blob: 619337a5cb2b44ceac42e4c016bac9e2f9071152 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
Andrew Mortona737b3e2006-03-22 00:08:11 -080053 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds1da177e2005-04-16 15:20:36 -070054 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
Pekka Enberg343e0d72006-02-01 03:05:50 -080058 * Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds1da177e2005-04-16 15:20:36 -070059 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
Randy Dunlapc9cf5522006-06-27 02:53:52 -070092#include <linux/poison.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070093#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
Paul Jackson101a5002006-03-24 03:16:07 -080098#include <linux/cpuset.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070099#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700106#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700107#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800108#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800109#include <linux/mutex.h>
Ingo Molnare7eebaf2006-06-27 02:54:55 -0700110#include <linux/rtmutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700111
112#include <asm/uaccess.h>
113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
Linus Torvalds1da177e2005-04-16 15:20:36 -0700138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
Christoph Lameterac2b8982006-03-22 00:08:15 -0800176 SLAB_CACHE_DMA | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180#else
Christoph Lameterac2b8982006-03-22 00:08:15 -0800181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
Linus Torvalds1da177e2005-04-16 15:20:36 -0700182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
Paul Jackson101a5002006-03-24 03:16:07 -0800184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700206typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
Al Viro871751e2006-03-25 03:06:39 -0800209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700211
Linus Torvalds1da177e2005-04-16 15:20:36 -0700212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800245 struct rcu_head head;
Pekka Enberg343e0d72006-02-01 03:05:50 -0800246 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800247 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700248};
249
250/*
251 * struct array_cache
252 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700267 spinlock_t lock;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700274};
275
Andrew Mortona737b3e2006-03-22 00:08:11 -0800276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
Linus Torvalds1da177e2005-04-16 15:20:36 -0700279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800283 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284};
285
286/*
Christoph Lametere498be72005-09-09 13:03:32 -0700287 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288 */
289struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800294 unsigned int free_limit;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800295 unsigned int colour_next; /* Per-node cache coloring */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
Christoph Lameter35386e32006-03-22 00:09:05 -0800299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301};
302
Christoph Lametere498be72005-09-09 13:03:32 -0700303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700311
Christoph Lametered11d9e2006-06-30 01:55:45 -0700312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -0700316static int enable_cpucache(struct kmem_cache *cachep);
Christoph Lametered11d9e2006-06-30 01:55:45 -0700317static void cache_reap(void *unused);
318
Christoph Lametere498be72005-09-09 13:03:32 -0700319/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
Christoph Lametere498be72005-09-09 13:03:32 -0700322 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700323static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700324{
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800325 extern void __bad_size(void);
326
Christoph Lametere498be72005-09-09 13:03:32 -0700327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800337 __bad_size();
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700338 } else
Steven Rostedt5ec8a842006-02-01 03:05:44 -0800339 __bad_size();
Christoph Lametere498be72005-09-09 13:03:32 -0700340 return 0;
341}
342
Ingo Molnare0a42722006-06-23 02:03:46 -0700343static int slab_early_init = 1;
344
Christoph Lametere498be72005-09-09 13:03:32 -0700345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
347
Pekka Enberg5295a742006-02-01 03:05:48 -0800348static void kmem_list3_init(struct kmem_list3 *parent)
Christoph Lametere498be72005-09-09 13:03:32 -0700349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -0800355 parent->colour_next = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
Andrew Mortona737b3e2006-03-22 00:08:11 -0800361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
Christoph Lametere498be72005-09-09 13:03:32 -0700365 } while (0)
366
Andrew Mortona737b3e2006-03-22 00:08:11 -0800367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
Christoph Lametere498be72005-09-09 13:03:32 -0700369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373
374/*
Pekka Enberg343e0d72006-02-01 03:05:50 -0800375 * struct kmem_cache
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 *
377 * manages a cache.
378 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800379
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800380struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800382 struct array_cache *array[NR_CPUS];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800383/* 2) Cache tunables. Protected by cache_chain_mutex */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800387
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800388 unsigned int buffer_size;
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800389/* 3) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800390 struct kmem_list3 *nodelists[MAX_NUMNODES];
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800391
Andrew Mortona737b3e2006-03-22 00:08:11 -0800392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700394
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800395/* 4) cache_grow/shrink */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800397 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398
399 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800400 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401
Andrew Mortona737b3e2006-03-22 00:08:11 -0800402 size_t colour; /* cache colouring range */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800403 unsigned int colour_off; /* colour offset */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800404 struct kmem_cache *slabp_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800405 unsigned int slab_size;
Andrew Mortona737b3e2006-03-22 00:08:11 -0800406 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407
408 /* constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410
411 /* de-constructor func */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800414/* 5) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800415 const char *name;
416 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700417
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -0800418/* 6) statistics */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700429 unsigned long node_overflow;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434#endif
435#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
Andrew Mortona737b3e2006-03-22 00:08:11 -0800451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700454 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100455 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
Andrew Mortona737b3e2006-03-22 00:08:11 -0800467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
Christoph Lametered11d9e2006-06-30 01:55:45 -0700490#define STATS_ADD_REAPED(x,y) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700494#define STATS_INC_NODEFREES(x) do { } while (0)
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -0700495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
Andrew Mortona737b3e2006-03-22 00:08:11 -0800496#define STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
Linus Torvalds1da177e2005-04-16 15:20:36 -0700504
Andrew Mortona737b3e2006-03-22 00:08:11 -0800505/*
506 * memory layout of objects:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700507 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
Andrew Mortona737b3e2006-03-22 00:08:11 -0800515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700517 */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800518static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521}
522
Pekka Enberg343e0d72006-02-01 03:05:50 -0800523static int obj_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800525 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526}
527
Pekka Enberg343e0d72006-02-01 03:05:50 -0800528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700532}
533
Pekka Enberg343e0d72006-02-01 03:05:50 -0800534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800538 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800539 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700541}
542
Pekka Enberg343e0d72006-02-01 03:05:50 -0800543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547}
548
549#else
550
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
Andrew Mortona737b3e2006-03-22 00:08:11 -0800581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
Nick Piggin84097512006-03-22 00:08:34 -0800593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700595 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
Nick Piggin84097512006-03-22 00:08:34 -0800606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
Pekka Enbergddc2e812006-06-23 02:03:40 -0700608 BUG_ON(!PageSlab(page));
Pekka Enberg065d41c2005-11-13 16:06:46 -0800609 return (struct slab *)page->lru.prev;
610}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700611
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -0800612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
Pekka Enberg8fea4e92006-03-22 00:08:10 -0800624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
Andrew Mortona737b3e2006-03-22 00:08:11 -0800636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800656 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700664
665/* internal cache of cache description objs */
Pekka Enberg343e0d72006-02-01 03:05:50 -0800666static struct kmem_cache cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
Pekka Enberg343e0d72006-02-01 03:05:50 -0800670 .buffer_size = sizeof(struct kmem_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800671 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700672#if DEBUG
Pekka Enberg343e0d72006-02-01 03:05:50 -0800673 .obj_size = sizeof(struct kmem_cache),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700674#endif
675};
676
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700677#define BAD_ALIEN_MAGIC 0x01020304ul
678
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200679#ifdef CONFIG_LOCKDEP
680
681/*
682 * Slab sometimes uses the kmalloc slabs to store the slab headers
683 * for other slabs "off slab".
684 * The locking for this is tricky in that it nests within the locks
685 * of all other slabs in a few places; to deal with this special
686 * locking we put on-slab caches into a separate lock-class.
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700687 *
688 * We set lock class for alien array caches which are up during init.
689 * The lock annotation will be lost if all cpus of a node goes down and
690 * then comes back up during hotplug
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200691 */
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700692static struct lock_class_key on_slab_l3_key;
693static struct lock_class_key on_slab_alc_key;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200694
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700695static inline void init_lock_keys(void)
696
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200697{
698 int q;
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700699 struct cache_sizes *s = malloc_sizes;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200700
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700701 while (s->cs_size != ULONG_MAX) {
702 for_each_node(q) {
703 struct array_cache **alc;
704 int r;
705 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
706 if (!l3 || OFF_SLAB(s->cs_cachep))
707 continue;
708 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
709 alc = l3->alien;
710 /*
711 * FIXME: This check for BAD_ALIEN_MAGIC
712 * should go away when common slab code is taught to
713 * work even without alien caches.
714 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
715 * for alloc_alien_cache,
716 */
717 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
718 continue;
719 for_each_node(r) {
720 if (alc[r])
721 lockdep_set_class(&alc[r]->lock,
722 &on_slab_alc_key);
723 }
724 }
725 s++;
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200726 }
727}
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200728#else
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -0700729static inline void init_lock_keys(void)
Arjan van de Venf1aaee52006-07-13 14:46:03 +0200730{
731}
732#endif
733
Linus Torvalds1da177e2005-04-16 15:20:36 -0700734/* Guard access to the cache-chain. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800735static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700736static struct list_head cache_chain;
737
738/*
Andrew Mortona737b3e2006-03-22 00:08:11 -0800739 * vm_enough_memory() looks at this to determine how many slab-allocated pages
740 * are possibly freeable under pressure
Linus Torvalds1da177e2005-04-16 15:20:36 -0700741 *
742 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
743 */
744atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700745
746/*
747 * chicken and egg problem: delay the per-cpu array allocation
748 * until the general caches are up.
749 */
750static enum {
751 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700752 PARTIAL_AC,
753 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700754 FULL
755} g_cpucache_up;
756
Mike Kravetz39d24e62006-05-15 09:44:13 -0700757/*
758 * used by boot code to determine if it can use slab based allocator
759 */
760int slab_is_available(void)
761{
762 return g_cpucache_up == FULL;
763}
764
Linus Torvalds1da177e2005-04-16 15:20:36 -0700765static DEFINE_PER_CPU(struct work_struct, reap_work);
766
Pekka Enberg343e0d72006-02-01 03:05:50 -0800767static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700768{
769 return cachep->array[smp_processor_id()];
770}
771
Andrew Mortona737b3e2006-03-22 00:08:11 -0800772static inline struct kmem_cache *__find_general_cachep(size_t size,
773 gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700774{
775 struct cache_sizes *csizep = malloc_sizes;
776
777#if DEBUG
778 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800779 * kmem_cache_create(), or __kmalloc(), before
780 * the generic caches are initialized.
781 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700782 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700783#endif
784 while (size > csizep->cs_size)
785 csizep++;
786
787 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700788 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700789 * has cs_{dma,}cachep==NULL. Thus no special case
790 * for large kmalloc calls required.
791 */
792 if (unlikely(gfpflags & GFP_DMA))
793 return csizep->cs_dmacachep;
794 return csizep->cs_cachep;
795}
796
Adrian Bunkb2213852006-09-25 23:31:02 -0700797static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700798{
799 return __find_general_cachep(size, gfpflags);
800}
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700801
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800802static size_t slab_mgmt_size(size_t nr_objs, size_t align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700803{
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800804 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
805}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806
Andrew Mortona737b3e2006-03-22 00:08:11 -0800807/*
808 * Calculate the number of objects and left-over bytes for a given buffer size.
809 */
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800810static void cache_estimate(unsigned long gfporder, size_t buffer_size,
811 size_t align, int flags, size_t *left_over,
812 unsigned int *num)
813{
814 int nr_objs;
815 size_t mgmt_size;
816 size_t slab_size = PAGE_SIZE << gfporder;
817
818 /*
819 * The slab management structure can be either off the slab or
820 * on it. For the latter case, the memory allocated for a
821 * slab is used for:
822 *
823 * - The struct slab
824 * - One kmem_bufctl_t for each object
825 * - Padding to respect alignment of @align
826 * - @buffer_size bytes for each object
827 *
828 * If the slab management structure is off the slab, then the
829 * alignment will already be calculated into the size. Because
830 * the slabs are all pages aligned, the objects will be at the
831 * correct alignment when allocated.
832 */
833 if (flags & CFLGS_OFF_SLAB) {
834 mgmt_size = 0;
835 nr_objs = slab_size / buffer_size;
836
837 if (nr_objs > SLAB_LIMIT)
838 nr_objs = SLAB_LIMIT;
839 } else {
840 /*
841 * Ignore padding for the initial guess. The padding
842 * is at most @align-1 bytes, and @buffer_size is at
843 * least @align. In the worst case, this result will
844 * be one greater than the number of objects that fit
845 * into the memory allocation when taking the padding
846 * into account.
847 */
848 nr_objs = (slab_size - sizeof(struct slab)) /
849 (buffer_size + sizeof(kmem_bufctl_t));
850
851 /*
852 * This calculated number will be either the right
853 * amount, or one greater than what we want.
854 */
855 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
856 > slab_size)
857 nr_objs--;
858
859 if (nr_objs > SLAB_LIMIT)
860 nr_objs = SLAB_LIMIT;
861
862 mgmt_size = slab_mgmt_size(nr_objs, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700863 }
Steven Rostedtfbaccac2006-02-01 03:05:45 -0800864 *num = nr_objs;
865 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866}
867
868#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
869
Andrew Mortona737b3e2006-03-22 00:08:11 -0800870static void __slab_error(const char *function, struct kmem_cache *cachep,
871 char *msg)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700872{
873 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800874 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700875 dump_stack();
876}
877
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800878#ifdef CONFIG_NUMA
879/*
880 * Special reaping functions for NUMA systems called from cache_reap().
881 * These take care of doing round robin flushing of alien caches (containing
882 * objects freed on different nodes from which they were allocated) and the
883 * flushing of remote pcps by calling drain_node_pages.
884 */
885static DEFINE_PER_CPU(unsigned long, reap_node);
886
887static void init_reap_node(int cpu)
888{
889 int node;
890
891 node = next_node(cpu_to_node(cpu), node_online_map);
892 if (node == MAX_NUMNODES)
Paul Jackson442295c2006-03-22 00:09:11 -0800893 node = first_node(node_online_map);
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800894
895 __get_cpu_var(reap_node) = node;
896}
897
898static void next_reap_node(void)
899{
900 int node = __get_cpu_var(reap_node);
901
902 /*
903 * Also drain per cpu pages on remote zones
904 */
905 if (node != numa_node_id())
906 drain_node_pages(node);
907
908 node = next_node(node, node_online_map);
909 if (unlikely(node >= MAX_NUMNODES))
910 node = first_node(node_online_map);
911 __get_cpu_var(reap_node) = node;
912}
913
914#else
915#define init_reap_node(cpu) do { } while (0)
916#define next_reap_node(void) do { } while (0)
917#endif
918
Linus Torvalds1da177e2005-04-16 15:20:36 -0700919/*
920 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
921 * via the workqueue/eventd.
922 * Add the CPU number into the expiration time to minimize the possibility of
923 * the CPUs getting into lockstep and contending for the global cache chain
924 * lock.
925 */
926static void __devinit start_cpu_timer(int cpu)
927{
928 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
929
930 /*
931 * When this gets called from do_initcalls via cpucache_init(),
932 * init_workqueues() has already run, so keventd will be setup
933 * at that time.
934 */
935 if (keventd_up() && reap_work->func == NULL) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -0800936 init_reap_node(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700937 INIT_WORK(reap_work, cache_reap, NULL);
938 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
939 }
940}
941
Christoph Lametere498be72005-09-09 13:03:32 -0700942static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800943 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800945 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700946 struct array_cache *nc = NULL;
947
Christoph Lametere498be72005-09-09 13:03:32 -0700948 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700949 if (nc) {
950 nc->avail = 0;
951 nc->limit = entries;
952 nc->batchcount = batchcount;
953 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700954 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700955 }
956 return nc;
957}
958
Christoph Lameter3ded1752006-03-25 03:06:44 -0800959/*
960 * Transfer objects in one arraycache to another.
961 * Locking must be handled by the caller.
962 *
963 * Return the number of entries transferred.
