blob: eb3ccffb9b9dcc6ffe3373a8ec1e3d259c809b12 [file] [log] [blame]
Ricardo Neri32542ee2017-10-27 13:25:36 -07001/*
2 * Utility functions for x86 operand and address decoding
3 *
4 * Copyright (C) Intel Corporation 2017
5 */
6#include <linux/kernel.h>
7#include <linux/string.h>
Ricardo Neried594e42017-10-27 13:25:37 -07008#include <linux/ratelimit.h>
Ricardo Neri670f9282017-10-27 13:25:41 -07009#include <linux/mmu_context.h>
10#include <asm/desc_defs.h>
11#include <asm/desc.h>
Ricardo Neri32542ee2017-10-27 13:25:36 -070012#include <asm/inat.h>
13#include <asm/insn.h>
14#include <asm/insn-eval.h>
Ricardo Neri670f9282017-10-27 13:25:41 -070015#include <asm/ldt.h>
Ricardo Neri32d0b952017-10-27 13:25:40 -070016#include <asm/vm86.h>
Ricardo Neri32542ee2017-10-27 13:25:36 -070017
Ricardo Neried594e42017-10-27 13:25:37 -070018#undef pr_fmt
19#define pr_fmt(fmt) "insn: " fmt
20
Ricardo Neri32542ee2017-10-27 13:25:36 -070021enum reg_type {
22 REG_TYPE_RM = 0,
Joerg Roedel7af1bd82020-09-07 15:15:11 +020023 REG_TYPE_REG,
Ricardo Neri32542ee2017-10-27 13:25:36 -070024 REG_TYPE_INDEX,
25 REG_TYPE_BASE,
26};
27
Ricardo Neri536b8152017-10-27 13:25:39 -070028/**
29 * is_string_insn() - Determine if instruction is a string instruction
30 * @insn: Instruction containing the opcode to inspect
31 *
32 * Returns:
33 *
34 * true if the instruction, determined by the opcode, is any of the
35 * string instructions as defined in the Intel Software Development manual.
36 * False otherwise.
37 */
38static bool is_string_insn(struct insn *insn)
39{
40 insn_get_opcode(insn);
41
42 /* All string instructions have a 1-byte opcode. */
43 if (insn->opcode.nbytes != 1)
44 return false;
45
46 switch (insn->opcode.bytes[0]) {
47 case 0x6c ... 0x6f: /* INS, OUTS */
48 case 0xa4 ... 0xa7: /* MOVS, CMPS */
49 case 0xaa ... 0xaf: /* STOS, LODS, SCAS */
50 return true;
51 default:
52 return false;
53 }
54}
55
Ricardo Neri32d0b952017-10-27 13:25:40 -070056/**
Joerg Roedel59017812020-09-07 15:15:12 +020057 * insn_has_rep_prefix() - Determine if instruction has a REP prefix
58 * @insn: Instruction containing the prefix to inspect
59 *
60 * Returns:
61 *
62 * true if the instruction has a REP prefix, false if not.
63 */
64bool insn_has_rep_prefix(struct insn *insn)
65{
Masami Hiramatsu12cb9082020-12-03 13:50:50 +090066 insn_byte_t p;
Joerg Roedel59017812020-09-07 15:15:12 +020067 int i;
68
69 insn_get_prefixes(insn);
70
Masami Hiramatsu12cb9082020-12-03 13:50:50 +090071 for_each_insn_prefix(insn, i, p) {
Joerg Roedel59017812020-09-07 15:15:12 +020072 if (p == 0xf2 || p == 0xf3)
73 return true;
74 }
75
76 return false;
77}
78
79/**
Ricardo Neri32d0b952017-10-27 13:25:40 -070080 * get_seg_reg_override_idx() - obtain segment register override index
81 * @insn: Valid instruction with segment override prefixes
82 *
83 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
84 *
85 * Returns:
86 *
87 * A constant identifying the segment register to use, among CS, SS, DS,
88 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
89 * prefixes were found.
90 *
91 * -EINVAL in case of error.
92 */
93static int get_seg_reg_override_idx(struct insn *insn)
94{
95 int idx = INAT_SEG_REG_DEFAULT;
96 int num_overrides = 0, i;
Masami Hiramatsu12cb9082020-12-03 13:50:50 +090097 insn_byte_t p;
Ricardo Neri32d0b952017-10-27 13:25:40 -070098
99 insn_get_prefixes(insn);
100
101 /* Look for any segment override prefixes. */
Masami Hiramatsu12cb9082020-12-03 13:50:50 +0900102 for_each_insn_prefix(insn, i, p) {
Ricardo Neri32d0b952017-10-27 13:25:40 -0700103 insn_attr_t attr;
104
Masami Hiramatsu12cb9082020-12-03 13:50:50 +0900105 attr = inat_get_opcode_attribute(p);
Ricardo Neri32d0b952017-10-27 13:25:40 -0700106 switch (attr) {
107 case INAT_MAKE_PREFIX(INAT_PFX_CS):
108 idx = INAT_SEG_REG_CS;
109 num_overrides++;
110 break;
111 case INAT_MAKE_PREFIX(INAT_PFX_SS):
112 idx = INAT_SEG_REG_SS;
113 num_overrides++;
114 break;
115 case INAT_MAKE_PREFIX(INAT_PFX_DS):
116 idx = INAT_SEG_REG_DS;
117 num_overrides++;
118 break;
119 case INAT_MAKE_PREFIX(INAT_PFX_ES):
120 idx = INAT_SEG_REG_ES;
121 num_overrides++;
122 break;
123 case INAT_MAKE_PREFIX(INAT_PFX_FS):
124 idx = INAT_SEG_REG_FS;
125 num_overrides++;
126 break;
127 case INAT_MAKE_PREFIX(INAT_PFX_GS):
128 idx = INAT_SEG_REG_GS;
129 num_overrides++;
130 break;
131 /* No default action needed. */
132 }
133 }
134
135 /* More than one segment override prefix leads to undefined behavior. */
136 if (num_overrides > 1)
137 return -EINVAL;
138
139 return idx;
140}
141
142/**
143 * check_seg_overrides() - check if segment override prefixes are allowed
144 * @insn: Valid instruction with segment override prefixes
145 * @regoff: Operand offset, in pt_regs, for which the check is performed
146 *
147 * For a particular register used in register-indirect addressing, determine if
148 * segment override prefixes can be used. Specifically, no overrides are allowed
149 * for rDI if used with a string instruction.
