blob: 4ab1d89f642ea75f323dae6e9aba8f39097d885a [file] [log] [blame]
Alex Elder650d1602020-03-05 22:28:21 -06001// SPDX-License-Identifier: GPL-2.0
2
3/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2020 Linaro Ltd.
5 */
6
7#include <linux/types.h>
8#include <linux/bits.h>
9#include <linux/bitfield.h>
10#include <linux/mutex.h>
11#include <linux/completion.h>
12#include <linux/io.h>
13#include <linux/bug.h>
14#include <linux/interrupt.h>
15#include <linux/platform_device.h>
16#include <linux/netdevice.h>
17
18#include "gsi.h"
19#include "gsi_reg.h"
20#include "gsi_private.h"
21#include "gsi_trans.h"
22#include "ipa_gsi.h"
23#include "ipa_data.h"
Alex Elder1d0c09d2020-11-02 11:53:55 -060024#include "ipa_version.h"
Alex Elder650d1602020-03-05 22:28:21 -060025
26/**
27 * DOC: The IPA Generic Software Interface
28 *
29 * The generic software interface (GSI) is an integral component of the IPA,
30 * providing a well-defined communication layer between the AP subsystem
31 * and the IPA core. The modem uses the GSI layer as well.
32 *
33 * -------- ---------
34 * | | | |
35 * | AP +<---. .----+ Modem |
36 * | +--. | | .->+ |
37 * | | | | | | | |
38 * -------- | | | | ---------
39 * v | v |
40 * --+-+---+-+--
41 * | GSI |
42 * |-----------|
43 * | |
44 * | IPA |
45 * | |
46 * -------------
47 *
48 * In the above diagram, the AP and Modem represent "execution environments"
49 * (EEs), which are independent operating environments that use the IPA for
50 * data transfer.
51 *
52 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53 * of data to or from the IPA. A channel is implemented as a ring buffer,
54 * with a DRAM-resident array of "transfer elements" (TREs) available to
55 * describe transfers to or from other EEs through the IPA. A transfer
56 * element can also contain an immediate command, requesting the IPA perform
57 * actions other than data transfer.
58 *
59 * Each TRE refers to a block of data--also located DRAM. After writing one
60 * or more TREs to a channel, the writer (either the IPA or an EE) writes a
61 * doorbell register to inform the receiving side how many elements have
62 * been written.
63 *
64 * Each channel has a GSI "event ring" associated with it. An event ring
65 * is implemented very much like a channel ring, but is always directed from
66 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
67 * events by adding an entry to the event ring associated with the channel.
68 * The GSI then writes its doorbell for the event ring, causing the target
69 * EE to be interrupted. Each entry in an event ring contains a pointer
70 * to the channel TRE whose completion the event represents.
71 *
72 * Each TRE in a channel ring has a set of flags. One flag indicates whether
73 * the completion of the transfer operation generates an entry (and possibly
74 * an interrupt) in the channel's event ring. Other flags allow transfer
75 * elements to be chained together, forming a single logical transaction.
76 * TRE flags are used to control whether and when interrupts are generated
77 * to signal completion of channel transfers.
78 *
79 * Elements in channel and event rings are completed (or consumed) strictly
80 * in order. Completion of one entry implies the completion of all preceding
81 * entries. A single completion interrupt can therefore communicate the
82 * completion of many transfers.
83 *
84 * Note that all GSI registers are little-endian, which is the assumed
85 * endianness of I/O space accesses. The accessor functions perform byte
86 * swapping if needed (i.e., for a big endian CPU).
87 */
88
89/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90#define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
91
92#define GSI_CMD_TIMEOUT 5 /* seconds */
93
94#define GSI_CHANNEL_STOP_RX_RETRIES 10
95
96#define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */
97#define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */
98
99#define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */
100
101/* An entry in an event ring */
102struct gsi_event {
103 __le64 xfer_ptr;
104 __le16 len;
105 u8 reserved1;
106 u8 code;
107 __le16 reserved2;
108 u8 type;
109 u8 chid;
110};
111
112/* Hardware values from the error log register error code field */
113enum gsi_err_code {
114 GSI_INVALID_TRE_ERR = 0x1,
115 GSI_OUT_OF_BUFFERS_ERR = 0x2,
116 GSI_OUT_OF_RESOURCES_ERR = 0x3,
117 GSI_UNSUPPORTED_INTER_EE_OP_ERR = 0x4,
118 GSI_EVT_RING_EMPTY_ERR = 0x5,
119 GSI_NON_ALLOCATED_EVT_ACCESS_ERR = 0x6,
120 GSI_HWO_1_ERR = 0x8,
121};
122
123/* Hardware values from the error log register error type field */
124enum gsi_err_type {
125 GSI_ERR_TYPE_GLOB = 0x1,
126 GSI_ERR_TYPE_CHAN = 0x2,
127 GSI_ERR_TYPE_EVT = 0x3,
128};
129
130/* Hardware values used when programming an event ring */
131enum gsi_evt_chtype {
132 GSI_EVT_CHTYPE_MHI_EV = 0x0,
133 GSI_EVT_CHTYPE_XHCI_EV = 0x1,
134 GSI_EVT_CHTYPE_GPI_EV = 0x2,
135 GSI_EVT_CHTYPE_XDCI_EV = 0x3,
136};
137
138/* Hardware values used when programming a channel */
139enum gsi_channel_protocol {
140 GSI_CHANNEL_PROTOCOL_MHI = 0x0,
141 GSI_CHANNEL_PROTOCOL_XHCI = 0x1,
142 GSI_CHANNEL_PROTOCOL_GPI = 0x2,
143 GSI_CHANNEL_PROTOCOL_XDCI = 0x3,
144};
145
146/* Hardware values representing an event ring immediate command opcode */
147enum gsi_evt_cmd_opcode {
148 GSI_EVT_ALLOCATE = 0x0,
149 GSI_EVT_RESET = 0x9,
150 GSI_EVT_DE_ALLOC = 0xa,
151};
152
153/* Hardware values representing a generic immediate command opcode */
154enum gsi_generic_cmd_opcode {
155 GSI_GENERIC_HALT_CHANNEL = 0x1,
156 GSI_GENERIC_ALLOCATE_CHANNEL = 0x2,
157};
158
159/* Hardware values representing a channel immediate command opcode */
160enum gsi_ch_cmd_opcode {
161 GSI_CH_ALLOCATE = 0x0,
162 GSI_CH_START = 0x1,
163 GSI_CH_STOP = 0x2,
164 GSI_CH_RESET = 0x9,
165 GSI_CH_DE_ALLOC = 0xa,
166};
167
168/** gsi_channel_scratch_gpi - GPI protocol scratch register
169 * @max_outstanding_tre:
170 * Defines the maximum number of TREs allowed in a single transaction
171 * on a channel (in bytes). This determines the amount of prefetch
172 * performed by the hardware. We configure this to equal the size of
173 * the TLV FIFO for the channel.
174 * @outstanding_threshold:
175 * Defines the threshold (in bytes) determining when the sequencer
176 * should update the channel doorbell. We configure this to equal
177 * the size of two TREs.
178 */
179struct gsi_channel_scratch_gpi {
180 u64 reserved1;
181 u16 reserved2;
182 u16 max_outstanding_tre;
183 u16 reserved3;
184 u16 outstanding_threshold;
185};
186
187/** gsi_channel_scratch - channel scratch configuration area
188 *
189 * The exact interpretation of this register is protocol-specific.
190 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
191 */
192union gsi_channel_scratch {
193 struct gsi_channel_scratch_gpi gpi;
194 struct {
195 u32 word1;
196 u32 word2;
197 u32 word3;
198 u32 word4;
199 } data;
200};
201
202/* Check things that can be validated at build time. */
203static void gsi_validate_build(void)
204{
205 /* This is used as a divisor */
206 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
207
208 /* Code assumes the size of channel and event ring element are
209 * the same (and fixed). Make sure the size of an event ring
210 * element is what's expected.
211 */
212 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
213
214 /* Hardware requires a 2^n ring size. We ensure the number of
215 * elements in an event ring is a power of 2 elsewhere; this
216 * ensure the elements themselves meet the requirement.
217 */
218 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
219
220 /* The channel element size must fit in this field */
221 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
222
223 /* The event ring element size must fit in this field */
224 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
225}
226
227/* Return the channel id associated with a given channel */
228static u32 gsi_channel_id(struct gsi_channel *channel)
229{
230 return channel - &channel->gsi->channel[0];
231}
232
Alex Elder3ca97ff2020-11-05 12:14:00 -0600233/* Update the GSI IRQ type register with the cached value */
234static void gsi_irq_type_update(struct gsi *gsi)
235{
236 iowrite32(gsi->type_enabled_bitmap,
237 gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
238}
239
Alex Elderb054d4f2020-11-05 12:14:01 -0600240static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
241{
242 gsi->type_enabled_bitmap |= BIT(type_id);
243 gsi_irq_type_update(gsi);
244}
245
246static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
247{
248 gsi->type_enabled_bitmap &= ~BIT(type_id);
249 gsi_irq_type_update(gsi);
250}
251
Alex Elder97eb94c2020-11-05 12:13:59 -0600252/* Turn off all GSI interrupts initially */
253static void gsi_irq_setup(struct gsi *gsi)
254{
Alex Elder3ca97ff2020-11-05 12:14:00 -0600255 gsi->type_enabled_bitmap = 0;
256 gsi_irq_type_update(gsi);
Alex Elderb054d4f2020-11-05 12:14:01 -0600257
258 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
Alex Elderb4175f82020-11-05 12:14:02 -0600259 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
Alex Elderd6c9e3f2020-11-05 12:14:03 -0600260 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
Alex Elder97eb94c2020-11-05 12:13:59 -0600261}
262
263/* Turn off all GSI interrupts when we're all done */
264static void gsi_irq_teardown(struct gsi *gsi)
265{
Alex Elder3ca97ff2020-11-05 12:14:00 -0600266 gsi->type_enabled_bitmap = 0;
267 gsi_irq_type_update(gsi);
Alex Elder97eb94c2020-11-05 12:13:59 -0600268}
269
Alex Elder650d1602020-03-05 22:28:21 -0600270static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id)
271{
272 u32 val;
273
Alex Eldera0545392020-11-05 12:13:57 -0600274 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
275 val = gsi->ieob_enabled_bitmap;
Alex Elder650d1602020-03-05 22:28:21 -0600276 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
277}
278
Alex Elder650d1602020-03-05 22:28:21 -0600279static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id)
280{
281 u32 val;
282
Alex Eldera0545392020-11-05 12:13:57 -0600283 gsi->ieob_enabled_bitmap &= ~BIT(evt_ring_id);
284 val = gsi->ieob_enabled_bitmap;
Alex Elder650d1602020-03-05 22:28:21 -0600285 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
286}
287
288/* Enable all GSI_interrupt types */
289static void gsi_irq_enable(struct gsi *gsi)
290{
291 u32 val;
292
Alex Elderd6c9e3f2020-11-05 12:14:03 -0600293 /* Global interrupts include hardware error reports. Enable
294 * that so we can at least report the error should it occur.