964 */
965static int transfer_objects(struct array_cache *to,
966 struct array_cache *from, unsigned int max)
967{
968 /* Figure out how many entries to transfer */
969 int nr = min(min(from->avail, max), to->limit - to->avail);
970
971 if (!nr)
972 return 0;
973
974 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
975 sizeof(void *) *nr);
976
977 from->avail -= nr;
978 to->avail += nr;
979 to->touched = 1;
980 return nr;
981}
982
Christoph Lametere498be72005-09-09 13:03:32 -0700983#ifdef CONFIG_NUMA
Pekka Enberg343e0d72006-02-01 03:05:50 -0800984static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
Paul Jacksonc61afb12006-03-24 03:16:08 -0800985static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
Christoph Lameterdc85da12006-01-18 17:42:36 -0800986
Pekka Enberg5295a742006-02-01 03:05:48 -0800987static struct array_cache **alloc_alien_cache(int node, int limit)
Christoph Lametere498be72005-09-09 13:03:32 -0700988{
989 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800990 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -0700991 int i;
992
993 if (limit > 1)
994 limit = 12;
995 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
996 if (ac_ptr) {
997 for_each_node(i) {
998 if (i == node || !node_online(i)) {
999 ac_ptr[i] = NULL;
1000 continue;
1001 }
1002 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1003 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001004 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -07001005 kfree(ac_ptr[i]);
1006 kfree(ac_ptr);
1007 return NULL;
1008 }
1009 }
1010 }
1011 return ac_ptr;
1012}
1013
Pekka Enberg5295a742006-02-01 03:05:48 -08001014static void free_alien_cache(struct array_cache **ac_ptr)
Christoph Lametere498be72005-09-09 13:03:32 -07001015{
1016 int i;
1017
1018 if (!ac_ptr)
1019 return;
Christoph Lametere498be72005-09-09 13:03:32 -07001020 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001021 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07001022 kfree(ac_ptr);
1023}
1024
Pekka Enberg343e0d72006-02-01 03:05:50 -08001025static void __drain_alien_cache(struct kmem_cache *cachep,
Pekka Enberg5295a742006-02-01 03:05:48 -08001026 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07001027{
1028 struct kmem_list3 *rl3 = cachep->nodelists[node];
1029
1030 if (ac->avail) {
1031 spin_lock(&rl3->list_lock);
Christoph Lametere00946f2006-03-25 03:06:45 -08001032 /*
1033 * Stuff objects into the remote nodes shared array first.
1034 * That way we could avoid the overhead of putting the objects
1035 * into the free lists and getting them back later.
1036 */
shin, jacob693f7d32006-04-28 10:54:37 -05001037 if (rl3->shared)
1038 transfer_objects(rl3->shared, ac, ac->limit);
Christoph Lametere00946f2006-03-25 03:06:45 -08001039
Christoph Lameterff694162005-09-22 21:44:02 -07001040 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001041 ac->avail = 0;
1042 spin_unlock(&rl3->list_lock);
1043 }
1044}
1045
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001046/*
1047 * Called from cache_reap() to regularly drain alien caches round robin.
1048 */
1049static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1050{
1051 int node = __get_cpu_var(reap_node);
1052
1053 if (l3->alien) {
1054 struct array_cache *ac = l3->alien[node];
Christoph Lametere00946f2006-03-25 03:06:45 -08001055
1056 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001057 __drain_alien_cache(cachep, ac, node);
1058 spin_unlock_irq(&ac->lock);
1059 }
1060 }
1061}
1062
Andrew Mortona737b3e2006-03-22 00:08:11 -08001063static void drain_alien_cache(struct kmem_cache *cachep,
1064 struct array_cache **alien)
Christoph Lametere498be72005-09-09 13:03:32 -07001065{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001066 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07001067 struct array_cache *ac;
1068 unsigned long flags;
1069
1070 for_each_online_node(i) {
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001071 ac = alien[i];
Christoph Lametere498be72005-09-09 13:03:32 -07001072 if (ac) {
1073 spin_lock_irqsave(&ac->lock, flags);
1074 __drain_alien_cache(cachep, ac, i);
1075 spin_unlock_irqrestore(&ac->lock, flags);
1076 }
1077 }
1078}
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001079
Ingo Molnar873623d2006-07-13 14:44:38 +02001080static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001081{
1082 struct slab *slabp = virt_to_slab(objp);
1083 int nodeid = slabp->nodeid;
1084 struct kmem_list3 *l3;
1085 struct array_cache *alien = NULL;
1086
1087 /*
1088 * Make sure we are not freeing a object from another node to the array
1089 * cache on this cpu.
1090 */
1091 if (likely(slabp->nodeid == numa_node_id()))
1092 return 0;
1093
1094 l3 = cachep->nodelists[numa_node_id()];
1095 STATS_INC_NODEFREES(cachep);
1096 if (l3->alien && l3->alien[nodeid]) {
1097 alien = l3->alien[nodeid];
Ingo Molnar873623d2006-07-13 14:44:38 +02001098 spin_lock(&alien->lock);
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001099 if (unlikely(alien->avail == alien->limit)) {
1100 STATS_INC_ACOVERFLOW(cachep);
1101 __drain_alien_cache(cachep, alien, nodeid);
1102 }
1103 alien->entry[alien->avail++] = objp;
1104 spin_unlock(&alien->lock);
1105 } else {
1106 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1107 free_block(cachep, &objp, 1, nodeid);
1108 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1109 }
1110 return 1;
1111}
1112
Christoph Lametere498be72005-09-09 13:03:32 -07001113#else
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001114
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001115#define drain_alien_cache(cachep, alien) do { } while (0)
Christoph Lameter8fce4d82006-03-09 17:33:54 -08001116#define reap_alien(cachep, l3) do { } while (0)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001117
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001118static inline struct array_cache **alloc_alien_cache(int node, int limit)
1119{
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -07001120 return (struct array_cache **)BAD_ALIEN_MAGIC;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001121}
1122
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001123static inline void free_alien_cache(struct array_cache **ac_ptr)
1124{
1125}
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001126
Ingo Molnar873623d2006-07-13 14:44:38 +02001127static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
Pekka Enberg729bd0b2006-06-23 02:03:05 -07001128{
1129 return 0;
1130}
1131
Christoph Lametere498be72005-09-09 13:03:32 -07001132#endif
1133
Chandra Seetharaman8c78f302006-07-30 03:03:35 -07001134static int __cpuinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001135 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001136{
1137 long cpu = (long)hcpu;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001138 struct kmem_cache *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -07001139 struct kmem_list3 *l3 = NULL;
1140 int node = cpu_to_node(cpu);
1141 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001142
1143 switch (action) {
1144 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001145 mutex_lock(&cache_chain_mutex);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001146 /*
1147 * We need to do this right in the beginning since
Christoph Lametere498be72005-09-09 13:03:32 -07001148 * alloc_arraycache's are going to use this list.
1149 * kmalloc_node allows us to add the slab to the right
1150 * kmem_list3 and not this cpu's kmem_list3
1151 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152
Christoph Lametere498be72005-09-09 13:03:32 -07001153 list_for_each_entry(cachep, &cache_chain, next) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001154 /*
1155 * Set up the size64 kmemlist for cpu before we can
Christoph Lametere498be72005-09-09 13:03:32 -07001156 * begin anything. Make sure some other cpu on this
1157 * node has not already allocated this
1158 */
1159 if (!cachep->nodelists[node]) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08001160 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1161 if (!l3)
Christoph Lametere498be72005-09-09 13:03:32 -07001162 goto bad;
1163 kmem_list3_init(l3);
1164 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001165 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001166
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001167 /*
1168 * The l3s don't come and go as CPUs come and
1169 * go. cache_chain_mutex is sufficient
1170 * protection here.
1171 */
Christoph Lametere498be72005-09-09 13:03:32 -07001172 cachep->nodelists[node] = l3;
1173 }
1174
1175 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1176 cachep->nodelists[node]->free_limit =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001177 (1 + nr_cpus_node(node)) *
1178 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07001179 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1180 }
1181
Andrew Mortona737b3e2006-03-22 00:08:11 -08001182 /*
1183 * Now we can go ahead with allocating the shared arrays and
1184 * array caches
1185 */
Christoph Lametere498be72005-09-09 13:03:32 -07001186 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -08001187 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001188 struct array_cache *shared;
1189 struct array_cache **alien;
Tobias Klausercd105df2006-01-08 01:00:59 -08001190
Christoph Lametere498be72005-09-09 13:03:32 -07001191 nc = alloc_arraycache(node, cachep->limit,
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001192 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001193 if (!nc)
1194 goto bad;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001195 shared = alloc_arraycache(node,
1196 cachep->shared * cachep->batchcount,
1197 0xbaadf00d);
1198 if (!shared)
1199 goto bad;
Linus Torvalds7a21ef62006-02-05 11:26:38 -08001200
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001201 alien = alloc_alien_cache(node, cachep->limit);
1202 if (!alien)
1203 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001204 cachep->array[cpu] = nc;
Christoph Lametere498be72005-09-09 13:03:32 -07001205 l3 = cachep->nodelists[node];
1206 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07001207
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001208 spin_lock_irq(&l3->list_lock);
1209 if (!l3->shared) {
1210 /*
1211 * We are serialised from CPU_DEAD or
1212 * CPU_UP_CANCELLED by the cpucontrol lock
1213 */
1214 l3->shared = shared;
1215 shared = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001216 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001217#ifdef CONFIG_NUMA
1218 if (!l3->alien) {
1219 l3->alien = alien;
1220 alien = NULL;
1221 }
1222#endif
1223 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001224 kfree(shared);
1225 free_alien_cache(alien);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001226 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001227 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001228 break;
1229 case CPU_ONLINE:
1230 start_cpu_timer(cpu);
1231 break;
1232#ifdef CONFIG_HOTPLUG_CPU
1233 case CPU_DEAD:
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001234 /*
1235 * Even if all the cpus of a node are down, we don't free the
1236 * kmem_list3 of any cache. This to avoid a race between
1237 * cpu_down, and a kmalloc allocation from another cpu for
1238 * memory from the node of the cpu going down. The list3
1239 * structure is usually allocated from kmem_cache_create() and
1240 * gets destroyed at kmem_cache_destroy().
1241 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001242 /* fall thru */
1243 case CPU_UP_CANCELED:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001244 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001245 list_for_each_entry(cachep, &cache_chain, next) {
1246 struct array_cache *nc;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001247 struct array_cache *shared;
1248 struct array_cache **alien;
Christoph Lametere498be72005-09-09 13:03:32 -07001249 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001250
Christoph Lametere498be72005-09-09 13:03:32 -07001251 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001252 /* cpu is dead; no one can alloc from it. */
1253 nc = cachep->array[cpu];
1254 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07001255 l3 = cachep->nodelists[node];
1256
1257 if (!l3)
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001258 goto free_array_cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001259
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001260 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07001261
1262 /* Free limit for this kmem_list3 */
1263 l3->free_limit -= cachep->batchcount;
1264 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -07001265 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001266
1267 if (!cpus_empty(mask)) {
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08001268 spin_unlock_irq(&l3->list_lock);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001269 goto free_array_cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001270 }
Christoph Lametere498be72005-09-09 13:03:32 -07001271
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001272 shared = l3->shared;
1273 if (shared) {
Christoph Lametere498be72005-09-09 13:03:32 -07001274 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001275 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001276 l3->shared = NULL;
1277 }
Christoph Lametere498be72005-09-09 13:03:32 -07001278
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001279 alien = l3->alien;
1280 l3->alien = NULL;
1281
1282 spin_unlock_irq(&l3->list_lock);
1283
1284 kfree(shared);
1285 if (alien) {
1286 drain_alien_cache(cachep, alien);
1287 free_alien_cache(alien);
Christoph Lametere498be72005-09-09 13:03:32 -07001288 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001289free_array_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001290 kfree(nc);
1291 }
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001292 /*
1293 * In the previous loop, all the objects were freed to
1294 * the respective cache's slabs, now we can go ahead and
1295 * shrink each nodelist to its limit.
1296 */
1297 list_for_each_entry(cachep, &cache_chain, next) {
1298 l3 = cachep->nodelists[node];
1299 if (!l3)
1300 continue;
Christoph Lametered11d9e2006-06-30 01:55:45 -07001301 drain_freelist(cachep, l3, l3->free_objects);
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08001302 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001303 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001304 break;
1305#endif
1306 }
1307 return NOTIFY_OK;
Andrew Mortona737b3e2006-03-22 00:08:11 -08001308bad:
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001309 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310 return NOTIFY_BAD;
1311}
1312
Chandra Seetharaman74b85f32006-06-27 02:54:09 -07001313static struct notifier_block __cpuinitdata cpucache_notifier = {
1314 &cpuup_callback, NULL, 0
1315};
Linus Torvalds1da177e2005-04-16 15:20:36 -07001316
Christoph Lametere498be72005-09-09 13:03:32 -07001317/*
1318 * swap the static kmem_list3 with kmalloced memory
1319 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001320static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1321 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001322{
1323 struct kmem_list3 *ptr;
1324
1325 BUG_ON(cachep->nodelists[nodeid] != list);
1326 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1327 BUG_ON(!ptr);
1328
1329 local_irq_disable();
1330 memcpy(ptr, list, sizeof(struct kmem_list3));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001331 /*
1332 * Do not assume that spinlocks can be initialized via memcpy:
1333 */
1334 spin_lock_init(&ptr->list_lock);
1335
Christoph Lametere498be72005-09-09 13:03:32 -07001336 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1337 cachep->nodelists[nodeid] = ptr;
1338 local_irq_enable();
1339}
1340
Andrew Mortona737b3e2006-03-22 00:08:11 -08001341/*
1342 * Initialisation. Called after the page allocator have been initialised and
1343 * before smp_init().
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344 */
1345void __init kmem_cache_init(void)
1346{
1347 size_t left_over;
1348 struct cache_sizes *sizes;
1349 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001350 int i;
Jack Steiner07ed76b2006-03-07 21:55:46 -08001351 int order;
Christoph Lametere498be72005-09-09 13:03:32 -07001352
1353 for (i = 0; i < NUM_INIT_LISTS; i++) {
1354 kmem_list3_init(&initkmem_list3[i]);
1355 if (i < MAX_NUMNODES)
1356 cache_cache.nodelists[i] = NULL;
1357 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001358
1359 /*
1360 * Fragmentation resistance on low memory - only use bigger
1361 * page orders on machines with more than 32MB of memory.
1362 */
1363 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1364 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1365
Linus Torvalds1da177e2005-04-16 15:20:36 -07001366 /* Bootstrap is tricky, because several objects are allocated
1367 * from caches that do not exist yet:
Andrew Mortona737b3e2006-03-22 00:08:11 -08001368 * 1) initialize the cache_cache cache: it contains the struct
1369 * kmem_cache structures of all caches, except cache_cache itself:
1370 * cache_cache is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001371 * Initially an __init data area is used for the head array and the
1372 * kmem_list3 structures, it's replaced with a kmalloc allocated
1373 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001374 * 2) Create the first kmalloc cache.
Pekka Enberg343e0d72006-02-01 03:05:50 -08001375 * The struct kmem_cache for the new cache is allocated normally.
Christoph Lametere498be72005-09-09 13:03:32 -07001376 * An __init data area is used for the head array.
1377 * 3) Create the remaining kmalloc caches, with minimally sized
1378 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379 * 4) Replace the __init data head arrays for cache_cache and the first
1380 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001381 * 5) Replace the __init data for kmem_list3 for cache_cache and
1382 * the other cache's with kmalloc allocated memory.
1383 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001384 */
1385
1386 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387 INIT_LIST_HEAD(&cache_chain);
1388 list_add(&cache_cache.next, &cache_chain);
1389 cache_cache.colour_off = cache_line_size();
1390 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001391 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392
Andrew Mortona737b3e2006-03-22 00:08:11 -08001393 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1394 cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001395
Jack Steiner07ed76b2006-03-07 21:55:46 -08001396 for (order = 0; order < MAX_ORDER; order++) {
1397 cache_estimate(order, cache_cache.buffer_size,
1398 cache_line_size(), 0, &left_over, &cache_cache.num);
1399 if (cache_cache.num)
1400 break;
1401 }
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02001402 BUG_ON(!cache_cache.num);
Jack Steiner07ed76b2006-03-07 21:55:46 -08001403 cache_cache.gfporder = order;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001404 cache_cache.colour = left_over / cache_cache.colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001405 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1406 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001407
1408 /* 2+3) create the kmalloc caches */
1409 sizes = malloc_sizes;
1410 names = cache_names;
1411
Andrew Mortona737b3e2006-03-22 00:08:11 -08001412 /*
1413 * Initialize the caches that provide memory for the array cache and the
1414 * kmem_list3 structures first. Without this, further allocations will
1415 * bug.
Christoph Lametere498be72005-09-09 13:03:32 -07001416 */
1417
1418 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001419 sizes[INDEX_AC].cs_size,
1420 ARCH_KMALLOC_MINALIGN,
1421 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1422 NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001423
Andrew Mortona737b3e2006-03-22 00:08:11 -08001424 if (INDEX_AC != INDEX_L3) {
Christoph Lametere498be72005-09-09 13:03:32 -07001425 sizes[INDEX_L3].cs_cachep =
Andrew Mortona737b3e2006-03-22 00:08:11 -08001426 kmem_cache_create(names[INDEX_L3].name,
1427 sizes[INDEX_L3].cs_size,
1428 ARCH_KMALLOC_MINALIGN,
1429 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1430 NULL, NULL);
1431 }
Christoph Lametere498be72005-09-09 13:03:32 -07001432
Ingo Molnare0a42722006-06-23 02:03:46 -07001433 slab_early_init = 0;
1434
Linus Torvalds1da177e2005-04-16 15:20:36 -07001435 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001436 /*
1437 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438 * This should be particularly beneficial on SMP boxes, as it
1439 * eliminates "false sharing".
