Alex Elder | 650d160 | 2020-03-05 22:28:21 -0600 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved. |
| 4 | * Copyright (C) 2018-2020 Linaro Ltd. |
| 5 | */ |
| 6 | |
| 7 | #include <linux/types.h> |
| 8 | #include <linux/bits.h> |
| 9 | #include <linux/bitfield.h> |
| 10 | #include <linux/mutex.h> |
| 11 | #include <linux/completion.h> |
| 12 | #include <linux/io.h> |
| 13 | #include <linux/bug.h> |
| 14 | #include <linux/interrupt.h> |
| 15 | #include <linux/platform_device.h> |
| 16 | #include <linux/netdevice.h> |
| 17 | |
| 18 | #include "gsi.h" |
| 19 | #include "gsi_reg.h" |
| 20 | #include "gsi_private.h" |
| 21 | #include "gsi_trans.h" |
| 22 | #include "ipa_gsi.h" |
| 23 | #include "ipa_data.h" |
| 24 | |
| 25 | /** |
| 26 | * DOC: The IPA Generic Software Interface |
| 27 | * |
| 28 | * The generic software interface (GSI) is an integral component of the IPA, |
| 29 | * providing a well-defined communication layer between the AP subsystem |
| 30 | * and the IPA core. The modem uses the GSI layer as well. |
| 31 | * |
| 32 | * -------- --------- |
| 33 | * | | | | |
| 34 | * | AP +<---. .----+ Modem | |
| 35 | * | +--. | | .->+ | |
| 36 | * | | | | | | | | |
| 37 | * -------- | | | | --------- |
| 38 | * v | v | |
| 39 | * --+-+---+-+-- |
| 40 | * | GSI | |
| 41 | * |-----------| |
| 42 | * | | |
| 43 | * | IPA | |
| 44 | * | | |
| 45 | * ------------- |
| 46 | * |
| 47 | * In the above diagram, the AP and Modem represent "execution environments" |
| 48 | * (EEs), which are independent operating environments that use the IPA for |
| 49 | * data transfer. |
| 50 | * |
| 51 | * Each EE uses a set of unidirectional GSI "channels," which allow transfer |
| 52 | * of data to or from the IPA. A channel is implemented as a ring buffer, |
| 53 | * with a DRAM-resident array of "transfer elements" (TREs) available to |
| 54 | * describe transfers to or from other EEs through the IPA. A transfer |
| 55 | * element can also contain an immediate command, requesting the IPA perform |
| 56 | * actions other than data transfer. |
| 57 | * |
| 58 | * Each TRE refers to a block of data--also located DRAM. After writing one |
| 59 | * or more TREs to a channel, the writer (either the IPA or an EE) writes a |
| 60 | * doorbell register to inform the receiving side how many elements have |
| 61 | * been written. |
| 62 | * |
| 63 | * Each channel has a GSI "event ring" associated with it. An event ring |
| 64 | * is implemented very much like a channel ring, but is always directed from |
| 65 | * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel |
| 66 | * events by adding an entry to the event ring associated with the channel. |
| 67 | * The GSI then writes its doorbell for the event ring, causing the target |
| 68 | * EE to be interrupted. Each entry in an event ring contains a pointer |
| 69 | * to the channel TRE whose completion the event represents. |
| 70 | * |
| 71 | * Each TRE in a channel ring has a set of flags. One flag indicates whether |
| 72 | * the completion of the transfer operation generates an entry (and possibly |
| 73 | * an interrupt) in the channel's event ring. Other flags allow transfer |
| 74 | * elements to be chained together, forming a single logical transaction. |
| 75 | * TRE flags are used to control whether and when interrupts are generated |
| 76 | * to signal completion of channel transfers. |
| 77 | * |
| 78 | * Elements in channel and event rings are completed (or consumed) strictly |
| 79 | * in order. Completion of one entry implies the completion of all preceding |
| 80 | * entries. A single completion interrupt can therefore communicate the |
| 81 | * completion of many transfers. |
| 82 | * |
| 83 | * Note that all GSI registers are little-endian, which is the assumed |
| 84 | * endianness of I/O space accesses. The accessor functions perform byte |
| 85 | * swapping if needed (i.e., for a big endian CPU). |
| 86 | */ |
| 87 | |
| 88 | /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */ |
| 89 | #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */ |
| 90 | |
| 91 | #define GSI_CMD_TIMEOUT 5 /* seconds */ |
| 92 | |
| 93 | #define GSI_CHANNEL_STOP_RX_RETRIES 10 |
| 94 | |
| 95 | #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */ |
| 96 | #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */ |
| 97 | |
| 98 | #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */ |
| 99 | |
| 100 | /* An entry in an event ring */ |
| 101 | struct gsi_event { |
| 102 | __le64 xfer_ptr; |
| 103 | __le16 len; |
| 104 | u8 reserved1; |
| 105 | u8 code; |
| 106 | __le16 reserved2; |
| 107 | u8 type; |
| 108 | u8 chid; |
| 109 | }; |
| 110 | |
| 111 | /* Hardware values from the error log register error code field */ |
| 112 | enum gsi_err_code { |
| 113 | GSI_INVALID_TRE_ERR = 0x1, |
| 114 | GSI_OUT_OF_BUFFERS_ERR = 0x2, |
| 115 | GSI_OUT_OF_RESOURCES_ERR = 0x3, |
| 116 | GSI_UNSUPPORTED_INTER_EE_OP_ERR = 0x4, |
| 117 | GSI_EVT_RING_EMPTY_ERR = 0x5, |
| 118 | GSI_NON_ALLOCATED_EVT_ACCESS_ERR = 0x6, |
| 119 | GSI_HWO_1_ERR = 0x8, |
| 120 | }; |
| 121 | |
| 122 | /* Hardware values from the error log register error type field */ |
| 123 | enum gsi_err_type { |
| 124 | GSI_ERR_TYPE_GLOB = 0x1, |
| 125 | GSI_ERR_TYPE_CHAN = 0x2, |
| 126 | GSI_ERR_TYPE_EVT = 0x3, |
| 127 | }; |
| 128 | |
| 129 | /* Hardware values used when programming an event ring */ |
| 130 | enum gsi_evt_chtype { |
| 131 | GSI_EVT_CHTYPE_MHI_EV = 0x0, |
| 132 | GSI_EVT_CHTYPE_XHCI_EV = 0x1, |
| 133 | GSI_EVT_CHTYPE_GPI_EV = 0x2, |
| 134 | GSI_EVT_CHTYPE_XDCI_EV = 0x3, |
| 135 | }; |
| 136 | |
| 137 | /* Hardware values used when programming a channel */ |
| 138 | enum gsi_channel_protocol { |
| 139 | GSI_CHANNEL_PROTOCOL_MHI = 0x0, |
| 140 | GSI_CHANNEL_PROTOCOL_XHCI = 0x1, |
| 141 | GSI_CHANNEL_PROTOCOL_GPI = 0x2, |
| 142 | GSI_CHANNEL_PROTOCOL_XDCI = 0x3, |
| 143 | }; |
| 144 | |
| 145 | /* Hardware values representing an event ring immediate command opcode */ |
| 146 | enum gsi_evt_cmd_opcode { |
| 147 | GSI_EVT_ALLOCATE = 0x0, |
| 148 | GSI_EVT_RESET = 0x9, |
| 149 | GSI_EVT_DE_ALLOC = 0xa, |
| 150 | }; |
| 151 | |
| 152 | /* Hardware values representing a generic immediate command opcode */ |
| 153 | enum gsi_generic_cmd_opcode { |
| 154 | GSI_GENERIC_HALT_CHANNEL = 0x1, |
| 155 | GSI_GENERIC_ALLOCATE_CHANNEL = 0x2, |
| 156 | }; |
| 157 | |
| 158 | /* Hardware values representing a channel immediate command opcode */ |
| 159 | enum gsi_ch_cmd_opcode { |
| 160 | GSI_CH_ALLOCATE = 0x0, |
| 161 | GSI_CH_START = 0x1, |
| 162 | GSI_CH_STOP = 0x2, |
| 163 | GSI_CH_RESET = 0x9, |
| 164 | GSI_CH_DE_ALLOC = 0xa, |
| 165 | }; |
| 166 | |
| 167 | /** gsi_channel_scratch_gpi - GPI protocol scratch register |
| 168 | * @max_outstanding_tre: |
| 169 | * Defines the maximum number of TREs allowed in a single transaction |
| 170 | * on a channel (in bytes). This determines the amount of prefetch |
| 171 | * performed by the hardware. We configure this to equal the size of |
| 172 | * the TLV FIFO for the channel. |
| 173 | * @outstanding_threshold: |
| 174 | * Defines the threshold (in bytes) determining when the sequencer |
| 175 | * should update the channel doorbell. We configure this to equal |
| 176 | * the size of two TREs. |
| 177 | */ |
| 178 | struct gsi_channel_scratch_gpi { |
| 179 | u64 reserved1; |
| 180 | u16 reserved2; |
| 181 | u16 max_outstanding_tre; |
| 182 | u16 reserved3; |
| 183 | u16 outstanding_threshold; |
| 184 | }; |
| 185 | |
| 186 | /** gsi_channel_scratch - channel scratch configuration area |
| 187 | * |
| 188 | * The exact interpretation of this register is protocol-specific. |
| 189 | * We only use GPI channels; see struct gsi_channel_scratch_gpi, above. |
| 190 | */ |
| 191 | union gsi_channel_scratch { |
| 192 | struct gsi_channel_scratch_gpi gpi; |
| 193 | struct { |
| 194 | u32 word1; |
| 195 | u32 word2; |
| 196 | u32 word3; |
| 197 | u32 word4; |
| 198 | } data; |
| 199 | }; |
| 200 | |
| 201 | /* Check things that can be validated at build time. */ |
| 202 | static void gsi_validate_build(void) |
| 203 | { |
| 204 | /* This is used as a divisor */ |
| 205 | BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE); |
| 206 | |
| 207 | /* Code assumes the size of channel and event ring element are |
| 208 | * the same (and fixed). Make sure the size of an event ring |
| 209 | * element is what's expected. |
| 210 | */ |
| 211 | BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE); |
| 212 | |
| 213 | /* Hardware requires a 2^n ring size. We ensure the number of |
| 214 | * elements in an event ring is a power of 2 elsewhere; this |
| 215 | * ensure the elements themselves meet the requirement. |
| 216 | */ |
| 217 | BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE)); |
| 218 | |
| 219 | /* The channel element size must fit in this field */ |
| 220 | BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK)); |
| 221 | |
| 222 | /* The event ring element size must fit in this field */ |
| 223 | BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK)); |
| 224 | } |
| 225 | |
| 226 | /* Return the channel id associated with a given channel */ |
| 227 | static u32 gsi_channel_id(struct gsi_channel *channel) |
| 228 | { |
| 229 | return channel - &channel->gsi->channel[0]; |
| 230 | } |
| 231 | |
| 232 | static void gsi_irq_ieob_enable(struct gsi *gsi, u32 evt_ring_id) |
| 233 | { |
| 234 | u32 val; |
| 235 | |
| 236 | gsi->event_enable_bitmap |= BIT(evt_ring_id); |
| 237 | val = gsi->event_enable_bitmap; |
| 238 | iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); |
| 239 | } |
| 240 | |
| 241 | static void gsi_isr_ieob_clear(struct gsi *gsi, u32 mask) |
| 242 | { |
| 243 | iowrite32(mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET); |
| 244 | } |
| 245 | |
| 246 | static void gsi_irq_ieob_disable(struct gsi *gsi, u32 evt_ring_id) |
| 247 | { |
| 248 | u32 val; |
