empty(&espi->msg_queue)) {
850 spin_unlock_irq(&espi->lock);
851 return;
852 }
853 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
854 list_del_init(&msg->queue);
855 espi->current_msg = msg;
856 spin_unlock_irq(&espi->lock);
857
858 ep93xx_spi_process_message(espi, msg);
859
860 /*
861 * Update the current message and re-schedule ourselves if there are
862 * more messages in the queue.
863 */
864 spin_lock_irq(&espi->lock);
865 espi->current_msg = NULL;
866 if (espi->running && !list_empty(&espi->msg_queue))
867 queue_work(espi->wq, &espi->msg_work);
868 spin_unlock_irq(&espi->lock);
869
870 /* notify the protocol driver that we are done with this message */
871 msg->complete(msg->context);
872}
873
874static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
875{
876 struct ep93xx_spi *espi = dev_id;
877 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
878
879 /*
880 * If we got ROR (receive overrun) interrupt we know that something is
881 * wrong. Just abort the message.
882 */
883 if (unlikely(irq_status & SSPIIR_RORIS)) {
884 /* clear the overrun interrupt */
885 ep93xx_spi_write_u8(espi, SSPICR, 0);
886 dev_warn(&espi->pdev->dev,
887 "receive overrun, aborting the message\n");
888 espi->current_msg->status = -EIO;
889 } else {
890 /*
891 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
892 * simply execute next data transfer.
893 */
894 if (ep93xx_spi_read_write(espi)) {
895 /*
896 * In normal case, there still is some processing left
897 * for current transfer. Let's wait for the next
898 * interrupt then.
899 */
900 return IRQ_HANDLED;
901 }
902 }
903
904 /*
905 * Current transfer is finished, either with error or with success. In
906 * any case we disable interrupts and notify the worker to handle
907 * any post-processing of the message.
908 */
909 ep93xx_spi_disable_interrupts(espi);
910 complete(&espi->wait);
911 return IRQ_HANDLED;
912}
913
Mika Westerberg626a96d2011-05-29 13:10:06 +0300914static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
915{
916 if (ep93xx_dma_chan_is_m2p(chan))
917 return false;
918
919 chan->private = filter_param;
920 return true;
921}
922
923static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
924{
925 dma_cap_mask_t mask;
926 int ret;
927
928 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
929 if (!espi->zeropage)
930 return -ENOMEM;
931
932 dma_cap_zero(mask);
933 dma_cap_set(DMA_SLAVE, mask);
934
935 espi->dma_rx_data.port = EP93XX_DMA_SSP;
Vinod Koula485df42011-10-14 10:47:38 +0530936 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300937 espi->dma_rx_data.name = "ep93xx-spi-rx";
938
939 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
940 &espi->dma_rx_data);
941 if (!espi->dma_rx) {
942 ret = -ENODEV;
943 goto fail_free_page;
944 }
945
946 espi->dma_tx_data.port = EP93XX_DMA_SSP;
Vinod Koula485df42011-10-14 10:47:38 +0530947 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300948 espi->dma_tx_data.name = "ep93xx-spi-tx";
949
950 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
951 &espi->dma_tx_data);
952 if (!espi->dma_tx) {
953 ret = -ENODEV;
954 goto fail_release_rx;
955 }
956
957 return 0;
958
959fail_release_rx:
960 dma_release_channel(espi->dma_rx);
961 espi->dma_rx = NULL;
962fail_free_page:
963 free_page((unsigned long)espi->zeropage);
964
965 return ret;
966}
967
968static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
969{
970 if (espi->dma_rx) {
971 dma_release_channel(espi->dma_rx);
972 sg_free_table(&espi->rx_sgt);
973 }
974 if (espi->dma_tx) {
975 dma_release_channel(espi->dma_tx);
976 sg_free_table(&espi->tx_sgt);
977 }
978
979 if (espi->zeropage)
980 free_page((unsigned long)espi->zeropage);
981}
982
Grant Likelyfd4a3192012-12-07 16:57:14 +0000983static int ep93xx_spi_probe(struct platform_device *pdev)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000984{
985 struct spi_master *master;
986 struct ep93xx_spi_info *info;
987 struct ep93xx_spi *espi;
988 struct resource *res;
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +0300989 int irq;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000990 int error;
991
992 info = pdev->dev.platform_data;
993
H Hartley Sweeten48a77762013-07-02 10:07:53 -0700994 irq = platform_get_irq(pdev, 0);
995 if (irq < 0) {
996 dev_err(&pdev->dev, "failed to get irq resources\n");
997 return -EBUSY;
998 }
999
1000 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1001 if (!res) {
1002 dev_err(&pdev->dev, "unable to get iomem resource\n");
1003 return -ENODEV;
1004 }
1005
Mika Westerberg011f23a2010-05-06 04:47:04 +00001006 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1007 if (!master) {
1008 dev_err(&pdev->dev, "failed to allocate spi master\n");
1009 return -ENOMEM;
1010 }
1011
1012 master->setup = ep93xx_spi_setup;
1013 master->transfer = ep93xx_spi_transfer;
1014 master->cleanup = ep93xx_spi_cleanup;
1015 master->bus_num = pdev->id;
1016 master->num_chipselect = info->num_chipselect;
1017 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
Stephen Warren24778be2013-05-21 20:36:35 -06001018 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001019
1020 platform_set_drvdata(pdev, master);
1021
1022 espi = spi_master_get_devdata(master);
1023
1024 espi->clk = clk_get(&pdev->dev, NULL);
1025 if (IS_ERR(espi->clk)) {
1026 dev_err(&pdev->dev, "unable to get spi clock\n");
1027 error = PTR_ERR(espi->clk);
1028 goto fail_release_master;
1029 }
1030
1031 spin_lock_init(&espi->lock);
1032 init_completion(&espi->wait);
1033
1034 /*
1035 * Calculate maximum and minimum supported clock rates
1036 * for the controller.