1440 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001441 * allow tighter packing of the smaller caches.
1442 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001443 if (!sizes->cs_cachep) {
Christoph Lametere498be72005-09-09 13:03:32 -07001444 sizes->cs_cachep = kmem_cache_create(names->name,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001445 sizes->cs_size,
1446 ARCH_KMALLOC_MINALIGN,
1447 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1448 NULL, NULL);
1449 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450
Linus Torvalds1da177e2005-04-16 15:20:36 -07001451 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Andrew Mortona737b3e2006-03-22 00:08:11 -08001452 sizes->cs_size,
1453 ARCH_KMALLOC_MINALIGN,
1454 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1455 SLAB_PANIC,
1456 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001457 sizes++;
1458 names++;
1459 }
1460 /* 4) Replace the bootstrap head arrays */
1461 {
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001462 struct array_cache *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001463
Linus Torvalds1da177e2005-04-16 15:20:36 -07001464 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001465
Linus Torvalds1da177e2005-04-16 15:20:36 -07001466 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001467 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1468 memcpy(ptr, cpu_cache_get(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001469 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001470 /*
1471 * Do not assume that spinlocks can be initialized via memcpy:
1472 */
1473 spin_lock_init(&ptr->lock);
1474
Linus Torvalds1da177e2005-04-16 15:20:36 -07001475 cache_cache.array[smp_processor_id()] = ptr;
1476 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001477
Linus Torvalds1da177e2005-04-16 15:20:36 -07001478 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001479
Linus Torvalds1da177e2005-04-16 15:20:36 -07001480 local_irq_disable();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001481 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001482 != &initarray_generic.cache);
Pekka Enberg9a2dba42006-02-01 03:05:49 -08001483 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001484 sizeof(struct arraycache_init));
Ingo Molnar2b2d5492006-07-03 00:25:28 -07001485 /*
1486 * Do not assume that spinlocks can be initialized via memcpy:
1487 */
1488 spin_lock_init(&ptr->lock);
1489
Christoph Lametere498be72005-09-09 13:03:32 -07001490 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001491 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001492 local_irq_enable();
1493 }
Christoph Lametere498be72005-09-09 13:03:32 -07001494 /* 5) Replace the bootstrap kmem_list3's */
1495 {
1496 int node;
1497 /* Replace the static kmem_list3 structures for the boot cpu */
1498 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001499 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001500
Christoph Lametere498be72005-09-09 13:03:32 -07001501 for_each_online_node(node) {
1502 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001503 &initkmem_list3[SIZE_AC + node], node);
Christoph Lametere498be72005-09-09 13:03:32 -07001504
1505 if (INDEX_AC != INDEX_L3) {
1506 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001507 &initkmem_list3[SIZE_L3 + node],
1508 node);
Christoph Lametere498be72005-09-09 13:03:32 -07001509 }
1510 }
1511 }
1512
1513 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001514 {
Pekka Enberg343e0d72006-02-01 03:05:50 -08001515 struct kmem_cache *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001516 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001517 list_for_each_entry(cachep, &cache_chain, next)
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001518 if (enable_cpucache(cachep))
1519 BUG();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001520 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001521 }
1522
Ravikiran G Thirumalai056c6242006-09-25 23:31:38 -07001523 /* Annotate slab for lockdep -- annotate the malloc caches */
1524 init_lock_keys();
1525
1526
Linus Torvalds1da177e2005-04-16 15:20:36 -07001527 /* Done! */
1528 g_cpucache_up = FULL;
1529
Andrew Mortona737b3e2006-03-22 00:08:11 -08001530 /*
1531 * Register a cpu startup notifier callback that initializes
1532 * cpu_cache_get for all new cpus
Linus Torvalds1da177e2005-04-16 15:20:36 -07001533 */
1534 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001535
Andrew Mortona737b3e2006-03-22 00:08:11 -08001536 /*
1537 * The reap timers are started later, with a module init call: That part
1538 * of the kernel is not yet operational.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001539 */
1540}
1541
1542static int __init cpucache_init(void)
1543{
1544 int cpu;
1545
Andrew Mortona737b3e2006-03-22 00:08:11 -08001546 /*
1547 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds1da177e2005-04-16 15:20:36 -07001548 */
Christoph Lametere498be72005-09-09 13:03:32 -07001549 for_each_online_cpu(cpu)
Andrew Mortona737b3e2006-03-22 00:08:11 -08001550 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001551 return 0;
1552}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001553__initcall(cpucache_init);
1554
1555/*
1556 * Interface to system's page allocator. No need to hold the cache-lock.
1557 *
1558 * If we requested dmaable memory, we will get it. Even if we
1559 * did not request dmaable memory, we might get it, but that
1560 * would be relatively rare and ignorable.
1561 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001562static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001563{
1564 struct page *page;
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001565 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566 int i;
1567
Luke Yangd6fef9d2006-04-10 22:52:56 -07001568#ifndef CONFIG_MMU
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001569 /*
1570 * Nommu uses slab's for process anonymous memory allocations, and thus
1571 * requires __GFP_COMP to properly refcount higher order allocations
Luke Yangd6fef9d2006-04-10 22:52:56 -07001572 */
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001573 flags |= __GFP_COMP;
Luke Yangd6fef9d2006-04-10 22:52:56 -07001574#endif
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001575 flags |= cachep->gfpflags;
1576
1577 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001578 if (!page)
1579 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001580
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001581 nr_pages = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001582 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001583 atomic_add(nr_pages, &slab_reclaim_pages);
Christoph Lameter9a865ff2006-06-30 01:55:38 -07001584 add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
Christoph Hellwige1b6aa62006-06-23 02:03:17 -07001585 for (i = 0; i < nr_pages; i++)
1586 __SetPageSlab(page + i);
1587 return page_address(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001588}
1589
1590/*
1591 * Interface to system's page release.
1592 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001593static void kmem_freepages(struct kmem_cache *cachep, void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001594{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001595 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001596 struct page *page = virt_to_page(addr);
1597 const unsigned long nr_freed = i;
1598
Christoph Lameter9a865ff2006-06-30 01:55:38 -07001599 sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001600 while (i--) {
Nick Pigginf205b2f2006-03-22 00:08:02 -08001601 BUG_ON(!PageSlab(page));
1602 __ClearPageSlab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001603 page++;
1604 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001605 if (current->reclaim_state)
1606 current->reclaim_state->reclaimed_slab += nr_freed;
1607 free_pages((unsigned long)addr, cachep->gfporder);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001608 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1609 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001610}
1611
1612static void kmem_rcu_free(struct rcu_head *head)
1613{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001614 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Pekka Enberg343e0d72006-02-01 03:05:50 -08001615 struct kmem_cache *cachep = slab_rcu->cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001616
1617 kmem_freepages(cachep, slab_rcu->addr);
1618 if (OFF_SLAB(cachep))
1619 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1620}
1621
1622#if DEBUG
1623
1624#ifdef CONFIG_DEBUG_PAGEALLOC
Pekka Enberg343e0d72006-02-01 03:05:50 -08001625static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001626 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001627{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001628 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001629
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001630 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001632 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001633 return;
1634
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001635 *addr++ = 0x12345678;
1636 *addr++ = caller;
1637 *addr++ = smp_processor_id();
1638 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001639 {
1640 unsigned long *sptr = &caller;
1641 unsigned long svalue;
1642
1643 while (!kstack_end(sptr)) {
1644 svalue = *sptr++;
1645 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001646 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647 size -= sizeof(unsigned long);
1648 if (size <= sizeof(unsigned long))
1649 break;
1650 }
1651 }
1652
1653 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001654 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001655}
1656#endif
1657
Pekka Enberg343e0d72006-02-01 03:05:50 -08001658static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001659{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001660 int size = obj_size(cachep);
1661 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001662
1663 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001664 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001665}
1666
1667static void dump_line(char *data, int offset, int limit)
1668{
1669 int i;
1670 printk(KERN_ERR "%03x:", offset);
Andrew Mortona737b3e2006-03-22 00:08:11 -08001671 for (i = 0; i < limit; i++)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001672 printk(" %02x", (unsigned char)data[offset + i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001673 printk("\n");
1674}
1675#endif
1676
1677#if DEBUG
1678
Pekka Enberg343e0d72006-02-01 03:05:50 -08001679static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001680{
1681 int i, size;
1682 char *realobj;
1683
1684 if (cachep->flags & SLAB_RED_ZONE) {
1685 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001686 *dbg_redzone1(cachep, objp),
1687 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001688 }
1689
1690 if (cachep->flags & SLAB_STORE_USER) {
1691 printk(KERN_ERR "Last user: [<%p>]",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001692 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001693 print_symbol("(%s)",
Andrew Mortona737b3e2006-03-22 00:08:11 -08001694 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001695 printk("\n");
1696 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001697 realobj = (char *)objp + obj_offset(cachep);
1698 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001699 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001700 int limit;
1701 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001702 if (i + limit > size)
1703 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001704 dump_line(realobj, i, limit);
1705 }
1706}
1707
Pekka Enberg343e0d72006-02-01 03:05:50 -08001708static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001709{
1710 char *realobj;
1711 int size, i;
1712 int lines = 0;
1713
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001714 realobj = (char *)objp + obj_offset(cachep);
1715 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001716
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001717 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001718 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001719 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001720 exp = POISON_END;
1721 if (realobj[i] != exp) {
1722 int limit;
1723 /* Mismatch ! */
1724 /* Print header */
1725 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001726 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08001727 "Slab corruption: start=%p, len=%d\n",
1728 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001729 print_objinfo(cachep, objp, 0);
1730 }
1731 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001732 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001733 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001734 if (i + limit > size)
1735 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001736 dump_line(realobj, i, limit);
1737 i += 16;
1738 lines++;
1739 /* Limit to 5 lines */
1740 if (lines > 5)
1741 break;
1742 }
1743 }
1744 if (lines != 0) {
1745 /* Print some data about the neighboring objects, if they
1746 * exist:
1747 */
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08001748 struct slab *slabp = virt_to_slab(objp);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001749 unsigned int objnr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001750
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001751 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001752 if (objnr) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001753 objp = index_to_obj(cachep, slabp, objnr - 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001754 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001756 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757 print_objinfo(cachep, objp, 2);
1758 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001759 if (objnr + 1 < cachep->num) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001760 objp = index_to_obj(cachep, slabp, objnr + 1);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001761 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001762 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001763 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001764 print_objinfo(cachep, objp, 2);
1765 }
1766 }
1767}
1768#endif
1769
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770#if DEBUG
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001771/**
Randy Dunlap911851e2006-03-22 00:08:14 -08001772 * slab_destroy_objs - destroy a slab and its objects
1773 * @cachep: cache pointer being destroyed
1774 * @slabp: slab pointer being destroyed
1775 *
1776 * Call the registered destructor for each object in a slab that is being
1777 * destroyed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001778 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001779static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001780{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001781 int i;
1782 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001783 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001784
1785 if (cachep->flags & SLAB_POISON) {
1786#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08001787 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1788 OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001789 kernel_map_pages(virt_to_page(objp),
Andrew Mortona737b3e2006-03-22 00:08:11 -08001790 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791 else
1792 check_poison_obj(cachep, objp);
1793#else
1794 check_poison_obj(cachep, objp);
1795#endif
1796 }
1797 if (cachep->flags & SLAB_RED_ZONE) {
1798 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1799 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001800 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001801 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1802 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001803 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 }
1805 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001806 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001807 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001808}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001809#else
Pekka Enberg343e0d72006-02-01 03:05:50 -08001810static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001811{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001812 if (cachep->dtor) {
1813 int i;
1814 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08001815 void *objp = index_to_obj(cachep, slabp, i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001816 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001817 }
1818 }
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001819}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001820#endif
1821
Randy Dunlap911851e2006-03-22 00:08:14 -08001822/**
1823 * slab_destroy - destroy and release all objects in a slab
1824 * @cachep: cache pointer being destroyed
1825 * @slabp: slab pointer being destroyed
1826 *
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001827 * Destroy all the objs in a slab, and release the mem back to the system.
Andrew Mortona737b3e2006-03-22 00:08:11 -08001828 * Before calling the slab must have been unlinked from the cache. The
1829 * cache-lock is not held/needed.
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001830 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001831static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
Matthew Dobson12dd36f2006-02-01 03:05:46 -08001832{
1833 void *addr = slabp->s_mem - slabp->colouroff;
1834
1835 slab_destroy_objs(cachep, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001836 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1837 struct slab_rcu *slab_rcu;
1838
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001839 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001840 slab_rcu->cachep = cachep;
1841 slab_rcu->addr = addr;
1842 call_rcu(&slab_rcu->head, kmem_rcu_free);
1843 } else {
1844 kmem_freepages(cachep, addr);
Ingo Molnar873623d2006-07-13 14:44:38 +02001845 if (OFF_SLAB(cachep))
1846 kmem_cache_free(cachep->slabp_cache, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001847 }
1848}
1849
Andrew Mortona737b3e2006-03-22 00:08:11 -08001850/*
1851 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1852 * size of kmem_list3.
1853 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08001854static void set_up_list3s(struct kmem_cache *cachep, int index)
Christoph Lametere498be72005-09-09 13:03:32 -07001855{
1856 int node;
1857
1858 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001859 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001860 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001861 REAPTIMEOUT_LIST3 +
1862 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001863 }
1864}
1865
Christoph Lameter117f6eb2006-09-25 23:31:37 -07001866static void __kmem_cache_destroy(struct kmem_cache *cachep)
1867{
1868 int i;
1869 struct kmem_list3 *l3;
1870
1871 for_each_online_cpu(i)
1872 kfree(cachep->array[i]);
1873
1874 /* NUMA: free the list3 structures */
1875 for_each_online_node(i) {
1876 l3 = cachep->nodelists[i];
1877 if (l3) {
1878 kfree(l3->shared);
1879 free_alien_cache(l3->alien);
1880 kfree(l3);
1881 }
1882 }
1883 kmem_cache_free(&cache_cache, cachep);
1884}
1885
1886
Linus Torvalds1da177e2005-04-16 15:20:36 -07001887/**
Randy.Dunlapa70773d2006-02-01 03:05:52 -08001888 * calculate_slab_order - calculate size (page order) of slabs
1889 * @cachep: pointer to the cache that is being created
1890 * @size: size of objects to be created in this cache.
1891 * @align: required alignment for the objects.
1892 * @flags: slab allocation flags
1893 *
1894 * Also calculates the number of objects per slab.
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001895 *
1896 * This could be made much more intelligent. For now, try to avoid using
1897 * high order pages for slabs. When the gfp() functions are more friendly
1898 * towards high-order requests, this should be changed.
1899 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001900static size_t calculate_slab_order(struct kmem_cache *cachep,
Randy Dunlapee13d782006-02-01 03:05:53 -08001901 size_t size, size_t align, unsigned long flags)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001902{
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001903 unsigned long offslab_limit;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001904 size_t left_over = 0;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001905 int gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001906
Andrew Mortona737b3e2006-03-22 00:08:11 -08001907 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001908 unsigned int num;
1909 size_t remainder;
1910
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001911 cache_estimate(gfporder, size, align, flags, &remainder, &num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001912 if (!num)
1913 continue;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001914
Ingo Molnarb1ab41c2006-06-02 15:44:58 +02001915 if (flags & CFLGS_OFF_SLAB) {
1916 /*
1917 * Max number of objs-per-slab for caches which
1918 * use off-slab slabs. Needed to avoid a possible
1919 * looping condition in cache_grow().
1920 */
1921 offslab_limit = size - sizeof(struct slab);
1922 offslab_limit /= sizeof(kmem_bufctl_t);
1923
1924 if (num > offslab_limit)
1925 break;
1926 }
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001927
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001928 /* Found something acceptable - save it away */
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001929 cachep->num = num;
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001930 cachep->gfporder = gfporder;
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001931 left_over = remainder;
1932
1933 /*
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08001934 * A VFS-reclaimable slab tends to have most allocations
1935 * as GFP_NOFS and we really don't want to have to be allocating
1936 * higher-order pages when we are unable to shrink dcache.