| 249 | |
| 250 | gsi->event_enable_bitmap &= ~BIT(evt_ring_id); |
| 251 | val = gsi->event_enable_bitmap; |
| 252 | iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); |
| 253 | } |
| 254 | |
| 255 | /* Enable all GSI_interrupt types */ |
| 256 | static void gsi_irq_enable(struct gsi *gsi) |
| 257 | { |
| 258 | u32 val; |
| 259 | |
| 260 | /* We don't use inter-EE channel or event interrupts */ |
| 261 | val = GSI_CNTXT_TYPE_IRQ_MSK_ALL; |
| 262 | val &= ~MSK_INTER_EE_CH_CTRL_FMASK; |
| 263 | val &= ~MSK_INTER_EE_EV_CTRL_FMASK; |
| 264 | iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); |
| 265 | |
| 266 | val = GENMASK(gsi->channel_count - 1, 0); |
| 267 | iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); |
| 268 | |
| 269 | val = GENMASK(gsi->evt_ring_count - 1, 0); |
| 270 | iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); |
| 271 | |
| 272 | /* Each IEOB interrupt is enabled (later) as needed by channels */ |
| 273 | iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); |
| 274 | |
| 275 | val = GSI_CNTXT_GLOB_IRQ_ALL; |
| 276 | iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); |
| 277 | |
| 278 | /* Never enable GSI_BREAK_POINT */ |
| 279 | val = GSI_CNTXT_GSI_IRQ_ALL & ~EN_BREAK_POINT_FMASK; |
| 280 | iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); |
| 281 | } |
| 282 | |
| 283 | /* Disable all GSI_interrupt types */ |
| 284 | static void gsi_irq_disable(struct gsi *gsi) |
| 285 | { |
| 286 | iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET); |
| 287 | iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET); |
| 288 | iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET); |
| 289 | iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET); |
| 290 | iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET); |
| 291 | iowrite32(0, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET); |
| 292 | } |
| 293 | |
| 294 | /* Return the virtual address associated with a ring index */ |
| 295 | void *gsi_ring_virt(struct gsi_ring *ring, u32 index) |
| 296 | { |
| 297 | /* Note: index *must* be used modulo the ring count here */ |
| 298 | return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE; |
| 299 | } |
| 300 | |
| 301 | /* Return the 32-bit DMA address associated with a ring index */ |
| 302 | static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index) |
| 303 | { |
| 304 | return (ring->addr & GENMASK(31, 0)) + index * GSI_RING_ELEMENT_SIZE; |
| 305 | } |
| 306 | |
| 307 | /* Return the ring index of a 32-bit ring offset */ |
| 308 | static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset) |
| 309 | { |
| 310 | return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE; |
| 311 | } |
| 312 | |
| 313 | /* Issue a GSI command by writing a value to a register, then wait for |
| 314 | * completion to be signaled. Returns true if the command completes |
| 315 | * or false if it times out. |
| 316 | */ |
| 317 | static bool |
| 318 | gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion) |
| 319 | { |
| 320 | reinit_completion(completion); |
| 321 | |
| 322 | iowrite32(val, gsi->virt + reg); |
| 323 | |
| 324 | return !!wait_for_completion_timeout(completion, GSI_CMD_TIMEOUT * HZ); |
| 325 | } |
| 326 | |
| 327 | /* Return the hardware's notion of the current state of an event ring */ |
| 328 | static enum gsi_evt_ring_state |
| 329 | gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id) |
| 330 | { |
| 331 | u32 val; |
| 332 | |
| 333 | val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); |
| 334 | |
| 335 | return u32_get_bits(val, EV_CHSTATE_FMASK); |
| 336 | } |
| 337 | |
| 338 | /* Issue an event ring command and wait for it to complete */ |
| 339 | static int evt_ring_command(struct gsi *gsi, u32 evt_ring_id, |
| 340 | enum gsi_evt_cmd_opcode opcode) |
| 341 | { |
| 342 | struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| 343 | struct completion *completion = &evt_ring->completion; |
| 344 | u32 val; |
| 345 | |
| 346 | val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK); |
| 347 | val |= u32_encode_bits(opcode, EV_OPCODE_FMASK); |
| 348 | |
| 349 | if (gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion)) |
| 350 | return 0; /* Success! */ |
| 351 | |
| 352 | dev_err(gsi->dev, "GSI command %u to event ring %u timed out " |
| 353 | "(state is %u)\n", opcode, evt_ring_id, evt_ring->state); |
| 354 | |
| 355 | return -ETIMEDOUT; |
| 356 | } |
| 357 | |
| 358 | /* Allocate an event ring in NOT_ALLOCATED state */ |
| 359 | static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id) |
| 360 | { |
| 361 | struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| 362 | int ret; |
| 363 | |
| 364 | /* Get initial event ring state */ |
| 365 | evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); |
| 366 | |
| 367 | if (evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) |
| 368 | return -EINVAL; |
| 369 | |
| 370 | ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE); |
| 371 | if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { |
| 372 | dev_err(gsi->dev, "bad event ring state (%u) after alloc\n", |
| 373 | evt_ring->state); |
| 374 | ret = -EIO; |
| 375 | } |
| 376 | |
| 377 | return ret; |
| 378 | } |
| 379 | |
| 380 | /* Reset a GSI event ring in ALLOCATED or ERROR state. */ |
| 381 | static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id) |
| 382 | { |
| 383 | struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| 384 | enum gsi_evt_ring_state state = evt_ring->state; |
| 385 | int ret; |
| 386 | |
| 387 | if (state != GSI_EVT_RING_STATE_ALLOCATED && |
| 388 | state != GSI_EVT_RING_STATE_ERROR) { |
| 389 | dev_err(gsi->dev, "bad event ring state (%u) before reset\n", |
| 390 | evt_ring->state); |
| 391 | return; |
| 392 | } |
| 393 | |
| 394 | ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET); |
| 395 | if (!ret && evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) |
| 396 | dev_err(gsi->dev, "bad event ring state (%u) after reset\n", |
| 397 | evt_ring->state); |
| 398 | } |
| 399 | |
| 400 | /* Issue a hardware de-allocation request for an allocated event ring */ |
| 401 | static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id) |
| 402 | { |
| 403 | struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| 404 | int ret; |
| 405 | |
| 406 | if (evt_ring->state != GSI_EVT_RING_STATE_ALLOCATED) { |
| 407 | dev_err(gsi->dev, "bad event ring state (%u) before dealloc\n", |
| 408 | evt_ring->state); |
| 409 | return; |
| 410 | } |
| 411 | |
| 412 | ret = evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC); |
| 413 | if (!ret && evt_ring->state != GSI_EVT_RING_STATE_NOT_ALLOCATED) |
| 414 | dev_err(gsi->dev, "bad event ring state (%u) after dealloc\n", |
| 415 | evt_ring->state); |
| 416 | } |
| 417 | |
| 418 | /* Return the hardware's notion of the current state of a channel */ |
| 419 | static enum gsi_channel_state |
| 420 | gsi_channel_state(struct gsi *gsi, u32 channel_id) |
| 421 | { |
| 422 | u32 val; |
| 423 | |
| 424 | val = ioread32(gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); |
| 425 | |
| 426 | return u32_get_bits(val, CHSTATE_FMASK); |
| 427 | } |
| 428 | |
| 429 | /* Issue a channel command and wait for it to complete */ |
| 430 | static int |
| 431 | gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode) |
| 432 | { |
| 433 | struct completion *completion = &channel->completion; |
| 434 | u32 channel_id = gsi_channel_id(channel); |
| 435 | u32 val; |
| 436 | |
| 437 | val = u32_encode_bits(channel_id, CH_CHID_FMASK); |
| 438 | val |= u32_encode_bits(opcode, CH_OPCODE_FMASK); |
| 439 | |
| 440 | if (gsi_command(channel->gsi, GSI_CH_CMD_OFFSET, val, completion)) |
| 441 | return 0; /* Success! */ |
| 442 | |
| 443 | dev_err(channel->gsi->dev, "GSI command %u to channel %u timed out " |
| 444 | "(state is %u)\n", opcode, channel_id, channel->state); |
| 445 | |
| 446 | return -ETIMEDOUT; |
| 447 | } |
| 448 | |
| 449 | /* Allocate GSI channel in NOT_ALLOCATED state */ |
| 450 | static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id) |
| 451 | { |
| 452 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 453 | int ret; |
| 454 | |
| 455 | /* Get initial channel state */ |
| 456 | channel->state = gsi_channel_state(gsi, channel_id); |
| 457 | |
| 458 | if (channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED) |
| 459 | return -EINVAL; |
| 460 | |
| 461 | ret = gsi_channel_command(channel, GSI_CH_ALLOCATE); |
| 462 | if (!ret && channel->state != GSI_CHANNEL_STATE_ALLOCATED) { |
| 463 | dev_err(gsi->dev, "bad channel state (%u) after alloc\n", |
| 464 | channel->state); |
| 465 | ret = -EIO; |
| 466 | } |
| 467 | |
| 468 | return ret; |
| 469 | } |
| 470 | |
| 471 | /* Start an ALLOCATED channel */ |
| 472 | static int gsi_channel_start_command(struct gsi_channel *channel) |
| 473 | { |
| 474 | enum gsi_channel_state state = channel->state; |
| 475 | int ret; |
| 476 | |
| 477 | if (state != GSI_CHANNEL_STATE_ALLOCATED && |
| 478 | state != GSI_CHANNEL_STATE_STOPPED) |
| 479 | return -EINVAL; |
| 480 | |
| 481 | ret = gsi_channel_command(channel, GSI_CH_START); |
| 482 | if (!ret && channel->state != GSI_CHANNEL_STATE_STARTED) { |
| 483 | dev_err(channel->gsi->dev, |
| 484 | "bad channel state (%u) after start\n", |
| 485 | channel->state); |
| 486 | ret = -EIO; |
| 487 | } |
| 488 | |
| 489 | return ret; |
| 490 | } |
| 491 | |
| 492 | /* Stop a GSI channel in STARTED state */ |
| 493 | static int gsi_channel_stop_command(struct gsi_channel *channel) |
| 494 | { |
| 495 | enum gsi_channel_state state = channel->state; |
| 496 | int ret; |
| 497 | |
| 498 | if (state != GSI_CHANNEL_STATE_STARTED && |
| 499 | state != GSI_CHANNEL_STATE_STOP_IN_PROC) |
| 500 | return -EINVAL; |
| 501 | |
| 502 | ret = gsi_channel_command(channel, GSI_CH_STOP); |
| 503 | if (ret || channel->state == GSI_CHANNEL_STATE_STOPPED) |
