blob: d583f2aa744e5b0de53101adbc1f29c60a03cbfa [file] [log] [blame]
Thomas Gleixnerb886d83c2019-06-01 10:08:55 +02001// SPDX-License-Identifier: GPL-2.0-only
Gregory Haskins6e0534f2008-05-12 21:21:01 +02002/*
Peter Zijlstra391e43d2011-11-15 17:14:39 +01003 * kernel/sched/cpupri.c
Gregory Haskins6e0534f2008-05-12 21:21:01 +02004 *
5 * CPU priority management
6 *
7 * Copyright (C) 2007-2008 Novell
8 *
9 * Author: Gregory Haskins <ghaskins@novell.com>
10 *
11 * This code tracks the priority of each CPU so that global migration
12 * decisions are easy to calculate. Each CPU can be in a state as follows:
13 *
Peter Zijlstrab13772f2020-10-14 21:39:04 +020014 * (INVALID), NORMAL, RT1, ... RT99, HIGHER
Gregory Haskins6e0534f2008-05-12 21:21:01 +020015 *
16 * going from the lowest priority to the highest. CPUs in the INVALID state
17 * are not eligible for routing. The system maintains this state with
Ingo Molnar97fb7a02018-03-03 14:01:12 +010018 * a 2 dimensional bitmap (the first for priority class, the second for CPUs
Gregory Haskins6e0534f2008-05-12 21:21:01 +020019 * in that class). Therefore a typical application without affinity
20 * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
21 * searches). For tasks with affinity restrictions, the algorithm has a
Peter Zijlstrab13772f2020-10-14 21:39:04 +020022 * worst case complexity of O(min(101, nr_domcpus)), though the scenario that
Gregory Haskins6e0534f2008-05-12 21:21:01 +020023 * yields the worst case search is fairly contrived.
Gregory Haskins6e0534f2008-05-12 21:21:01 +020024 */
Ingo Molnar325ea102018-03-03 12:20:47 +010025#include "sched.h"
Gregory Haskins6e0534f2008-05-12 21:21:01 +020026
Peter Zijlstra934fc332020-10-14 21:06:49 +020027/*
28 * p->rt_priority p->prio newpri cpupri
29 *
30 * -1 -1 (CPUPRI_INVALID)
31 *
32 * 99 0 (CPUPRI_NORMAL)
33 *
34 * 1 98 98 1
35 * ...
36 * 49 50 50 49
37 * 50 49 49 50
38 * ...
39 * 99 0 0 99
Peter Zijlstrab13772f2020-10-14 21:39:04 +020040 *
41 * 100 100 (CPUPRI_HIGHER)
Peter Zijlstra934fc332020-10-14 21:06:49 +020042 */
Gregory Haskins6e0534f2008-05-12 21:21:01 +020043static int convert_prio(int prio)
44{
45 int cpupri;
46
Peter Zijlstra934fc332020-10-14 21:06:49 +020047 switch (prio) {
48 case CPUPRI_INVALID:
49 cpupri = CPUPRI_INVALID; /* -1 */
50 break;
51
52 case 0 ... 98:
53 cpupri = MAX_RT_PRIO-1 - prio; /* 1 ... 99 */
54 break;
55
56 case MAX_RT_PRIO-1:
57 cpupri = CPUPRI_NORMAL; /* 0 */
58 break;
Peter Zijlstrab13772f2020-10-14 21:39:04 +020059
60 case MAX_RT_PRIO:
61 cpupri = CPUPRI_HIGHER; /* 100 */
62 break;
Peter Zijlstra934fc332020-10-14 21:06:49 +020063 }
Gregory Haskins6e0534f2008-05-12 21:21:01 +020064
65 return cpupri;
66}
67
Qais Yousefd9cb2362020-03-02 13:27:16 +000068static inline int __cpupri_find(struct cpupri *cp, struct task_struct *p,
69 struct cpumask *lowest_mask, int idx)
70{
71 struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
72 int skip = 0;
73
74 if (!atomic_read(&(vec)->count))
75 skip = 1;
76 /*
77 * When looking at the vector, we need to read the counter,
78 * do a memory barrier, then read the mask.