1937 */
1938 if (flags & SLAB_RECLAIM_ACCOUNT)
1939 break;
1940
1941 /*
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001942 * Large number of objects is good, but very large slabs are
1943 * currently bad for the gfp()s.
1944 */
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001945 if (gfporder >= slab_break_gfp_order)
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001946 break;
1947
Linus Torvalds9888e6f2006-03-06 17:44:43 -08001948 /*
1949 * Acceptable internal fragmentation?
1950 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08001951 if (left_over * 8 <= (PAGE_SIZE << gfporder))
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001952 break;
1953 }
1954 return left_over;
1955}
1956
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001957static int setup_cpu_cache(struct kmem_cache *cachep)
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001958{
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07001959 if (g_cpucache_up == FULL)
1960 return enable_cpucache(cachep);
1961
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08001962 if (g_cpucache_up == NONE) {
1963 /*
1964 * Note: the first kmem_cache_create must create the cache
1965 * that's used by kmalloc(24), otherwise the creation of
1966 * further caches will BUG().
1967 */
1968 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1969
1970 /*
1971 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1972 * the first cache, then we need to set up all its list3s,
1973 * otherwise the creation of further caches will BUG().
1974 */
1975 set_up_list3s(cachep, SIZE_AC);
1976 if (INDEX_AC == INDEX_L3)
1977 g_cpucache_up = PARTIAL_L3;
1978 else
1979 g_cpucache_up = PARTIAL_AC;
1980 } else {
1981 cachep->array[smp_processor_id()] =
1982 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1983
1984 if (g_cpucache_up == PARTIAL_AC) {
1985 set_up_list3s(cachep, SIZE_L3);
1986 g_cpucache_up = PARTIAL_L3;
1987 } else {
1988 int node;
1989 for_each_online_node(node) {
1990 cachep->nodelists[node] =
1991 kmalloc_node(sizeof(struct kmem_list3),
1992 GFP_KERNEL, node);
1993 BUG_ON(!cachep->nodelists[node]);
1994 kmem_list3_init(cachep->nodelists[node]);
1995 }
1996 }
1997 }
1998 cachep->nodelists[numa_node_id()]->next_reap =
1999 jiffies + REAPTIMEOUT_LIST3 +
2000 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2001
2002 cpu_cache_get(cachep)->avail = 0;
2003 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2004 cpu_cache_get(cachep)->batchcount = 1;
2005 cpu_cache_get(cachep)->touched = 0;
2006 cachep->batchcount = 1;
2007 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002008 return 0;
Pekka Enbergf30cf7d2006-03-22 00:08:11 -08002009}
2010
Pekka Enberg4d268eb2006-01-08 01:00:36 -08002011/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002012 * kmem_cache_create - Create a cache.
2013 * @name: A string which is used in /proc/slabinfo to identify this cache.
2014 * @size: The size of objects to be created in this cache.
2015 * @align: The required alignment for the objects.
2016 * @flags: SLAB flags
2017 * @ctor: A constructor for the objects.
2018 * @dtor: A destructor for the objects.
2019 *
2020 * Returns a ptr to the cache on success, NULL on failure.
2021 * Cannot be called within a int, but can be interrupted.
2022 * The @ctor is run when new pages are allocated by the cache
2023 * and the @dtor is run before the pages are handed back.
2024 *
2025 * @name must be valid until the cache is destroyed. This implies that
Andrew Mortona737b3e2006-03-22 00:08:11 -08002026 * the module calling this has to destroy the cache before getting unloaded.
2027 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002028 * The flags are
2029 *
2030 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2031 * to catch references to uninitialised memory.
2032 *
2033 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2034 * for buffer overruns.
2035 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002036 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2037 * cacheline. This can be beneficial if you're counting cycles as closely
2038 * as davem.
2039 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002040struct kmem_cache *
Linus Torvalds1da177e2005-04-16 15:20:36 -07002041kmem_cache_create (const char *name, size_t size, size_t align,
Andrew Mortona737b3e2006-03-22 00:08:11 -08002042 unsigned long flags,
2043 void (*ctor)(void*, struct kmem_cache *, unsigned long),
Pekka Enberg343e0d72006-02-01 03:05:50 -08002044 void (*dtor)(void*, struct kmem_cache *, unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002045{
2046 size_t left_over, slab_size, ralign;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002047 struct kmem_cache *cachep = NULL, *pc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002048
2049 /*
2050 * Sanity checks... these are all serious usage bugs.
2051 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002052 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002053 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002054 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2055 name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002056 BUG();
2057 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002058
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002059 /*
2060 * Prevent CPUs from coming and going.
2061 * lock_cpu_hotplug() nests outside cache_chain_mutex
2062 */
2063 lock_cpu_hotplug();
2064
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002065 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002066
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07002067 list_for_each_entry(pc, &cache_chain, next) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002068 mm_segment_t old_fs = get_fs();
2069 char tmp;
2070 int res;
2071
2072 /*
2073 * This happens when the module gets unloaded and doesn't
2074 * destroy its slab cache and no-one else reuses the vmalloc
2075 * area of the module. Print a warning.
2076 */
2077 set_fs(KERNEL_DS);
2078 res = __get_user(tmp, pc->name);
2079 set_fs(old_fs);
2080 if (res) {
2081 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002082 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08002083 continue;
2084 }
2085
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002086 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08002087 printk("kmem_cache_create: duplicate cache %s\n", name);
2088 dump_stack();
2089 goto oops;
2090 }
2091 }
2092
Linus Torvalds1da177e2005-04-16 15:20:36 -07002093#if DEBUG
2094 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2095 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2096 /* No constructor, but inital state check requested */
2097 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002098 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002099 flags &= ~SLAB_DEBUG_INITIAL;
2100 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002101#if FORCED_DEBUG
2102 /*
2103 * Enable redzoning and last user accounting, except for caches with
2104 * large objects, if the increased size would increase the object size
2105 * above the next power of two: caches with object sizes just above a
2106 * power of two have a significant amount of internal fragmentation.
2107 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002108 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002109 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002110 if (!(flags & SLAB_DESTROY_BY_RCU))
2111 flags |= SLAB_POISON;
2112#endif
2113 if (flags & SLAB_DESTROY_BY_RCU)
2114 BUG_ON(flags & SLAB_POISON);
2115#endif
2116 if (flags & SLAB_DESTROY_BY_RCU)
2117 BUG_ON(dtor);
2118
2119 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002120 * Always checks flags, a caller might be expecting debug support which
2121 * isn't available.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002122 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002123 BUG_ON(flags & ~CREATE_MASK);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002124
Andrew Mortona737b3e2006-03-22 00:08:11 -08002125 /*
2126 * Check that size is in terms of words. This is needed to avoid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002127 * unaligned accesses for some archs when redzoning is used, and makes
2128 * sure any on-slab bufctl's are also correctly aligned.
2129 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002130 if (size & (BYTES_PER_WORD - 1)) {
2131 size += (BYTES_PER_WORD - 1);
2132 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002133 }
2134
Andrew Mortona737b3e2006-03-22 00:08:11 -08002135 /* calculate the final buffer alignment: */
2136
Linus Torvalds1da177e2005-04-16 15:20:36 -07002137 /* 1) arch recommendation: can be overridden for debug */
2138 if (flags & SLAB_HWCACHE_ALIGN) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002139 /*
2140 * Default alignment: as specified by the arch code. Except if
2141 * an object is really small, then squeeze multiple objects into
2142 * one cacheline.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002143 */
2144 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002145 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002146 ralign /= 2;
2147 } else {
2148 ralign = BYTES_PER_WORD;
2149 }
Pekka Enbergca5f9702006-09-25 23:31:25 -07002150
2151 /*
2152 * Redzoning and user store require word alignment. Note this will be
2153 * overridden by architecture or caller mandated alignment if either
2154 * is greater than BYTES_PER_WORD.
2155 */
2156 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2157 ralign = BYTES_PER_WORD;
2158
Linus Torvalds1da177e2005-04-16 15:20:36 -07002159 /* 2) arch mandated alignment: disables debug if necessary */
2160 if (ralign < ARCH_SLAB_MINALIGN) {
2161 ralign = ARCH_SLAB_MINALIGN;
2162 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002163 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002164 }
2165 /* 3) caller mandated alignment: disables debug if necessary */
2166 if (ralign < align) {
2167 ralign = align;
2168 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002169 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002170 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002171 /*
Pekka Enbergca5f9702006-09-25 23:31:25 -07002172 * 4) Store it.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002173 */
2174 align = ralign;
2175
2176 /* Get cache's description obj. */
Pekka Enbergc5e3b832006-03-25 03:06:43 -08002177 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002178 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08002179 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002180
2181#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002182 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002183
Pekka Enbergca5f9702006-09-25 23:31:25 -07002184 /*
2185 * Both debugging options require word-alignment which is calculated
2186 * into align above.
2187 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002188 if (flags & SLAB_RED_ZONE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002189 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002190 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002191 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002192 }
2193 if (flags & SLAB_STORE_USER) {
Pekka Enbergca5f9702006-09-25 23:31:25 -07002194 /* user store requires one word storage behind the end of
2195 * the real object.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002196 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002197 size += BYTES_PER_WORD;
2198 }
2199#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002200 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002201 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2202 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002203 size = PAGE_SIZE;
2204 }
2205#endif
2206#endif
2207
Ingo Molnare0a42722006-06-23 02:03:46 -07002208 /*
2209 * Determine if the slab management is 'on' or 'off' slab.
2210 * (bootstrapping cannot cope with offslab caches so don't do
2211 * it too early on.)
2212 */
2213 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002214 /*
2215 * Size is large, assume best to place the slab management obj
2216 * off-slab (should allow better packing of objs).
2217 */
2218 flags |= CFLGS_OFF_SLAB;
2219
2220 size = ALIGN(size, align);
2221
Linus Torvaldsf78bb8a2006-03-08 10:33:05 -08002222 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002223
2224 if (!cachep->num) {
2225 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2226 kmem_cache_free(&cache_cache, cachep);
2227 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08002228 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002229 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002230 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2231 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002232
2233 /*
2234 * If the slab has been placed off-slab, and we have enough space then
2235 * move it on-slab. This is at the expense of any extra colouring.
2236 */
2237 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2238 flags &= ~CFLGS_OFF_SLAB;
2239 left_over -= slab_size;
2240 }
2241
2242 if (flags & CFLGS_OFF_SLAB) {
2243 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002244 slab_size =
2245 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002246 }
2247
2248 cachep->colour_off = cache_line_size();
2249 /* Offset must be a multiple of the alignment. */
2250 if (cachep->colour_off < align)
2251 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002252 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002253 cachep->slab_size = slab_size;
2254 cachep->flags = flags;
2255 cachep->gfpflags = 0;
2256 if (flags & SLAB_CACHE_DMA)
2257 cachep->gfpflags |= GFP_DMA;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002258 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002259
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002260 if (flags & CFLGS_OFF_SLAB) {
Victor Fuscob2d55072005-09-10 00:26:36 -07002261 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002262 /*
2263 * This is a possibility for one of the malloc_sizes caches.
2264 * But since we go off slab only for object size greater than
2265 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2266 * this should not happen at all.
2267 * But leave a BUG_ON for some lucky dude.
2268 */
2269 BUG_ON(!cachep->slabp_cache);
2270 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002271 cachep->ctor = ctor;
2272 cachep->dtor = dtor;
2273 cachep->name = name;
2274
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07002275 if (setup_cpu_cache(cachep)) {
2276 __kmem_cache_destroy(cachep);
2277 cachep = NULL;
2278 goto oops;
2279 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002280
Linus Torvalds1da177e2005-04-16 15:20:36 -07002281 /* cache setup completed, link it into the list */
2282 list_add(&cachep->next, &cache_chain);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002283oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002284 if (!cachep && (flags & SLAB_PANIC))
2285 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002286 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002287 mutex_unlock(&cache_chain_mutex);
Ravikiran G Thirumalaif0188f42006-02-10 01:51:13 -08002288 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002289 return cachep;
2290}
2291EXPORT_SYMBOL(kmem_cache_create);
2292
2293#if DEBUG
2294static void check_irq_off(void)
2295{
2296 BUG_ON(!irqs_disabled());
2297}
2298
2299static void check_irq_on(void)
2300{
2301 BUG_ON(irqs_disabled());
2302}
2303
Pekka Enberg343e0d72006-02-01 03:05:50 -08002304static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002305{
2306#ifdef CONFIG_SMP
2307 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002308 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002309#endif
2310}
Christoph Lametere498be72005-09-09 13:03:32 -07002311
Pekka Enberg343e0d72006-02-01 03:05:50 -08002312static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
Christoph Lametere498be72005-09-09 13:03:32 -07002313{
2314#ifdef CONFIG_SMP
2315 check_irq_off();
2316 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2317#endif
2318}
2319
Linus Torvalds1da177e2005-04-16 15:20:36 -07002320#else
2321#define check_irq_off() do { } while(0)
2322#define check_irq_on() do { } while(0)
2323#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07002324#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002325#endif
2326
Christoph Lameteraab22072006-03-22 00:09:06 -08002327static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2328 struct array_cache *ac,
2329 int force, int node);
2330
Linus Torvalds1da177e2005-04-16 15:20:36 -07002331static void do_drain(void *arg)
2332{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002333 struct kmem_cache *cachep = arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002334 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07002335 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336
2337 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002338 ac = cpu_cache_get(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07002339 spin_lock(&cachep->nodelists[node]->list_lock);
2340 free_block(cachep, ac->entry, ac->avail, node);
2341 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002342 ac->avail = 0;
2343}
2344
Pekka Enberg343e0d72006-02-01 03:05:50 -08002345static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002346{
Christoph Lametere498be72005-09-09 13:03:32 -07002347 struct kmem_list3 *l3;
2348 int node;
2349
Andrew Mortona07fa392006-03-22 00:08:17 -08002350 on_each_cpu(do_drain, cachep, 1, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002351 check_irq_on();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002352 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07002353 l3 = cachep->nodelists[node];
Roland Dreiera4523a82006-05-15 11:41:00 -07002354 if (l3 && l3->alien)
2355 drain_alien_cache(cachep, l3->alien);
2356 }
2357
2358 for_each_online_node(node) {
2359 l3 = cachep->nodelists[node];
2360 if (l3)
Christoph Lameteraab22072006-03-22 00:09:06 -08002361 drain_array(cachep, l3, l3->shared, 1, node);
Christoph Lametere498be72005-09-09 13:03:32 -07002362 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002363}
2364
Christoph Lametered11d9e2006-06-30 01:55:45 -07002365/*
2366 * Remove slabs from the list of free slabs.
2367 * Specify the number of slabs to drain in tofree.
2368 *
2369 * Returns the actual number of slabs released.
2370 */
2371static int drain_freelist(struct kmem_cache *cache,
2372 struct kmem_list3 *l3, int tofree)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002373{
Christoph Lametered11d9e2006-06-30 01:55:45 -07002374 struct list_head *p;
2375 int nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002376 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377
Christoph Lametered11d9e2006-06-30 01:55:45 -07002378 nr_freed = 0;
2379 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002380
Christoph Lametered11d9e2006-06-30 01:55:45 -07002381 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002382 p = l3->slabs_free.prev;
Christoph Lametered11d9e2006-06-30 01:55:45 -07002383 if (p == &l3->slabs_free) {
2384 spin_unlock_irq(&l3->list_lock);
2385 goto out;
2386 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002387
Christoph Lametered11d9e2006-06-30 01:55:45 -07002388 slabp = list_entry(p, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002389#if DEBUG
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002390 BUG_ON(slabp->inuse);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002391#endif
2392 list_del(&slabp->list);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002393 /*
2394 * Safe to drop the lock. The slab is no longer linked
2395 * to the cache.
2396 */
2397 l3->free_objects -= cache->num;
Christoph Lametere498be72005-09-09 13:03:32 -07002398 spin_unlock_irq(&l3->list_lock);
Christoph Lametered11d9e2006-06-30 01:55:45 -07002399 slab_destroy(cache, slabp);
2400 nr_freed++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002401 }
Christoph Lametered11d9e2006-06-30 01:55:45 -07002402out:
2403 return nr_freed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002404}
2405
Pekka Enberg343e0d72006-02-01 03:05:50 -08002406static int __cache_shrink(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07002407{
2408 int ret = 0, i = 0;
2409 struct kmem_list3 *l3;
2410
2411 drain_cpu_caches(cachep);
2412
2413 check_irq_on();
2414 for_each_online_node(i) {
2415 l3 = cachep->nodelists[i];
Christoph Lametered11d9e2006-06-30 01:55:45 -07002416 if (!l3)
2417 continue;
2418
2419 drain_freelist(cachep, l3, l3->free_objects);
2420
2421 ret += !list_empty(&l3->slabs_full) ||
2422 !list_empty(&l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07002423 }
2424 return (ret ? 1 : 0);
2425}
2426
Linus Torvalds1da177e2005-04-16 15:20:36 -07002427/**
2428 * kmem_cache_shrink - Shrink a cache.