| 504 | return ret; |
| 505 | |
| 506 | /* We may have to try again if stop is in progress */ |
| 507 | if (channel->state == GSI_CHANNEL_STATE_STOP_IN_PROC) |
| 508 | return -EAGAIN; |
| 509 | |
| 510 | dev_err(channel->gsi->dev, "bad channel state (%u) after stop\n", |
| 511 | channel->state); |
| 512 | |
| 513 | return -EIO; |
| 514 | } |
| 515 | |
| 516 | /* Reset a GSI channel in ALLOCATED or ERROR state. */ |
| 517 | static void gsi_channel_reset_command(struct gsi_channel *channel) |
| 518 | { |
| 519 | int ret; |
| 520 | |
| 521 | msleep(1); /* A short delay is required before a RESET command */ |
| 522 | |
| 523 | if (channel->state != GSI_CHANNEL_STATE_STOPPED && |
| 524 | channel->state != GSI_CHANNEL_STATE_ERROR) { |
| 525 | dev_err(channel->gsi->dev, |
| 526 | "bad channel state (%u) before reset\n", |
| 527 | channel->state); |
| 528 | return; |
| 529 | } |
| 530 | |
| 531 | ret = gsi_channel_command(channel, GSI_CH_RESET); |
| 532 | if (!ret && channel->state != GSI_CHANNEL_STATE_ALLOCATED) |
| 533 | dev_err(channel->gsi->dev, |
| 534 | "bad channel state (%u) after reset\n", |
| 535 | channel->state); |
| 536 | } |
| 537 | |
| 538 | /* Deallocate an ALLOCATED GSI channel */ |
| 539 | static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id) |
| 540 | { |
| 541 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 542 | int ret; |
| 543 | |
| 544 | if (channel->state != GSI_CHANNEL_STATE_ALLOCATED) { |
| 545 | dev_err(gsi->dev, "bad channel state (%u) before dealloc\n", |
| 546 | channel->state); |
| 547 | return; |
| 548 | } |
| 549 | |
| 550 | ret = gsi_channel_command(channel, GSI_CH_DE_ALLOC); |
| 551 | if (!ret && channel->state != GSI_CHANNEL_STATE_NOT_ALLOCATED) |
| 552 | dev_err(gsi->dev, "bad channel state (%u) after dealloc\n", |
| 553 | channel->state); |
| 554 | } |
| 555 | |
| 556 | /* Ring an event ring doorbell, reporting the last entry processed by the AP. |
| 557 | * The index argument (modulo the ring count) is the first unfilled entry, so |
| 558 | * we supply one less than that with the doorbell. Update the event ring |
| 559 | * index field with the value provided. |
| 560 | */ |
| 561 | static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index) |
| 562 | { |
| 563 | struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring; |
| 564 | u32 val; |
| 565 | |
| 566 | ring->index = index; /* Next unused entry */ |
| 567 | |
| 568 | /* Note: index *must* be used modulo the ring count here */ |
| 569 | val = gsi_ring_addr(ring, (index - 1) % ring->count); |
| 570 | iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id)); |
| 571 | } |
| 572 | |
| 573 | /* Program an event ring for use */ |
| 574 | static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id) |
| 575 | { |
| 576 | struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| 577 | size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE; |
| 578 | u32 val; |
| 579 | |
| 580 | val = u32_encode_bits(GSI_EVT_CHTYPE_GPI_EV, EV_CHTYPE_FMASK); |
| 581 | val |= EV_INTYPE_FMASK; |
| 582 | val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK); |
| 583 | iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id)); |
| 584 | |
| 585 | val = u32_encode_bits(size, EV_R_LENGTH_FMASK); |
| 586 | iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id)); |
| 587 | |
| 588 | /* The context 2 and 3 registers store the low-order and |
| 589 | * high-order 32 bits of the address of the event ring, |
| 590 | * respectively. |
| 591 | */ |
| 592 | val = evt_ring->ring.addr & GENMASK(31, 0); |
| 593 | iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id)); |
| 594 | |
| 595 | val = evt_ring->ring.addr >> 32; |
| 596 | iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id)); |
| 597 | |
| 598 | /* Enable interrupt moderation by setting the moderation delay */ |
| 599 | val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK); |
| 600 | val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */ |
| 601 | iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id)); |
| 602 | |
| 603 | /* No MSI write data, and MSI address high and low address is 0 */ |
| 604 | iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id)); |
| 605 | iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id)); |
| 606 | iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id)); |
| 607 | |
| 608 | /* We don't need to get event read pointer updates */ |
| 609 | iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id)); |
| 610 | iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id)); |
| 611 | |
| 612 | /* Finally, tell the hardware we've completed event 0 (arbitrary) */ |
| 613 | gsi_evt_ring_doorbell(gsi, evt_ring_id, 0); |
| 614 | } |
| 615 | |
| 616 | /* Return the last (most recent) transaction completed on a channel. */ |
| 617 | static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel) |
| 618 | { |
| 619 | struct gsi_trans_info *trans_info = &channel->trans_info; |
| 620 | struct gsi_trans *trans; |
| 621 | |
| 622 | spin_lock_bh(&trans_info->spinlock); |
| 623 | |
| 624 | if (!list_empty(&trans_info->complete)) |
| 625 | trans = list_last_entry(&trans_info->complete, |
| 626 | struct gsi_trans, links); |
| 627 | else if (!list_empty(&trans_info->polled)) |
| 628 | trans = list_last_entry(&trans_info->polled, |
| 629 | struct gsi_trans, links); |
| 630 | else |
| 631 | trans = NULL; |
| 632 | |
| 633 | /* Caller will wait for this, so take a reference */ |
| 634 | if (trans) |
| 635 | refcount_inc(&trans->refcount); |
| 636 | |
| 637 | spin_unlock_bh(&trans_info->spinlock); |
| 638 | |
| 639 | return trans; |
| 640 | } |
| 641 | |
| 642 | /* Wait for transaction activity on a channel to complete */ |
| 643 | static void gsi_channel_trans_quiesce(struct gsi_channel *channel) |
| 644 | { |
| 645 | struct gsi_trans *trans; |
| 646 | |
| 647 | /* Get the last transaction, and wait for it to complete */ |
| 648 | trans = gsi_channel_trans_last(channel); |
| 649 | if (trans) { |
| 650 | wait_for_completion(&trans->completion); |
| 651 | gsi_trans_free(trans); |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | /* Stop channel activity. Transactions may not be allocated until thawed. */ |
| 656 | static void gsi_channel_freeze(struct gsi_channel *channel) |
| 657 | { |
| 658 | gsi_channel_trans_quiesce(channel); |
| 659 | |
| 660 | napi_disable(&channel->napi); |
| 661 | |
| 662 | gsi_irq_ieob_disable(channel->gsi, channel->evt_ring_id); |
| 663 | } |
| 664 | |
| 665 | /* Allow transactions to be used on the channel again. */ |
| 666 | static void gsi_channel_thaw(struct gsi_channel *channel) |
| 667 | { |
| 668 | gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); |
| 669 | |
| 670 | napi_enable(&channel->napi); |
| 671 | } |
| 672 | |
| 673 | /* Program a channel for use */ |
| 674 | static void gsi_channel_program(struct gsi_channel *channel, bool doorbell) |
| 675 | { |
| 676 | size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE; |
| 677 | u32 channel_id = gsi_channel_id(channel); |
| 678 | union gsi_channel_scratch scr = { }; |
| 679 | struct gsi_channel_scratch_gpi *gpi; |
| 680 | struct gsi *gsi = channel->gsi; |
| 681 | u32 wrr_weight = 0; |
| 682 | u32 val; |
| 683 | |
| 684 | /* Arbitrarily pick TRE 0 as the first channel element to use */ |
| 685 | channel->tre_ring.index = 0; |
| 686 | |
| 687 | /* We program all channels to use GPI protocol */ |
| 688 | val = u32_encode_bits(GSI_CHANNEL_PROTOCOL_GPI, CHTYPE_PROTOCOL_FMASK); |
| 689 | if (channel->toward_ipa) |
| 690 | val |= CHTYPE_DIR_FMASK; |
| 691 | val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK); |
| 692 | val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK); |
| 693 | iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id)); |
| 694 | |
| 695 | val = u32_encode_bits(size, R_LENGTH_FMASK); |
| 696 | iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id)); |
| 697 | |
| 698 | /* The context 2 and 3 registers store the low-order and |
| 699 | * high-order 32 bits of the address of the channel ring, |
| 700 | * respectively. |
| 701 | */ |
| 702 | val = channel->tre_ring.addr & GENMASK(31, 0); |
| 703 | iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id)); |
| 704 | |
| 705 | val = channel->tre_ring.addr >> 32; |
| 706 | iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id)); |
| 707 | |
| 708 | /* Command channel gets low weighted round-robin priority */ |
| 709 | if (channel->command) |
| 710 | wrr_weight = field_max(WRR_WEIGHT_FMASK); |
| 711 | val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK); |
| 712 | |
| 713 | /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */ |
| 714 | |
| 715 | /* Enable the doorbell engine if requested */ |
| 716 | if (doorbell) |
| 717 | val |= USE_DB_ENG_FMASK; |
| 718 | |
| 719 | if (!channel->use_prefetch) |
| 720 | val |= USE_ESCAPE_BUF_ONLY_FMASK; |
| 721 | |
| 722 | iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id)); |
| 723 | |
| 724 | /* Now update the scratch registers for GPI protocol */ |
| 725 | gpi = &scr.gpi; |
| 726 | gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) * |
| 727 | GSI_RING_ELEMENT_SIZE; |
| 728 | gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE; |
| 729 | |
| 730 | val = scr.data.word1; |
| 731 | iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id)); |
| 732 | |
| 733 | val = scr.data.word2; |
| 734 | iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id)); |
| 735 | |
| 736 | val = scr.data.word3; |
| 737 | iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id)); |
| 738 | |
| 739 | /* We must preserve the upper 16 bits of the last scratch register. |
| 740 | * The next sequence assumes those bits remain unchanged between the |
| 741 | * read and the write. |
| 742 | */ |
| 743 | val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); |
| 744 | val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0)); |
