Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 3 | * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
Don Zickus | 9c48f1c | 2011-09-30 15:06:21 -0400 | [diff] [blame] | 4 | * Copyright (C) 2011 Don Zickus Red Hat, Inc. |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 5 | * |
| 6 | * Pentium III FXSR, SSE support |
| 7 | * Gareth Hughes <gareth@valinux.com>, May 2000 |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * Handle hardware traps and faults. |
| 12 | */ |
| 13 | #include <linux/spinlock.h> |
| 14 | #include <linux/kprobes.h> |
| 15 | #include <linux/kdebug.h> |
| 16 | #include <linux/nmi.h> |
Don Zickus | c9126b2 | 2011-09-30 15:06:20 -0400 | [diff] [blame] | 17 | #include <linux/delay.h> |
| 18 | #include <linux/hardirq.h> |
| 19 | #include <linux/slab.h> |
Paul Gortmaker | 69c60c8 | 2011-05-26 12:22:53 -0400 | [diff] [blame] | 20 | #include <linux/export.h> |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 21 | |
Ingo Molnar | d48b0e1 | 2011-10-06 14:20:27 +0200 | [diff] [blame] | 22 | #include <linux/mca.h> |
| 23 | |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 24 | #if defined(CONFIG_EDAC) |
| 25 | #include <linux/edac.h> |
| 26 | #endif |
| 27 | |
| 28 | #include <linux/atomic.h> |
| 29 | #include <asm/traps.h> |
| 30 | #include <asm/mach_traps.h> |
Don Zickus | c9126b2 | 2011-09-30 15:06:20 -0400 | [diff] [blame] | 31 | #include <asm/nmi.h> |
Mathias Nyman | 6fd36ba | 2011-11-10 13:45:24 +0000 | [diff] [blame] | 32 | #include <asm/x86_init.h> |
Don Zickus | c9126b2 | 2011-09-30 15:06:20 -0400 | [diff] [blame] | 33 | |
| 34 | #define NMI_MAX_NAMELEN 16 |
| 35 | struct nmiaction { |
| 36 | struct list_head list; |
| 37 | nmi_handler_t handler; |
| 38 | unsigned int flags; |
| 39 | char *name; |
| 40 | }; |
| 41 | |
| 42 | struct nmi_desc { |
| 43 | spinlock_t lock; |
| 44 | struct list_head head; |
| 45 | }; |
| 46 | |
| 47 | static struct nmi_desc nmi_desc[NMI_MAX] = |
| 48 | { |
| 49 | { |
| 50 | .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), |
| 51 | .head = LIST_HEAD_INIT(nmi_desc[0].head), |
| 52 | }, |
| 53 | { |
| 54 | .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), |
| 55 | .head = LIST_HEAD_INIT(nmi_desc[1].head), |
| 56 | }, |
| 57 | |
| 58 | }; |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 59 | |
Don Zickus | efc3aac | 2011-09-30 15:06:23 -0400 | [diff] [blame] | 60 | struct nmi_stats { |
| 61 | unsigned int normal; |
| 62 | unsigned int unknown; |
| 63 | unsigned int external; |
| 64 | unsigned int swallow; |
| 65 | }; |
| 66 | |
| 67 | static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); |
| 68 | |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 69 | static int ignore_nmis; |
| 70 | |
| 71 | int unknown_nmi_panic; |
| 72 | /* |
| 73 | * Prevent NMI reason port (0x61) being accessed simultaneously, can |
| 74 | * only be used in NMI handler. |
| 75 | */ |
| 76 | static DEFINE_RAW_SPINLOCK(nmi_reason_lock); |
| 77 | |
| 78 | static int __init setup_unknown_nmi_panic(char *str) |
| 79 | { |
| 80 | unknown_nmi_panic = 1; |
| 81 | return 1; |
| 82 | } |
| 83 | __setup("unknown_nmi_panic", setup_unknown_nmi_panic); |
| 84 | |
Don Zickus | c9126b2 | 2011-09-30 15:06:20 -0400 | [diff] [blame] | 85 | #define nmi_to_desc(type) (&nmi_desc[type]) |
| 86 | |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 87 | static int notrace __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b) |
Don Zickus | c9126b2 | 2011-09-30 15:06:20 -0400 | [diff] [blame] | 88 | { |
| 89 | struct nmi_desc *desc = nmi_to_desc(type); |
| 90 | struct nmiaction *a; |
| 91 | int handled=0; |
| 92 | |
| 93 | rcu_read_lock(); |
| 94 | |
| 95 | /* |
| 96 | * NMIs are edge-triggered, which means if you have enough |