2429 * @cachep: The cache to shrink.
2430 *
2431 * Releases as many slabs as possible for a cache.
2432 * To help debugging, a zero exit status indicates all slabs were released.
2433 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002434int kmem_cache_shrink(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002435{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002436 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002437
2438 return __cache_shrink(cachep);
2439}
2440EXPORT_SYMBOL(kmem_cache_shrink);
2441
2442/**
2443 * kmem_cache_destroy - delete a cache
2444 * @cachep: the cache to destroy
2445 *
Pekka Enberg343e0d72006-02-01 03:05:50 -08002446 * Remove a struct kmem_cache object from the slab cache.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002447 * Returns 0 on success.
2448 *
2449 * It is expected this function will be called by a module when it is
2450 * unloaded. This will remove the cache completely, and avoid a duplicate
2451 * cache being allocated each time a module is loaded and unloaded, if the
2452 * module doesn't have persistent in-kernel storage across loads and unloads.
2453 *
2454 * The cache must be empty before calling this function.
2455 *
2456 * The caller must guarantee that noone will allocate memory from the cache
2457 * during the kmem_cache_destroy().
2458 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002459int kmem_cache_destroy(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002460{
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002461 BUG_ON(!cachep || in_interrupt());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002462
2463 /* Don't let CPUs to come and go */
2464 lock_cpu_hotplug();
2465
2466 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002467 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002468 /*
2469 * the chain is never empty, cache_cache is never destroyed
2470 */
2471 list_del(&cachep->next);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002472 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002473
2474 if (__cache_shrink(cachep)) {
2475 slab_error(cachep, "Can't free all objects");
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002476 mutex_lock(&cache_chain_mutex);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002477 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002478 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002479 unlock_cpu_hotplug();
2480 return 1;
2481 }
2482
2483 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002484 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002485
Christoph Lameter117f6eb2006-09-25 23:31:37 -07002486 __kmem_cache_destroy(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002487 unlock_cpu_hotplug();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002488 return 0;
2489}
2490EXPORT_SYMBOL(kmem_cache_destroy);
2491
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07002492/*
2493 * Get the memory for a slab management obj.
2494 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2495 * always come from malloc_sizes caches. The slab descriptor cannot
2496 * come from the same cache which is getting created because,
2497 * when we are searching for an appropriate cache for these
2498 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2499 * If we are creating a malloc_sizes cache here it would not be visible to
2500 * kmem_find_general_cachep till the initialization is complete.
2501 * Hence we cannot have slabp_cache same as the original cache.
2502 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002503static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002504 int colour_off, gfp_t local_flags,
2505 int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002506{
2507 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002508
Linus Torvalds1da177e2005-04-16 15:20:36 -07002509 if (OFF_SLAB(cachep)) {
2510 /* Slab management obj is off-slab. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002511 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2512 local_flags, nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002513 if (!slabp)
2514 return NULL;
2515 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002516 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002517 colour_off += cachep->slab_size;
2518 }
2519 slabp->inuse = 0;
2520 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002521 slabp->s_mem = objp + colour_off;
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002522 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002523 return slabp;
2524}
2525
2526static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2527{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002528 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002529}
2530
Pekka Enberg343e0d72006-02-01 03:05:50 -08002531static void cache_init_objs(struct kmem_cache *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002532 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002533{
2534 int i;
2535
2536 for (i = 0; i < cachep->num; i++) {
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002537 void *objp = index_to_obj(cachep, slabp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002538#if DEBUG
2539 /* need to poison the objs? */
2540 if (cachep->flags & SLAB_POISON)
2541 poison_obj(cachep, objp, POISON_FREE);
2542 if (cachep->flags & SLAB_STORE_USER)
2543 *dbg_userword(cachep, objp) = NULL;
2544
2545 if (cachep->flags & SLAB_RED_ZONE) {
2546 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2547 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2548 }
2549 /*
Andrew Mortona737b3e2006-03-22 00:08:11 -08002550 * Constructors are not allowed to allocate memory from the same
2551 * cache which they are a constructor for. Otherwise, deadlock.
2552 * They must also be threaded.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002553 */
2554 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002555 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002556 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002557
2558 if (cachep->flags & SLAB_RED_ZONE) {
2559 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2560 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002561 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002562 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2563 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002564 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08002566 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2567 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002568 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002569 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002570#else
2571 if (cachep->ctor)
2572 cachep->ctor(objp, cachep, ctor_flags);
2573#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002574 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002575 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002576 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002577 slabp->free = 0;
2578}
2579
Pekka Enberg343e0d72006-02-01 03:05:50 -08002580static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002581{
Andrew Mortona737b3e2006-03-22 00:08:11 -08002582 if (flags & SLAB_DMA)
2583 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2584 else
2585 BUG_ON(cachep->gfpflags & GFP_DMA);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002586}
2587
Andrew Mortona737b3e2006-03-22 00:08:11 -08002588static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2589 int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002590{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002591 void *objp = index_to_obj(cachep, slabp, slabp->free);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002592 kmem_bufctl_t next;
2593
2594 slabp->inuse++;
2595 next = slab_bufctl(slabp)[slabp->free];
2596#if DEBUG
2597 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2598 WARN_ON(slabp->nodeid != nodeid);
2599#endif
2600 slabp->free = next;
2601
2602 return objp;
2603}
2604
Andrew Mortona737b3e2006-03-22 00:08:11 -08002605static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2606 void *objp, int nodeid)
Matthew Dobson78d382d2006-02-01 03:05:47 -08002607{
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002608 unsigned int objnr = obj_to_index(cachep, slabp, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002609
2610#if DEBUG
2611 /* Verify that the slab belongs to the intended node */
2612 WARN_ON(slabp->nodeid != nodeid);
2613
Al Viro871751e2006-03-25 03:06:39 -08002614 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
Matthew Dobson78d382d2006-02-01 03:05:47 -08002615 printk(KERN_ERR "slab: double free detected in cache "
Andrew Mortona737b3e2006-03-22 00:08:11 -08002616 "'%s', objp %p\n", cachep->name, objp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08002617 BUG();
2618 }
2619#endif
2620 slab_bufctl(slabp)[objnr] = slabp->free;
2621 slabp->free = objnr;
2622 slabp->inuse--;
2623}
2624
Pekka Enberg47768742006-06-23 02:03:07 -07002625/*
2626 * Map pages beginning at addr to the given cache and slab. This is required
2627 * for the slab allocator to be able to lookup the cache and slab of a
2628 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2629 */
2630static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2631 void *addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632{
Pekka Enberg47768742006-06-23 02:03:07 -07002633 int nr_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002634 struct page *page;
2635
Pekka Enberg47768742006-06-23 02:03:07 -07002636 page = virt_to_page(addr);
Nick Piggin84097512006-03-22 00:08:34 -08002637
Pekka Enberg47768742006-06-23 02:03:07 -07002638 nr_pages = 1;
Nick Piggin84097512006-03-22 00:08:34 -08002639 if (likely(!PageCompound(page)))
Pekka Enberg47768742006-06-23 02:03:07 -07002640 nr_pages <<= cache->gfporder;
2641
Linus Torvalds1da177e2005-04-16 15:20:36 -07002642 do {
Pekka Enberg47768742006-06-23 02:03:07 -07002643 page_set_cache(page, cache);
2644 page_set_slab(page, slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002645 page++;
Pekka Enberg47768742006-06-23 02:03:07 -07002646 } while (--nr_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002647}
2648
2649/*
2650 * Grow (by 1) the number of slabs within a cache. This is called by
2651 * kmem_cache_alloc() when there are no active objs left in a cache.
2652 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08002653static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002655 struct slab *slabp;
2656 void *objp;
2657 size_t offset;
2658 gfp_t local_flags;
2659 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002660 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002661
Andrew Mortona737b3e2006-03-22 00:08:11 -08002662 /*
2663 * Be lazy and only check for valid flags here, keeping it out of the
2664 * critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002665 */
Eric Sesterhenn40094fa2006-04-02 13:49:25 +02002666 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002667 if (flags & SLAB_NO_GROW)
2668 return 0;
2669
2670 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2671 local_flags = (flags & SLAB_LEVEL_MASK);
2672 if (!(local_flags & __GFP_WAIT))
2673 /*
2674 * Not allowed to sleep. Need to tell a constructor about
2675 * this - it might need to know...
2676 */
2677 ctor_flags |= SLAB_CTOR_ATOMIC;
2678
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002679 /* Take the l3 list lock to change the colour_next on this node */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002680 check_irq_off();
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002681 l3 = cachep->nodelists[nodeid];
2682 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002683
2684 /* Get colour for the slab, and cal the next value. */
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002685 offset = l3->colour_next;
2686 l3->colour_next++;
2687 if (l3->colour_next >= cachep->colour)
2688 l3->colour_next = 0;
2689 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002690
Ravikiran G Thirumalai2e1217c2006-02-04 23:27:56 -08002691 offset *= cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002692
2693 if (local_flags & __GFP_WAIT)
2694 local_irq_enable();
2695
2696 /*
2697 * The test for missing atomic flag is performed here, rather than
2698 * the more obvious place, simply to reduce the critical path length
2699 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2700 * will eventually be caught here (where it matters).
2701 */
2702 kmem_flagcheck(cachep, flags);
2703
Andrew Mortona737b3e2006-03-22 00:08:11 -08002704 /*
2705 * Get mem for the objs. Attempt to allocate a physical page from
2706 * 'nodeid'.
Christoph Lametere498be72005-09-09 13:03:32 -07002707 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08002708 objp = kmem_getpages(cachep, flags, nodeid);
2709 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002710 goto failed;
2711
2712 /* Get slab management. */
Ravikiran G Thirumalai5b74ada2006-04-10 22:52:53 -07002713 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002714 if (!slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002715 goto opps1;
2716
Christoph Lametere498be72005-09-09 13:03:32 -07002717 slabp->nodeid = nodeid;
Pekka Enberg47768742006-06-23 02:03:07 -07002718 slab_map_pages(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719
2720 cache_init_objs(cachep, slabp, ctor_flags);
2721
2722 if (local_flags & __GFP_WAIT)
2723 local_irq_disable();
2724 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002725 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726
2727 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002728 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002730 l3->free_objects += cachep->num;
2731 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002732 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002733opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002734 kmem_freepages(cachep, objp);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002735failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736 if (local_flags & __GFP_WAIT)
2737 local_irq_disable();
2738 return 0;
2739}
2740
2741#if DEBUG
2742
2743/*
2744 * Perform extra freeing checks:
2745 * - detect bad pointers.
2746 * - POISON/RED_ZONE checking
2747 * - destructor calls, for caches with POISON+dtor
2748 */
2749static void kfree_debugcheck(const void *objp)
2750{
2751 struct page *page;
2752
2753 if (!virt_addr_valid(objp)) {
2754 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002755 (unsigned long)objp);
2756 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002757 }
2758 page = virt_to_page(objp);
2759 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002760 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2761 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002762 BUG();
2763 }
2764}
2765
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002766static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2767{
2768 unsigned long redzone1, redzone2;
2769
2770 redzone1 = *dbg_redzone1(cache, obj);
2771 redzone2 = *dbg_redzone2(cache, obj);
2772
2773 /*
2774 * Redzone is ok.
2775 */
2776 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2777 return;
2778
2779 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2780 slab_error(cache, "double free detected");
2781 else
2782 slab_error(cache, "memory outside object was overwritten");
2783
2784 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2785 obj, redzone1, redzone2);
2786}
2787
Pekka Enberg343e0d72006-02-01 03:05:50 -08002788static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002789 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002790{
2791 struct page *page;
2792 unsigned int objnr;
2793 struct slab *slabp;
2794
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002795 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002796 kfree_debugcheck(objp);
2797 page = virt_to_page(objp);
2798
Pekka Enberg065d41c2005-11-13 16:06:46 -08002799 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002800
2801 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enberg58ce1fd2006-06-23 02:03:24 -07002802 verify_redzone_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002803 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2804 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2805 }
2806 if (cachep->flags & SLAB_STORE_USER)
2807 *dbg_userword(cachep, objp) = caller;
2808
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002809 objnr = obj_to_index(cachep, slabp, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002810
2811 BUG_ON(objnr >= cachep->num);
Pekka Enberg8fea4e92006-03-22 00:08:10 -08002812 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002813
2814 if (cachep->flags & SLAB_DEBUG_INITIAL) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002815 /*
2816 * Need to call the slab's constructor so the caller can
2817 * perform a verify of its state (debugging). Called without
2818 * the cache-lock held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002819 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002820 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002821 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002822 }
2823 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2824 /* we want to cache poison the object,
2825 * call the destruction callback
2826 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002827 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002828 }
Al Viro871751e2006-03-25 03:06:39 -08002829#ifdef CONFIG_DEBUG_SLAB_LEAK
2830 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2831#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002832 if (cachep->flags & SLAB_POISON) {
2833#ifdef CONFIG_DEBUG_PAGEALLOC
Andrew Mortona737b3e2006-03-22 00:08:11 -08002834 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002835 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002836 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002837 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002838 } else {
2839 poison_obj(cachep, objp, POISON_FREE);
2840 }
2841#else
2842 poison_obj(cachep, objp, POISON_FREE);
2843#endif
2844 }
2845 return objp;
2846}
2847
Pekka Enberg343e0d72006-02-01 03:05:50 -08002848static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002849{
2850 kmem_bufctl_t i;
2851 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002852
Linus Torvalds1da177e2005-04-16 15:20:36 -07002853 /* Check slab's freelist to see if this obj is there. */
2854 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2855 entries++;
2856 if (entries > cachep->num || i >= cachep->num)
2857 goto bad;
2858 }
2859 if (entries != cachep->num - slabp->inuse) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002860bad:
2861 printk(KERN_ERR "slab: Internal list corruption detected in "
2862 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2863 cachep->name, cachep->num, slabp, slabp->inuse);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002864 for (i = 0;
Linus Torvalds264132b2006-03-06 12:10:07 -08002865 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002866 i++) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002867 if (i % 16 == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002868 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002869 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002870 }
2871 printk("\n");
2872 BUG();
2873 }
2874}
2875#else
2876#define kfree_debugcheck(x) do { } while(0)
2877#define cache_free_debugcheck(x,objp,z) (objp)
2878#define check_slabp(x,y) do { } while(0)
2879#endif
2880
Pekka Enberg343e0d72006-02-01 03:05:50 -08002881static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002882{
2883 int batchcount;
2884 struct kmem_list3 *l3;
2885 struct array_cache *ac;
2886
2887 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002888 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002889retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002890 batchcount = ac->batchcount;
2891 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002892 /*
2893 * If there was little recent activity on this cache, then
2894 * perform only a partial refill. Otherwise we could generate
2895 * refill bouncing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002896 */
2897 batchcount = BATCHREFILL_LIMIT;
2898 }
Christoph Lametere498be72005-09-09 13:03:32 -07002899 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002900
Christoph Lametere498be72005-09-09 13:03:32 -07002901 BUG_ON(ac->avail > 0 || !l3);
2902 spin_lock(&l3->list_lock);
2903
Christoph Lameter3ded1752006-03-25 03:06:44 -08002904 /* See if we can refill from the shared array */
2905 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2906 goto alloc_done;
2907
Linus Torvalds1da177e2005-04-16 15:20:36 -07002908 while (batchcount > 0) {
2909 struct list_head *entry;
2910 struct slab *slabp;
2911 /* Get slab alloc is to come from. */
2912 entry = l3->slabs_partial.next;
2913 if (entry == &l3->slabs_partial) {
2914 l3->free_touched = 1;
2915 entry = l3->slabs_free.next;
2916 if (entry == &l3->slabs_free)
2917 goto must_grow;
2918 }
2919
2920 slabp = list_entry(entry, struct slab, list);
2921 check_slabp(cachep, slabp);
2922 check_spinlock_acquired(cachep);
2923 while (slabp->inuse < cachep->num && batchcount--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002924 STATS_INC_ALLOCED(cachep);
2925 STATS_INC_ACTIVE(cachep);
2926 STATS_SET_HIGH(cachep);
2927
Matthew Dobson78d382d2006-02-01 03:05:47 -08002928 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2929 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07002930 }
2931 check_slabp(cachep, slabp);
2932
2933 /* move slabp to correct slabp list: */