| 745 | iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id)); |
| 746 | |
| 747 | /* All done! */ |
| 748 | } |
| 749 | |
| 750 | static void gsi_channel_deprogram(struct gsi_channel *channel) |
| 751 | { |
| 752 | /* Nothing to do */ |
| 753 | } |
| 754 | |
| 755 | /* Start an allocated GSI channel */ |
| 756 | int gsi_channel_start(struct gsi *gsi, u32 channel_id) |
| 757 | { |
| 758 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 759 | u32 evt_ring_id = channel->evt_ring_id; |
| 760 | int ret; |
| 761 | |
| 762 | mutex_lock(&gsi->mutex); |
| 763 | |
| 764 | ret = gsi_channel_start_command(channel); |
| 765 | |
| 766 | mutex_unlock(&gsi->mutex); |
| 767 | |
| 768 | /* Clear the channel's event ring interrupt in case it's pending */ |
| 769 | gsi_isr_ieob_clear(gsi, BIT(evt_ring_id)); |
| 770 | |
| 771 | gsi_channel_thaw(channel); |
| 772 | |
| 773 | return ret; |
| 774 | } |
| 775 | |
| 776 | /* Stop a started channel */ |
| 777 | int gsi_channel_stop(struct gsi *gsi, u32 channel_id) |
| 778 | { |
| 779 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 780 | u32 retries; |
| 781 | int ret; |
| 782 | |
| 783 | gsi_channel_freeze(channel); |
| 784 | |
| 785 | /* Channel could have entered STOPPED state since last call if the |
| 786 | * STOP command timed out. We won't stop a channel if stopping it |
| 787 | * was successful previously (so we still want the freeze above). |
| 788 | */ |
| 789 | if (channel->state == GSI_CHANNEL_STATE_STOPPED) |
| 790 | return 0; |
| 791 | |
| 792 | /* RX channels might require a little time to enter STOPPED state */ |
| 793 | retries = channel->toward_ipa ? 0 : GSI_CHANNEL_STOP_RX_RETRIES; |
| 794 | |
| 795 | mutex_lock(&gsi->mutex); |
| 796 | |
| 797 | do { |
| 798 | ret = gsi_channel_stop_command(channel); |
| 799 | if (ret != -EAGAIN) |
| 800 | break; |
| 801 | msleep(1); |
| 802 | } while (retries--); |
| 803 | |
| 804 | mutex_unlock(&gsi->mutex); |
| 805 | |
| 806 | /* Thaw the channel if we need to retry (or on error) */ |
| 807 | if (ret) |
| 808 | gsi_channel_thaw(channel); |
| 809 | |
| 810 | return ret; |
| 811 | } |
| 812 | |
| 813 | /* Reset and reconfigure a channel (possibly leaving doorbell disabled) */ |
| 814 | void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool db_enable) |
| 815 | { |
| 816 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 817 | |
| 818 | mutex_lock(&gsi->mutex); |
| 819 | |
| 820 | /* Due to a hardware quirk we need to reset RX channels twice. */ |
| 821 | gsi_channel_reset_command(channel); |
| 822 | if (!channel->toward_ipa) |
| 823 | gsi_channel_reset_command(channel); |
| 824 | |
| 825 | gsi_channel_program(channel, db_enable); |
| 826 | gsi_channel_trans_cancel_pending(channel); |
| 827 | |
| 828 | mutex_unlock(&gsi->mutex); |
| 829 | } |
| 830 | |
| 831 | /* Stop a STARTED channel for suspend (using stop if requested) */ |
| 832 | int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop) |
| 833 | { |
| 834 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 835 | |
| 836 | if (stop) |
| 837 | return gsi_channel_stop(gsi, channel_id); |
| 838 | |
| 839 | gsi_channel_freeze(channel); |
| 840 | |
| 841 | return 0; |
| 842 | } |
| 843 | |
| 844 | /* Resume a suspended channel (starting will be requested if STOPPED) */ |
| 845 | int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start) |
| 846 | { |
| 847 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 848 | |
| 849 | if (start) |
| 850 | return gsi_channel_start(gsi, channel_id); |
| 851 | |
| 852 | gsi_channel_thaw(channel); |
| 853 | |
| 854 | return 0; |
| 855 | } |
| 856 | |
| 857 | /** |
| 858 | * gsi_channel_tx_queued() - Report queued TX transfers for a channel |
| 859 | * @channel: Channel for which to report |
| 860 | * |
| 861 | * Report to the network stack the number of bytes and transactions that |
| 862 | * have been queued to hardware since last call. This and the next function |
| 863 | * supply information used by the network stack for throttling. |
| 864 | * |
| 865 | * For each channel we track the number of transactions used and bytes of |
| 866 | * data those transactions represent. We also track what those values are |
| 867 | * each time this function is called. Subtracting the two tells us |
| 868 | * the number of bytes and transactions that have been added between |
| 869 | * successive calls. |
| 870 | * |
| 871 | * Calling this each time we ring the channel doorbell allows us to |
| 872 | * provide accurate information to the network stack about how much |
| 873 | * work we've given the hardware at any point in time. |
| 874 | */ |
| 875 | void gsi_channel_tx_queued(struct gsi_channel *channel) |
| 876 | { |
| 877 | u32 trans_count; |
| 878 | u32 byte_count; |
| 879 | |
| 880 | byte_count = channel->byte_count - channel->queued_byte_count; |
| 881 | trans_count = channel->trans_count - channel->queued_trans_count; |
| 882 | channel->queued_byte_count = channel->byte_count; |
| 883 | channel->queued_trans_count = channel->trans_count; |
| 884 | |
| 885 | ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel), |
| 886 | trans_count, byte_count); |
| 887 | } |
| 888 | |
| 889 | /** |
| 890 | * gsi_channel_tx_update() - Report completed TX transfers |
| 891 | * @channel: Channel that has completed transmitting packets |
| 892 | * @trans: Last transation known to be complete |
| 893 | * |
| 894 | * Compute the number of transactions and bytes that have been transferred |
| 895 | * over a TX channel since the given transaction was committed. Report this |
| 896 | * information to the network stack. |
| 897 | * |
| 898 | * At the time a transaction is committed, we record its channel's |
| 899 | * committed transaction and byte counts *in the transaction*. |
| 900 | * Completions are signaled by the hardware with an interrupt, and |
| 901 | * we can determine the latest completed transaction at that time. |
| 902 | * |
| 903 | * The difference between the byte/transaction count recorded in |
| 904 | * the transaction and the count last time we recorded a completion |
| 905 | * tells us exactly how much data has been transferred between |
| 906 | * completions. |
| 907 | * |
| 908 | * Calling this each time we learn of a newly-completed transaction |
| 909 | * allows us to provide accurate information to the network stack |
| 910 | * about how much work has been completed by the hardware at a given |
| 911 | * point in time. |
| 912 | */ |
| 913 | static void |
| 914 | gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans) |
| 915 | { |
| 916 | u64 byte_count = trans->byte_count + trans->len; |
| 917 | u64 trans_count = trans->trans_count + 1; |
| 918 | |
| 919 | byte_count -= channel->compl_byte_count; |
| 920 | channel->compl_byte_count += byte_count; |
| 921 | trans_count -= channel->compl_trans_count; |
| 922 | channel->compl_trans_count += trans_count; |
| 923 | |
| 924 | ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel), |
| 925 | trans_count, byte_count); |
| 926 | } |
| 927 | |
| 928 | /* Channel control interrupt handler */ |
| 929 | static void gsi_isr_chan_ctrl(struct gsi *gsi) |
| 930 | { |
| 931 | u32 channel_mask; |
| 932 | |
| 933 | channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET); |
| 934 | iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET); |
| 935 | |
| 936 | while (channel_mask) { |
| 937 | u32 channel_id = __ffs(channel_mask); |
| 938 | struct gsi_channel *channel; |
| 939 | |
| 940 | channel_mask ^= BIT(channel_id); |
| 941 | |
| 942 | channel = &gsi->channel[channel_id]; |
| 943 | channel->state = gsi_channel_state(gsi, channel_id); |
| 944 | |
| 945 | complete(&channel->completion); |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | /* Event ring control interrupt handler */ |
| 950 | static void gsi_isr_evt_ctrl(struct gsi *gsi) |
| 951 | { |
| 952 | u32 event_mask; |
| 953 | |
| 954 | event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET); |
| 955 | iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET); |
| 956 | |
| 957 | while (event_mask) { |
| 958 | u32 evt_ring_id = __ffs(event_mask); |
| 959 | struct gsi_evt_ring *evt_ring; |
| 960 | |
| 961 | event_mask ^= BIT(evt_ring_id); |
| 962 | |
| 963 | evt_ring = &gsi->evt_ring[evt_ring_id]; |
| 964 | evt_ring->state = gsi_evt_ring_state(gsi, evt_ring_id); |
| 965 | |
| 966 | complete(&evt_ring->completion); |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | /* Global channel error interrupt handler */ |
| 971 | static void |
| 972 | gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code) |
| 973 | { |
| 974 | if (code == GSI_OUT_OF_RESOURCES_ERR) { |
| 975 | dev_err(gsi->dev, "channel %u out of resources\n", channel_id); |
| 976 | complete(&gsi->channel[channel_id].completion); |
| 977 | return; |
| 978 | } |
| 979 | |
| 980 | /* Report, but otherwise ignore all other error codes */ |
| 981 | dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n", |
| 982 | channel_id, err_ee, code); |
| 983 | } |
| 984 | |
| 985 | /* Global event error interrupt handler */ |
| 986 | static void |
| 987 | gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code) |
| 988 | { |
| 989 | if (code == GSI_OUT_OF_RESOURCES_ERR) { |
| 990 | struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id]; |
| 991 | u32 channel_id = gsi_channel_id(evt_ring->channel); |
| 992 | |
| 993 | complete(&evt_ring->completion); |
| 994 | dev_err(gsi->dev, "evt_ring for channel %u out of resources\n", |
| 995 | channel_id); |
| 996 | return; |
| 997 | } |
| 998 | |
| 999 | /* Report, but otherwise ignore all other error codes */ |
| 1000 | dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n", |
| 1001 | evt_ring_id, err_ee, code); |
| 1002 | } |
| 1003 | |
| 1004 | /* Global error interrupt handler */ |
| 1005 | static void gsi_isr_glob_err(struct gsi *gsi) |
| 1006 | { |
| 1007 | enum gsi_err_type type; |