295 */
296 iowrite32(ERROR_INT_FMASK, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
297 gsi->type_enabled_bitmap |= BIT(GSI_GLOB_EE);
298
Alex Elder650d1602020-03-05 22:28:21 -0600299 /* Each IEOB interrupt is enabled (later) as needed by channels */
300 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
Alex Elder3ca97ff2020-11-05 12:14:00 -0600301 gsi->type_enabled_bitmap |= BIT(GSI_IEOB);
Alex Elder650d1602020-03-05 22:28:21 -0600302
Alex Elder3ca97ff2020-11-05 12:14:00 -0600303 /* We don't use inter-EE channel or event interrupts */
Alex Elder650d1602020-03-05 22:28:21 -0600304
305 /* Never enable GSI_BREAK_POINT */
Alex Elderfb980ef2020-09-28 18:04:43 -0500306 val = GSI_CNTXT_GSI_IRQ_ALL & ~BREAK_POINT_FMASK;
Alex Elder650d1602020-03-05 22:28:21 -0600307 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
Alex Elder3ca97ff2020-11-05 12:14:00 -0600308 gsi->type_enabled_bitmap |= BIT(GSI_GENERAL);
Alex Elder97eb94c2020-11-05 12:13:59 -0600309
Alex Elder3ca97ff2020-11-05 12:14:00 -0600310 /* Finally update the interrupt types we want enabled */
311 gsi_irq_type_update(gsi);
Alex Elder650d1602020-03-05 22:28:21 -0600312}
313
Alex Elder3ca97ff2020-11-05 12:14:00 -0600314/* Disable all GSI interrupt types */
Alex Elder650d1602020-03-05 22:28:21 -0600315static void gsi_irq_disable(struct gsi *gsi)
316{
Alex Elder3ca97ff2020-11-05 12:14:00 -0600317 gsi->type_enabled_bitmap = 0;
318 gsi_irq_type_update(gsi);
Alex Elder97eb94c2020-11-05 12:13:59 -0600319
Alex Elder650d1602020-03-05 22:28:21 -0600320 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
Alex Elder650d1602020-03-05 22:28:21 -0600321 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
Alex Elderd6c9e3f2020-11-05 12:14:03 -0600322 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
Alex Elder650d1602020-03-05 22:28:21 -0600323}
324
325/* Return the virtual address associated with a ring index */
326void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
327{
328 /* Note: index *must* be used modulo the ring count here */
329 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
330}
331
332/* Return the 32-bit DMA address associated with a ring index */
333static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
334{
335 return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE;
336}
337
338/* Return the ring index of a 32-bit ring offset */
339static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
340{
341 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
342}
343
344/* Issue a GSI command by writing a value to a register, then wait for
345 * completion to be signaled. Returns true if the command completes
346 * or false if it times out.
347 */
348static bool
349gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
350{
351 reinit_completion(completion);
352
353 iowrite32(val, gsi->virt + reg);
354
355 return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ);
356}
357
358/* Return the hardware's notion of the current state of an event ring */
359static enum gsi_evt_ring_state
360gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
361{
362 u32 val;
363
364 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
365
366 return u32_get_bits(val, EV_CHSTATE_FMASK);
367}
368
369/* Issue an event ring command and wait for it to complete */
370static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
371 enum gsi_evt_cmd_opcode opcode)
372{
373 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
374 struct completion *completion = &evt_ring->completion;
Alex Elder84634882020-06-30 07:58:45 -0500375 struct device *dev = gsi->dev;
Alex Elderb4175f82020-11-05 12:14:02 -0600376 bool success;
Alex Elder650d1602020-03-05 22:28:21 -0600377 u32 val;
378
Alex Elderb4175f82020-11-05 12:14:02 -0600379 /* We only perform one event ring command at a time, and event
380 * control interrupts should only occur when such a command
381 * is issued here. Only permit *this* event ring to trigger
382 * an interrupt, and only enable the event control IRQ type
383 * when we expect it to occur.
384 */
385 val = BIT(evt_ring_id);
386 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
387 gsi_irq_type_enable(gsi, GSI_EV_CTRL);
388
Alex Elder650d1602020-03-05 22:28:21 -0600389 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
390 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
391
Alex Elderb4175f82020-11-05 12:14:02 -0600392 success = gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
393
394 /* Disable the interrupt again */
395 gsi_irq_type_disable(gsi, GSI_EV_CTRL);
396 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
397
398 if (success)
399 return 0;
Alex Elder650d1602020-03-05 22:28:21 -0600400
Alex Elder84634882020-06-30 07:58:45 -0500401 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
402 opcode, evt_ring_id, evt_ring->state);
Alex Elder650d1602020-03-05 22:28:21 -0600403
404 return -ETIMEDOUT;
405}
406
407/* Allocate an event ring in NOT_ALLOCATED state */
408static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
409{
410 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
411 int ret;
412
413 /* Get initial event ring state */
414 evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
Alex Eldera442b3c2020-06-30 07:58:44 -0500415 if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
416 dev_err(gsi->dev, "bad event ring state %u before alloc\n",
417 evt_ring->state);
Alex Elder650d1602020-03-05 22:28:21 -0600418 return -EINVAL;
Alex Eldera442b3c2020-06-30 07:58:44 -0500419 }
Alex Elder650d1602020-03-05 22:28:21 -0600420
421 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
422 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
Alex Eldera442b3c2020-06-30 07:58:44 -0500423 dev_err(gsi->dev, "bad event ring state %u after alloc\n",
Alex Elder650d1602020-03-05 22:28:21 -0600424 evt_ring->state);
425 ret = -EIO;
426 }
427
428 return ret;
429}
430
431/* Reset a GSI event ring in ALLOCATED or ERROR state. */
432static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
433{
434 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
435 enum gsi_evt_ring_state state = evt_ring->state;
436 int ret;
437
438 if (state != GSI_EVT_RING_STATE_ALLOCATED &&
439 state != GSI_EVT_RING_STATE_ERROR) {
Alex Eldera442b3c2020-06-30 07:58:44 -0500440 dev_err(gsi->dev, "bad event ring state %u before reset\n",
Alex Elder650d1602020-03-05 22:28:21 -0600441 evt_ring->state);
442 return;
443 }
444
445 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
446 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED)
Alex Eldera442b3c2020-06-30 07:58:44 -0500447 dev_err(gsi->dev, "bad event ring state %u after reset\n",
Alex Elder650d1602020-03-05 22:28:21 -0600448 evt_ring->state);
449}
450
451/* Issue a hardware de-allocation request for an allocated event ring */
452static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
453{
454 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
455 int ret;
456
457 if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) {
Alex Eldera442b3c2020-06-30 07:58:44 -0500458 dev_err(gsi->dev, "bad event ring state %u before dealloc\n",
Alex Elder650d1602020-03-05 22:28:21 -0600459 evt_ring->state);
460 return;
461 }
462
463 ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
464 if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED)
Alex Eldera442b3c2020-06-30 07:58:44 -0500465 dev_err(gsi->dev, "bad event ring state %u after dealloc\n",
Alex Elder650d1602020-03-05 22:28:21 -0600466 evt_ring->state);
467}
468
Alex Eldera2003b32020-04-30 17:13:23 -0500469/* Fetch the current state of a channel from hardware */
Alex Elderaba79242020-04-30 17:13:22 -0500470static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
Alex Elder650d1602020-03-05 22:28:21 -0600471{
Alex Elderaba79242020-04-30 17:13:22 -0500472 u32 channel_id = gsi_channel_id(channel);
473 void *virt = channel->gsi->virt;
Alex Elder650d1602020-03-05 22:28:21 -0600474 u32 val;
475
Alex Elderaba79242020-04-30 17:13:22 -0500476 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
Alex Elder650d1602020-03-05 22:28:21 -0600477
478 return u32_get_bits(val, CHSTATE_FMASK);
479}
480
481/* Issue a channel command and wait for it to complete */
482static int
483gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
484{
485 struct completion *completion = &channel->completion;
486 u32 channel_id = gsi_channel_id(channel);
Alex Eldera2003b32020-04-30 17:13:23 -0500487 struct gsi *gsi = channel->gsi;
Alex Elder84634882020-06-30 07:58:45 -0500488 struct device *dev = gsi->dev;
Alex Elderb054d4f2020-11-05 12:14:01 -0600489 bool success;
Alex Elder650d1602020-03-05 22:28:21 -0600490 u32 val;
491
Alex Elderb054d4f2020-11-05 12:14:01 -0600492 /* We only perform one channel command at a time, and channel
493 * control interrupts should only occur when such a command is
494 * issued here. So we only permit *this* channel to trigger
495 * an interrupt and only enable the channel control IRQ type
496 * when we expect it to occur.