| 97 | * of them concurrently, you can lose some because only one |
| 98 | * can be latched at any given time. Walk the whole list |
| 99 | * to handle those situations. |
| 100 | */ |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 101 | list_for_each_entry_rcu(a, &desc->head, list) |
Don Zickus | c9126b2 | 2011-09-30 15:06:20 -0400 | [diff] [blame] | 102 | handled += a->handler(type, regs); |
| 103 | |
Don Zickus | c9126b2 | 2011-09-30 15:06:20 -0400 | [diff] [blame] | 104 | rcu_read_unlock(); |
| 105 | |
| 106 | /* return total number of NMI events handled */ |
| 107 | return handled; |
| 108 | } |
| 109 | |
| 110 | static int __setup_nmi(unsigned int type, struct nmiaction *action) |
| 111 | { |
| 112 | struct nmi_desc *desc = nmi_to_desc(type); |
| 113 | unsigned long flags; |
| 114 | |
| 115 | spin_lock_irqsave(&desc->lock, flags); |
| 116 | |
| 117 | /* |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 118 | * most handlers of type NMI_UNKNOWN never return because |
| 119 | * they just assume the NMI is theirs. Just a sanity check |
| 120 | * to manage expectations |
| 121 | */ |
| 122 | WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head)); |
| 123 | |
| 124 | /* |
Don Zickus | c9126b2 | 2011-09-30 15:06:20 -0400 | [diff] [blame] | 125 | * some handlers need to be executed first otherwise a fake |
| 126 | * event confuses some handlers (kdump uses this flag) |
| 127 | */ |
| 128 | if (action->flags & NMI_FLAG_FIRST) |
| 129 | list_add_rcu(&action->list, &desc->head); |
| 130 | else |
| 131 | list_add_tail_rcu(&action->list, &desc->head); |
| 132 | |
| 133 | spin_unlock_irqrestore(&desc->lock, flags); |
| 134 | return 0; |
| 135 | } |
| 136 | |
| 137 | static struct nmiaction *__free_nmi(unsigned int type, const char *name) |
| 138 | { |
| 139 | struct nmi_desc *desc = nmi_to_desc(type); |
| 140 | struct nmiaction *n; |
| 141 | unsigned long flags; |
| 142 | |
| 143 | spin_lock_irqsave(&desc->lock, flags); |
| 144 | |
| 145 | list_for_each_entry_rcu(n, &desc->head, list) { |
| 146 | /* |
| 147 | * the name passed in to describe the nmi handler |
| 148 | * is used as the lookup key |
| 149 | */ |
| 150 | if (!strcmp(n->name, name)) { |
| 151 | WARN(in_nmi(), |
| 152 | "Trying to free NMI (%s) from NMI context!\n", n->name); |
| 153 | list_del_rcu(&n->list); |
| 154 | break; |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | spin_unlock_irqrestore(&desc->lock, flags); |
| 159 | synchronize_rcu(); |
| 160 | return (n); |
| 161 | } |
| 162 | |
| 163 | int register_nmi_handler(unsigned int type, nmi_handler_t handler, |
| 164 | unsigned long nmiflags, const char *devname) |
| 165 | { |
| 166 | struct nmiaction *action; |
| 167 | int retval = -ENOMEM; |
| 168 | |
| 169 | if (!handler) |
| 170 | return -EINVAL; |
| 171 | |
| 172 | action = kzalloc(sizeof(struct nmiaction), GFP_KERNEL); |
| 173 | if (!action) |
| 174 | goto fail_action; |
| 175 | |
| 176 | action->handler = handler; |
| 177 | action->flags = nmiflags; |
| 178 | action->name = kstrndup(devname, NMI_MAX_NAMELEN, GFP_KERNEL); |
| 179 | if (!action->name) |
| 180 | goto fail_action_name; |
| 181 | |
| 182 | retval = __setup_nmi(type, action); |
| 183 | |
| 184 | if (retval) |
| 185 | goto fail_setup_nmi; |
| 186 | |
| 187 | return retval; |
| 188 | |
| 189 | fail_setup_nmi: |
| 190 | kfree(action->name); |
| 191 | fail_action_name: |
| 192 | kfree(action); |
| 193 | fail_action: |
| 194 | |
| 195 | return retval; |
| 196 | } |
| 197 | EXPORT_SYMBOL_GPL(register_nmi_handler); |
| 198 | |
| 199 | void unregister_nmi_handler(unsigned int type, const char *name) |
| 200 | { |
| 201 | struct nmiaction *a; |
| 202 | |
| 203 | a = __free_nmi(type, name); |