| 1008 | enum gsi_err_code code; |
| 1009 | u32 which; |
| 1010 | u32 val; |
| 1011 | u32 ee; |
| 1012 | |
| 1013 | /* Get the logged error, then reinitialize the log */ |
| 1014 | val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET); |
| 1015 | iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); |
| 1016 | iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET); |
| 1017 | |
| 1018 | ee = u32_get_bits(val, ERR_EE_FMASK); |
| 1019 | which = u32_get_bits(val, ERR_VIRT_IDX_FMASK); |
| 1020 | type = u32_get_bits(val, ERR_TYPE_FMASK); |
| 1021 | code = u32_get_bits(val, ERR_CODE_FMASK); |
| 1022 | |
| 1023 | if (type == GSI_ERR_TYPE_CHAN) |
| 1024 | gsi_isr_glob_chan_err(gsi, ee, which, code); |
| 1025 | else if (type == GSI_ERR_TYPE_EVT) |
| 1026 | gsi_isr_glob_evt_err(gsi, ee, which, code); |
| 1027 | else /* type GSI_ERR_TYPE_GLOB should be fatal */ |
| 1028 | dev_err(gsi->dev, "unexpected global error 0x%08x\n", type); |
| 1029 | } |
| 1030 | |
| 1031 | /* Generic EE interrupt handler */ |
| 1032 | static void gsi_isr_gp_int1(struct gsi *gsi) |
| 1033 | { |
| 1034 | u32 result; |
| 1035 | u32 val; |
| 1036 | |
| 1037 | val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); |
| 1038 | result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK); |
| 1039 | if (result != GENERIC_EE_SUCCESS_FVAL) |
| 1040 | dev_err(gsi->dev, "global INT1 generic result %u\n", result); |
| 1041 | |
| 1042 | complete(&gsi->completion); |
| 1043 | } |
Alex Elder | 0b1ba18 | 2020-04-30 16:35:12 -0500 | [diff] [blame^] | 1044 | |
Alex Elder | 650d160 | 2020-03-05 22:28:21 -0600 | [diff] [blame] | 1045 | /* Inter-EE interrupt handler */ |
| 1046 | static void gsi_isr_glob_ee(struct gsi *gsi) |
| 1047 | { |
| 1048 | u32 val; |
| 1049 | |
| 1050 | val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET); |
| 1051 | |
| 1052 | if (val & ERROR_INT_FMASK) |
| 1053 | gsi_isr_glob_err(gsi); |
| 1054 | |
| 1055 | iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET); |
| 1056 | |
| 1057 | val &= ~ERROR_INT_FMASK; |
| 1058 | |
| 1059 | if (val & EN_GP_INT1_FMASK) { |
| 1060 | val ^= EN_GP_INT1_FMASK; |
| 1061 | gsi_isr_gp_int1(gsi); |
| 1062 | } |
| 1063 | |
| 1064 | if (val) |
| 1065 | dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val); |
| 1066 | } |
| 1067 | |
| 1068 | /* I/O completion interrupt event */ |
| 1069 | static void gsi_isr_ieob(struct gsi *gsi) |
| 1070 | { |
| 1071 | u32 event_mask; |
| 1072 | |
| 1073 | event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET); |
| 1074 | gsi_isr_ieob_clear(gsi, event_mask); |
| 1075 | |
| 1076 | while (event_mask) { |
| 1077 | u32 evt_ring_id = __ffs(event_mask); |
| 1078 | |
| 1079 | event_mask ^= BIT(evt_ring_id); |
| 1080 | |
| 1081 | gsi_irq_ieob_disable(gsi, evt_ring_id); |
| 1082 | napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi); |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | /* General event interrupts represent serious problems, so report them */ |
| 1087 | static void gsi_isr_general(struct gsi *gsi) |
| 1088 | { |
| 1089 | struct device *dev = gsi->dev; |
| 1090 | u32 val; |
| 1091 | |
| 1092 | val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET); |
| 1093 | iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET); |
| 1094 | |
| 1095 | if (val) |
| 1096 | dev_err(dev, "unexpected general interrupt 0x%08x\n", val); |
| 1097 | } |
| 1098 | |
| 1099 | /** |
| 1100 | * gsi_isr() - Top level GSI interrupt service routine |
| 1101 | * @irq: Interrupt number (ignored) |
| 1102 | * @dev_id: GSI pointer supplied to request_irq() |
| 1103 | * |
| 1104 | * This is the main handler function registered for the GSI IRQ. Each type |
| 1105 | * of interrupt has a separate handler function that is called from here. |
| 1106 | */ |
| 1107 | static irqreturn_t gsi_isr(int irq, void *dev_id) |
| 1108 | { |
| 1109 | struct gsi *gsi = dev_id; |
| 1110 | u32 intr_mask; |
| 1111 | u32 cnt = 0; |
| 1112 | |
| 1113 | while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) { |
| 1114 | /* intr_mask contains bitmask of pending GSI interrupts */ |
| 1115 | do { |
| 1116 | u32 gsi_intr = BIT(__ffs(intr_mask)); |
| 1117 | |
| 1118 | intr_mask ^= gsi_intr; |
| 1119 | |
| 1120 | switch (gsi_intr) { |
| 1121 | case CH_CTRL_FMASK: |
| 1122 | gsi_isr_chan_ctrl(gsi); |
| 1123 | break; |
| 1124 | case EV_CTRL_FMASK: |
| 1125 | gsi_isr_evt_ctrl(gsi); |
| 1126 | break; |
| 1127 | case GLOB_EE_FMASK: |
| 1128 | gsi_isr_glob_ee(gsi); |
| 1129 | break; |
| 1130 | case IEOB_FMASK: |
| 1131 | gsi_isr_ieob(gsi); |
| 1132 | break; |
| 1133 | case GENERAL_FMASK: |
| 1134 | gsi_isr_general(gsi); |
| 1135 | break; |
| 1136 | default: |
| 1137 | dev_err(gsi->dev, |
| 1138 | "%s: unrecognized type 0x%08x\n", |
| 1139 | __func__, gsi_intr); |
| 1140 | break; |
| 1141 | } |
| 1142 | } while (intr_mask); |
| 1143 | |
| 1144 | if (++cnt > GSI_ISR_MAX_ITER) { |
| 1145 | dev_err(gsi->dev, "interrupt flood\n"); |
| 1146 | break; |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | return IRQ_HANDLED; |
| 1151 | } |
| 1152 | |
| 1153 | /* Return the transaction associated with a transfer completion event */ |
| 1154 | static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel, |
| 1155 | struct gsi_event *event) |
| 1156 | { |
| 1157 | u32 tre_offset; |
| 1158 | u32 tre_index; |
| 1159 | |
| 1160 | /* Event xfer_ptr records the TRE it's associated with */ |
| 1161 | tre_offset = le64_to_cpu(event->xfer_ptr) & GENMASK(31, 0); |
| 1162 | tre_index = gsi_ring_index(&channel->tre_ring, tre_offset); |
| 1163 | |
| 1164 | return gsi_channel_trans_mapped(channel, tre_index); |
| 1165 | } |
| 1166 | |
| 1167 | /** |
| 1168 | * gsi_evt_ring_rx_update() - Record lengths of received data |
| 1169 | * @evt_ring: Event ring associated with channel that received packets |
| 1170 | * @index: Event index in ring reported by hardware |
| 1171 | * |
| 1172 | * Events for RX channels contain the actual number of bytes received into |
| 1173 | * the buffer. Every event has a transaction associated with it, and here |
| 1174 | * we update transactions to record their actual received lengths. |
| 1175 | * |
| 1176 | * This function is called whenever we learn that the GSI hardware has filled |
| 1177 | * new events since the last time we checked. The ring's index field tells |
| 1178 | * the first entry in need of processing. The index provided is the |
| 1179 | * first *unfilled* event in the ring (following the last filled one). |
| 1180 | * |
| 1181 | * Events are sequential within the event ring, and transactions are |
| 1182 | * sequential within the transaction pool. |
| 1183 | * |
| 1184 | * Note that @index always refers to an element *within* the event ring. |
| 1185 | */ |
| 1186 | static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index) |
| 1187 | { |
| 1188 | struct gsi_channel *channel = evt_ring->channel; |
| 1189 | struct gsi_ring *ring = &evt_ring->ring; |
| 1190 | struct gsi_trans_info *trans_info; |
| 1191 | struct gsi_event *event_done; |
| 1192 | struct gsi_event *event; |
| 1193 | struct gsi_trans *trans; |
| 1194 | u32 byte_count = 0; |
| 1195 | u32 old_index; |
| 1196 | u32 event_avail; |
| 1197 | |
| 1198 | trans_info = &channel->trans_info; |
| 1199 | |
| 1200 | /* We'll start with the oldest un-processed event. RX channels |
| 1201 | * replenish receive buffers in single-TRE transactions, so we |
| 1202 | * can just map that event to its transaction. Transactions |
| 1203 | * associated with completion events are consecutive. |
| 1204 | */ |
| 1205 | old_index = ring->index; |
| 1206 | event = gsi_ring_virt(ring, old_index); |
| 1207 | trans = gsi_event_trans(channel, event); |
| 1208 | |
| 1209 | /* Compute the number of events to process before we wrap, |
| 1210 | * and determine when we'll be done processing events. |
| 1211 | */ |
| 1212 | event_avail = ring->count - old_index % ring->count; |
| 1213 | event_done = gsi_ring_virt(ring, index); |
| 1214 | do { |
| 1215 | trans->len = __le16_to_cpu(event->len); |
| 1216 | byte_count += trans->len; |
| 1217 | |
| 1218 | /* Move on to the next event and transaction */ |
| 1219 | if (--event_avail) |
| 1220 | event++; |
| 1221 | else |
| 1222 | event = gsi_ring_virt(ring, 0); |
| 1223 | trans = gsi_trans_pool_next(&trans_info->pool, trans); |
| 1224 | } while (event != event_done); |
| 1225 | |
| 1226 | /* We record RX bytes when they are received */ |
| 1227 | channel->byte_count += byte_count; |
| 1228 | channel->trans_count++; |
| 1229 | } |
| 1230 | |
| 1231 | /* Initialize a ring, including allocating DMA memory for its entries */ |
| 1232 | static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count) |
| 1233 | { |
| 1234 | size_t size = count * GSI_RING_ELEMENT_SIZE; |
| 1235 | struct device *dev = gsi->dev; |
| 1236 | dma_addr_t addr; |
| 1237 | |
| 1238 | /* Hardware requires a 2^n ring size, with alignment equal to size */ |
| 1239 | ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL); |
| 1240 | if (ring->virt && addr % size) { |
| 1241 | dma_free_coherent(dev, size, ring->virt, ring->addr); |
| 1242 | dev_err(dev, "unable to alloc 0x%zx-aligned ring buffer\n", |
| 1243 | size); |
| 1244 | return -EINVAL; /* Not a good error value, but distinct */ |
| 1245 | } else if (!ring->virt) { |
| 1246 | return -ENOMEM; |
| 1247 | } |
| 1248 | ring->addr = addr; |
| 1249 | ring->count = count; |
| 1250 | |
| 1251 | return 0; |
| 1252 | } |
| 1253 | |
| 1254 | /* Free a previously-allocated ring */ |
| 1255 | static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring) |
| 1256 | { |
| 1257 | size_t size = ring->count * GSI_RING_ELEMENT_SIZE; |
| 1258 | |
| 1259 | dma_free_coherent(gsi->dev, size, ring->virt, ring->addr); |
| 1260 | } |
| 1261 | |
| 1262 | /* Allocate an available event ring id */ |
| 1263 | static int gsi_evt_ring_id_alloc(struct gsi *gsi) |
| 1264 | { |
| 1265 | u32 evt_ring_id; |