497 */
498 val = BIT(channel_id);
499 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
500 gsi_irq_type_enable(gsi, GSI_CH_CTRL);
501
Alex Elder650d1602020-03-05 22:28:21 -0600502 val = u32_encode_bits(channel_id, CH_CHID_FMASK);
503 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
Alex Elderb054d4f2020-11-05 12:14:01 -0600504 success = gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion);
Alex Elder650d1602020-03-05 22:28:21 -0600505
Alex Elderb054d4f2020-11-05 12:14:01 -0600506 /* Disable the interrupt again */
507 gsi_irq_type_disable(gsi, GSI_CH_CTRL);
508 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
509
510 if (success)
511 return 0;
Alex Elder650d1602020-03-05 22:28:21 -0600512
Alex Elder84634882020-06-30 07:58:45 -0500513 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
Alex Eldera2003b32020-04-30 17:13:23 -0500514 opcode, channel_id, gsi_channel_state(channel));
Alex Elder650d1602020-03-05 22:28:21 -0600515
516 return -ETIMEDOUT;
517}
518
519/* Allocate GSI channel in NOT_ALLOCATED state */
520static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
521{
522 struct gsi_channel *channel = &gsi->channel[channel_id];
Alex Eldera442b3c2020-06-30 07:58:44 -0500523 struct device *dev = gsi->dev;
Alex Eldera2003b32020-04-30 17:13:23 -0500524 enum gsi_channel_state state;
Alex Elder650d1602020-03-05 22:28:21 -0600525 int ret;
526
527 /* Get initial channel state */
Alex Eldera2003b32020-04-30 17:13:23 -0500528 state = gsi_channel_state(channel);
Alex Eldera442b3c2020-06-30 07:58:44 -0500529 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
530 dev_err(dev, "bad channel state %u before alloc\n", state);
Alex Elder650d1602020-03-05 22:28:21 -0600531 return -EINVAL;
Alex Eldera442b3c2020-06-30 07:58:44 -0500532 }
Alex Elder650d1602020-03-05 22:28:21 -0600533
534 ret = gsi_channel_command(channel, GSI_CH_ALLOCATE);
Alex Eldera2003b32020-04-30 17:13:23 -0500535
536 /* Channel state will normally have been updated */
537 state = gsi_channel_state(channel);
538 if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED) {
Alex Eldera442b3c2020-06-30 07:58:44 -0500539 dev_err(dev, "bad channel state %u after alloc\n", state);
Alex Elder650d1602020-03-05 22:28:21 -0600540 ret = -EIO;
541 }
542
543 return ret;
544}
545
546/* Start an ALLOCATED channel */
547static int gsi_channel_start_command(struct gsi_channel *channel)
548{
Alex Eldera442b3c2020-06-30 07:58:44 -0500549 struct device *dev = channel->gsi->dev;
Alex Eldera2003b32020-04-30 17:13:23 -0500550 enum gsi_channel_state state;
Alex Elder650d1602020-03-05 22:28:21 -0600551 int ret;
552
Alex Eldera2003b32020-04-30 17:13:23 -0500553 state = gsi_channel_state(channel);
Alex Elder650d1602020-03-05 22:28:21 -0600554 if (state != GSI_CHANNEL_STATE_ALLOCATED &&
Alex Eldera442b3c2020-06-30 07:58:44 -0500555 state != GSI_CHANNEL_STATE_STOPPED) {
556 dev_err(dev, "bad channel state %u before start\n", state);
Alex Elder650d1602020-03-05 22:28:21 -0600557 return -EINVAL;
Alex Eldera442b3c2020-06-30 07:58:44 -0500558 }
Alex Elder650d1602020-03-05 22:28:21 -0600559
560 ret = gsi_channel_command(channel, GSI_CH_START);
Alex Eldera2003b32020-04-30 17:13:23 -0500561
562 /* Channel state will normally have been updated */
563 state = gsi_channel_state(channel);
564 if (!ret && state != GSI_CHANNEL_STATE_STARTED) {
Alex Eldera442b3c2020-06-30 07:58:44 -0500565 dev_err(dev, "bad channel state %u after start\n", state);
Alex Elder650d1602020-03-05 22:28:21 -0600566 ret = -EIO;
567 }
568
569 return ret;
570}
571
572/* Stop a GSI channel in STARTED state */
573static int gsi_channel_stop_command(struct gsi_channel *channel)
574{
Alex Eldera442b3c2020-06-30 07:58:44 -0500575 struct device *dev = channel->gsi->dev;
Alex Eldera2003b32020-04-30 17:13:23 -0500576 enum gsi_channel_state state;
Alex Elder650d1602020-03-05 22:28:21 -0600577 int ret;
578
Alex Eldera2003b32020-04-30 17:13:23 -0500579 state = gsi_channel_state(channel);
Alex Elder5468cbc2020-06-30 07:44:42 -0500580
581 /* Channel could have entered STOPPED state since last call
582 * if it timed out. If so, we're done.
583 */
584 if (state == GSI_CHANNEL_STATE_STOPPED)
585 return 0;
586
Alex Elder650d1602020-03-05 22:28:21 -0600587 if (state != GSI_CHANNEL_STATE_STARTED &&
Alex Eldera442b3c2020-06-30 07:58:44 -0500588 state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
589 dev_err(dev, "bad channel state %u before stop\n", state);
Alex Elder650d1602020-03-05 22:28:21 -0600590 return -EINVAL;
Alex Eldera442b3c2020-06-30 07:58:44 -0500591 }
Alex Elder650d1602020-03-05 22:28:21 -0600592
593 ret = gsi_channel_command(channel, GSI_CH_STOP);
Alex Eldera2003b32020-04-30 17:13:23 -0500594
595 /* Channel state will normally have been updated */
596 state = gsi_channel_state(channel);
597 if (ret || state == GSI_CHANNEL_STATE_STOPPED)
Alex Elder650d1602020-03-05 22:28:21 -0600598 return ret;
599
600 /* We may have to try again if stop is in progress */
Alex Eldera2003b32020-04-30 17:13:23 -0500601 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
Alex Elder650d1602020-03-05 22:28:21 -0600602 return -EAGAIN;
603
Alex Eldera442b3c2020-06-30 07:58:44 -0500604 dev_err(dev, "bad channel state %u after stop\n", state);
Alex Elder650d1602020-03-05 22:28:21 -0600605
606 return -EIO;
607}
608
609/* Reset a GSI channel in ALLOCATED or ERROR state. */
610static void gsi_channel_reset_command(struct gsi_channel *channel)
611{
Alex Eldera442b3c2020-06-30 07:58:44 -0500612 struct device *dev = channel->gsi->dev;
Alex Eldera2003b32020-04-30 17:13:23 -0500613 enum gsi_channel_state state;
Alex Elder650d1602020-03-05 22:28:21 -0600614 int ret;
615
616 msleep(1); /* A short delay is required before a RESET command */
617
Alex Eldera2003b32020-04-30 17:13:23 -0500618 state = gsi_channel_state(channel);
619 if (state != GSI_CHANNEL_STATE_STOPPED &&
620 state != GSI_CHANNEL_STATE_ERROR) {
Alex Eldera442b3c2020-06-30 07:58:44 -0500621 dev_err(dev, "bad channel state %u before reset\n", state);
Alex Elder650d1602020-03-05 22:28:21 -0600622 return;
623 }
624
625 ret = gsi_channel_command(channel, GSI_CH_RESET);
Alex Eldera2003b32020-04-30 17:13:23 -0500626
627 /* Channel state will normally have been updated */
628 state = gsi_channel_state(channel);
629 if (!ret && state != GSI_CHANNEL_STATE_ALLOCATED)
Alex Eldera442b3c2020-06-30 07:58:44 -0500630 dev_err(dev, "bad channel state %u after reset\n", state);
Alex Elder650d1602020-03-05 22:28:21 -0600631}
632
633/* Deallocate an ALLOCATED GSI channel */
634static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
635{
636 struct gsi_channel *channel = &gsi->channel[channel_id];
Alex Eldera442b3c2020-06-30 07:58:44 -0500637 struct device *dev = gsi->dev;
Alex Eldera2003b32020-04-30 17:13:23 -0500638 enum gsi_channel_state state;
Alex Elder650d1602020-03-05 22:28:21 -0600639 int ret;
640
Alex Eldera2003b32020-04-30 17:13:23 -0500641 state = gsi_channel_state(channel);
642 if (state != GSI_CHANNEL_STATE_ALLOCATED) {
Alex Eldera442b3c2020-06-30 07:58:44 -0500643 dev_err(dev, "bad channel state %u before dealloc\n", state);
Alex Elder650d1602020-03-05 22:28:21 -0600644 return;
645 }
646
647 ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC);
Alex Eldera2003b32020-04-30 17:13:23 -0500648
649 /* Channel state will normally have been updated */
650 state = gsi_channel_state(channel);
651 if (!ret && state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
Alex Eldera442b3c2020-06-30 07:58:44 -0500652 dev_err(dev, "bad channel state %u after dealloc\n", state);
Alex Elder650d1602020-03-05 22:28:21 -0600653}
654
655/* Ring an event ring doorbell, reporting the last entry processed by the AP.
656 * The index argument (modulo the ring count) is the first unfilled entry, so
657 * we supply one less than that with the doorbell. Update the event ring
658 * index field with the value provided.
659 */
660static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
661{
662 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
663 u32 val;
664
665 ring->index = index; /* Next unused entry */
666
667 /* Note: index *must* be used modulo the ring count here */
668 val = gsi_ring_addr(ring, (index - 1) % ring->count);
669 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
670}
671
672/* Program an event ring for use */
673static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
674{
675 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
676 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
677 u32 val;
678
679 val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK);
680 val |= EV_INTYPE_FMASK;
681 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
682 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
683
684 val = u32_encode_bits(size, EV_R_LENGTH_FMASK);
685 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
686
687 /* The context 2 and 3 registers store the low-order and
688 * high-order 32 bits of the address of the event ring,
689 * respectively.
690 */
691 val = evt_ring->ring.addr & GENMASK(31, 0);
692 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
693
694 val = evt_ring->ring.addr >> 32;
695 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
696
697 /* Enable interrupt moderation by setting the moderation delay */
698 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
699 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */
700 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
701
702 /* No MSI write data, and MSI address high and low address is 0 */
703 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
704 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
705 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
706
707 /* We don't need to get event read pointer updates */
708 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
709 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
710
711 /* Finally, tell the hardware we've completed event 0 (arbitrary) */
712 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
713}
714
715/* Return the last (most recent) transaction completed on a channel. */
716static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
717{
718 struct gsi_trans_info *trans_info = &channel->trans_info;
719 struct gsi_trans *trans;
720
721 spin_lock_bh(&trans_info->spinlock);
722
723 if (!list_empty(&trans_info->complete))
724 trans = list_last_entry(&trans_info->complete,
725 struct gsi_trans, links);
726 else if (!list_empty(&trans_info->polled))
727 trans = list_last_entry(&trans_info->polled,
728 struct gsi_trans, links);
729 else
730 trans = NULL;
731
732 /* Caller will wait for this, so take a reference */
733 if (trans)
734 refcount_inc(&trans->refcount);
735
736 spin_unlock_bh(&trans_info->spinlock);
737
738 return trans;
739}
740
741/* Wait for transaction activity on a channel to complete */
742static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
743{
744 struct gsi_trans *trans;
745
746 /* Get the last transaction, and wait for it to complete */
747 trans = gsi_channel_trans_last(channel);
748 if (trans) {
749 wait_for_completion(&trans->completion);
750 gsi_trans_free(trans);
751 }
752}
753
754/* Stop channel activity. Transactions may not be allocated until thawed. */
755static void gsi_channel_freeze(struct gsi_channel *channel)
756{
757 gsi_channel_trans_quiesce(channel);
758
759 napi_disable(&channel->napi);
760
761 gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id);
762}
763
764/* Allow transactions to be used on the channel again. */
765static void gsi_channel_thaw(struct gsi_channel *channel)
766{
767 gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
768
769 napi_enable(&channel->napi);
770}
771
772/* Program a channel for use */
773static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
774{
775 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
776 u32 channel_id = gsi_channel_id(channel);
777 union gsi_channel_scratch scr = { };
778 struct gsi_channel_scratch_gpi *gpi;
779 struct gsi *gsi = channel->gsi;
780 u32 wrr_weight = 0;
781 u32 val;
782
783 /* Arbitrarily pick TRE 0 as the first channel element to use */
784 channel->tre_ring.index = 0;
785
786 /* We program all channels to use GPI protocol */
787 val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK);
788 if (channel->toward_ipa)
789 val |= CHTYPE_DIR_FMASK;
790 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
791 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
792 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
793
794 val = u32_encode_bits(size, R_LENGTH_FMASK);
795 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
796
797 /* The context 2 and 3 registers store the low-order and
798 * high-order 32 bits of the address of the channel ring,
799 * respectively.