| 204 | if (a) { |
| 205 | kfree(a->name); |
| 206 | kfree(a); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | EXPORT_SYMBOL_GPL(unregister_nmi_handler); |
| 211 | |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 212 | static notrace __kprobes void |
| 213 | pci_serr_error(unsigned char reason, struct pt_regs *regs) |
| 214 | { |
| 215 | pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n", |
| 216 | reason, smp_processor_id()); |
| 217 | |
| 218 | /* |
| 219 | * On some machines, PCI SERR line is used to report memory |
| 220 | * errors. EDAC makes use of it. |
| 221 | */ |
| 222 | #if defined(CONFIG_EDAC) |
| 223 | if (edac_handler_set()) { |
| 224 | edac_atomic_assert_error(); |
| 225 | return; |
| 226 | } |
| 227 | #endif |
| 228 | |
| 229 | if (panic_on_unrecovered_nmi) |
| 230 | panic("NMI: Not continuing"); |
| 231 | |
| 232 | pr_emerg("Dazed and confused, but trying to continue\n"); |
| 233 | |
| 234 | /* Clear and disable the PCI SERR error line. */ |
| 235 | reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; |
| 236 | outb(reason, NMI_REASON_PORT); |
| 237 | } |
| 238 | |
| 239 | static notrace __kprobes void |
| 240 | io_check_error(unsigned char reason, struct pt_regs *regs) |
| 241 | { |
| 242 | unsigned long i; |
| 243 | |
| 244 | pr_emerg( |
| 245 | "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n", |
| 246 | reason, smp_processor_id()); |
| 247 | show_registers(regs); |
| 248 | |
| 249 | if (panic_on_io_nmi) |
| 250 | panic("NMI IOCK error: Not continuing"); |
| 251 | |
| 252 | /* Re-enable the IOCK line, wait for a few seconds */ |
| 253 | reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; |
| 254 | outb(reason, NMI_REASON_PORT); |
| 255 | |
| 256 | i = 20000; |
| 257 | while (--i) { |
| 258 | touch_nmi_watchdog(); |
| 259 | udelay(100); |
| 260 | } |
| 261 | |
| 262 | reason &= ~NMI_REASON_CLEAR_IOCHK; |
| 263 | outb(reason, NMI_REASON_PORT); |
| 264 | } |
| 265 | |
| 266 | static notrace __kprobes void |
| 267 | unknown_nmi_error(unsigned char reason, struct pt_regs *regs) |
| 268 | { |
Don Zickus | 9c48f1c | 2011-09-30 15:06:21 -0400 | [diff] [blame] | 269 | int handled; |
| 270 | |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 271 | /* |
| 272 | * Use 'false' as back-to-back NMIs are dealt with one level up. |
| 273 | * Of course this makes having multiple 'unknown' handlers useless |
| 274 | * as only the first one is ever run (unless it can actually determine |
| 275 | * if it caused the NMI) |
| 276 | */ |
| 277 | handled = nmi_handle(NMI_UNKNOWN, regs, false); |
Don Zickus | efc3aac | 2011-09-30 15:06:23 -0400 | [diff] [blame] | 278 | if (handled) { |
| 279 | __this_cpu_add(nmi_stats.unknown, handled); |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 280 | return; |
Don Zickus | efc3aac | 2011-09-30 15:06:23 -0400 | [diff] [blame] | 281 | } |
| 282 | |
| 283 | __this_cpu_add(nmi_stats.unknown, 1); |
| 284 | |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 285 | #ifdef CONFIG_MCA |
| 286 | /* |
| 287 | * Might actually be able to figure out what the guilty party |
| 288 | * is: |
| 289 | */ |
| 290 | if (MCA_bus) { |
| 291 | mca_handle_nmi(); |
| 292 | return; |
| 293 | } |
| 294 | #endif |
| 295 | pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", |
| 296 | reason, smp_processor_id()); |
| 297 | |
| 298 | pr_emerg("Do you have a strange power saving mode enabled?\n"); |
| 299 | if (unknown_nmi_panic || panic_on_unrecovered_nmi) |
| 300 | panic("NMI: Not continuing"); |
| 301 | |
| 302 | pr_emerg("Dazed and confused, but trying to continue\n"); |
| 303 | } |
| 304 | |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 305 | static DEFINE_PER_CPU(bool, swallow_nmi); |