2934 list_del(&slabp->list);
2935 if (slabp->free == BUFCTL_END)
2936 list_add(&slabp->list, &l3->slabs_full);
2937 else
2938 list_add(&slabp->list, &l3->slabs_partial);
2939 }
2940
Andrew Mortona737b3e2006-03-22 00:08:11 -08002941must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002942 l3->free_objects -= ac->avail;
Andrew Mortona737b3e2006-03-22 00:08:11 -08002943alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002944 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002945
2946 if (unlikely(!ac->avail)) {
2947 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002948 x = cache_grow(cachep, flags, numa_node_id());
2949
Andrew Mortona737b3e2006-03-22 00:08:11 -08002950 /* cache_grow can reenable interrupts, then ac could change. */
Pekka Enberg9a2dba42006-02-01 03:05:49 -08002951 ac = cpu_cache_get(cachep);
Andrew Mortona737b3e2006-03-22 00:08:11 -08002952 if (!x && ac->avail == 0) /* no objects in sight? abort */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002953 return NULL;
2954
Andrew Mortona737b3e2006-03-22 00:08:11 -08002955 if (!ac->avail) /* objects refilled by interrupt? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002956 goto retry;
2957 }
2958 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002959 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002960}
2961
Andrew Mortona737b3e2006-03-22 00:08:11 -08002962static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2963 gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002964{
2965 might_sleep_if(flags & __GFP_WAIT);
2966#if DEBUG
2967 kmem_flagcheck(cachep, flags);
2968#endif
2969}
2970
2971#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08002972static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2973 gfp_t flags, void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002974{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002975 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002976 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002977 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002978#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002979 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002980 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002981 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002982 else
2983 check_poison_obj(cachep, objp);
2984#else
2985 check_poison_obj(cachep, objp);
2986#endif
2987 poison_obj(cachep, objp, POISON_INUSE);
2988 }
2989 if (cachep->flags & SLAB_STORE_USER)
2990 *dbg_userword(cachep, objp) = caller;
2991
2992 if (cachep->flags & SLAB_RED_ZONE) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08002993 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2994 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2995 slab_error(cachep, "double free, or memory outside"
2996 " object was overwritten");
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002997 printk(KERN_ERR
Andrew Mortona737b3e2006-03-22 00:08:11 -08002998 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2999 objp, *dbg_redzone1(cachep, objp),
3000 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003001 }
3002 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3003 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3004 }
Al Viro871751e2006-03-25 03:06:39 -08003005#ifdef CONFIG_DEBUG_SLAB_LEAK
3006 {
3007 struct slab *slabp;
3008 unsigned objnr;
3009
3010 slabp = page_get_slab(virt_to_page(objp));
3011 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3012 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3013 }
3014#endif
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003015 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003016 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003017 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003018
3019 if (!(flags & __GFP_WAIT))
3020 ctor_flags |= SLAB_CTOR_ATOMIC;
3021
3022 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003023 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003024 return objp;
3025}
3026#else
3027#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3028#endif
3029
Pekka Enberg343e0d72006-02-01 03:05:50 -08003030static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003031{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003032 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003033 struct array_cache *ac;
3034
Christoph Lameterdc85da12006-01-18 17:42:36 -08003035#ifdef CONFIG_NUMA
Paul Jacksonb2455392006-03-24 03:16:12 -08003036 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
Paul Jacksonc61afb12006-03-24 03:16:08 -08003037 objp = alternate_node_alloc(cachep, flags);
3038 if (objp != NULL)
3039 return objp;
Paul Jackson101a5002006-03-24 03:16:07 -08003040 }
Christoph Lameterdc85da12006-01-18 17:42:36 -08003041#endif
3042
Alok N Kataria5c382302005-09-27 21:45:46 -07003043 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003044 ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003045 if (likely(ac->avail)) {
3046 STATS_INC_ALLOCHIT(cachep);
3047 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07003048 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003049 } else {
3050 STATS_INC_ALLOCMISS(cachep);
3051 objp = cache_alloc_refill(cachep, flags);
3052 }
Alok N Kataria5c382302005-09-27 21:45:46 -07003053 return objp;
3054}
3055
Andrew Mortona737b3e2006-03-22 00:08:11 -08003056static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3057 gfp_t flags, void *caller)
Alok N Kataria5c382302005-09-27 21:45:46 -07003058{
3059 unsigned long save_flags;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003060 void *objp;
Alok N Kataria5c382302005-09-27 21:45:46 -07003061
3062 cache_alloc_debugcheck_before(cachep, flags);
3063
3064 local_irq_save(save_flags);
3065 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003066 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07003067 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003068 caller);
Eric Dumazet34342e82005-09-03 15:55:06 -07003069 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003070 return objp;
3071}
3072
Christoph Lametere498be72005-09-09 13:03:32 -07003073#ifdef CONFIG_NUMA
3074/*
Paul Jacksonb2455392006-03-24 03:16:12 -08003075 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
Paul Jacksonc61afb12006-03-24 03:16:08 -08003076 *
3077 * If we are in_interrupt, then process context, including cpusets and
3078 * mempolicy, may not apply and should not be used for allocation policy.
3079 */
3080static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3081{
3082 int nid_alloc, nid_here;
3083
3084 if (in_interrupt())
3085 return NULL;
3086 nid_alloc = nid_here = numa_node_id();
3087 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3088 nid_alloc = cpuset_mem_spread_node();
3089 else if (current->mempolicy)
3090 nid_alloc = slab_node(current->mempolicy);
3091 if (nid_alloc != nid_here)
3092 return __cache_alloc_node(cachep, flags, nid_alloc);
3093 return NULL;
3094}
3095
3096/*
Christoph Lametere498be72005-09-09 13:03:32 -07003097 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07003098 */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003099static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3100 int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07003101{
3102 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003103 struct slab *slabp;
3104 struct kmem_list3 *l3;
3105 void *obj;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003106 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003107
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003108 l3 = cachep->nodelists[nodeid];
3109 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07003110
Andrew Mortona737b3e2006-03-22 00:08:11 -08003111retry:
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003112 check_irq_off();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003113 spin_lock(&l3->list_lock);
3114 entry = l3->slabs_partial.next;
3115 if (entry == &l3->slabs_partial) {
3116 l3->free_touched = 1;
3117 entry = l3->slabs_free.next;
3118 if (entry == &l3->slabs_free)
3119 goto must_grow;
3120 }
Christoph Lametere498be72005-09-09 13:03:32 -07003121
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003122 slabp = list_entry(entry, struct slab, list);
3123 check_spinlock_acquired_node(cachep, nodeid);
3124 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003125
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003126 STATS_INC_NODEALLOCS(cachep);
3127 STATS_INC_ACTIVE(cachep);
3128 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003129
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003130 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07003131
Matthew Dobson78d382d2006-02-01 03:05:47 -08003132 obj = slab_get_obj(cachep, slabp, nodeid);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003133 check_slabp(cachep, slabp);
3134 l3->free_objects--;
3135 /* move slabp to correct slabp list: */
3136 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07003137
Andrew Mortona737b3e2006-03-22 00:08:11 -08003138 if (slabp->free == BUFCTL_END)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003139 list_add(&slabp->list, &l3->slabs_full);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003140 else
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003141 list_add(&slabp->list, &l3->slabs_partial);
Christoph Lametere498be72005-09-09 13:03:32 -07003142
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003143 spin_unlock(&l3->list_lock);
3144 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07003145
Andrew Mortona737b3e2006-03-22 00:08:11 -08003146must_grow:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003147 spin_unlock(&l3->list_lock);
3148 x = cache_grow(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003149
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003150 if (!x)
3151 return NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003152
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003153 goto retry;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003154done:
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003155 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07003156}
3157#endif
3158
3159/*
3160 * Caller needs to acquire correct kmem_list's list_lock
3161 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003162static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003163 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003164{
3165 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07003166 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003167
3168 for (i = 0; i < nr_objects; i++) {
3169 void *objp = objpp[i];
3170 struct slab *slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003171
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003172 slabp = virt_to_slab(objp);
Christoph Lameterff694162005-09-22 21:44:02 -07003173 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003174 list_del(&slabp->list);
Christoph Lameterff694162005-09-22 21:44:02 -07003175 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003176 check_slabp(cachep, slabp);
Matthew Dobson78d382d2006-02-01 03:05:47 -08003177 slab_put_obj(cachep, slabp, objp, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003178 STATS_DEC_ACTIVE(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003179 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003180 check_slabp(cachep, slabp);
3181
3182 /* fixup slab chains */
3183 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003184 if (l3->free_objects > l3->free_limit) {
3185 l3->free_objects -= cachep->num;
Ravikiran G Thirumalaie5ac9c52006-09-25 23:31:34 -07003186 /* No need to drop any previously held
3187 * lock here, even if we have a off-slab slab
3188 * descriptor it is guaranteed to come from
3189 * a different cache, refer to comments before
3190 * alloc_slabmgmt.
3191 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003192 slab_destroy(cachep, slabp);
3193 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003194 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003195 }
3196 } else {
3197 /* Unconditionally move a slab to the end of the
3198 * partial list on free - maximum time for the
3199 * other objects to be freed, too.
3200 */
Christoph Lametere498be72005-09-09 13:03:32 -07003201 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003202 }
3203 }
3204}
3205
Pekka Enberg343e0d72006-02-01 03:05:50 -08003206static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003207{
3208 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07003209 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07003210 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003211
3212 batchcount = ac->batchcount;
3213#if DEBUG
3214 BUG_ON(!batchcount || batchcount > ac->avail);
3215#endif
3216 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07003217 l3 = cachep->nodelists[node];
Ingo Molnar873623d2006-07-13 14:44:38 +02003218 spin_lock(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003219 if (l3->shared) {
3220 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003221 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003222 if (max) {
3223 if (batchcount > max)
3224 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07003225 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003226 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003227 shared_array->avail += batchcount;
3228 goto free_done;
3229 }
3230 }
3231
Christoph Lameterff694162005-09-22 21:44:02 -07003232 free_block(cachep, ac->entry, batchcount, node);
Andrew Mortona737b3e2006-03-22 00:08:11 -08003233free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003234#if STATS
3235 {
3236 int i = 0;
3237 struct list_head *p;
3238
Christoph Lametere498be72005-09-09 13:03:32 -07003239 p = l3->slabs_free.next;
3240 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003241 struct slab *slabp;
3242
3243 slabp = list_entry(p, struct slab, list);
3244 BUG_ON(slabp->inuse);
3245
3246 i++;
3247 p = p->next;
3248 }
3249 STATS_SET_FREEABLE(cachep, i);
3250 }
3251#endif
Christoph Lametere498be72005-09-09 13:03:32 -07003252 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003253 ac->avail -= batchcount;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003254 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003255}
3256
3257/*
Andrew Mortona737b3e2006-03-22 00:08:11 -08003258 * Release an obj back to its cache. If the obj has a constructed state, it must
3259 * be in this state _before_ it is released. Called with disabled ints.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003260 */
Ingo Molnar873623d2006-07-13 14:44:38 +02003261static inline void __cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003262{
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003263 struct array_cache *ac = cpu_cache_get(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003264
3265 check_irq_off();
3266 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3267
Ingo Molnar873623d2006-07-13 14:44:38 +02003268 if (cache_free_alien(cachep, objp))
Pekka Enberg729bd0b2006-06-23 02:03:05 -07003269 return;
Christoph Lametere498be72005-09-09 13:03:32 -07003270
Linus Torvalds1da177e2005-04-16 15:20:36 -07003271 if (likely(ac->avail < ac->limit)) {
3272 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003273 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003274 return;
3275 } else {
3276 STATS_INC_FREEMISS(cachep);
3277 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07003278 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003279 }
3280}
3281
3282/**
3283 * kmem_cache_alloc - Allocate an object
3284 * @cachep: The cache to allocate from.
3285 * @flags: See kmalloc().
3286 *
3287 * Allocate an object from this cache. The flags are only relevant
3288 * if the cache has no available objects.
3289 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003290void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003291{
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003292 return __cache_alloc(cachep, flags, __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003293}
3294EXPORT_SYMBOL(kmem_cache_alloc);
3295
3296/**
Rolf Eike Beerb8008b22006-07-30 03:04:04 -07003297 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
Pekka Enberga8c0f9a2006-03-25 03:06:42 -08003298 * @cache: The cache to allocate from.
3299 * @flags: See kmalloc().
3300 *
3301 * Allocate an object from this cache and set the allocated memory to zero.
3302 * The flags are only relevant if the cache has no available objects.
3303 */
3304void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3305{
3306 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3307 if (ret)
3308 memset(ret, 0, obj_size(cache));
3309 return ret;
3310}
3311EXPORT_SYMBOL(kmem_cache_zalloc);
3312
3313/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003314 * kmem_ptr_validate - check if an untrusted pointer might
3315 * be a slab entry.
3316 * @cachep: the cache we're checking against
3317 * @ptr: pointer to validate
3318 *
3319 * This verifies that the untrusted pointer looks sane:
3320 * it is _not_ a guarantee that the pointer is actually
3321 * part of the slab cache in question, but it at least
3322 * validates that the pointer can be dereferenced and
3323 * looks half-way sane.
3324 *
3325 * Currently only used for dentry validation.
3326 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003327int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003328{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003329 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003330 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003331 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003332 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003333 struct page *page;
3334
3335 if (unlikely(addr < min_addr))
3336 goto out;
3337 if (unlikely(addr > (unsigned long)high_memory - size))
3338 goto out;
3339 if (unlikely(addr & align_mask))
3340 goto out;
3341 if (unlikely(!kern_addr_valid(addr)))
3342 goto out;
3343 if (unlikely(!kern_addr_valid(addr + size - 1)))
3344 goto out;
3345 page = virt_to_page(ptr);
3346 if (unlikely(!PageSlab(page)))
3347 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08003348 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003349 goto out;
3350 return 1;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003351out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003352 return 0;
3353}
3354
3355#ifdef CONFIG_NUMA
3356/**
3357 * kmem_cache_alloc_node - Allocate an object on the specified node
3358 * @cachep: The cache to allocate from.
3359 * @flags: See kmalloc().
3360 * @nodeid: node number of the target node.
3361 *
3362 * Identical to kmem_cache_alloc, except that this function is slow
3363 * and can sleep. And it will allocate memory on the given node, which
3364 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07003365 * New and improved: it will now make sure that the object gets
3366 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003367 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003368void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003369{
Christoph Lametere498be72005-09-09 13:03:32 -07003370 unsigned long save_flags;
3371 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003372
Christoph Lametere498be72005-09-09 13:03:32 -07003373 cache_alloc_debugcheck_before(cachep, flags);
3374 local_irq_save(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003375
3376 if (nodeid == -1 || nodeid == numa_node_id() ||
Andrew Mortona737b3e2006-03-22 00:08:11 -08003377 !cachep->nodelists[nodeid])
Alok N Kataria5c382302005-09-27 21:45:46 -07003378 ptr = ____cache_alloc(cachep, flags);
3379 else
3380 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07003381 local_irq_restore(save_flags);
Christoph Lameter18f820f2006-02-01 03:05:43 -08003382
3383 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3384 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003385
Christoph Lametere498be72005-09-09 13:03:32 -07003386 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003387}
3388EXPORT_SYMBOL(kmem_cache_alloc_node);
3389
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003390void *__kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003391{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003392 struct kmem_cache *cachep;
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003393
3394 cachep = kmem_find_general_cachep(size, flags);
3395 if (unlikely(cachep == NULL))
3396 return NULL;
3397 return kmem_cache_alloc_node(cachep, flags, node);
3398}
Christoph Hellwigdbe5e692006-09-25 23:31:36 -07003399EXPORT_SYMBOL(__kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003400#endif
3401
3402/**
Paul Drynoff800590f2006-06-23 02:03:48 -07003403 * __do_kmalloc - allocate memory
Linus Torvalds1da177e2005-04-16 15:20:36 -07003404 * @size: how many bytes of memory are required.
Paul Drynoff800590f2006-06-23 02:03:48 -07003405 * @flags: the type of memory to allocate (see kmalloc).
Randy Dunlap911851e2006-03-22 00:08:14 -08003406 * @caller: function caller for debug tracking of the caller
Linus Torvalds1da177e2005-04-16 15:20:36 -07003407 */
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003408static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3409 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003410{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003411 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003412
Manfred Spraul97e2bde2005-05-01 08:58:38 -07003413 /* If you want to save a few bytes .text space: replace
3414 * __ with kmem_.
3415 * Then kmalloc uses the uninlined functions instead of the inline
3416 * functions.