800 */
801 val = channel->tre_ring.addr & GENMASK(31, 0);
802 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
803
804 val = channel->tre_ring.addr >> 32;
805 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
806
807 /* Command channel gets low weighted round-robin priority */
808 if (channel->command)
809 wrr_weight = field_max(WRR_WEIGHT_FMASK);
810 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
811
812 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
813
Alex Elderce549932020-11-02 11:53:59 -0600814 /* We enable the doorbell engine for IPA v3.5.1 */
815 if (gsi->version == IPA_VERSION_3_5_1 && doorbell)
Alex Elder650d1602020-03-05 22:28:21 -0600816 val |= USE_DB_ENG_FMASK;
817
Alex Elder14dbf972020-11-02 11:53:56 -0600818 /* Starting with IPA v4.0 the command channel uses the escape buffer */
819 if (gsi->version != IPA_VERSION_3_5_1 && channel->command)
Alex Elder650d1602020-03-05 22:28:21 -0600820 val |= USE_ESCAPE_BUF_ONLY_FMASK;
821
822 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
823
824 /* Now update the scratch registers for GPI protocol */
825 gpi = &scr.gpi;
826 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
827 GSI_RING_ELEMENT_SIZE;
828 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
829
830 val = scr.data.word1;
831 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
832
833 val = scr.data.word2;
834 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
835
836 val = scr.data.word3;
837 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
838
839 /* We must preserve the upper 16 bits of the last scratch register.
840 * The next sequence assumes those bits remain unchanged between the
841 * read and the write.
842 */
843 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
844 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
845 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
846
847 /* All done! */
848}
849
850static void gsi_channel_deprogram(struct gsi_channel *channel)
851{
852 /* Nothing to do */
853}
854
855/* Start an allocated GSI channel */
856int gsi_channel_start(struct gsi *gsi, u32 channel_id)
857{
858 struct gsi_channel *channel = &gsi->channel[channel_id];
Alex Elder650d1602020-03-05 22:28:21 -0600859 int ret;
860
861 mutex_lock(&gsi->mutex);
862
863 ret = gsi_channel_start_command(channel);
864
865 mutex_unlock(&gsi->mutex);
866
Alex Elder650d1602020-03-05 22:28:21 -0600867 gsi_channel_thaw(channel);
868
869 return ret;
870}
871
872/* Stop a started channel */
873int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
874{
875 struct gsi_channel *channel = &gsi->channel[channel_id];
876 u32 retries;
877 int ret;
878
879 gsi_channel_freeze(channel);
880
Alex Elder650d1602020-03-05 22:28:21 -0600881 /* RX channels might require a little time to enter STOPPED state */
882 retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES;
883
884 mutex_lock(&gsi->mutex);
885
886 do {
887 ret = gsi_channel_stop_command(channel);
888 if (ret != -EAGAIN)
889 break;
890 msleep(1);
891 } while (retries--);
892
893 mutex_unlock(&gsi->mutex);
894
895 /* Thaw the channel if we need to retry (or on error) */
896 if (ret)
897 gsi_channel_thaw(channel);
898
899 return ret;
900}
901
Alex Elderce549932020-11-02 11:53:59 -0600902/* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
903void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
Alex Elder650d1602020-03-05 22:28:21 -0600904{
905 struct gsi_channel *channel = &gsi->channel[channel_id];
906
907 mutex_lock(&gsi->mutex);
908
Alex Elder650d1602020-03-05 22:28:21 -0600909 gsi_channel_reset_command(channel);
Alex Eldera3f24052020-05-04 18:30:03 -0500910 /* Due to a hardware quirk we may need to reset RX channels twice. */
Alex Elder9de4a4c2020-11-02 11:53:58 -0600911 if (gsi->version == IPA_VERSION_3_5_1 && !channel->toward_ipa)
Alex Elder650d1602020-03-05 22:28:21 -0600912 gsi_channel_reset_command(channel);
913
Alex Elderce549932020-11-02 11:53:59 -0600914 gsi_channel_program(channel, doorbell);
Alex Elder650d1602020-03-05 22:28:21 -0600915 gsi_channel_trans_cancel_pending(channel);
916
917 mutex_unlock(&gsi->mutex);
918}
919
920/* Stop a STARTED channel for suspend (using stop if requested) */
921int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop)
922{
923 struct gsi_channel *channel = &gsi->channel[channel_id];
924
925 if (stop)
926 return gsi_channel_stop(gsi, channel_id);
927
928 gsi_channel_freeze(channel);
929
930 return 0;
931}
932
933/* Resume a suspended channel (starting will be requested if STOPPED) */
934int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start)
935{
936 struct gsi_channel *channel = &gsi->channel[channel_id];
937
938 if (start)
939 return gsi_channel_start(gsi, channel_id);
940
941 gsi_channel_thaw(channel);
942
943 return 0;
944}
945
946/**
947 * gsi_channel_tx_queued() - Report queued TX transfers for a channel
948 * @channel: Channel for which to report
949 *
950 * Report to the network stack the number of bytes and transactions that
951 * have been queued to hardware since last call. This and the next function
952 * supply information used by the network stack for throttling.
953 *
954 * For each channel we track the number of transactions used and bytes of
955 * data those transactions represent. We also track what those values are
956 * each time this function is called. Subtracting the two tells us
957 * the number of bytes and transactions that have been added between
958 * successive calls.
959 *
960 * Calling this each time we ring the channel doorbell allows us to
961 * provide accurate information to the network stack about how much
962 * work we've given the hardware at any point in time.
963 */
964void gsi_channel_tx_queued(struct gsi_channel *channel)
965{
966 u32 trans_count;
967 u32 byte_count;
968
969 byte_count = channel->byte_count - channel->queued_byte_count;
970 trans_count = channel->trans_count - channel->queued_trans_count;
971 channel->queued_byte_count = channel->byte_count;
972 channel->queued_trans_count = channel->trans_count;
973
974 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
975 trans_count, byte_count);
976}
977
978/**
979 * gsi_channel_tx_update() - Report completed TX transfers
980 * @channel: Channel that has completed transmitting packets
981 * @trans: Last transation known to be complete
982 *
983 * Compute the number of transactions and bytes that have been transferred
984 * over a TX channel since the given transaction was committed. Report this
985 * information to the network stack.
986 *
987 * At the time a transaction is committed, we record its channel's
988 * committed transaction and byte counts *in the transaction*.
989 * Completions are signaled by the hardware with an interrupt, and
990 * we can determine the latest completed transaction at that time.
991 *
992 * The difference between the byte/transaction count recorded in
993 * the transaction and the count last time we recorded a completion
994 * tells us exactly how much data has been transferred between
995 * completions.
996 *
997 * Calling this each time we learn of a newly-completed transaction
998 * allows us to provide accurate information to the network stack
999 * about how much work has been completed by the hardware at a given
1000 * point in time.