| 306 | static DEFINE_PER_CPU(unsigned long, last_nmi_rip); |
| 307 | |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 308 | static notrace __kprobes void default_do_nmi(struct pt_regs *regs) |
| 309 | { |
| 310 | unsigned char reason = 0; |
Don Zickus | 9c48f1c | 2011-09-30 15:06:21 -0400 | [diff] [blame] | 311 | int handled; |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 312 | bool b2b = false; |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 313 | |
| 314 | /* |
| 315 | * CPU-specific NMI must be processed before non-CPU-specific |
| 316 | * NMI, otherwise we may lose it, because the CPU-specific |
| 317 | * NMI can not be detected/processed on other CPUs. |
| 318 | */ |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 319 | |
| 320 | /* |
| 321 | * Back-to-back NMIs are interesting because they can either |
| 322 | * be two NMI or more than two NMIs (any thing over two is dropped |
| 323 | * due to NMI being edge-triggered). If this is the second half |
| 324 | * of the back-to-back NMI, assume we dropped things and process |
| 325 | * more handlers. Otherwise reset the 'swallow' NMI behaviour |
| 326 | */ |
| 327 | if (regs->ip == __this_cpu_read(last_nmi_rip)) |
| 328 | b2b = true; |
| 329 | else |
| 330 | __this_cpu_write(swallow_nmi, false); |
| 331 | |
| 332 | __this_cpu_write(last_nmi_rip, regs->ip); |
| 333 | |
| 334 | handled = nmi_handle(NMI_LOCAL, regs, b2b); |
Don Zickus | efc3aac | 2011-09-30 15:06:23 -0400 | [diff] [blame] | 335 | __this_cpu_add(nmi_stats.normal, handled); |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 336 | if (handled) { |
| 337 | /* |
| 338 | * There are cases when a NMI handler handles multiple |
| 339 | * events in the current NMI. One of these events may |
| 340 | * be queued for in the next NMI. Because the event is |
| 341 | * already handled, the next NMI will result in an unknown |
| 342 | * NMI. Instead lets flag this for a potential NMI to |
| 343 | * swallow. |
| 344 | */ |
| 345 | if (handled > 1) |
| 346 | __this_cpu_write(swallow_nmi, true); |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 347 | return; |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 348 | } |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 349 | |
| 350 | /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */ |
| 351 | raw_spin_lock(&nmi_reason_lock); |
Jacob Pan | 064a59b | 2011-11-10 13:43:05 +0000 | [diff] [blame] | 352 | reason = x86_platform.get_nmi_reason(); |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 353 | |
| 354 | if (reason & NMI_REASON_MASK) { |
| 355 | if (reason & NMI_REASON_SERR) |
| 356 | pci_serr_error(reason, regs); |
| 357 | else if (reason & NMI_REASON_IOCHK) |
| 358 | io_check_error(reason, regs); |
| 359 | #ifdef CONFIG_X86_32 |
| 360 | /* |
| 361 | * Reassert NMI in case it became active |
| 362 | * meanwhile as it's edge-triggered: |
| 363 | */ |
| 364 | reassert_nmi(); |
| 365 | #endif |
Don Zickus | efc3aac | 2011-09-30 15:06:23 -0400 | [diff] [blame] | 366 | __this_cpu_add(nmi_stats.external, 1); |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 367 | raw_spin_unlock(&nmi_reason_lock); |
| 368 | return; |
| 369 | } |
| 370 | raw_spin_unlock(&nmi_reason_lock); |
| 371 | |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 372 | /* |
| 373 | * Only one NMI can be latched at a time. To handle |
| 374 | * this we may process multiple nmi handlers at once to |
| 375 | * cover the case where an NMI is dropped. The downside |
| 376 | * to this approach is we may process an NMI prematurely, |
| 377 | * while its real NMI is sitting latched. This will cause |
| 378 | * an unknown NMI on the next run of the NMI processing. |
| 379 | * |