79 *
Ingo Molnar3b037062021-03-18 13:38:50 +010080 * Note: This is still all racy, but we can deal with it.
Qais Yousefd9cb2362020-03-02 13:27:16 +000081 * Ideally, we only want to look at masks that are set.
82 *
83 * If a mask is not set, then the only thing wrong is that we
84 * did a little more work than necessary.
85 *
86 * If we read a zero count but the mask is set, because of the
87 * memory barriers, that can only happen when the highest prio
88 * task for a run queue has left the run queue, in which case,
89 * it will be followed by a pull. If the task we are processing
90 * fails to find a proper place to go, that pull request will
91 * pull this task if the run queue is running at a lower
92 * priority.
93 */
94 smp_rmb();
95
96 /* Need to do the rmb for every iteration */
97 if (skip)
98 return 0;
99
Peter Zijlstra95158a82020-10-01 16:05:39 +0200100 if (cpumask_any_and(&p->cpus_mask, vec->mask) >= nr_cpu_ids)
Qais Yousefd9cb2362020-03-02 13:27:16 +0000101 return 0;
102
103 if (lowest_mask) {
Peter Zijlstra95158a82020-10-01 16:05:39 +0200104 cpumask_and(lowest_mask, &p->cpus_mask, vec->mask);
Qais Yousefd9cb2362020-03-02 13:27:16 +0000105
106 /*
107 * We have to ensure that we have at least one bit
108 * still set in the array, since the map could have
109 * been concurrently emptied between the first and
110 * second reads of vec->mask. If we hit this
111 * condition, simply act as though we never hit this
112 * priority level and continue on.
113 */
114 if (cpumask_empty(lowest_mask))
115 return 0;
116 }
117
118 return 1;
119}
120
Qais Yousefa1bd02e2020-03-02 13:27:18 +0000121int cpupri_find(struct cpupri *cp, struct task_struct *p,
122 struct cpumask *lowest_mask)
123{
124 return cpupri_find_fitness(cp, p, lowest_mask, NULL);
125}
126
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200127/**
Qais Yousefa1bd02e2020-03-02 13:27:18 +0000128 * cpupri_find_fitness - find the best (lowest-pri) CPU in the system
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200129 * @cp: The cpupri context
130 * @p: The task
Rusty Russell13b8bd02009-03-25 15:01:22 +1030131 * @lowest_mask: A mask to fill in with selected CPUs (or NULL)
Qais Yousef804d4022019-10-09 11:46:11 +0100132 * @fitness_fn: A pointer to a function to do custom checks whether the CPU
133 * fits a specific criteria so that we only return those CPUs.
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200134 *
135 * Note: This function returns the recommended CPUs as calculated during the
Adam Buchbinder2a61aa42009-12-11 16:35:40 -0500136 * current invocation. By the time the call returns, the CPUs may have in
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200137 * fact changed priorities any number of times. While not ideal, it is not
138 * an issue of correctness since the normal rebalancer logic will correct
139 * any discrepancies created by racing against the uncertainty of the current
140 * priority configuration.