1037 */
1038 espi->max_rate = clk_get_rate(espi->clk) / 2;
1039 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1040 espi->pdev = pdev;
1041
Mika Westerberg626a96d2011-05-29 13:10:06 +03001042 espi->sspdr_phys = res->start + SSPDR;
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001043
Thierry Redingb0ee5602013-01-21 11:09:18 +01001044 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1045 if (IS_ERR(espi->regs_base)) {
1046 error = PTR_ERR(espi->regs_base);
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001047 goto fail_put_clock;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001048 }
1049
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001050 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1051 0, "ep93xx-spi", espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001052 if (error) {
1053 dev_err(&pdev->dev, "failed to request irq\n");
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001054 goto fail_put_clock;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001055 }
1056
Mika Westerberg626a96d2011-05-29 13:10:06 +03001057 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1058 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1059
Mika Westerberg011f23a2010-05-06 04:47:04 +00001060 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1061 if (!espi->wq) {
1062 dev_err(&pdev->dev, "unable to create workqueue\n");
Wei Yongjun27474d22013-05-16 12:08:56 +08001063 error = -ENOMEM;
Mika Westerberg626a96d2011-05-29 13:10:06 +03001064 goto fail_free_dma;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001065 }
1066 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1067 INIT_LIST_HEAD(&espi->msg_queue);
1068 espi->running = true;
1069
1070 /* make sure that the hardware is disabled */
1071 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1072
1073 error = spi_register_master(master);
1074 if (error) {
1075 dev_err(&pdev->dev, "failed to register SPI master\n");
1076 goto fail_free_queue;
1077 }
1078
1079 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001080 (unsigned long)res->start, irq);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001081
1082 return 0;
1083
1084fail_free_queue:
1085 destroy_workqueue(espi->wq);
Mika Westerberg626a96d2011-05-29 13:10:06 +03001086fail_free_dma:
1087 ep93xx_spi_release_dma(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001088fail_put_clock:
1089 clk_put(espi->clk);
1090fail_release_master:
1091 spi_master_put(master);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001092
1093 return error;
1094}
1095
Grant Likelyfd4a3192012-12-07 16:57:14 +00001096static int ep93xx_spi_remove(struct platform_device *pdev)
Mika Westerberg011f23a2010-05-06 04:47:04 +00001097{
1098 struct spi_master *master = platform_get_drvdata(pdev);
1099 struct ep93xx_spi *espi = spi_master_get_devdata(master);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001100
1101 spin_lock_irq(&espi->lock);
1102 espi->running = false;
1103 spin_unlock_irq(&espi->lock);
1104
1105 destroy_workqueue(espi->wq);
1106
1107 /*
1108 * Complete remaining messages with %-ESHUTDOWN status.
1109 */
1110 spin_lock_irq(&espi->lock);
1111 while (!list_empty(&espi->msg_queue)) {
1112 struct spi_message *msg;
1113
1114 msg = list_first_entry(&espi->msg_queue,
1115 struct spi_message, queue);
1116 list_del_init(&msg->queue);
1117 msg->status = -ESHUTDOWN;
1118 spin_unlock_irq(&espi->lock);
1119 msg->complete(msg->context);
1120 spin_lock_irq(&espi->lock);
1121 }
1122 spin_unlock_irq(&espi->lock);
1123
Mika Westerberg626a96d2011-05-29 13:10:06 +03001124 ep93xx_spi_release_dma(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001125 clk_put(espi->clk);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001126
1127 spi_unregister_master(master);
1128 return 0;
1129}
1130
1131static struct platform_driver ep93xx_spi_driver = {
1132 .driver = {
1133 .name = "ep93xx-spi",
1134 .owner = THIS_MODULE,
1135 },
Grant Likely940ab882011-10-05 11:29:49 -06001136 .probe = ep93xx_spi_probe,
Grant Likelyfd4a3192012-12-07 16:57:14 +00001137 .remove = ep93xx_spi_remove,
Mika Westerberg011f23a2010-05-06 04:47:04 +00001138};
Grant Likely940ab882011-10-05 11:29:49 -06001139module_platform_driver(ep93xx_spi_driver);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001140
1141MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1142MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1143MODULE_LICENSE("GPL");
1144MODULE_ALIAS("platform:ep93xx-spi");