| 380 | * We tried to flag that condition above, by setting the |
| 381 | * swallow_nmi flag when we process more than one event. |
| 382 | * This condition is also only present on the second half |
| 383 | * of a back-to-back NMI, so we flag that condition too. |
| 384 | * |
| 385 | * If both are true, we assume we already processed this |
| 386 | * NMI previously and we swallow it. Otherwise we reset |
| 387 | * the logic. |
| 388 | * |
| 389 | * There are scenarios where we may accidentally swallow |
| 390 | * a 'real' unknown NMI. For example, while processing |
| 391 | * a perf NMI another perf NMI comes in along with a |
| 392 | * 'real' unknown NMI. These two NMIs get combined into |
| 393 | * one (as descibed above). When the next NMI gets |
| 394 | * processed, it will be flagged by perf as handled, but |
| 395 | * noone will know that there was a 'real' unknown NMI sent |
| 396 | * also. As a result it gets swallowed. Or if the first |
| 397 | * perf NMI returns two events handled then the second |
| 398 | * NMI will get eaten by the logic below, again losing a |
| 399 | * 'real' unknown NMI. But this is the best we can do |
| 400 | * for now. |
| 401 | */ |
| 402 | if (b2b && __this_cpu_read(swallow_nmi)) |
Don Zickus | efc3aac | 2011-09-30 15:06:23 -0400 | [diff] [blame] | 403 | __this_cpu_add(nmi_stats.swallow, 1); |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 404 | else |
| 405 | unknown_nmi_error(reason, regs); |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 406 | } |
| 407 | |
Steven Rostedt | ccd49c2 | 2011-12-13 16:44:16 -0500 | [diff] [blame^] | 408 | /* |
| 409 | * NMIs can hit breakpoints which will cause it to lose its |
| 410 | * NMI context with the CPU when the breakpoint does an iret. |
| 411 | */ |
| 412 | #ifdef CONFIG_X86_32 |
| 413 | /* |
| 414 | * For i386, NMIs use the same stack as the kernel, and we can |
| 415 | * add a workaround to the iret problem in C. Simply have 3 states |
| 416 | * the NMI can be in. |
| 417 | * |
| 418 | * 1) not running |
| 419 | * 2) executing |
| 420 | * 3) latched |
| 421 | * |
| 422 | * When no NMI is in progress, it is in the "not running" state. |
| 423 | * When an NMI comes in, it goes into the "executing" state. |
| 424 | * Normally, if another NMI is triggered, it does not interrupt |
| 425 | * the running NMI and the HW will simply latch it so that when |
| 426 | * the first NMI finishes, it will restart the second NMI. |
| 427 | * (Note, the latch is binary, thus multiple NMIs triggering, |
| 428 | * when one is running, are ignored. Only one NMI is restarted.) |
| 429 | * |
| 430 | * If an NMI hits a breakpoint that executes an iret, another |
| 431 | * NMI can preempt it. We do not want to allow this new NMI |
| 432 | * to run, but we want to execute it when the first one finishes. |
| 433 | * We set the state to "latched", and the first NMI will perform |
| 434 | * an cmpxchg on the state, and if it doesn't successfully |
| 435 | * reset the state to "not running" it will restart the next |
| 436 | * NMI. |
| 437 | */ |
| 438 | enum nmi_states { |
| 439 | NMI_NOT_RUNNING, |
| 440 | NMI_EXECUTING, |
| 441 | NMI_LATCHED, |
| 442 | }; |
| 443 | static DEFINE_PER_CPU(enum nmi_states, nmi_state); |
Steven Rostedt | 228bdaa | 2011-12-09 03:02:19 -0500 | [diff] [blame] | 444 | |
Steven Rostedt | ccd49c2 | 2011-12-13 16:44:16 -0500 | [diff] [blame^] | 445 | #define nmi_nesting_preprocess(regs) \ |
| 446 | do { \ |
| 447 | if (__get_cpu_var(nmi_state) != NMI_NOT_RUNNING) { \ |
| 448 | __get_cpu_var(nmi_state) = NMI_LATCHED; \ |
| 449 | return; \ |
| 450 | } \ |
| 451 | nmi_restart: \ |
| 452 | __get_cpu_var(nmi_state) = NMI_EXECUTING; \ |
| 453 | } while (0) |
| 454 | |
| 455 | #define nmi_nesting_postprocess() \ |