| 1266 | |
| 1267 | if (gsi->event_bitmap == ~0U) { |
| 1268 | dev_err(gsi->dev, "event rings exhausted\n"); |
| 1269 | return -ENOSPC; |
| 1270 | } |
| 1271 | |
| 1272 | evt_ring_id = ffz(gsi->event_bitmap); |
| 1273 | gsi->event_bitmap |= BIT(evt_ring_id); |
| 1274 | |
| 1275 | return (int)evt_ring_id; |
| 1276 | } |
| 1277 | |
| 1278 | /* Free a previously-allocated event ring id */ |
| 1279 | static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id) |
| 1280 | { |
| 1281 | gsi->event_bitmap &= ~BIT(evt_ring_id); |
| 1282 | } |
| 1283 | |
| 1284 | /* Ring a channel doorbell, reporting the first un-filled entry */ |
| 1285 | void gsi_channel_doorbell(struct gsi_channel *channel) |
| 1286 | { |
| 1287 | struct gsi_ring *tre_ring = &channel->tre_ring; |
| 1288 | u32 channel_id = gsi_channel_id(channel); |
| 1289 | struct gsi *gsi = channel->gsi; |
| 1290 | u32 val; |
| 1291 | |
| 1292 | /* Note: index *must* be used modulo the ring count here */ |
| 1293 | val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count); |
| 1294 | iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id)); |
| 1295 | } |
| 1296 | |
| 1297 | /* Consult hardware, move any newly completed transactions to completed list */ |
| 1298 | static void gsi_channel_update(struct gsi_channel *channel) |
| 1299 | { |
| 1300 | u32 evt_ring_id = channel->evt_ring_id; |
| 1301 | struct gsi *gsi = channel->gsi; |
| 1302 | struct gsi_evt_ring *evt_ring; |
| 1303 | struct gsi_trans *trans; |
| 1304 | struct gsi_ring *ring; |
| 1305 | u32 offset; |
| 1306 | u32 index; |
| 1307 | |
| 1308 | evt_ring = &gsi->evt_ring[evt_ring_id]; |
| 1309 | ring = &evt_ring->ring; |
| 1310 | |
| 1311 | /* See if there's anything new to process; if not, we're done. Note |
| 1312 | * that index always refers to an entry *within* the event ring. |
| 1313 | */ |
| 1314 | offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id); |
| 1315 | index = gsi_ring_index(ring, ioread32(gsi->virt + offset)); |
| 1316 | if (index == ring->index % ring->count) |
| 1317 | return; |
| 1318 | |
| 1319 | /* Get the transaction for the latest completed event. Take a |
| 1320 | * reference to keep it from completing before we give the events |
| 1321 | * for this and previous transactions back to the hardware. |
| 1322 | */ |
| 1323 | trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1)); |
| 1324 | refcount_inc(&trans->refcount); |
| 1325 | |
| 1326 | /* For RX channels, update each completed transaction with the number |
| 1327 | * of bytes that were actually received. For TX channels, report |
| 1328 | * the number of transactions and bytes this completion represents |
| 1329 | * up the network stack. |
| 1330 | */ |
| 1331 | if (channel->toward_ipa) |
| 1332 | gsi_channel_tx_update(channel, trans); |
| 1333 | else |
| 1334 | gsi_evt_ring_rx_update(evt_ring, index); |
| 1335 | |
| 1336 | gsi_trans_move_complete(trans); |
| 1337 | |
| 1338 | /* Tell the hardware we've handled these events */ |
| 1339 | gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index); |
| 1340 | |
| 1341 | gsi_trans_free(trans); |
| 1342 | } |
| 1343 | |
| 1344 | /** |
| 1345 | * gsi_channel_poll_one() - Return a single completed transaction on a channel |
| 1346 | * @channel: Channel to be polled |
| 1347 | * |
| 1348 | * @Return: Transaction pointer, or null if none are available |
| 1349 | * |
| 1350 | * This function returns the first entry on a channel's completed transaction |
| 1351 | * list. If that list is empty, the hardware is consulted to determine |
| 1352 | * whether any new transactions have completed. If so, they're moved to the |
| 1353 | * completed list and the new first entry is returned. If there are no more |
| 1354 | * completed transactions, a null pointer is returned. |
| 1355 | */ |
| 1356 | static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel) |
| 1357 | { |
| 1358 | struct gsi_trans *trans; |
| 1359 | |
| 1360 | /* Get the first transaction from the completed list */ |
| 1361 | trans = gsi_channel_trans_complete(channel); |
| 1362 | if (!trans) { |
| 1363 | /* List is empty; see if there's more to do */ |
| 1364 | gsi_channel_update(channel); |
| 1365 | trans = gsi_channel_trans_complete(channel); |
| 1366 | } |
| 1367 | |
| 1368 | if (trans) |
| 1369 | gsi_trans_move_polled(trans); |
| 1370 | |
| 1371 | return trans; |
| 1372 | } |
| 1373 | |
| 1374 | /** |
| 1375 | * gsi_channel_poll() - NAPI poll function for a channel |
| 1376 | * @napi: NAPI structure for the channel |
| 1377 | * @budget: Budget supplied by NAPI core |
| 1378 | |
| 1379 | * @Return: Number of items polled (<= budget) |
| 1380 | * |
| 1381 | * Single transactions completed by hardware are polled until either |
| 1382 | * the budget is exhausted, or there are no more. Each transaction |
| 1383 | * polled is passed to gsi_trans_complete(), to perform remaining |
| 1384 | * completion processing and retire/free the transaction. |
| 1385 | */ |
| 1386 | static int gsi_channel_poll(struct napi_struct *napi, int budget) |
| 1387 | { |
| 1388 | struct gsi_channel *channel; |
| 1389 | int count = 0; |
| 1390 | |
| 1391 | channel = container_of(napi, struct gsi_channel, napi); |
| 1392 | while (count < budget) { |
| 1393 | struct gsi_trans *trans; |
| 1394 | |
| 1395 | trans = gsi_channel_poll_one(channel); |
| 1396 | if (!trans) |
| 1397 | break; |
| 1398 | gsi_trans_complete(trans); |
| 1399 | } |
| 1400 | |
| 1401 | if (count < budget) { |
| 1402 | napi_complete(&channel->napi); |
| 1403 | gsi_irq_ieob_enable(channel->gsi, channel->evt_ring_id); |
| 1404 | } |
| 1405 | |
| 1406 | return count; |
| 1407 | } |
| 1408 | |
| 1409 | /* The event bitmap represents which event ids are available for allocation. |
| 1410 | * Set bits are not available, clear bits can be used. This function |
| 1411 | * initializes the map so all events supported by the hardware are available, |
| 1412 | * then precludes any reserved events from being allocated. |
| 1413 | */ |
| 1414 | static u32 gsi_event_bitmap_init(u32 evt_ring_max) |
| 1415 | { |
| 1416 | u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max); |
| 1417 | |
| 1418 | event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START); |
| 1419 | |
| 1420 | return event_bitmap; |
| 1421 | } |
| 1422 | |
| 1423 | /* Setup function for event rings */ |
| 1424 | static void gsi_evt_ring_setup(struct gsi *gsi) |
| 1425 | { |
| 1426 | /* Nothing to do */ |
| 1427 | } |
| 1428 | |
| 1429 | /* Inverse of gsi_evt_ring_setup() */ |
| 1430 | static void gsi_evt_ring_teardown(struct gsi *gsi) |
| 1431 | { |
| 1432 | /* Nothing to do */ |
| 1433 | } |
| 1434 | |
| 1435 | /* Setup function for a single channel */ |
| 1436 | static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id, |
| 1437 | bool db_enable) |
| 1438 | { |
| 1439 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 1440 | u32 evt_ring_id = channel->evt_ring_id; |
| 1441 | int ret; |
| 1442 | |
| 1443 | if (!channel->gsi) |
| 1444 | return 0; /* Ignore uninitialized channels */ |
| 1445 | |
| 1446 | ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id); |
| 1447 | if (ret) |
| 1448 | return ret; |
| 1449 | |
| 1450 | gsi_evt_ring_program(gsi, evt_ring_id); |
| 1451 | |
| 1452 | ret = gsi_channel_alloc_command(gsi, channel_id); |
| 1453 | if (ret) |
| 1454 | goto err_evt_ring_de_alloc; |
| 1455 | |
| 1456 | gsi_channel_program(channel, db_enable); |
| 1457 | |
| 1458 | if (channel->toward_ipa) |
| 1459 | netif_tx_napi_add(&gsi->dummy_dev, &channel->napi, |
| 1460 | gsi_channel_poll, NAPI_POLL_WEIGHT); |
| 1461 | else |
| 1462 | netif_napi_add(&gsi->dummy_dev, &channel->napi, |
| 1463 | gsi_channel_poll, NAPI_POLL_WEIGHT); |
| 1464 | |
| 1465 | return 0; |
| 1466 | |
| 1467 | err_evt_ring_de_alloc: |
| 1468 | /* We've done nothing with the event ring yet so don't reset */ |
| 1469 | gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); |
| 1470 | |
| 1471 | return ret; |
| 1472 | } |
| 1473 | |
| 1474 | /* Inverse of gsi_channel_setup_one() */ |
| 1475 | static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id) |
| 1476 | { |
| 1477 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 1478 | u32 evt_ring_id = channel->evt_ring_id; |
| 1479 | |
| 1480 | if (!channel->gsi) |
| 1481 | return; /* Ignore uninitialized channels */ |
| 1482 | |
| 1483 | netif_napi_del(&channel->napi); |
| 1484 | |
| 1485 | gsi_channel_deprogram(channel); |
| 1486 | gsi_channel_de_alloc_command(gsi, channel_id); |
| 1487 | gsi_evt_ring_reset_command(gsi, evt_ring_id); |
| 1488 | gsi_evt_ring_de_alloc_command(gsi, evt_ring_id); |
| 1489 | } |
| 1490 | |
| 1491 | static int gsi_generic_command(struct gsi *gsi, u32 channel_id, |
| 1492 | enum gsi_generic_cmd_opcode opcode) |
| 1493 | { |
| 1494 | struct completion *completion = &gsi->completion; |
| 1495 | u32 val; |
| 1496 | |
Alex Elder | 0b1ba18 | 2020-04-30 16:35:12 -0500 | [diff] [blame^] | 1497 | /* First zero the result code field */ |
| 1498 | val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); |
| 1499 | val &= ~GENERIC_EE_RESULT_FMASK; |
| 1500 | iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET); |
| 1501 | |
| 1502 | /* Now issue the command */ |
Alex Elder | 650d160 | 2020-03-05 22:28:21 -0600 | [diff] [blame] | 1503 | val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK); |
| 1504 | val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK); |
| 1505 | val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK); |
| 1506 | |
| 1507 | if (gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion)) |
| 1508 | return 0; /* Success! */ |
| 1509 | |
| 1510 | dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n", |
| 1511 | opcode, channel_id); |
| 1512 | |
| 1513 | return -ETIMEDOUT; |
| 1514 | } |
| 1515 | |
| 1516 | static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id) |
| 1517 | { |