1001 */
1002static void
1003gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
1004{
1005 u64 byte_count = trans->byte_count + trans->len;
1006 u64 trans_count = trans->trans_count + 1;
1007
1008 byte_count -= channel->compl_byte_count;
1009 channel->compl_byte_count += byte_count;
1010 trans_count -= channel->compl_trans_count;
1011 channel->compl_trans_count += trans_count;
1012
1013 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
1014 trans_count, byte_count);
1015}
1016
1017/* Channel control interrupt handler */
1018static void gsi_isr_chan_ctrl(struct gsi *gsi)
1019{
1020 u32 channel_mask;
1021
1022 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1023 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1024
1025 while (channel_mask) {
1026 u32 channel_id = __ffs(channel_mask);
1027 struct gsi_channel *channel;
1028
1029 channel_mask ^= BIT(channel_id);
1030
1031 channel = &gsi->channel[channel_id];
Alex Elder650d1602020-03-05 22:28:21 -06001032
1033 complete(&channel->completion);
1034 }
1035}
1036
1037/* Event ring control interrupt handler */
1038static void gsi_isr_evt_ctrl(struct gsi *gsi)
1039{
1040 u32 event_mask;
1041
1042 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1043 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1044
1045 while (event_mask) {
1046 u32 evt_ring_id = __ffs(event_mask);
1047 struct gsi_evt_ring *evt_ring;
1048
1049 event_mask ^= BIT(evt_ring_id);
1050
1051 evt_ring = &gsi->evt_ring[evt_ring_id];
1052 evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id);
1053
1054 complete(&evt_ring->completion);
1055 }
1056}
1057
1058/* Global channel error interrupt handler */
1059static void
1060gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1061{
1062 if (code == GSI_OUT_OF_RESOURCES_ERR) {
1063 dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1064 complete(&gsi->channel[channel_id].completion);
1065 return;
1066 }
1067
1068 /* Report, but otherwise ignore all other error codes */
1069 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1070 channel_id, err_ee, code);
1071}
1072
1073/* Global event error interrupt handler */
1074static void
1075gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1076{
1077 if (code == GSI_OUT_OF_RESOURCES_ERR) {
1078 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1079 u32 channel_id = gsi_channel_id(evt_ring->channel);
1080
1081 complete(&evt_ring->completion);
1082 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1083 channel_id);
1084 return;
1085 }
1086
1087 /* Report, but otherwise ignore all other error codes */
1088 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1089 evt_ring_id, err_ee, code);
1090}
1091
1092/* Global error interrupt handler */
1093static void gsi_isr_glob_err(struct gsi *gsi)
1094{
1095 enum gsi_err_type type;
1096 enum gsi_err_code code;
1097 u32 which;
1098 u32 val;
1099 u32 ee;
1100
1101 /* Get the logged error, then reinitialize the log */
1102 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1103 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1104 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1105
1106 ee = u32_get_bits(val, ERR_EE_FMASK);
Alex Elder650d1602020-03-05 22:28:21 -06001107 type = u32_get_bits(val, ERR_TYPE_FMASK);
Alex Elderd6c9e3f2020-11-05 12:14:03 -06001108 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
Alex Elder650d1602020-03-05 22:28:21 -06001109 code = u32_get_bits(val, ERR_CODE_FMASK);
1110
1111 if (type == GSI_ERR_TYPE_CHAN)
1112 gsi_isr_glob_chan_err(gsi, ee, which, code);
1113 else if (type == GSI_ERR_TYPE_EVT)
1114 gsi_isr_glob_evt_err(gsi, ee, which, code);
1115 else /* type GSI_ERR_TYPE_GLOB should be fatal */
1116 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1117}
1118
1119/* Generic EE interrupt handler */
1120static void gsi_isr_gp_int1(struct gsi *gsi)
1121{
1122 u32 result;
1123 u32 val;
1124
1125 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1126 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1127 if (result != GENERIC_EE_SUCCESS_FVAL)
1128 dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1129
1130 complete(&gsi->completion);
1131}
Alex Elder0b1ba182020-04-30 16:35:12 -05001132
Alex Elder650d1602020-03-05 22:28:21 -06001133/* Inter-EE interrupt handler */
1134static void gsi_isr_glob_ee(struct gsi *gsi)
1135{
1136 u32 val;
1137
1138 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1139
1140 if (val & ERROR_INT_FMASK)
1141 gsi_isr_glob_err(gsi);
1142
1143 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1144
1145 val &= ~ERROR_INT_FMASK;
1146
Alex Elderd61bb712020-09-28 18:04:42 -05001147 if (val & GP_INT1_FMASK) {
1148 val ^= GP_INT1_FMASK;
Alex Elder650d1602020-03-05 22:28:21 -06001149 gsi_isr_gp_int1(gsi);
1150 }
1151
1152 if (val)
1153 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1154}
1155
1156/* I/O completion interrupt event */
1157static void gsi_isr_ieob(struct gsi *gsi)
1158{
1159 u32 event_mask;
1160
1161 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
Alex Elder195ef572020-05-15 15:07:31 -05001162 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
Alex Elder650d1602020-03-05 22:28:21 -06001163
1164 while (event_mask) {
1165 u32 evt_ring_id = __ffs(event_mask);
1166
1167 event_mask ^= BIT(evt_ring_id);
1168
1169 gsi_irq_ieob_disable(gsi, evt_ring_id);
1170 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1171 }
1172}
1173
1174/* General event interrupts represent serious problems, so report them */
1175static void gsi_isr_general(struct gsi *gsi)
1176{
1177 struct device *dev = gsi->dev;
1178 u32 val;
1179
1180 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1181 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1182
1183 if (val)
1184 dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1185}
1186
1187/**
1188 * gsi_isr() - Top level GSI interrupt service routine
1189 * @irq: Interrupt number (ignored)
1190 * @dev_id: GSI pointer supplied to request_irq()
1191 *
1192 * This is the main handler function registered for the GSI IRQ. Each type
1193 * of interrupt has a separate handler function that is called from here.
1194 */
1195static irqreturn_t gsi_isr(int irq, void *dev_id)
1196{
1197 struct gsi *gsi = dev_id;
1198 u32 intr_mask;
1199 u32 cnt = 0;
1200
Alex Elderf9b28802020-11-05 12:13:58 -06001201 /* enum gsi_irq_type_id defines GSI interrupt types */
Alex Elder650d1602020-03-05 22:28:21 -06001202 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1203 /* intr_mask contains bitmask of pending GSI interrupts */
1204 do {
1205 u32 gsi_intr = BIT(__ffs(intr_mask));
1206
1207 intr_mask ^= gsi_intr;
1208
1209 switch (gsi_intr) {
Alex Elderf9b28802020-11-05 12:13:58 -06001210 case BIT(GSI_CH_CTRL):
Alex Elder650d1602020-03-05 22:28:21 -06001211 gsi_isr_chan_ctrl(gsi);
1212 break;
Alex Elderf9b28802020-11-05 12:13:58 -06001213 case BIT(GSI_EV_CTRL):
Alex Elder650d1602020-03-05 22:28:21 -06001214 gsi_isr_evt_ctrl(gsi);
1215 break;
Alex Elderf9b28802020-11-05 12:13:58 -06001216 case BIT(GSI_GLOB_EE):
Alex Elder650d1602020-03-05 22:28:21 -06001217 gsi_isr_glob_ee(gsi);
1218 break;
Alex Elderf9b28802020-11-05 12:13:58 -06001219 case BIT(GSI_IEOB):
Alex Elder650d1602020-03-05 22:28:21 -06001220 gsi_isr_ieob(gsi);
1221 break;
Alex Elderf9b28802020-11-05 12:13:58 -06001222 case BIT(GSI_GENERAL):
Alex Elder650d1602020-03-05 22:28:21 -06001223 gsi_isr_general(gsi);
1224 break;
1225 default:
1226 dev_err(gsi->dev,
Alex Elder84634882020-06-30 07:58:45 -05001227 "unrecognized interrupt type 0x%08x\n",
1228 gsi_intr);
Alex Elder650d1602020-03-05 22:28:21 -06001229 break;
1230 }
1231 } while (intr_mask);
1232
1233 if (++cnt > GSI_ISR_MAX_ITER) {
1234 dev_err(gsi->dev, "interrupt flood\n");
1235 break;
1236 }
1237 }
1238
1239 return IRQ_HANDLED;
1240}
1241
Alex Elder0b8d6762020-11-05 12:13:56 -06001242static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1243{
1244 struct device *dev = &pdev->dev;
1245 unsigned int irq;
1246 int ret;
1247
1248 ret = platform_get_irq_byname(pdev, "gsi");
1249 if (ret <= 0) {
1250 dev_err(dev, "DT error %d getting \"gsi\" IRQ property\n", ret);
1251 return ret ? : -EINVAL;
1252 }
1253 irq = ret;
1254
1255 ret = request_irq(irq, gsi_isr, 0, "gsi", gsi);
1256 if (ret) {
1257 dev_err(dev, "error %d requesting \"gsi\" IRQ\n", ret);
1258 return ret;
1259 }
1260 gsi->irq = irq;
1261
1262 return 0;
1263}
1264
1265static void gsi_irq_exit(struct gsi *gsi)
1266{
1267 free_irq(gsi->irq, gsi);
1268}
1269
Alex Elder650d1602020-03-05 22:28:21 -06001270/* Return the transaction associated with a transfer completion event */
1271static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1272 struct gsi_event *event)
1273{
1274 u32 tre_offset;
1275 u32 tre_index;
1276
1277 /* Event xfer_ptr records the TRE it's associated with */
1278 tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0);
1279 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1280
1281 return gsi_channel_trans_mapped(channel, tre_index);
1282}
1283
1284/**
1285 * gsi_evt_ring_rx_update() - Record lengths of received data
1286 * @evt_ring: Event ring associated with channel that received packets
1287 * @index: Event index in ring reported by hardware
1288 *
1289 * Events for RX channels contain the actual number of bytes received into
1290 * the buffer. Every event has a transaction associated with it, and here
1291 * we update transactions to record their actual received lengths.
1292 *
1293 * This function is called whenever we learn that the GSI hardware has filled
1294 * new events since the last time we checked. The ring's index field tells
1295 * the first entry in need of processing. The index provided is the
1296 * first *unfilled* event in the ring (following the last filled one).
1297 *
1298 * Events are sequential within the event ring, and transactions are
1299 * sequential within the transaction pool.
1300 *
1301 * Note that @index always refers to an element *within* the event ring.
1302 */
1303static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1304{
1305 struct gsi_channel *channel = evt_ring->channel;
1306 struct gsi_ring *ring = &evt_ring->ring;
1307 struct gsi_trans_info *trans_info;
1308 struct gsi_event *event_done;
1309 struct gsi_event *event;
1310 struct gsi_trans *trans;
1311 u32 byte_count = 0;
1312 u32 old_index;
1313 u32 event_avail;
1314
1315 trans_info = &channel->trans_info;
1316
1317 /* We'll start with the oldest un-processed event. RX channels
1318 * replenish receive buffers in single-TRE transactions, so we
1319 * can just map that event to its transaction. Transactions
1320 * associated with completion events are consecutive.
1321 */
1322 old_index = ring->index;
1323 event = gsi_ring_virt(ring, old_index);
1324 trans = gsi_event_trans(channel, event);
1325
1326 /* Compute the number of events to process before we wrap,
1327 * and determine when we'll be done processing events.