141 *
Yacine Belkadie69f6182013-07-12 20:45:47 +0200142 * Return: (int)bool - CPUs were found
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200143 */
Qais Yousefa1bd02e2020-03-02 13:27:18 +0000144int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p,
Qais Yousef804d4022019-10-09 11:46:11 +0100145 struct cpumask *lowest_mask,
146 bool (*fitness_fn)(struct task_struct *p, int cpu))
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200147{
Ying Xue014acbf2012-07-12 15:03:42 +0800148 int task_pri = convert_prio(p->prio);
Qais Yousefe94f80f2020-03-05 10:24:50 +0000149 int idx, cpu;
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200150
Steven Rostedt (Red Hat)6227cb02014-04-13 09:34:53 -0400151 BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
Steven Rostedtc92211d2011-08-02 16:36:12 -0400152
153 for (idx = 0; idx < task_pri; idx++) {
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200154
Qais Yousefd9cb2362020-03-02 13:27:16 +0000155 if (!__cpupri_find(cp, p, lowest_mask, idx))
156 continue;
157
158 if (!lowest_mask || !fitness_fn)
159 return 1;
160
161 /* Ensure the capacity of the CPUs fit the task */
162 for_each_cpu(cpu, lowest_mask) {
163 if (!fitness_fn(p, cpu))
164 cpumask_clear_cpu(cpu, lowest_mask);
165 }
166
Steven Rostedtc92211d2011-08-02 16:36:12 -0400167 /*
Qais Yousefd9cb2362020-03-02 13:27:16 +0000168 * If no CPU at the current priority can fit the task
169 * continue looking
Steven Rostedtc92211d2011-08-02 16:36:12 -0400170 */
Qais Yousefe94f80f2020-03-05 10:24:50 +0000171 if (cpumask_empty(lowest_mask))
Qais Yousefd9cb2362020-03-02 13:27:16 +0000172 continue;
Gregory Haskins07903af2009-07-30 10:57:28 -0400173
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200174 return 1;
175 }
176
Qais Yousefd9cb2362020-03-02 13:27:16 +0000177 /*
Qais Yousefe94f80f2020-03-05 10:24:50 +0000178 * If we failed to find a fitting lowest_mask, kick off a new search
179 * but without taking into account any fitness criteria this time.
Qais Yousefd9cb2362020-03-02 13:27:16 +0000180 *
181 * This rule favours honouring priority over fitting the task in the
182 * correct CPU (Capacity Awareness being the only user now).
183 * The idea is that if a higher priority task can run, then it should
184 * run even if this ends up being on unfitting CPU.
185 *
186 * The cost of this trade-off is not entirely clear and will probably
187 * be good for some workloads and bad for others.
188 *
Ingo Molnar3b037062021-03-18 13:38:50 +0100189 * The main idea here is that if some CPUs were over-committed, we try
Qais Yousefd9cb2362020-03-02 13:27:16 +0000190 * to spread which is what the scheduler traditionally did. Sys admins
191 * must do proper RT planning to avoid overloading the system if they
192 * really care.
193 */
Qais Yousefe94f80f2020-03-05 10:24:50 +0000194 if (fitness_fn)
195 return cpupri_find(cp, p, lowest_mask);
Qais Yousefd9cb2362020-03-02 13:27:16 +0000196
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200197 return 0;
198}
199
200/**
Ingo Molnar97fb7a02018-03-03 14:01:12 +0100201 * cpupri_set - update the CPU priority setting
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200202 * @cp: The cpupri context
Ingo Molnar97fb7a02018-03-03 14:01:12 +0100203 * @cpu: The target CPU
Peter Zijlstrab13772f2020-10-14 21:39:04 +0200204 * @newpri: The priority (INVALID,NORMAL,RT1-RT99,HIGHER) to assign to this CPU
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200205 *
206 * Note: Assumes cpu_rq(cpu)->lock is locked
207 *
208 * Returns: (void)
209 */
210void cpupri_set(struct cpupri *cp, int cpu, int newpri)
211{
Ying Xue014acbf2012-07-12 15:03:42 +0800212 int *currpri = &cp->cpu_to_pri[cpu];
213 int oldpri = *currpri;
214 int do_mb = 0;
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200215
216 newpri = convert_prio(newpri);
217
218 BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
219
220 if (newpri == oldpri)
221 return;
222
223 /*
Ingo Molnar97fb7a02018-03-03 14:01:12 +0100224 * If the CPU was currently mapped to a different value, we
Steven Rostedtc3a2ae32009-07-29 00:21:23 -0400225 * need to map it to the new value then remove the old value.
226 * Note, we must add the new value first, otherwise we risk the
Yong Zhang5710f152011-08-06 08:10:04 +0800227 * cpu being missed by the priority loop in cpupri_find.
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200228 */
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200229 if (likely(newpri != CPUPRI_INVALID)) {
230 struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
231
Rusty Russell68e74562008-11-25 02:35:13 +1030232 cpumask_set_cpu(cpu, vec->mask);
Steven Rostedtc92211d2011-08-02 16:36:12 -0400233 /*
234 * When adding a new vector, we update the mask first,
235 * do a write memory barrier, and then update the count, to
236 * make sure the vector is visible when count is set.