| 1518 | return gsi_generic_command(gsi, channel_id, |
| 1519 | GSI_GENERIC_ALLOCATE_CHANNEL); |
| 1520 | } |
| 1521 | |
| 1522 | static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id) |
| 1523 | { |
| 1524 | int ret; |
| 1525 | |
| 1526 | ret = gsi_generic_command(gsi, channel_id, GSI_GENERIC_HALT_CHANNEL); |
| 1527 | if (ret) |
| 1528 | dev_err(gsi->dev, "error %d halting modem channel %u\n", |
| 1529 | ret, channel_id); |
| 1530 | } |
| 1531 | |
| 1532 | /* Setup function for channels */ |
| 1533 | static int gsi_channel_setup(struct gsi *gsi, bool db_enable) |
| 1534 | { |
| 1535 | u32 channel_id = 0; |
| 1536 | u32 mask; |
| 1537 | int ret; |
| 1538 | |
| 1539 | gsi_evt_ring_setup(gsi); |
| 1540 | gsi_irq_enable(gsi); |
| 1541 | |
| 1542 | mutex_lock(&gsi->mutex); |
| 1543 | |
| 1544 | do { |
| 1545 | ret = gsi_channel_setup_one(gsi, channel_id, db_enable); |
| 1546 | if (ret) |
| 1547 | goto err_unwind; |
| 1548 | } while (++channel_id < gsi->channel_count); |
| 1549 | |
| 1550 | /* Make sure no channels were defined that hardware does not support */ |
| 1551 | while (channel_id < GSI_CHANNEL_COUNT_MAX) { |
| 1552 | struct gsi_channel *channel = &gsi->channel[channel_id++]; |
| 1553 | |
| 1554 | if (!channel->gsi) |
| 1555 | continue; /* Ignore uninitialized channels */ |
| 1556 | |
| 1557 | dev_err(gsi->dev, "channel %u not supported by hardware\n", |
| 1558 | channel_id - 1); |
| 1559 | channel_id = gsi->channel_count; |
| 1560 | goto err_unwind; |
| 1561 | } |
| 1562 | |
| 1563 | /* Allocate modem channels if necessary */ |
| 1564 | mask = gsi->modem_channel_bitmap; |
| 1565 | while (mask) { |
| 1566 | u32 modem_channel_id = __ffs(mask); |
| 1567 | |
| 1568 | ret = gsi_modem_channel_alloc(gsi, modem_channel_id); |
| 1569 | if (ret) |
| 1570 | goto err_unwind_modem; |
| 1571 | |
| 1572 | /* Clear bit from mask only after success (for unwind) */ |
| 1573 | mask ^= BIT(modem_channel_id); |
| 1574 | } |
| 1575 | |
| 1576 | mutex_unlock(&gsi->mutex); |
| 1577 | |
| 1578 | return 0; |
| 1579 | |
| 1580 | err_unwind_modem: |
| 1581 | /* Compute which modem channels need to be deallocated */ |
| 1582 | mask ^= gsi->modem_channel_bitmap; |
| 1583 | while (mask) { |
| 1584 | u32 channel_id = __fls(mask); |
| 1585 | |
| 1586 | mask ^= BIT(channel_id); |
| 1587 | |
| 1588 | gsi_modem_channel_halt(gsi, channel_id); |
| 1589 | } |
| 1590 | |
| 1591 | err_unwind: |
| 1592 | while (channel_id--) |
| 1593 | gsi_channel_teardown_one(gsi, channel_id); |
| 1594 | |
| 1595 | mutex_unlock(&gsi->mutex); |
| 1596 | |
| 1597 | gsi_irq_disable(gsi); |
| 1598 | gsi_evt_ring_teardown(gsi); |
| 1599 | |
| 1600 | return ret; |
| 1601 | } |
| 1602 | |
| 1603 | /* Inverse of gsi_channel_setup() */ |
| 1604 | static void gsi_channel_teardown(struct gsi *gsi) |
| 1605 | { |
| 1606 | u32 mask = gsi->modem_channel_bitmap; |
| 1607 | u32 channel_id; |
| 1608 | |
| 1609 | mutex_lock(&gsi->mutex); |
| 1610 | |
| 1611 | while (mask) { |
| 1612 | u32 channel_id = __fls(mask); |
| 1613 | |
| 1614 | mask ^= BIT(channel_id); |
| 1615 | |
| 1616 | gsi_modem_channel_halt(gsi, channel_id); |
| 1617 | } |
| 1618 | |
| 1619 | channel_id = gsi->channel_count - 1; |
| 1620 | do |
| 1621 | gsi_channel_teardown_one(gsi, channel_id); |
| 1622 | while (channel_id--); |
| 1623 | |
| 1624 | mutex_unlock(&gsi->mutex); |
| 1625 | |
| 1626 | gsi_irq_disable(gsi); |
| 1627 | gsi_evt_ring_teardown(gsi); |
| 1628 | } |
| 1629 | |
| 1630 | /* Setup function for GSI. GSI firmware must be loaded and initialized */ |
| 1631 | int gsi_setup(struct gsi *gsi, bool db_enable) |
| 1632 | { |
| 1633 | u32 val; |
| 1634 | |
| 1635 | /* Here is where we first touch the GSI hardware */ |
| 1636 | val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET); |
| 1637 | if (!(val & ENABLED_FMASK)) { |
| 1638 | dev_err(gsi->dev, "GSI has not been enabled\n"); |
| 1639 | return -EIO; |
| 1640 | } |
| 1641 | |
| 1642 | val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET); |
| 1643 | |
| 1644 | gsi->channel_count = u32_get_bits(val, NUM_CH_PER_EE_FMASK); |
| 1645 | if (!gsi->channel_count) { |
| 1646 | dev_err(gsi->dev, "GSI reports zero channels supported\n"); |
| 1647 | return -EINVAL; |
| 1648 | } |
| 1649 | if (gsi->channel_count > GSI_CHANNEL_COUNT_MAX) { |
| 1650 | dev_warn(gsi->dev, |
| 1651 | "limiting to %u channels (hardware supports %u)\n", |
| 1652 | GSI_CHANNEL_COUNT_MAX, gsi->channel_count); |
| 1653 | gsi->channel_count = GSI_CHANNEL_COUNT_MAX; |
| 1654 | } |
| 1655 | |
| 1656 | gsi->evt_ring_count = u32_get_bits(val, NUM_EV_PER_EE_FMASK); |
| 1657 | if (!gsi->evt_ring_count) { |
| 1658 | dev_err(gsi->dev, "GSI reports zero event rings supported\n"); |
| 1659 | return -EINVAL; |
| 1660 | } |
| 1661 | if (gsi->evt_ring_count > GSI_EVT_RING_COUNT_MAX) { |
| 1662 | dev_warn(gsi->dev, |
| 1663 | "limiting to %u event rings (hardware supports %u)\n", |
| 1664 | GSI_EVT_RING_COUNT_MAX, gsi->evt_ring_count); |
| 1665 | gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX; |
| 1666 | } |
| 1667 | |
| 1668 | /* Initialize the error log */ |
| 1669 | iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET); |
| 1670 | |
| 1671 | /* Writing 1 indicates IRQ interrupts; 0 would be MSI */ |
| 1672 | iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET); |
| 1673 | |
| 1674 | return gsi_channel_setup(gsi, db_enable); |
| 1675 | } |
| 1676 | |
| 1677 | /* Inverse of gsi_setup() */ |
| 1678 | void gsi_teardown(struct gsi *gsi) |
| 1679 | { |
| 1680 | gsi_channel_teardown(gsi); |
| 1681 | } |
| 1682 | |
| 1683 | /* Initialize a channel's event ring */ |
| 1684 | static int gsi_channel_evt_ring_init(struct gsi_channel *channel) |
| 1685 | { |
| 1686 | struct gsi *gsi = channel->gsi; |
| 1687 | struct gsi_evt_ring *evt_ring; |
| 1688 | int ret; |
| 1689 | |
| 1690 | ret = gsi_evt_ring_id_alloc(gsi); |
| 1691 | if (ret < 0) |
| 1692 | return ret; |
| 1693 | channel->evt_ring_id = ret; |
| 1694 | |
| 1695 | evt_ring = &gsi->evt_ring[channel->evt_ring_id]; |
| 1696 | evt_ring->channel = channel; |
| 1697 | |
| 1698 | ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count); |
| 1699 | if (!ret) |
| 1700 | return 0; /* Success! */ |
| 1701 | |
| 1702 | dev_err(gsi->dev, "error %d allocating channel %u event ring\n", |
| 1703 | ret, gsi_channel_id(channel)); |
| 1704 | |
| 1705 | gsi_evt_ring_id_free(gsi, channel->evt_ring_id); |
| 1706 | |
| 1707 | return ret; |
| 1708 | } |
| 1709 | |
| 1710 | /* Inverse of gsi_channel_evt_ring_init() */ |
| 1711 | static void gsi_channel_evt_ring_exit(struct gsi_channel *channel) |
| 1712 | { |
| 1713 | u32 evt_ring_id = channel->evt_ring_id; |
| 1714 | struct gsi *gsi = channel->gsi; |
| 1715 | struct gsi_evt_ring *evt_ring; |
| 1716 | |
| 1717 | evt_ring = &gsi->evt_ring[evt_ring_id]; |
| 1718 | gsi_ring_free(gsi, &evt_ring->ring); |
| 1719 | gsi_evt_ring_id_free(gsi, evt_ring_id); |
| 1720 | } |
| 1721 | |
| 1722 | /* Init function for event rings */ |
| 1723 | static void gsi_evt_ring_init(struct gsi *gsi) |
| 1724 | { |
| 1725 | u32 evt_ring_id = 0; |
| 1726 | |
| 1727 | gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX); |
| 1728 | gsi->event_enable_bitmap = 0; |
| 1729 | do |
| 1730 | init_completion(&gsi->evt_ring[evt_ring_id].completion); |
| 1731 | while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX); |
| 1732 | } |
| 1733 | |
| 1734 | /* Inverse of gsi_evt_ring_init() */ |
| 1735 | static void gsi_evt_ring_exit(struct gsi *gsi) |
| 1736 | { |
| 1737 | /* Nothing to do */ |
| 1738 | } |
| 1739 | |
| 1740 | static bool gsi_channel_data_valid(struct gsi *gsi, |
| 1741 | const struct ipa_gsi_endpoint_data *data) |
| 1742 | { |
| 1743 | #ifdef IPA_VALIDATION |
| 1744 | u32 channel_id = data->channel_id; |
| 1745 | struct device *dev = gsi->dev; |
| 1746 | |
| 1747 | /* Make sure channel ids are in the range driver supports */ |
| 1748 | if (channel_id >= GSI_CHANNEL_COUNT_MAX) { |
| 1749 | dev_err(dev, "bad channel id %u (must be less than %u)\n", |
| 1750 | channel_id, GSI_CHANNEL_COUNT_MAX); |
| 1751 | return false; |
| 1752 | } |
| 1753 | |
| 1754 | if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) { |
| 1755 | dev_err(dev, "bad EE id %u (AP or modem)\n", data->ee_id); |
| 1756 | return false; |
| 1757 | } |
| 1758 | |
| 1759 | if (!data->channel.tlv_count || |
| 1760 | data->channel.tlv_count > GSI_TLV_MAX) { |
| 1761 | dev_err(dev, "channel %u bad tlv_count %u (must be 1..%u)\n", |
| 1762 | channel_id, data->channel.tlv_count, GSI_TLV_MAX); |
| 1763 | return false; |
| 1764 | } |
| 1765 | |
| 1766 | /* We have to allow at least one maximally-sized transaction to |
| 1767 | * be outstanding (which would use tlv_count TREs). Given how |
| 1768 | * gsi_channel_tre_max() is computed, tre_count has to be almost |
| 1769 | * twice the TLV FIFO size to satisfy this requirement. |
| 1770 | */ |
| 1771 | if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) { |
| 1772 | dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n", |
| 1773 | channel_id, data->channel.tlv_count, |
| 1774 | data->channel.tre_count); |
| 1775 | return false; |
| 1776 | } |
| 1777 | |
| 1778 | if (!is_power_of_2(data->channel.tre_count)) { |
| 1779 | dev_err(dev, "channel %u bad tre_count %u (not power of 2)\n", |
| 1780 | channel_id, data->channel.tre_count); |
| 1781 | return false; |
| 1782 | } |
| 1783 | |
| 1784 | if (!is_power_of_2(data->channel.event_count)) { |
| 1785 | dev_err(dev, "channel %u bad event_count %u (not power of 2)\n", |
| 1786 | channel_id, data->channel.event_count); |
| 1787 | return false; |
| 1788 | } |
| 1789 | #endif /* IPA_VALIDATION */ |
| 1790 | |
| 1791 | return true; |
| 1792 | } |
| 1793 | |
| 1794 | /* Init function for a single channel */ |
| 1795 | static int gsi_channel_init_one(struct gsi *gsi, |
| 1796 | const struct ipa_gsi_endpoint_data *data, |
| 1797 | bool command, bool prefetch) |
| 1798 | { |