| 456 | do { \ |
| 457 | if (cmpxchg(&__get_cpu_var(nmi_state), \ |
| 458 | NMI_EXECUTING, NMI_NOT_RUNNING) != NMI_EXECUTING) \ |
| 459 | goto nmi_restart; \ |
| 460 | } while (0) |
| 461 | #else /* x86_64 */ |
| 462 | /* |
| 463 | * In x86_64 things are a bit more difficult. This has the same problem |
| 464 | * where an NMI hitting a breakpoint that calls iret will remove the |
| 465 | * NMI context, allowing a nested NMI to enter. What makes this more |
| 466 | * difficult is that both NMIs and breakpoints have their own stack. |
| 467 | * When a new NMI or breakpoint is executed, the stack is set to a fixed |
| 468 | * point. If an NMI is nested, it will have its stack set at that same |
| 469 | * fixed address that the first NMI had, and will start corrupting the |
| 470 | * stack. This is handled in entry_64.S, but the same problem exists with |
| 471 | * the breakpoint stack. |
| 472 | * |
| 473 | * If a breakpoint is being processed, and the debug stack is being used, |
| 474 | * if an NMI comes in and also hits a breakpoint, the stack pointer |
| 475 | * will be set to the same fixed address as the breakpoint that was |
| 476 | * interrupted, causing that stack to be corrupted. To handle this case, |
| 477 | * check if the stack that was interrupted is the debug stack, and if |
| 478 | * so, change the IDT so that new breakpoints will use the current stack |
| 479 | * and not switch to the fixed address. On return of the NMI, switch back |
| 480 | * to the original IDT. |
| 481 | */ |
| 482 | static DEFINE_PER_CPU(int, update_debug_stack); |
| 483 | |
| 484 | static inline void nmi_nesting_preprocess(struct pt_regs *regs) |
| 485 | { |
Steven Rostedt | 228bdaa | 2011-12-09 03:02:19 -0500 | [diff] [blame] | 486 | /* |
| 487 | * If we interrupted a breakpoint, it is possible that |
| 488 | * the nmi handler will have breakpoints too. We need to |
| 489 | * change the IDT such that breakpoints that happen here |
| 490 | * continue to use the NMI stack. |
| 491 | */ |
| 492 | if (unlikely(is_debug_stack(regs->sp))) { |
| 493 | debug_stack_set_zero(); |
Steven Rostedt | ccd49c2 | 2011-12-13 16:44:16 -0500 | [diff] [blame^] | 494 | __get_cpu_var(update_debug_stack) = 1; |
Steven Rostedt | 228bdaa | 2011-12-09 03:02:19 -0500 | [diff] [blame] | 495 | } |
Steven Rostedt | ccd49c2 | 2011-12-13 16:44:16 -0500 | [diff] [blame^] | 496 | } |
| 497 | |
| 498 | static inline void nmi_nesting_postprocess(void) |
| 499 | { |
| 500 | if (unlikely(__get_cpu_var(update_debug_stack))) |
| 501 | debug_stack_reset(); |
| 502 | } |
| 503 | #endif |
| 504 | |
| 505 | dotraplinkage notrace __kprobes void |
| 506 | do_nmi(struct pt_regs *regs, long error_code) |
| 507 | { |
| 508 | nmi_nesting_preprocess(regs); |
| 509 | |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 510 | nmi_enter(); |
| 511 | |
| 512 | inc_irq_stat(__nmi_count); |
| 513 | |
| 514 | if (!ignore_nmis) |
| 515 | default_do_nmi(regs); |
| 516 | |
| 517 | nmi_exit(); |
Steven Rostedt | 228bdaa | 2011-12-09 03:02:19 -0500 | [diff] [blame] | 518 | |
Steven Rostedt | ccd49c2 | 2011-12-13 16:44:16 -0500 | [diff] [blame^] | 519 | /* On i386, may loop back to preprocess */ |
| 520 | nmi_nesting_postprocess(); |
Don Zickus | 1d48922 | 2011-09-30 15:06:19 -0400 | [diff] [blame] | 521 | } |
| 522 | |
| 523 | void stop_nmi(void) |
| 524 | { |
| 525 | ignore_nmis++; |
| 526 | } |
| 527 | |
| 528 | void restart_nmi(void) |
| 529 | { |
| 530 | ignore_nmis--; |
| 531 | } |
Don Zickus | b227e23 | 2011-09-30 15:06:22 -0400 | [diff] [blame] | 532 | |
| 533 | /* reset the back-to-back NMI logic */ |
| 534 | void local_touch_nmi(void) |
| 535 | { |
| 536 | __this_cpu_write(last_nmi_rip, 0); |
| 537 | } |