1328 */
1329 event_avail = ring->count - old_index % ring->count;
1330 event_done = gsi_ring_virt(ring, index);
1331 do {
1332 trans->len = __le16_to_cpu(event->len);
1333 byte_count += trans->len;
1334
1335 /* Move on to the next event and transaction */
1336 if (--event_avail)
1337 event++;
1338 else
1339 event = gsi_ring_virt(ring, 0);
1340 trans = gsi_trans_pool_next(&trans_info->pool, trans);
1341 } while (event != event_done);
1342
1343 /* We record RX bytes when they are received */
1344 channel->byte_count += byte_count;
1345 channel->trans_count++;
1346}
1347
1348/* Initialize a ring, including allocating DMA memory for its entries */
1349static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1350{
1351 size_t size = count * GSI_RING_ELEMENT_SIZE;
1352 struct device *dev = gsi->dev;
1353 dma_addr_t addr;
1354
1355 /* Hardware requires a 2^n ring size, with alignment equal to size */
1356 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1357 if (ring->virt && addr % size) {
1358 dma_free_coherent(dev, size, ring->virt, ring->addr);
1359 dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n",
Alex Elder84634882020-06-30 07:58:45 -05001360 size);
Alex Elder650d1602020-03-05 22:28:21 -06001361 return -EINVAL; /* Not a good error value, but distinct */
1362 } else if (!ring->virt) {
1363 return -ENOMEM;
1364 }
1365 ring->addr = addr;
1366 ring->count = count;
1367
1368 return 0;
1369}
1370
1371/* Free a previously-allocated ring */
1372static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1373{
1374 size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1375
1376 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1377}
1378
1379/* Allocate an available event ring id */
1380static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1381{
1382 u32 evt_ring_id;
1383
1384 if (gsi->event_bitmap == ~0U) {
1385 dev_err(gsi->dev, "event rings exhausted\n");
1386 return -ENOSPC;
1387 }
1388
1389 evt_ring_id = ffz(gsi->event_bitmap);
1390 gsi->event_bitmap |= BIT(evt_ring_id);
1391
1392 return (int)evt_ring_id;
1393}
1394
1395/* Free a previously-allocated event ring id */
1396static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1397{
1398 gsi->event_bitmap &= ~BIT(evt_ring_id);
1399}
1400
1401/* Ring a channel doorbell, reporting the first un-filled entry */
1402void gsi_channel_doorbell(struct gsi_channel *channel)
1403{
1404 struct gsi_ring *tre_ring = &channel->tre_ring;
1405 u32 channel_id = gsi_channel_id(channel);
1406 struct gsi *gsi = channel->gsi;
1407 u32 val;
1408
1409 /* Note: index *must* be used modulo the ring count here */
1410 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1411 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1412}
1413
1414/* Consult hardware, move any newly completed transactions to completed list */
1415static void gsi_channel_update(struct gsi_channel *channel)
1416{
1417 u32 evt_ring_id = channel->evt_ring_id;
1418 struct gsi *gsi = channel->gsi;
1419 struct gsi_evt_ring *evt_ring;
1420 struct gsi_trans *trans;
1421 struct gsi_ring *ring;
1422 u32 offset;
1423 u32 index;
1424
1425 evt_ring = &gsi->evt_ring[evt_ring_id];
1426 ring = &evt_ring->ring;
1427
1428 /* See if there's anything new to process; if not, we're done. Note
1429 * that index always refers to an entry *within* the event ring.
1430 */
1431 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1432 index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1433 if (index == ring->index % ring->count)
1434 return;
1435
1436 /* Get the transaction for the latest completed event. Take a
1437 * reference to keep it from completing before we give the events
1438 * for this and previous transactions back to the hardware.
1439 */
1440 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1441 refcount_inc(&trans->refcount);
1442
1443 /* For RX channels, update each completed transaction with the number
1444 * of bytes that were actually received. For TX channels, report
1445 * the number of transactions and bytes this completion represents
1446 * up the network stack.
1447 */
1448 if (channel->toward_ipa)
1449 gsi_channel_tx_update(channel, trans);
1450 else
1451 gsi_evt_ring_rx_update(evt_ring, index);
1452
1453 gsi_trans_move_complete(trans);
1454
1455 /* Tell the hardware we've handled these events */
1456 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1457
1458 gsi_trans_free(trans);
1459}
1460
1461/**
1462 * gsi_channel_poll_one() - Return a single completed transaction on a channel
1463 * @channel: Channel to be polled
1464 *
Alex Eldere3eea082020-07-13 07:24:18 -05001465 * Return: Transaction pointer, or null if none are available
Alex Elder650d1602020-03-05 22:28:21 -06001466 *
1467 * This function returns the first entry on a channel's completed transaction
1468 * list. If that list is empty, the hardware is consulted to determine
1469 * whether any new transactions have completed. If so, they're moved to the
1470 * completed list and the new first entry is returned. If there are no more
1471 * completed transactions, a null pointer is returned.
1472 */
1473static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1474{
1475 struct gsi_trans *trans;
1476
1477 /* Get the first transaction from the completed list */
1478 trans = gsi_channel_trans_complete(channel);
1479 if (!trans) {
1480 /* List is empty; see if there's more to do */
1481 gsi_channel_update(channel);
1482 trans = gsi_channel_trans_complete(channel);
1483 }
1484
1485 if (trans)
1486 gsi_trans_move_polled(trans);
1487
1488 return trans;
1489}
1490
1491/**
1492 * gsi_channel_poll() - NAPI poll function for a channel
1493 * @napi: NAPI structure for the channel
1494 * @budget: Budget supplied by NAPI core
Alex Eldere3eea082020-07-13 07:24:18 -05001495 *
1496 * Return: Number of items polled (<= budget)
Alex Elder650d1602020-03-05 22:28:21 -06001497 *
1498 * Single transactions completed by hardware are polled until either
1499 * the budget is exhausted, or there are no more. Each transaction
1500 * polled is passed to gsi_trans_complete(), to perform remaining
1501 * completion processing and retire/free the transaction.
1502 */
1503static int gsi_channel_poll(struct napi_struct *napi, int budget)
1504{
1505 struct gsi_channel *channel;
1506 int count = 0;
1507
1508 channel = container_of(napi, struct gsi_channel, napi);
1509 while (count < budget) {
1510 struct gsi_trans *trans;
1511
Alex Elderf45a7bc2020-05-15 14:52:03 -05001512 count++;
Alex Elder650d1602020-03-05 22:28:21 -06001513 trans = gsi_channel_poll_one(channel);
1514 if (!trans)
1515 break;
1516 gsi_trans_complete(trans);
1517 }
1518
1519 if (count < budget) {
1520 napi_complete(&channel->napi);
1521 gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id);
1522 }
1523
1524 return count;
1525}
1526
1527/* The event bitmap represents which event ids are available for allocation.
1528 * Set bits are not available, clear bits can be used. This function
1529 * initializes the map so all events supported by the hardware are available,
1530 * then precludes any reserved events from being allocated.
1531 */
1532static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1533{
1534 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1535
1536 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1537
1538 return event_bitmap;
1539}
1540
1541/* Setup function for event rings */
1542static void gsi_evt_ring_setup(struct gsi *gsi)
1543{
1544 /* Nothing to do */
1545}
1546
1547/* Inverse of gsi_evt_ring_setup() */
1548static void gsi_evt_ring_teardown(struct gsi *gsi)
1549{
1550 /* Nothing to do */
1551}
1552
1553/* Setup function for a single channel */
Alex Elderd387c762020-11-02 11:54:00 -06001554static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
Alex Elder650d1602020-03-05 22:28:21 -06001555{
1556 struct gsi_channel *channel = &gsi->channel[channel_id];
1557 u32 evt_ring_id = channel->evt_ring_id;
1558 int ret;
1559
1560 if (!channel->gsi)
1561 return 0; /* Ignore uninitialized channels */
1562
1563 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1564 if (ret)
1565 return ret;
1566
1567 gsi_evt_ring_program(gsi, evt_ring_id);
1568
1569 ret = gsi_channel_alloc_command(gsi, channel_id);
1570 if (ret)
1571 goto err_evt_ring_de_alloc;
1572
Alex Elderd387c762020-11-02 11:54:00 -06001573 gsi_channel_program(channel, true);
Alex Elder650d1602020-03-05 22:28:21 -06001574
1575 if (channel->toward_ipa)
1576 netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1577 gsi_channel_poll, NAPI_POLL_WEIGHT);
1578 else
1579 netif_napi_add(&gsi->dummy_dev, &channel->napi,
1580 gsi_channel_poll, NAPI_POLL_WEIGHT);
1581
1582 return 0;
1583
1584err_evt_ring_de_alloc:
1585 /* We've done nothing with the event ring yet so don't reset */
1586 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1587
1588 return ret;
1589}
1590
1591/* Inverse of gsi_channel_setup_one() */
1592static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1593{
1594 struct gsi_channel *channel = &gsi->channel[channel_id];
1595 u32 evt_ring_id = channel->evt_ring_id;
1596
1597 if (!channel->gsi)
1598 return; /* Ignore uninitialized channels */
1599
1600 netif_napi_del(&channel->napi);
1601
1602 gsi_channel_deprogram(channel);
1603 gsi_channel_de_alloc_command(gsi, channel_id);
1604 gsi_evt_ring_reset_command(gsi, evt_ring_id);
1605 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1606}
1607
1608static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1609 enum gsi_generic_cmd_opcode opcode)
1610{
1611 struct completion *completion = &gsi->completion;
Alex Elderd6c9e3f2020-11-05 12:14:03 -06001612 bool success;
Alex Elder650d1602020-03-05 22:28:21 -06001613 u32 val;
1614
Alex Elderd6c9e3f2020-11-05 12:14:03 -06001615 /* The error global interrupt type is always enabled (until we
1616 * teardown), so we won't change that. A generic EE command
1617 * completes with a GSI global interrupt of type GP_INT1. We
1618 * only perform one generic command at a time (to allocate or
1619 * halt a modem channel) and only from this function. So we
1620 * enable the GP_INT1 IRQ type here while we're expecting it.