| 1799 | struct gsi_channel *channel; |
| 1800 | u32 tre_count; |
| 1801 | int ret; |
| 1802 | |
| 1803 | if (!gsi_channel_data_valid(gsi, data)) |
| 1804 | return -EINVAL; |
| 1805 | |
| 1806 | /* Worst case we need an event for every outstanding TRE */ |
| 1807 | if (data->channel.tre_count > data->channel.event_count) { |
Alex Elder | 650d160 | 2020-03-05 22:28:21 -0600 | [diff] [blame] | 1808 | tre_count = data->channel.event_count; |
Alex Elder | 0721999 | 2020-04-30 16:35:11 -0500 | [diff] [blame] | 1809 | dev_warn(gsi->dev, "channel %u limited to %u TREs\n", |
| 1810 | data->channel_id, tre_count); |
Alex Elder | 650d160 | 2020-03-05 22:28:21 -0600 | [diff] [blame] | 1811 | } else { |
| 1812 | tre_count = data->channel.tre_count; |
| 1813 | } |
| 1814 | |
| 1815 | channel = &gsi->channel[data->channel_id]; |
| 1816 | memset(channel, 0, sizeof(*channel)); |
| 1817 | |
| 1818 | channel->gsi = gsi; |
| 1819 | channel->toward_ipa = data->toward_ipa; |
| 1820 | channel->command = command; |
| 1821 | channel->use_prefetch = command && prefetch; |
| 1822 | channel->tlv_count = data->channel.tlv_count; |
| 1823 | channel->tre_count = tre_count; |
| 1824 | channel->event_count = data->channel.event_count; |
| 1825 | init_completion(&channel->completion); |
| 1826 | |
| 1827 | ret = gsi_channel_evt_ring_init(channel); |
| 1828 | if (ret) |
| 1829 | goto err_clear_gsi; |
| 1830 | |
| 1831 | ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count); |
| 1832 | if (ret) { |
| 1833 | dev_err(gsi->dev, "error %d allocating channel %u ring\n", |
| 1834 | ret, data->channel_id); |
| 1835 | goto err_channel_evt_ring_exit; |
| 1836 | } |
| 1837 | |
| 1838 | ret = gsi_channel_trans_init(gsi, data->channel_id); |
| 1839 | if (ret) |
| 1840 | goto err_ring_free; |
| 1841 | |
| 1842 | if (command) { |
| 1843 | u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id); |
| 1844 | |
| 1845 | ret = ipa_cmd_pool_init(channel, tre_max); |
| 1846 | } |
| 1847 | if (!ret) |
| 1848 | return 0; /* Success! */ |
| 1849 | |
| 1850 | gsi_channel_trans_exit(channel); |
| 1851 | err_ring_free: |
| 1852 | gsi_ring_free(gsi, &channel->tre_ring); |
| 1853 | err_channel_evt_ring_exit: |
| 1854 | gsi_channel_evt_ring_exit(channel); |
| 1855 | err_clear_gsi: |
| 1856 | channel->gsi = NULL; /* Mark it not (fully) initialized */ |
| 1857 | |
| 1858 | return ret; |
| 1859 | } |
| 1860 | |
| 1861 | /* Inverse of gsi_channel_init_one() */ |
| 1862 | static void gsi_channel_exit_one(struct gsi_channel *channel) |
| 1863 | { |
| 1864 | if (!channel->gsi) |
| 1865 | return; /* Ignore uninitialized channels */ |
| 1866 | |
| 1867 | if (channel->command) |
| 1868 | ipa_cmd_pool_exit(channel); |
| 1869 | gsi_channel_trans_exit(channel); |
| 1870 | gsi_ring_free(channel->gsi, &channel->tre_ring); |
| 1871 | gsi_channel_evt_ring_exit(channel); |
| 1872 | } |
| 1873 | |
| 1874 | /* Init function for channels */ |
| 1875 | static int gsi_channel_init(struct gsi *gsi, bool prefetch, u32 count, |
| 1876 | const struct ipa_gsi_endpoint_data *data, |
| 1877 | bool modem_alloc) |
| 1878 | { |
| 1879 | int ret = 0; |
| 1880 | u32 i; |
| 1881 | |
| 1882 | gsi_evt_ring_init(gsi); |
| 1883 | |
| 1884 | /* The endpoint data array is indexed by endpoint name */ |
| 1885 | for (i = 0; i < count; i++) { |
| 1886 | bool command = i == IPA_ENDPOINT_AP_COMMAND_TX; |
| 1887 | |
| 1888 | if (ipa_gsi_endpoint_data_empty(&data[i])) |
| 1889 | continue; /* Skip over empty slots */ |
| 1890 | |
| 1891 | /* Mark modem channels to be allocated (hardware workaround) */ |
| 1892 | if (data[i].ee_id == GSI_EE_MODEM) { |
| 1893 | if (modem_alloc) |
| 1894 | gsi->modem_channel_bitmap |= |
| 1895 | BIT(data[i].channel_id); |
| 1896 | continue; |
| 1897 | } |
| 1898 | |
| 1899 | ret = gsi_channel_init_one(gsi, &data[i], command, prefetch); |
| 1900 | if (ret) |
| 1901 | goto err_unwind; |
| 1902 | } |
| 1903 | |
| 1904 | return ret; |
| 1905 | |
| 1906 | err_unwind: |
| 1907 | while (i--) { |
| 1908 | if (ipa_gsi_endpoint_data_empty(&data[i])) |
| 1909 | continue; |
| 1910 | if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) { |
| 1911 | gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id); |
| 1912 | continue; |
| 1913 | } |
| 1914 | gsi_channel_exit_one(&gsi->channel[data->channel_id]); |
| 1915 | } |
| 1916 | gsi_evt_ring_exit(gsi); |
| 1917 | |
| 1918 | return ret; |
| 1919 | } |
| 1920 | |
| 1921 | /* Inverse of gsi_channel_init() */ |
| 1922 | static void gsi_channel_exit(struct gsi *gsi) |
| 1923 | { |
| 1924 | u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1; |
| 1925 | |
| 1926 | do |
| 1927 | gsi_channel_exit_one(&gsi->channel[channel_id]); |
| 1928 | while (channel_id--); |
| 1929 | gsi->modem_channel_bitmap = 0; |
| 1930 | |
| 1931 | gsi_evt_ring_exit(gsi); |
| 1932 | } |
| 1933 | |
| 1934 | /* Init function for GSI. GSI hardware does not need to be "ready" */ |
| 1935 | int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch, |
| 1936 | u32 count, const struct ipa_gsi_endpoint_data *data, |
| 1937 | bool modem_alloc) |
| 1938 | { |
| 1939 | struct resource *res; |
| 1940 | resource_size_t size; |
| 1941 | unsigned int irq; |
| 1942 | int ret; |
| 1943 | |
| 1944 | gsi_validate_build(); |
| 1945 | |
| 1946 | gsi->dev = &pdev->dev; |
| 1947 | |
| 1948 | /* The GSI layer performs NAPI on all endpoints. NAPI requires a |
| 1949 | * network device structure, but the GSI layer does not have one, |
| 1950 | * so we must create a dummy network device for this purpose. |
| 1951 | */ |
| 1952 | init_dummy_netdev(&gsi->dummy_dev); |
| 1953 | |
| 1954 | /* Get the GSI IRQ and request for it to wake the system */ |
| 1955 | ret = platform_get_irq_byname(pdev, "gsi"); |
| 1956 | if (ret <= 0) { |
| 1957 | dev_err(gsi->dev, |
| 1958 | "DT error %d getting \"gsi\" IRQ property\n", ret); |
| 1959 | return ret ? : -EINVAL; |
| 1960 | } |
| 1961 | irq = ret; |
| 1962 | |
| 1963 | ret = request_irq(irq, gsi_isr, 0, "gsi", gsi); |
| 1964 | if (ret) { |
| 1965 | dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret); |
| 1966 | return ret; |
| 1967 | } |
| 1968 | gsi->irq = irq; |
| 1969 | |
| 1970 | ret = enable_irq_wake(gsi->irq); |
| 1971 | if (ret) |
| 1972 | dev_warn(gsi->dev, "error %d enabling gsi wake irq\n", ret); |
| 1973 | gsi->irq_wake_enabled = !ret; |
| 1974 | |
| 1975 | /* Get GSI memory range and map it */ |
| 1976 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi"); |
| 1977 | if (!res) { |
| 1978 | dev_err(gsi->dev, |
| 1979 | "DT error getting \"gsi\" memory property\n"); |
| 1980 | ret = -ENODEV; |
| 1981 | goto err_disable_irq_wake; |
| 1982 | } |
| 1983 | |
| 1984 | size = resource_size(res); |
| 1985 | if (res->start > U32_MAX || size > U32_MAX - res->start) { |
| 1986 | dev_err(gsi->dev, "DT memory resource \"gsi\" out of range\n"); |
| 1987 | ret = -EINVAL; |
| 1988 | goto err_disable_irq_wake; |
| 1989 | } |
| 1990 | |
| 1991 | gsi->virt = ioremap(res->start, size); |
| 1992 | if (!gsi->virt) { |
| 1993 | dev_err(gsi->dev, "unable to remap \"gsi\" memory\n"); |
| 1994 | ret = -ENOMEM; |
| 1995 | goto err_disable_irq_wake; |
| 1996 | } |
| 1997 | |
| 1998 | ret = gsi_channel_init(gsi, prefetch, count, data, modem_alloc); |
| 1999 | if (ret) |
| 2000 | goto err_iounmap; |
| 2001 | |
| 2002 | mutex_init(&gsi->mutex); |
| 2003 | init_completion(&gsi->completion); |
| 2004 | |
| 2005 | return 0; |
| 2006 | |
| 2007 | err_iounmap: |
| 2008 | iounmap(gsi->virt); |
| 2009 | err_disable_irq_wake: |
| 2010 | if (gsi->irq_wake_enabled) |
| 2011 | (void)disable_irq_wake(gsi->irq); |
| 2012 | free_irq(gsi->irq, gsi); |
| 2013 | |
| 2014 | return ret; |
| 2015 | } |
| 2016 | |
| 2017 | /* Inverse of gsi_init() */ |
| 2018 | void gsi_exit(struct gsi *gsi) |
| 2019 | { |
| 2020 | mutex_destroy(&gsi->mutex); |
| 2021 | gsi_channel_exit(gsi); |
| 2022 | if (gsi->irq_wake_enabled) |
| 2023 | (void)disable_irq_wake(gsi->irq); |
| 2024 | free_irq(gsi->irq, gsi); |
| 2025 | iounmap(gsi->virt); |
| 2026 | } |
| 2027 | |
| 2028 | /* The maximum number of outstanding TREs on a channel. This limits |
| 2029 | * a channel's maximum number of transactions outstanding (worst case |
| 2030 | * is one TRE per transaction). |
| 2031 | * |
| 2032 | * The absolute limit is the number of TREs in the channel's TRE ring, |
| 2033 | * and in theory we should be able use all of them. But in practice, |
| 2034 | * doing that led to the hardware reporting exhaustion of event ring |
| 2035 | * slots for writing completion information. So the hardware limit |
| 2036 | * would be (tre_count - 1). |
| 2037 | * |
| 2038 | * We reduce it a bit further though. Transaction resource pools are |
| 2039 | * sized to be a little larger than this maximum, to allow resource |
| 2040 | * allocations to always be contiguous. The number of entries in a |
| 2041 | * TRE ring buffer is a power of 2, and the extra resources in a pool |
| 2042 | * tends to nearly double the memory allocated for it. Reducing the |
| 2043 | * maximum number of outstanding TREs allows the number of entries in |
| 2044 | * a pool to avoid crossing that power-of-2 boundary, and this can |
| 2045 | * substantially reduce pool memory requirements. The number we |
| 2046 | * reduce it by matches the number added in gsi_trans_pool_init(). |
| 2047 | */ |
| 2048 | u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id) |
| 2049 | { |
| 2050 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 2051 | |
| 2052 | /* Hardware limit is channel->tre_count - 1 */ |
| 2053 | return channel->tre_count - (channel->tlv_count - 1); |
| 2054 | } |
| 2055 | |
| 2056 | /* Returns the maximum number of TREs in a single transaction for a channel */ |
| 2057 | u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id) |
| 2058 | { |
| 2059 | struct gsi_channel *channel = &gsi->channel[channel_id]; |
| 2060 | |
| 2061 | return channel->tlv_count; |
| 2062 | } |