237 */
Peter Zijlstra4e857c52014-03-17 18:06:10 +0100238 smp_mb__before_atomic();
Steven Rostedtc92211d2011-08-02 16:36:12 -0400239 atomic_inc(&(vec)->count);
Steven Rostedtd4737502011-08-05 08:27:49 -0400240 do_mb = 1;
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200241 }
Steven Rostedtc3a2ae32009-07-29 00:21:23 -0400242 if (likely(oldpri != CPUPRI_INVALID)) {
243 struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
244
Steven Rostedtc92211d2011-08-02 16:36:12 -0400245 /*
Steven Rostedtd4737502011-08-05 08:27:49 -0400246 * Because the order of modification of the vec->count
247 * is important, we must make sure that the update
248 * of the new prio is seen before we decrement the
249 * old prio. This makes sure that the loop sees
250 * one or the other when we raise the priority of
251 * the run queue. We don't care about when we lower the
252 * priority, as that will trigger an rt pull anyway.
253 *
254 * We only need to do a memory barrier if we updated
255 * the new priority vec.
256 */
257 if (do_mb)
Peter Zijlstra4e857c52014-03-17 18:06:10 +0100258 smp_mb__after_atomic();
Steven Rostedtd4737502011-08-05 08:27:49 -0400259
260 /*
Steven Rostedtc92211d2011-08-02 16:36:12 -0400261 * When removing from the vector, we decrement the counter first
262 * do a memory barrier and then clear the mask.
263 */
264 atomic_dec(&(vec)->count);
Peter Zijlstra4e857c52014-03-17 18:06:10 +0100265 smp_mb__after_atomic();
Steven Rostedtc3a2ae32009-07-29 00:21:23 -0400266 cpumask_clear_cpu(cpu, vec->mask);
Steven Rostedtc3a2ae32009-07-29 00:21:23 -0400267 }
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200268
269 *currpri = newpri;
270}
271
272/**
273 * cpupri_init - initialize the cpupri structure
274 * @cp: The cpupri context
275 *
Yacine Belkadie69f6182013-07-12 20:45:47 +0200276 * Return: -ENOMEM on memory allocation failure.
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200277 */
Pekka Enberg68c38fc2010-07-15 23:18:22 +0300278int cpupri_init(struct cpupri *cp)
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200279{
280 int i;
281
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200282 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
283 struct cpupri_vec *vec = &cp->pri_to_cpu[i];
284
Steven Rostedtc92211d2011-08-02 16:36:12 -0400285 atomic_set(&vec->count, 0);
Pekka Enberg68c38fc2010-07-15 23:18:22 +0300286 if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
Rusty Russell68e74562008-11-25 02:35:13 +1030287 goto cleanup;
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200288 }
289
Peter Zijlstra4dac0b62014-05-14 16:04:26 +0200290 cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
291 if (!cp->cpu_to_pri)
292 goto cleanup;
293
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200294 for_each_possible_cpu(i)
295 cp->cpu_to_pri[i] = CPUPRI_INVALID;
Peter Zijlstra4dac0b62014-05-14 16:04:26 +0200296
Rusty Russell68e74562008-11-25 02:35:13 +1030297 return 0;
298
299cleanup:
300 for (i--; i >= 0; i--)
301 free_cpumask_var(cp->pri_to_cpu[i].mask);
302 return -ENOMEM;
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200303}
304
Rusty Russell68e74562008-11-25 02:35:13 +1030305/**
306 * cpupri_cleanup - clean up the cpupri structure
307 * @cp: The cpupri context
308 */
309void cpupri_cleanup(struct cpupri *cp)
310{
311 int i;
Gregory Haskins6e0534f2008-05-12 21:21:01 +0200312
Peter Zijlstra4dac0b62014-05-14 16:04:26 +0200313 kfree(cp->cpu_to_pri);
Rusty Russell68e74562008-11-25 02:35:13 +1030314 for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
315 free_cpumask_var(cp->pri_to_cpu[i].mask);
316}