1621 */
1622 val = ERROR_INT_FMASK | GP_INT1_FMASK;
1623 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1624
Alex Elder0b1ba182020-04-30 16:35:12 -05001625 /* First zero the result code field */
1626 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1627 val &= ~GENERIC_EE_RESULT_FMASK;
1628 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1629
1630 /* Now issue the command */
Alex Elder650d1602020-03-05 22:28:21 -06001631 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1632 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1633 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1634
Alex Elderd6c9e3f2020-11-05 12:14:03 -06001635 success = gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion);
1636
1637 /* Disable the GP_INT1 IRQ type again */
1638 iowrite32(ERROR_INT_FMASK, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1639
1640 if (success)
1641 return 0;
Alex Elder650d1602020-03-05 22:28:21 -06001642
1643 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1644 opcode, channel_id);
1645
1646 return -ETIMEDOUT;
1647}
1648
1649static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1650{
1651 return gsi_generic_command(gsi, channel_id,
1652 GSI_GENERIC_ALLOCATE_CHANNEL);
1653}
1654
1655static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1656{
1657 int ret;
1658
1659 ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL);
1660 if (ret)
1661 dev_err(gsi->dev, "error %d halting modem channel %u\n",
1662 ret, channel_id);
1663}
1664
1665/* Setup function for channels */
Alex Elderd387c762020-11-02 11:54:00 -06001666static int gsi_channel_setup(struct gsi *gsi)
Alex Elder650d1602020-03-05 22:28:21 -06001667{
1668 u32 channel_id = 0;
1669 u32 mask;
1670 int ret;
1671
1672 gsi_evt_ring_setup(gsi);
1673 gsi_irq_enable(gsi);
1674
1675 mutex_lock(&gsi->mutex);
1676
1677 do {
Alex Elderd387c762020-11-02 11:54:00 -06001678 ret = gsi_channel_setup_one(gsi, channel_id);
Alex Elder650d1602020-03-05 22:28:21 -06001679 if (ret)
1680 goto err_unwind;
1681 } while (++channel_id < gsi->channel_count);
1682
1683 /* Make sure no channels were defined that hardware does not support */
1684 while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1685 struct gsi_channel *channel = &gsi->channel[channel_id++];
1686
1687 if (!channel->gsi)
1688 continue; /* Ignore uninitialized channels */
1689
1690 dev_err(gsi->dev, "channel %u not supported by hardware\n",
1691 channel_id - 1);
1692 channel_id = gsi->channel_count;
1693 goto err_unwind;
1694 }
1695
1696 /* Allocate modem channels if necessary */
1697 mask = gsi->modem_channel_bitmap;
1698 while (mask) {
1699 u32 modem_channel_id = __ffs(mask);
1700
1701 ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1702 if (ret)
1703 goto err_unwind_modem;
1704
1705 /* Clear bit from mask only after success (for unwind) */
1706 mask ^= BIT(modem_channel_id);
1707 }
1708
1709 mutex_unlock(&gsi->mutex);
1710
1711 return 0;
1712
1713err_unwind_modem:
1714 /* Compute which modem channels need to be deallocated */
1715 mask ^= gsi->modem_channel_bitmap;
1716 while (mask) {
Alex Elder993cac12020-09-28 18:04:44 -05001717 channel_id = __fls(mask);
Alex Elder650d1602020-03-05 22:28:21 -06001718
1719 mask ^= BIT(channel_id);
1720
1721 gsi_modem_channel_halt(gsi, channel_id);
1722 }
1723
1724err_unwind:
1725 while (channel_id--)
1726 gsi_channel_teardown_one(gsi, channel_id);
1727
1728 mutex_unlock(&gsi->mutex);
1729
1730 gsi_irq_disable(gsi);
1731 gsi_evt_ring_teardown(gsi);
1732
1733 return ret;
1734}
1735
1736/* Inverse of gsi_channel_setup() */
1737static void gsi_channel_teardown(struct gsi *gsi)
1738{
1739 u32 mask = gsi->modem_channel_bitmap;
1740 u32 channel_id;
1741
1742 mutex_lock(&gsi->mutex);
1743
1744 while (mask) {
Alex Elder993cac12020-09-28 18:04:44 -05001745 channel_id = __fls(mask);
Alex Elder650d1602020-03-05 22:28:21 -06001746
1747 mask ^= BIT(channel_id);
1748
1749 gsi_modem_channel_halt(gsi, channel_id);
1750 }
1751
1752 channel_id = gsi->channel_count - 1;
1753 do
1754 gsi_channel_teardown_one(gsi, channel_id);
1755 while (channel_id--);
1756
1757 mutex_unlock(&gsi->mutex);
1758
1759 gsi_irq_disable(gsi);
1760 gsi_evt_ring_teardown(gsi);
1761}
1762
1763/* Setup function for GSI. GSI firmware must be loaded and initialized */
Alex Elderd387c762020-11-02 11:54:00 -06001764int gsi_setup(struct gsi *gsi)
Alex Elder650d1602020-03-05 22:28:21 -06001765{
Alex Elder84634882020-06-30 07:58:45 -05001766 struct device *dev = gsi->dev;
Alex Elder650d1602020-03-05 22:28:21 -06001767 u32 val;
Alex Elder97eb94c2020-11-05 12:13:59 -06001768 int ret;
Alex Elder650d1602020-03-05 22:28:21 -06001769
1770 /* Here is where we first touch the GSI hardware */
1771 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1772 if (!(val & ENABLED_FMASK)) {
Alex Elder84634882020-06-30 07:58:45 -05001773 dev_err(dev, "GSI has not been enabled\n");
Alex Elder650d1602020-03-05 22:28:21 -06001774 return -EIO;
1775 }
1776
Alex Elder97eb94c2020-11-05 12:13:59 -06001777 gsi_irq_setup(gsi);
1778
Alex Elder650d1602020-03-05 22:28:21 -06001779 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1780
1781 gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1782 if (!gsi->channel_count) {
Alex Elder84634882020-06-30 07:58:45 -05001783 dev_err(dev, "GSI reports zero channels supported\n");
Alex Elder650d1602020-03-05 22:28:21 -06001784 return -EINVAL;
1785 }
1786 if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) {
Alex Elder84634882020-06-30 07:58:45 -05001787 dev_warn(dev,
1788 "limiting to %u channels; hardware supports %u\n",
Alex Elder650d1602020-03-05 22:28:21 -06001789 GSI_CHANNEL_COUNT_MAX, gsi->channel_count);
1790 gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1791 }
1792
1793 gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1794 if (!gsi->evt_ring_count) {
Alex Elder84634882020-06-30 07:58:45 -05001795 dev_err(dev, "GSI reports zero event rings supported\n");
Alex Elder650d1602020-03-05 22:28:21 -06001796 return -EINVAL;
1797 }
1798 if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) {
Alex Elder84634882020-06-30 07:58:45 -05001799 dev_warn(dev,
1800 "limiting to %u event rings; hardware supports %u\n",
Alex Elder650d1602020-03-05 22:28:21 -06001801 GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count);
1802 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1803 }
1804
1805 /* Initialize the error log */
1806 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1807
1808 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1809 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1810
Alex Elder97eb94c2020-11-05 12:13:59 -06001811 ret = gsi_channel_setup(gsi);
1812 if (ret)
1813 gsi_irq_teardown(gsi);
1814
1815 return ret;
Alex Elder650d1602020-03-05 22:28:21 -06001816}
1817
1818/* Inverse of gsi_setup() */
1819void gsi_teardown(struct gsi *gsi)
1820{
1821 gsi_channel_teardown(gsi);
Alex Elder97eb94c2020-11-05 12:13:59 -06001822 gsi_irq_teardown(gsi);
Alex Elder650d1602020-03-05 22:28:21 -06001823}
1824
1825/* Initialize a channel's event ring */
1826static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1827{
1828 struct gsi *gsi = channel->gsi;
1829 struct gsi_evt_ring *evt_ring;
1830 int ret;
1831
1832 ret = gsi_evt_ring_id_alloc(gsi);
1833 if (ret < 0)
1834 return ret;
1835 channel->evt_ring_id = ret;
1836
1837 evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1838 evt_ring->channel = channel;
1839
1840 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1841 if (!ret)
1842 return 0; /* Success! */
1843
1844 dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1845 ret, gsi_channel_id(channel));
1846
1847 gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1848
1849 return ret;
1850}
1851
1852/* Inverse of gsi_channel_evt_ring_init() */
1853static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1854{
1855 u32 evt_ring_id = channel->evt_ring_id;
1856 struct gsi *gsi = channel->gsi;
1857 struct gsi_evt_ring *evt_ring;
1858
1859 evt_ring = &gsi->evt_ring[evt_ring_id];
1860 gsi_ring_free(gsi, &evt_ring->ring);
1861 gsi_evt_ring_id_free(gsi, evt_ring_id);
1862}
1863
1864/* Init function for event rings */
1865static void gsi_evt_ring_init(struct gsi *gsi)
1866{
1867 u32 evt_ring_id = 0;
1868
1869 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
Alex Eldera0545392020-11-05 12:13:57 -06001870 gsi->ieob_enabled_bitmap = 0;
Alex Elder650d1602020-03-05 22:28:21 -06001871 do
1872 init_completion(&gsi->evt_ring[evt_ring_id].completion);
1873 while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1874}
1875
1876/* Inverse of gsi_evt_ring_init() */
1877static void gsi_evt_ring_exit(struct gsi *gsi)
1878{
1879 /* Nothing to do */
1880}
1881
1882static bool gsi_channel_data_valid(struct gsi *gsi,
1883 const struct ipa_gsi_endpoint_data *data)
1884{
1885#ifdef IPA_VALIDATION
1886 u32 channel_id = data->channel_id;
1887 struct device *dev = gsi->dev;
1888
1889 /* Make sure channel ids are in the range driver supports */
1890 if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
Alex Elder84634882020-06-30 07:58:45 -05001891 dev_err(dev, "bad channel id %u; must be less than %u\n",
Alex Elder650d1602020-03-05 22:28:21 -06001892 channel_id, GSI_CHANNEL_COUNT_MAX);
1893 return false;
1894 }
1895
1896 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
Alex Elder84634882020-06-30 07:58:45 -05001897 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
Alex Elder650d1602020-03-05 22:28:21 -06001898 return false;
1899 }
1900
1901 if (!data->channel.tlv_count ||
1902 data->channel.tlv_count > GSI_TLV_MAX) {
Alex Elder84634882020-06-30 07:58:45 -05001903 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
Alex Elder650d1602020-03-05 22:28:21 -06001904 channel_id, data->channel.tlv_count, GSI_TLV_MAX);
1905 return false;
1906 }
1907
1908 /* We have to allow at least one maximally-sized transaction to
1909 * be outstanding (which would use tlv_count TREs). Given how
1910 * gsi_channel_tre_max() is computed, tre_count has to be almost
1911 * twice the TLV FIFO size to satisfy this requirement.