3417 */
3418 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003419 if (unlikely(cachep == NULL))
3420 return NULL;
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003421 return __cache_alloc(cachep, flags, caller);
3422}
3423
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003424
3425void *__kmalloc(size_t size, gfp_t flags)
3426{
Al Viro871751e2006-03-25 03:06:39 -08003427#ifndef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003428 return __do_kmalloc(size, flags, NULL);
Al Viro871751e2006-03-25 03:06:39 -08003429#else
3430 return __do_kmalloc(size, flags, __builtin_return_address(0));
3431#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07003432}
3433EXPORT_SYMBOL(__kmalloc);
3434
Al Viro871751e2006-03-25 03:06:39 -08003435#ifdef CONFIG_DEBUG_SLAB
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003436void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3437{
3438 return __do_kmalloc(size, flags, caller);
3439}
3440EXPORT_SYMBOL(__kmalloc_track_caller);
Pekka Enberg7fd6b142006-02-01 03:05:52 -08003441#endif
3442
Linus Torvalds1da177e2005-04-16 15:20:36 -07003443#ifdef CONFIG_SMP
3444/**
Martin Peschke7ff6f082006-09-25 23:31:21 -07003445 * percpu_depopulate - depopulate per-cpu data for given cpu
3446 * @__pdata: per-cpu data to depopulate
3447 * @cpu: depopulate per-cpu data for this cpu
Linus Torvalds1da177e2005-04-16 15:20:36 -07003448 *
Martin Peschke7ff6f082006-09-25 23:31:21 -07003449 * Depopulating per-cpu data for a cpu going offline would be a typical
3450 * use case. You need to register a cpu hotplug handler for that purpose.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003451 */
Martin Peschke7ff6f082006-09-25 23:31:21 -07003452void percpu_depopulate(void *__pdata, int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003453{
Martin Peschke7ff6f082006-09-25 23:31:21 -07003454 struct percpu_data *pdata = __percpu_disguise(__pdata);
3455 if (pdata->ptrs[cpu]) {
3456 kfree(pdata->ptrs[cpu]);
3457 pdata->ptrs[cpu] = NULL;
3458 }
3459}
3460EXPORT_SYMBOL_GPL(percpu_depopulate);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003461
Martin Peschke7ff6f082006-09-25 23:31:21 -07003462/**
3463 * percpu_depopulate_mask - depopulate per-cpu data for some cpu's
3464 * @__pdata: per-cpu data to depopulate
3465 * @mask: depopulate per-cpu data for cpu's selected through mask bits
3466 */
3467void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask)
3468{
3469 int cpu;
3470 for_each_cpu_mask(cpu, *mask)
3471 percpu_depopulate(__pdata, cpu);
3472}
3473EXPORT_SYMBOL_GPL(__percpu_depopulate_mask);
3474
3475/**
3476 * percpu_populate - populate per-cpu data for given cpu
3477 * @__pdata: per-cpu data to populate further
3478 * @size: size of per-cpu object
3479 * @gfp: may sleep or not etc.
3480 * @cpu: populate per-data for this cpu
3481 *
3482 * Populating per-cpu data for a cpu coming online would be a typical
3483 * use case. You need to register a cpu hotplug handler for that purpose.
3484 * Per-cpu object is populated with zeroed buffer.
3485 */
3486void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
3487{
3488 struct percpu_data *pdata = __percpu_disguise(__pdata);
3489 int node = cpu_to_node(cpu);
3490
3491 BUG_ON(pdata->ptrs[cpu]);
3492 if (node_online(node)) {
3493 /* FIXME: kzalloc_node(size, gfp, node) */
3494 pdata->ptrs[cpu] = kmalloc_node(size, gfp, node);
3495 if (pdata->ptrs[cpu])
3496 memset(pdata->ptrs[cpu], 0, size);
3497 } else
3498 pdata->ptrs[cpu] = kzalloc(size, gfp);
3499 return pdata->ptrs[cpu];
3500}
3501EXPORT_SYMBOL_GPL(percpu_populate);
3502
3503/**
3504 * percpu_populate_mask - populate per-cpu data for more cpu's
3505 * @__pdata: per-cpu data to populate further
3506 * @size: size of per-cpu object
3507 * @gfp: may sleep or not etc.
3508 * @mask: populate per-cpu data for cpu's selected through mask bits
3509 *
3510 * Per-cpu objects are populated with zeroed buffers.
3511 */
3512int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
3513 cpumask_t *mask)
3514{
3515 cpumask_t populated = CPU_MASK_NONE;
3516 int cpu;
3517
3518 for_each_cpu_mask(cpu, *mask)
3519 if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) {
3520 __percpu_depopulate_mask(__pdata, &populated);
3521 return -ENOMEM;
3522 } else
3523 cpu_set(cpu, populated);
3524 return 0;
3525}
3526EXPORT_SYMBOL_GPL(__percpu_populate_mask);
3527
3528/**
3529 * percpu_alloc_mask - initial setup of per-cpu data
3530 * @size: size of per-cpu object
3531 * @gfp: may sleep or not etc.
3532 * @mask: populate per-data for cpu's selected through mask bits
3533 *
3534 * Populating per-cpu data for all online cpu's would be a typical use case,
3535 * which is simplified by the percpu_alloc() wrapper.
3536 * Per-cpu objects are populated with zeroed buffers.
3537 */
3538void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask)
3539{
3540 void *pdata = kzalloc(sizeof(struct percpu_data), gfp);
3541 void *__pdata = __percpu_disguise(pdata);
3542
3543 if (unlikely(!pdata))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003544 return NULL;
Martin Peschke7ff6f082006-09-25 23:31:21 -07003545 if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask)))
3546 return __pdata;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003547 kfree(pdata);
3548 return NULL;
3549}
Martin Peschke7ff6f082006-09-25 23:31:21 -07003550EXPORT_SYMBOL_GPL(__percpu_alloc_mask);
3551
3552/**
3553 * percpu_free - final cleanup of per-cpu data
3554 * @__pdata: object to clean up
3555 *
3556 * We simply clean up any per-cpu object left. No need for the client to
3557 * track and specify through a bis mask which per-cpu objects are to free.
3558 */
3559void percpu_free(void *__pdata)
3560{
3561 __percpu_depopulate_mask(__pdata, &cpu_possible_map);
3562 kfree(__percpu_disguise(__pdata));
3563}
3564EXPORT_SYMBOL_GPL(percpu_free);
3565#endif /* CONFIG_SMP */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003566
3567/**
3568 * kmem_cache_free - Deallocate an object
3569 * @cachep: The cache the allocation was from.
3570 * @objp: The previously allocated object.
3571 *
3572 * Free an object which was previously allocated from this
3573 * cache.
3574 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003575void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003576{
3577 unsigned long flags;
3578
Pekka Enbergddc2e812006-06-23 02:03:40 -07003579 BUG_ON(virt_to_cache(objp) != cachep);
3580
Linus Torvalds1da177e2005-04-16 15:20:36 -07003581 local_irq_save(flags);
Ingo Molnar873623d2006-07-13 14:44:38 +02003582 __cache_free(cachep, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003583 local_irq_restore(flags);
3584}
3585EXPORT_SYMBOL(kmem_cache_free);
3586
3587/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003588 * kfree - free previously allocated memory
3589 * @objp: pointer returned by kmalloc.
3590 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003591 * If @objp is NULL, no operation is performed.
3592 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003593 * Don't free memory not originally allocated by kmalloc()
3594 * or you will run into trouble.
3595 */
3596void kfree(const void *objp)
3597{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003598 struct kmem_cache *c;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003599 unsigned long flags;
3600
3601 if (unlikely(!objp))
3602 return;
3603 local_irq_save(flags);
3604 kfree_debugcheck(objp);
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08003605 c = virt_to_cache(objp);
Ingo Molnarf9b84042006-06-27 02:54:49 -07003606 debug_check_no_locks_freed(objp, obj_size(c));
Ingo Molnar873623d2006-07-13 14:44:38 +02003607 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003608 local_irq_restore(flags);
3609}
3610EXPORT_SYMBOL(kfree);
3611
Pekka Enberg343e0d72006-02-01 03:05:50 -08003612unsigned int kmem_cache_size(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003613{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003614 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003615}
3616EXPORT_SYMBOL(kmem_cache_size);
3617
Pekka Enberg343e0d72006-02-01 03:05:50 -08003618const char *kmem_cache_name(struct kmem_cache *cachep)
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003619{
3620 return cachep->name;
3621}
3622EXPORT_SYMBOL_GPL(kmem_cache_name);
3623
Christoph Lametere498be72005-09-09 13:03:32 -07003624/*
Christoph Lameter0718dc22006-03-25 03:06:47 -08003625 * This initializes kmem_list3 or resizes varioius caches for all nodes.
Christoph Lametere498be72005-09-09 13:03:32 -07003626 */
Pekka Enberg343e0d72006-02-01 03:05:50 -08003627static int alloc_kmemlist(struct kmem_cache *cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07003628{
3629 int node;
3630 struct kmem_list3 *l3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003631 struct array_cache *new_shared;
3632 struct array_cache **new_alien;
Christoph Lametere498be72005-09-09 13:03:32 -07003633
3634 for_each_online_node(node) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003635
Andrew Mortona737b3e2006-03-22 00:08:11 -08003636 new_alien = alloc_alien_cache(node, cachep->limit);
3637 if (!new_alien)
Christoph Lametere498be72005-09-09 13:03:32 -07003638 goto fail;
Christoph Lametercafeb022006-03-25 03:06:46 -08003639
Christoph Lameter0718dc22006-03-25 03:06:47 -08003640 new_shared = alloc_arraycache(node,
3641 cachep->shared*cachep->batchcount,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003642 0xbaadf00d);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003643 if (!new_shared) {
3644 free_alien_cache(new_alien);
Christoph Lametere498be72005-09-09 13:03:32 -07003645 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003646 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003647
Andrew Mortona737b3e2006-03-22 00:08:11 -08003648 l3 = cachep->nodelists[node];
3649 if (l3) {
Christoph Lametercafeb022006-03-25 03:06:46 -08003650 struct array_cache *shared = l3->shared;
3651
Christoph Lametere498be72005-09-09 13:03:32 -07003652 spin_lock_irq(&l3->list_lock);
3653
Christoph Lametercafeb022006-03-25 03:06:46 -08003654 if (shared)
Christoph Lameter0718dc22006-03-25 03:06:47 -08003655 free_block(cachep, shared->entry,
3656 shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003657
Christoph Lametercafeb022006-03-25 03:06:46 -08003658 l3->shared = new_shared;
3659 if (!l3->alien) {
Christoph Lametere498be72005-09-09 13:03:32 -07003660 l3->alien = new_alien;
3661 new_alien = NULL;
3662 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003663 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003664 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003665 spin_unlock_irq(&l3->list_lock);
Christoph Lametercafeb022006-03-25 03:06:46 -08003666 kfree(shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003667 free_alien_cache(new_alien);
3668 continue;
3669 }
Andrew Mortona737b3e2006-03-22 00:08:11 -08003670 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
Christoph Lameter0718dc22006-03-25 03:06:47 -08003671 if (!l3) {
3672 free_alien_cache(new_alien);
3673 kfree(new_shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003674 goto fail;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003675 }
Christoph Lametere498be72005-09-09 13:03:32 -07003676
3677 kmem_list3_init(l3);
3678 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Andrew Mortona737b3e2006-03-22 00:08:11 -08003679 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametercafeb022006-03-25 03:06:46 -08003680 l3->shared = new_shared;
Christoph Lametere498be72005-09-09 13:03:32 -07003681 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003682 l3->free_limit = (1 + nr_cpus_node(node)) *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003683 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003684 cachep->nodelists[node] = l3;
3685 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003686 return 0;
Christoph Lameter0718dc22006-03-25 03:06:47 -08003687
Andrew Mortona737b3e2006-03-22 00:08:11 -08003688fail:
Christoph Lameter0718dc22006-03-25 03:06:47 -08003689 if (!cachep->next.next) {
3690 /* Cache is not active yet. Roll back what we did */
3691 node--;
3692 while (node >= 0) {
3693 if (cachep->nodelists[node]) {
3694 l3 = cachep->nodelists[node];
3695
3696 kfree(l3->shared);
3697 free_alien_cache(l3->alien);
3698 kfree(l3);
3699 cachep->nodelists[node] = NULL;
3700 }
3701 node--;
3702 }
3703 }
Christoph Lametercafeb022006-03-25 03:06:46 -08003704 return -ENOMEM;
Christoph Lametere498be72005-09-09 13:03:32 -07003705}
3706
Linus Torvalds1da177e2005-04-16 15:20:36 -07003707struct ccupdate_struct {
Pekka Enberg343e0d72006-02-01 03:05:50 -08003708 struct kmem_cache *cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003709 struct array_cache *new[NR_CPUS];
3710};
3711
3712static void do_ccupdate_local(void *info)
3713{
Andrew Mortona737b3e2006-03-22 00:08:11 -08003714 struct ccupdate_struct *new = info;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003715 struct array_cache *old;
3716
3717 check_irq_off();
Pekka Enberg9a2dba42006-02-01 03:05:49 -08003718 old = cpu_cache_get(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003719
Linus Torvalds1da177e2005-04-16 15:20:36 -07003720 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3721 new->new[smp_processor_id()] = old;
3722}
3723
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003724/* Always called with the cache_chain_mutex held */
Andrew Mortona737b3e2006-03-22 00:08:11 -08003725static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3726 int batchcount, int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003727{
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003728 struct ccupdate_struct *new;
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003729 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003730
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003731 new = kzalloc(sizeof(*new), GFP_KERNEL);
3732 if (!new)
3733 return -ENOMEM;
3734
Christoph Lametere498be72005-09-09 13:03:32 -07003735 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003736 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
Andrew Mortona737b3e2006-03-22 00:08:11 -08003737 batchcount);
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003738 if (!new->new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003739 for (i--; i >= 0; i--)
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003740 kfree(new->new[i]);
3741 kfree(new);
Christoph Lametere498be72005-09-09 13:03:32 -07003742 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003743 }
3744 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003745 new->cachep = cachep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003746
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003747 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
Christoph Lametere498be72005-09-09 13:03:32 -07003748
Linus Torvalds1da177e2005-04-16 15:20:36 -07003749 check_irq_on();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003750 cachep->batchcount = batchcount;
3751 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003752 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003753
Christoph Lametere498be72005-09-09 13:03:32 -07003754 for_each_online_cpu(i) {
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003755 struct array_cache *ccold = new->new[i];
Linus Torvalds1da177e2005-04-16 15:20:36 -07003756 if (!ccold)
3757 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003758 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003759 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003760 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003761 kfree(ccold);
3762 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07003763 kfree(new);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003764 return alloc_kmemlist(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003765}
3766
Ravikiran G Thirumalaib5d8ca72006-03-22 00:08:12 -08003767/* Called with cache_chain_mutex held always */
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003768static int enable_cpucache(struct kmem_cache *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003769{
3770 int err;
3771 int limit, shared;
3772
Andrew Mortona737b3e2006-03-22 00:08:11 -08003773 /*
3774 * The head array serves three purposes:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003775 * - create a LIFO ordering, i.e. return objects that are cache-warm
3776 * - reduce the number of spinlock operations.
Andrew Mortona737b3e2006-03-22 00:08:11 -08003777 * - reduce the number of linked list operations on the slab and
Linus Torvalds1da177e2005-04-16 15:20:36 -07003778 * bufctl chains: array operations are cheaper.
3779 * The numbers are guessed, we should auto-tune as described by
3780 * Bonwick.
3781 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003782 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003783 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003784 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003785 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003786 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003787 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003788 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003789 limit = 54;
3790 else
3791 limit = 120;
3792
Andrew Mortona737b3e2006-03-22 00:08:11 -08003793 /*
3794 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds1da177e2005-04-16 15:20:36 -07003795 * allocation behaviour: Most allocs on one cpu, most free operations
3796 * on another cpu. For these cases, an efficient object passing between
3797 * cpus is necessary. This is provided by a shared array. The array
3798 * replaces Bonwick's magazine layer.
3799 * On uniprocessor, it's functionally equivalent (but less efficient)
3800 * to a larger limit. Thus disabled by default.
3801 */
3802 shared = 0;
3803#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003804 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003805 shared = 8;
3806#endif
3807
3808#if DEBUG
Andrew Mortona737b3e2006-03-22 00:08:11 -08003809 /*
3810 * With debugging enabled, large batchcount lead to excessively long
3811 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds1da177e2005-04-16 15:20:36 -07003812 */
3813 if (limit > 32)
3814 limit = 32;
3815#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003816 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003817 if (err)
3818 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003819 cachep->name, -err);
Christoph Lameter2ed3a4e2006-09-25 23:31:38 -07003820 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003821}
3822
Christoph Lameter1b552532006-03-22 00:09:07 -08003823/*
3824 * Drain an array if it contains any elements taking the l3 lock only if
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003825 * necessary. Note that the l3 listlock also protects the array_cache
3826 * if drain_array() is used on the shared array.