1912 */
1913 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
1914 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
1915 channel_id, data->channel.tlv_count,
1916 data->channel.tre_count);
1917 return false;
1918 }
1919
1920 if (!is_power_of_2(data->channel.tre_count)) {
Alex Elder84634882020-06-30 07:58:45 -05001921 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
Alex Elder650d1602020-03-05 22:28:21 -06001922 channel_id, data->channel.tre_count);
1923 return false;
1924 }
1925
1926 if (!is_power_of_2(data->channel.event_count)) {
Alex Elder84634882020-06-30 07:58:45 -05001927 dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
Alex Elder650d1602020-03-05 22:28:21 -06001928 channel_id, data->channel.event_count);
1929 return false;
1930 }
1931#endif /* IPA_VALIDATION */
1932
1933 return true;
1934}
1935
1936/* Init function for a single channel */
1937static int gsi_channel_init_one(struct gsi *gsi,
1938 const struct ipa_gsi_endpoint_data *data,
Alex Elder14dbf972020-11-02 11:53:56 -06001939 bool command)
Alex Elder650d1602020-03-05 22:28:21 -06001940{
1941 struct gsi_channel *channel;
1942 u32 tre_count;
1943 int ret;
1944
1945 if (!gsi_channel_data_valid(gsi, data))
1946 return -EINVAL;
1947
1948 /* Worst case we need an event for every outstanding TRE */
1949 if (data->channel.tre_count > data->channel.event_count) {
Alex Elder650d1602020-03-05 22:28:21 -06001950 tre_count = data->channel.event_count;
Alex Elder07219992020-04-30 16:35:11 -05001951 dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
1952 data->channel_id, tre_count);
Alex Elder650d1602020-03-05 22:28:21 -06001953 } else {
1954 tre_count = data->channel.tre_count;
1955 }
1956
1957 channel = &gsi->channel[data->channel_id];
1958 memset(channel, 0, sizeof(*channel));
1959
1960 channel->gsi = gsi;
1961 channel->toward_ipa = data->toward_ipa;
1962 channel->command = command;
Alex Elder650d1602020-03-05 22:28:21 -06001963 channel->tlv_count = data->channel.tlv_count;
1964 channel->tre_count = tre_count;
1965 channel->event_count = data->channel.event_count;
1966 init_completion(&channel->completion);
1967
1968 ret = gsi_channel_evt_ring_init(channel);
1969 if (ret)
1970 goto err_clear_gsi;
1971
1972 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
1973 if (ret) {
1974 dev_err(gsi->dev, "error %d allocating channel %u ring\n",
1975 ret, data->channel_id);
1976 goto err_channel_evt_ring_exit;
1977 }
1978
1979 ret = gsi_channel_trans_init(gsi, data->channel_id);
1980 if (ret)
1981 goto err_ring_free;
1982
1983 if (command) {
1984 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
1985
1986 ret = ipa_cmd_pool_init(channel, tre_max);
1987 }
1988 if (!ret)
1989 return 0; /* Success! */
1990
1991 gsi_channel_trans_exit(channel);
1992err_ring_free:
1993 gsi_ring_free(gsi, &channel->tre_ring);
1994err_channel_evt_ring_exit:
1995 gsi_channel_evt_ring_exit(channel);
1996err_clear_gsi:
1997 channel->gsi = NULL; /* Mark it not (fully) initialized */
1998
1999 return ret;
2000}
2001
2002/* Inverse of gsi_channel_init_one() */
2003static void gsi_channel_exit_one(struct gsi_channel *channel)
2004{
2005 if (!channel->gsi)
2006 return; /* Ignore uninitialized channels */
2007
2008 if (channel->command)
2009 ipa_cmd_pool_exit(channel);
2010 gsi_channel_trans_exit(channel);
2011 gsi_ring_free(channel->gsi, &channel->tre_ring);
2012 gsi_channel_evt_ring_exit(channel);
2013}
2014
2015/* Init function for channels */
Alex Elder14dbf972020-11-02 11:53:56 -06002016static int gsi_channel_init(struct gsi *gsi, u32 count,
Alex Elder56dfe8d2020-11-02 11:53:57 -06002017 const struct ipa_gsi_endpoint_data *data)
Alex Elder650d1602020-03-05 22:28:21 -06002018{
Alex Elder56dfe8d2020-11-02 11:53:57 -06002019 bool modem_alloc;
Alex Elder650d1602020-03-05 22:28:21 -06002020 int ret = 0;
2021 u32 i;
2022
Alex Elder56dfe8d2020-11-02 11:53:57 -06002023 /* IPA v4.2 requires the AP to allocate channels for the modem */
2024 modem_alloc = gsi->version == IPA_VERSION_4_2;
2025
Alex Elder650d1602020-03-05 22:28:21 -06002026 gsi_evt_ring_init(gsi);
2027
2028 /* The endpoint data array is indexed by endpoint name */
2029 for (i = 0; i < count; i++) {
2030 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2031
2032 if (ipa_gsi_endpoint_data_empty(&data[i]))
2033 continue; /* Skip over empty slots */
2034
2035 /* Mark modem channels to be allocated (hardware workaround) */
2036 if (data[i].ee_id == GSI_EE_MODEM) {
2037 if (modem_alloc)
2038 gsi->modem_channel_bitmap |=
2039 BIT(data[i].channel_id);
2040 continue;
2041 }
2042
Alex Elder14dbf972020-11-02 11:53:56 -06002043 ret = gsi_channel_init_one(gsi, &data[i], command);
Alex Elder650d1602020-03-05 22:28:21 -06002044 if (ret)
2045 goto err_unwind;
2046 }
2047
2048 return ret;
2049
2050err_unwind:
2051 while (i--) {
2052 if (ipa_gsi_endpoint_data_empty(&data[i]))
2053 continue;
2054 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2055 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2056 continue;
2057 }
2058 gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2059 }
2060 gsi_evt_ring_exit(gsi);
2061
2062 return ret;
2063}
2064
2065/* Inverse of gsi_channel_init() */
2066static void gsi_channel_exit(struct gsi *gsi)
2067{
2068 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2069
2070 do
2071 gsi_channel_exit_one(&gsi->channel[channel_id]);
2072 while (channel_id--);
2073 gsi->modem_channel_bitmap = 0;
2074
2075 gsi_evt_ring_exit(gsi);
2076}
2077
2078/* Init function for GSI. GSI hardware does not need to be "ready" */
Alex Elder1d0c09d2020-11-02 11:53:55 -06002079int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2080 enum ipa_version version, u32 count,
2081 const struct ipa_gsi_endpoint_data *data)
Alex Elder650d1602020-03-05 22:28:21 -06002082{
Alex Elder84634882020-06-30 07:58:45 -05002083 struct device *dev = &pdev->dev;
Alex Elder650d1602020-03-05 22:28:21 -06002084 struct resource *res;
2085 resource_size_t size;
Alex Elder650d1602020-03-05 22:28:21 -06002086 int ret;
2087
2088 gsi_validate_build();
2089
Alex Elder84634882020-06-30 07:58:45 -05002090 gsi->dev = dev;
Alex Elder14dbf972020-11-02 11:53:56 -06002091 gsi->version = version;
Alex Elder650d1602020-03-05 22:28:21 -06002092
2093 /* The GSI layer performs NAPI on all endpoints. NAPI requires a
2094 * network device structure, but the GSI layer does not have one,
2095 * so we must create a dummy network device for this purpose.
2096 */
2097 init_dummy_netdev(&gsi->dummy_dev);
2098
Alex Elder650d1602020-03-05 22:28:21 -06002099 /* Get GSI memory range and map it */
2100 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2101 if (!res) {
Alex Elder84634882020-06-30 07:58:45 -05002102 dev_err(dev, "DT error getting \"gsi\" memory property\n");
Alex Elder0b8d6762020-11-05 12:13:56 -06002103 return -ENODEV;
Alex Elder650d1602020-03-05 22:28:21 -06002104 }
2105
2106 size = resource_size(res);
2107 if (res->start > U32_MAX || size > U32_MAX - res->start) {
Alex Elder84634882020-06-30 07:58:45 -05002108 dev_err(dev, "DT memory resource \"gsi\" out of range\n");
Alex Elder0b8d6762020-11-05 12:13:56 -06002109 return -EINVAL;
Alex Elder650d1602020-03-05 22:28:21 -06002110 }
2111
2112 gsi->virt = ioremap(res->start, size);
2113 if (!gsi->virt) {
Alex Elder84634882020-06-30 07:58:45 -05002114 dev_err(dev, "unable to remap \"gsi\" memory\n");
Alex Elder0b8d6762020-11-05 12:13:56 -06002115 return -ENOMEM;
Alex Elder650d1602020-03-05 22:28:21 -06002116 }
2117
Alex Elder0b8d6762020-11-05 12:13:56 -06002118 init_completion(&gsi->completion);
2119
2120 ret = gsi_irq_init(gsi, pdev);
Alex Elder650d1602020-03-05 22:28:21 -06002121 if (ret)
2122 goto err_iounmap;
2123
Alex Elder0b8d6762020-11-05 12:13:56 -06002124 ret = gsi_channel_init(gsi, count, data);
2125 if (ret)
2126 goto err_irq_exit;
2127
Alex Elder650d1602020-03-05 22:28:21 -06002128 mutex_init(&gsi->mutex);
Alex Elder650d1602020-03-05 22:28:21 -06002129
2130 return 0;
2131
Alex Elder0b8d6762020-11-05 12:13:56 -06002132err_irq_exit:
2133 gsi_irq_exit(gsi);
Alex Elder650d1602020-03-05 22:28:21 -06002134err_iounmap:
2135 iounmap(gsi->virt);
Alex Elder650d1602020-03-05 22:28:21 -06002136
2137 return ret;
2138}
2139
2140/* Inverse of gsi_init() */
2141void gsi_exit(struct gsi *gsi)
2142{
2143 mutex_destroy(&gsi->mutex);
2144 gsi_channel_exit(gsi);
Alex Elder0b8d6762020-11-05 12:13:56 -06002145 gsi_irq_exit(gsi);
Alex Elder650d1602020-03-05 22:28:21 -06002146 iounmap(gsi->virt);
2147}
2148
2149/* The maximum number of outstanding TREs on a channel. This limits
2150 * a channel's maximum number of transactions outstanding (worst case
2151 * is one TRE per transaction).
2152 *
2153 * The absolute limit is the number of TREs in the channel's TRE ring,
2154 * and in theory we should be able use all of them. But in practice,
2155 * doing that led to the hardware reporting exhaustion of event ring
2156 * slots for writing completion information. So the hardware limit
2157 * would be (tre_count - 1).
2158 *
2159 * We reduce it a bit further though. Transaction resource pools are
2160 * sized to be a little larger than this maximum, to allow resource
2161 * allocations to always be contiguous. The number of entries in a
2162 * TRE ring buffer is a power of 2, and the extra resources in a pool
2163 * tends to nearly double the memory allocated for it. Reducing the
2164 * maximum number of outstanding TREs allows the number of entries in
2165 * a pool to avoid crossing that power-of-2 boundary, and this can
2166 * substantially reduce pool memory requirements. The number we
2167 * reduce it by matches the number added in gsi_trans_pool_init().
2168 */
2169u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2170{
2171 struct gsi_channel *channel = &gsi->channel[channel_id];
2172
2173 /* Hardware limit is channel->tre_count - 1 */
2174 return channel->tre_count - (channel->tlv_count - 1);
2175}
2176
2177/* Returns the maximum number of TREs in a single transaction for a channel */
2178u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2179{
2180 struct gsi_channel *channel = &gsi->channel[channel_id];
2181
2182 return channel->tlv_count;
2183}