Christoph Lameter1b552532006-03-22 00:09:07 -08003827 */
3828void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3829 struct array_cache *ac, int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003830{
3831 int tofree;
3832
Christoph Lameter1b552532006-03-22 00:09:07 -08003833 if (!ac || !ac->avail)
3834 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003835 if (ac->touched && !force) {
3836 ac->touched = 0;
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003837 } else {
Christoph Lameter1b552532006-03-22 00:09:07 -08003838 spin_lock_irq(&l3->list_lock);
Christoph Lameterb18e7e62006-03-22 00:09:07 -08003839 if (ac->avail) {
3840 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3841 if (tofree > ac->avail)
3842 tofree = (ac->avail + 1) / 2;
3843 free_block(cachep, ac->entry, tofree, node);
3844 ac->avail -= tofree;
3845 memmove(ac->entry, &(ac->entry[tofree]),
3846 sizeof(void *) * ac->avail);
3847 }
Christoph Lameter1b552532006-03-22 00:09:07 -08003848 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003849 }
3850}
3851
3852/**
3853 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003854 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003855 *
3856 * Called from workqueue/eventd every few seconds.
3857 * Purpose:
3858 * - clear the per-cpu caches for this CPU.
3859 * - return freeable pages to the main free memory pool.
3860 *
Andrew Mortona737b3e2006-03-22 00:08:11 -08003861 * If we cannot acquire the cache chain mutex then just give up - we'll try
3862 * again on the next iteration.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003863 */
3864static void cache_reap(void *unused)
3865{
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003866 struct kmem_cache *searchp;
Christoph Lametere498be72005-09-09 13:03:32 -07003867 struct kmem_list3 *l3;
Christoph Lameteraab22072006-03-22 00:09:06 -08003868 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003869
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003870 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003871 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003872 schedule_delayed_work(&__get_cpu_var(reap_work),
3873 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003874 return;
3875 }
3876
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07003877 list_for_each_entry(searchp, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003878 check_irq_on();
3879
Christoph Lameter35386e32006-03-22 00:09:05 -08003880 /*
3881 * We only take the l3 lock if absolutely necessary and we
3882 * have established with reasonable certainty that
3883 * we can do some work if the lock was obtained.
3884 */
Christoph Lameteraab22072006-03-22 00:09:06 -08003885 l3 = searchp->nodelists[node];
Christoph Lameter35386e32006-03-22 00:09:05 -08003886
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003887 reap_alien(searchp, l3);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003888
Christoph Lameteraab22072006-03-22 00:09:06 -08003889 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003890
Christoph Lameter35386e32006-03-22 00:09:05 -08003891 /*
3892 * These are racy checks but it does not matter
3893 * if we skip one check or scan twice.
3894 */
Christoph Lametere498be72005-09-09 13:03:32 -07003895 if (time_after(l3->next_reap, jiffies))
Christoph Lameter35386e32006-03-22 00:09:05 -08003896 goto next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003897
Christoph Lametere498be72005-09-09 13:03:32 -07003898 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003899
Christoph Lameteraab22072006-03-22 00:09:06 -08003900 drain_array(searchp, l3, l3->shared, 0, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003901
Christoph Lametered11d9e2006-06-30 01:55:45 -07003902 if (l3->free_touched)
Christoph Lametere498be72005-09-09 13:03:32 -07003903 l3->free_touched = 0;
Christoph Lametered11d9e2006-06-30 01:55:45 -07003904 else {
3905 int freed;
3906
3907 freed = drain_freelist(searchp, l3, (l3->free_limit +
3908 5 * searchp->num - 1) / (5 * searchp->num));
3909 STATS_ADD_REAPED(searchp, freed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003910 }
Christoph Lameter35386e32006-03-22 00:09:05 -08003911next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003912 cond_resched();
3913 }
3914 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003915 mutex_unlock(&cache_chain_mutex);
Christoph Lameter8fce4d82006-03-09 17:33:54 -08003916 next_reap_node();
Christoph Lameter2244b952006-06-30 01:55:33 -07003917 refresh_cpu_vm_stats(smp_processor_id());
Andrew Mortona737b3e2006-03-22 00:08:11 -08003918 /* Set up the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003919 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003920}
3921
3922#ifdef CONFIG_PROC_FS
3923
Pekka Enberg85289f92006-01-08 01:00:36 -08003924static void print_slabinfo_header(struct seq_file *m)
3925{
3926 /*
3927 * Output format version, so at least we can change it
3928 * without _too_ many complaints.
3929 */
3930#if STATS
3931 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3932#else
3933 seq_puts(m, "slabinfo - version: 2.1\n");
3934#endif
3935 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3936 "<objperslab> <pagesperslab>");
3937 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3938 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3939#if STATS
3940 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07003941 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
Pekka Enberg85289f92006-01-08 01:00:36 -08003942 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3943#endif
3944 seq_putc(m, '\n');
3945}
3946
Linus Torvalds1da177e2005-04-16 15:20:36 -07003947static void *s_start(struct seq_file *m, loff_t *pos)
3948{
3949 loff_t n = *pos;
3950 struct list_head *p;
3951
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003952 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08003953 if (!n)
3954 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003955 p = cache_chain.next;
3956 while (n--) {
3957 p = p->next;
3958 if (p == &cache_chain)
3959 return NULL;
3960 }
Pekka Enberg343e0d72006-02-01 03:05:50 -08003961 return list_entry(p, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003962}
3963
3964static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3965{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003966 struct kmem_cache *cachep = p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003967 ++*pos;
Andrew Mortona737b3e2006-03-22 00:08:11 -08003968 return cachep->next.next == &cache_chain ?
3969 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003970}
3971
3972static void s_stop(struct seq_file *m, void *p)
3973{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003974 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003975}
3976
3977static int s_show(struct seq_file *m, void *p)
3978{
Pekka Enberg343e0d72006-02-01 03:05:50 -08003979 struct kmem_cache *cachep = p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003980 struct slab *slabp;
3981 unsigned long active_objs;
3982 unsigned long num_objs;
3983 unsigned long active_slabs = 0;
3984 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003985 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003986 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003987 int node;
3988 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003989
Linus Torvalds1da177e2005-04-16 15:20:36 -07003990 active_objs = 0;
3991 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003992 for_each_online_node(node) {
3993 l3 = cachep->nodelists[node];
3994 if (!l3)
3995 continue;
3996
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08003997 check_irq_on();
3998 spin_lock_irq(&l3->list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07003999
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004000 list_for_each_entry(slabp, &l3->slabs_full, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004001 if (slabp->inuse != cachep->num && !error)
4002 error = "slabs_full accounting error";
4003 active_objs += cachep->num;
4004 active_slabs++;
4005 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004006 list_for_each_entry(slabp, &l3->slabs_partial, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004007 if (slabp->inuse == cachep->num && !error)
4008 error = "slabs_partial inuse accounting error";
4009 if (!slabp->inuse && !error)
4010 error = "slabs_partial/inuse accounting error";
4011 active_objs += slabp->inuse;
4012 active_slabs++;
4013 }
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004014 list_for_each_entry(slabp, &l3->slabs_free, list) {
Christoph Lametere498be72005-09-09 13:03:32 -07004015 if (slabp->inuse && !error)
4016 error = "slabs_free/inuse accounting error";
4017 num_slabs++;
4018 }
4019 free_objects += l3->free_objects;
Ravikiran G Thirumalai4484ebf2006-02-04 23:27:59 -08004020 if (l3->shared)
4021 shared_avail += l3->shared->avail;
Christoph Lametere498be72005-09-09 13:03:32 -07004022
Ravikiran G Thirumalaica3b9b92006-02-04 23:27:58 -08004023 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004024 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004025 num_slabs += active_slabs;
4026 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07004027 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004028 error = "free_objects accounting error";
4029
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004030 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004031 if (error)
4032 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4033
4034 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08004035 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004036 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004037 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004038 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07004039 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004040 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004041#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004042 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004043 unsigned long high = cachep->high_mark;
4044 unsigned long allocs = cachep->num_allocations;
4045 unsigned long grown = cachep->grown;
4046 unsigned long reaped = cachep->reaped;
4047 unsigned long errors = cachep->errors;
4048 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004049 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07004050 unsigned long node_frees = cachep->node_frees;
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004051 unsigned long overflows = cachep->node_overflow;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004052
Christoph Lametere498be72005-09-09 13:03:32 -07004053 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004054 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
Andrew Mortona737b3e2006-03-22 00:08:11 -08004055 reaped, errors, max_freeable, node_allocs,
Ravikiran G Thirumalaifb7faf32006-04-10 22:52:54 -07004056 node_frees, overflows);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004057 }
4058 /* cpu stats */
4059 {
4060 unsigned long allochit = atomic_read(&cachep->allochit);
4061 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4062 unsigned long freehit = atomic_read(&cachep->freehit);
4063 unsigned long freemiss = atomic_read(&cachep->freemiss);
4064
4065 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004066 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004067 }
4068#endif
4069 seq_putc(m, '\n');
Linus Torvalds1da177e2005-04-16 15:20:36 -07004070 return 0;
4071}
4072
4073/*
4074 * slabinfo_op - iterator that generates /proc/slabinfo
4075 *
4076 * Output layout:
4077 * cache-name
4078 * num-active-objs
4079 * total-objs
4080 * object size
4081 * num-active-slabs
4082 * total-slabs
4083 * num-pages-per-slab
4084 * + further values on SMP and with statistics enabled
4085 */
4086
4087struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004088 .start = s_start,
4089 .next = s_next,
4090 .stop = s_stop,
4091 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07004092};
4093
4094#define MAX_SLABINFO_WRITE 128
4095/**
4096 * slabinfo_write - Tuning for the slab allocator
4097 * @file: unused
4098 * @buffer: user buffer
4099 * @count: data length
4100 * @ppos: unused
4101 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004102ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4103 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004104{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004105 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004106 int limit, batchcount, shared, res;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004107 struct kmem_cache *cachep;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004108
Linus Torvalds1da177e2005-04-16 15:20:36 -07004109 if (count > MAX_SLABINFO_WRITE)
4110 return -EINVAL;
4111 if (copy_from_user(&kbuf, buffer, count))
4112 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004113 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07004114
4115 tmp = strchr(kbuf, ' ');
4116 if (!tmp)
4117 return -EINVAL;
4118 *tmp = '\0';
4119 tmp++;
4120 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4121 return -EINVAL;
4122
4123 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004124 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004125 res = -EINVAL;
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004126 list_for_each_entry(cachep, &cache_chain, next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004127 if (!strcmp(cachep->name, kbuf)) {
Andrew Mortona737b3e2006-03-22 00:08:11 -08004128 if (limit < 1 || batchcount < 1 ||
4129 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07004130 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004131 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07004132 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08004133 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004134 }
4135 break;
4136 }
4137 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08004138 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004139 if (res >= 0)
4140 res = count;
4141 return res;
4142}
Al Viro871751e2006-03-25 03:06:39 -08004143
4144#ifdef CONFIG_DEBUG_SLAB_LEAK
4145
4146static void *leaks_start(struct seq_file *m, loff_t *pos)
4147{
4148 loff_t n = *pos;
4149 struct list_head *p;
4150
4151 mutex_lock(&cache_chain_mutex);
4152 p = cache_chain.next;
4153 while (n--) {
4154 p = p->next;
4155 if (p == &cache_chain)
4156 return NULL;
4157 }
4158 return list_entry(p, struct kmem_cache, next);
4159}
4160
4161static inline int add_caller(unsigned long *n, unsigned long v)
4162{
4163 unsigned long *p;
4164 int l;
4165 if (!v)
4166 return 1;
4167 l = n[1];
4168 p = n + 2;
4169 while (l) {
4170 int i = l/2;
4171 unsigned long *q = p + 2 * i;
4172 if (*q == v) {
4173 q[1]++;
4174 return 1;
4175 }
4176 if (*q > v) {
4177 l = i;
4178 } else {
4179 p = q + 2;
4180 l -= i + 1;
4181 }
4182 }
4183 if (++n[1] == n[0])
4184 return 0;
4185 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4186 p[0] = v;
4187 p[1] = 1;
4188 return 1;
4189}
4190
4191static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4192{
4193 void *p;
4194 int i;
4195 if (n[0] == n[1])
4196 return;
4197 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4198 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4199 continue;
4200 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4201 return;
4202 }
4203}
4204
4205static void show_symbol(struct seq_file *m, unsigned long address)
4206{
4207#ifdef CONFIG_KALLSYMS
4208 char *modname;
4209 const char *name;
4210 unsigned long offset, size;
4211 char namebuf[KSYM_NAME_LEN+1];
4212
4213 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4214
4215 if (name) {
4216 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4217 if (modname)
4218 seq_printf(m, " [%s]", modname);
4219 return;
4220 }
4221#endif
4222 seq_printf(m, "%p", (void *)address);
4223}
4224
4225static int leaks_show(struct seq_file *m, void *p)
4226{
4227 struct kmem_cache *cachep = p;
Al Viro871751e2006-03-25 03:06:39 -08004228 struct slab *slabp;
4229 struct kmem_list3 *l3;
4230 const char *name;
4231 unsigned long *n = m->private;
4232 int node;
4233 int i;
4234
4235 if (!(cachep->flags & SLAB_STORE_USER))
4236 return 0;
4237 if (!(cachep->flags & SLAB_RED_ZONE))
4238 return 0;
4239
4240 /* OK, we can do it */
4241
4242 n[1] = 0;
4243
4244 for_each_online_node(node) {
4245 l3 = cachep->nodelists[node];
4246 if (!l3)
4247 continue;
4248
4249 check_irq_on();
4250 spin_lock_irq(&l3->list_lock);
4251
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004252 list_for_each_entry(slabp, &l3->slabs_full, list)
Al Viro871751e2006-03-25 03:06:39 -08004253 handle_slab(n, cachep, slabp);
Christoph Hellwig7a7c3812006-06-23 02:03:17 -07004254 list_for_each_entry(slabp, &l3->slabs_partial, list)
Al Viro871751e2006-03-25 03:06:39 -08004255 handle_slab(n, cachep, slabp);
Al Viro871751e2006-03-25 03:06:39 -08004256 spin_unlock_irq(&l3->list_lock);
4257 }
4258 name = cachep->name;
4259 if (n[0] == n[1]) {
4260 /* Increase the buffer size */
4261 mutex_unlock(&cache_chain_mutex);
4262 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4263 if (!m->private) {
4264 /* Too bad, we are really out */
4265 m->private = n;
4266 mutex_lock(&cache_chain_mutex);
4267 return -ENOMEM;
4268 }
4269 *(unsigned long *)m->private = n[0] * 2;
4270 kfree(n);
4271 mutex_lock(&cache_chain_mutex);
4272 /* Now make sure this entry will be retried */
4273 m->count = m->size;
4274 return 0;
4275 }
4276 for (i = 0; i < n[1]; i++) {
4277 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4278 show_symbol(m, n[2*i+2]);
4279 seq_putc(m, '\n');
4280 }
Siddha, Suresh Bd2e7b7d2006-09-25 23:31:47 -07004281
Al Viro871751e2006-03-25 03:06:39 -08004282 return 0;
4283}
4284
4285struct seq_operations slabstats_op = {
4286 .start = leaks_start,
4287 .next = s_next,
4288 .stop = s_stop,
4289 .show = leaks_show,
4290};
4291#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07004292#endif
4293
Manfred Spraul00e145b2005-09-03 15:55:07 -07004294/**
4295 * ksize - get the actual amount of memory allocated for a given object
4296 * @objp: Pointer to the object
4297 *
4298 * kmalloc may internally round up allocations and return more memory
4299 * than requested. ksize() can be used to determine the actual amount of
4300 * memory allocated. The caller may use this additional memory, even though
4301 * a smaller amount of memory was initially specified with the kmalloc call.
4302 * The caller must guarantee that objp points to a valid object previously
4303 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4304 * must not be freed during the duration of the call.
4305 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004306unsigned int ksize(const void *objp)
4307{
Manfred Spraul00e145b2005-09-03 15:55:07 -07004308 if (unlikely(objp == NULL))
4309 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004310
Pekka Enberg6ed5eb2212006-02-01 03:05:49 -08004311 return obj_size(virt_to_cache(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07004312}