150 *
151 * Returns:
152 *
153 * True if segment override prefixes can be used with the register indicated
154 * in @regoff. False if otherwise.
155 */
156static bool check_seg_overrides(struct insn *insn, int regoff)
157{
158 if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
159 return false;
160
161 return true;
162}
163
164/**
165 * resolve_default_seg() - resolve default segment register index for an operand
166 * @insn: Instruction with opcode and address size. Must be valid.
167 * @regs: Register values as seen when entering kernel mode
168 * @off: Operand offset, in pt_regs, for which resolution is needed
169 *
170 * Resolve the default segment register index associated with the instruction
171 * operand register indicated by @off. Such index is resolved based on defaults
172 * described in the Intel Software Development Manual.
173 *
174 * Returns:
175 *
176 * If in protected mode, a constant identifying the segment register to use,
177 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
178 *
179 * -EINVAL in case of error.
180 */
181static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
182{
Jann Horn7be44122019-12-19 00:11:47 +0100183 if (any_64bit_mode(regs))
Ricardo Neri32d0b952017-10-27 13:25:40 -0700184 return INAT_SEG_REG_IGNORE;
185 /*
186 * Resolve the default segment register as described in Section 3.7.4
187 * of the Intel Software Development Manual Vol. 1:
188 *
189 * + DS for all references involving r[ABCD]X, and rSI.
190 * + If used in a string instruction, ES for rDI. Otherwise, DS.
191 * + AX, CX and DX are not valid register operands in 16-bit address
192 * encodings but are valid for 32-bit and 64-bit encodings.
193 * + -EDOM is reserved to identify for cases in which no register
194 * is used (i.e., displacement-only addressing). Use DS.
195 * + SS for rSP or rBP.
196 * + CS for rIP.
197 */
198
199 switch (off) {
200 case offsetof(struct pt_regs, ax):
201 case offsetof(struct pt_regs, cx):
202 case offsetof(struct pt_regs, dx):
203 /* Need insn to verify address size. */
204 if (insn->addr_bytes == 2)
205 return -EINVAL;
206
Gustavo A. R. Silvadf561f662020-08-23 17:36:59 -0500207 fallthrough;
Gustavo A. R. Silva89da3442019-01-25 14:55:20 -0600208
Ricardo Neri32d0b952017-10-27 13:25:40 -0700209 case -EDOM:
210 case offsetof(struct pt_regs, bx):
211 case offsetof(struct pt_regs, si):
212 return INAT_SEG_REG_DS;
213
214 case offsetof(struct pt_regs, di):
215 if (is_string_insn(insn))
216 return INAT_SEG_REG_ES;
217 return INAT_SEG_REG_DS;
218
219 case offsetof(struct pt_regs, bp):
220 case offsetof(struct pt_regs, sp):
221 return INAT_SEG_REG_SS;
222
223 case offsetof(struct pt_regs, ip):
224 return INAT_SEG_REG_CS;
225
226 default:
227 return -EINVAL;
228 }
229}
230
231/**
232 * resolve_seg_reg() - obtain segment register index
233 * @insn: Instruction with operands
234 * @regs: Register values as seen when entering kernel mode
Ingo Molnard9f6e122021-03-18 15:28:01 +0100235 * @regoff: Operand offset, in pt_regs, used to determine segment register
Ricardo Neri32d0b952017-10-27 13:25:40 -0700236 *
237 * Determine the segment register associated with the operands and, if
238 * applicable, prefixes and the instruction pointed by @insn.
239 *
240 * The segment register associated to an operand used in register-indirect
241 * addressing depends on:
242 *
243 * a) Whether running in long mode (in such a case segments are ignored, except
244 * if FS or GS are used).
245 *
246 * b) Whether segment override prefixes can be used. Certain instructions and
247 * registers do not allow override prefixes.
248 *
249 * c) Whether segment overrides prefixes are found in the instruction prefixes.
250 *
251 * d) If there are not segment override prefixes or they cannot be used, the
252 * default segment register associated with the operand register is used.
253 *
254 * The function checks first if segment override prefixes can be used with the
255 * operand indicated by @regoff. If allowed, obtain such overridden segment
256 * register index. Lastly, if not prefixes were found or cannot be used, resolve
257 * the segment register index to use based on the defaults described in the
258 * Intel documentation. In long mode, all segment register indexes will be
259 * ignored, except if overrides were found for FS or GS. All these operations
260 * are done using helper functions.
261 *
262 * The operand register, @regoff, is represented as the offset from the base of
263 * pt_regs.
264 *
265 * As stated, the main use of this function is to determine the segment register
266 * index based on the instruction, its operands and prefixes. Hence, @insn
267 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
268 * @insn at all as in this case CS is used in all cases. This case is checked
269 * before proceeding further.
270 *
271 * Please note that this function does not return the value in the segment
272 * register (i.e., the segment selector) but our defined index. The segment
273 * selector needs to be obtained using get_segment_selector() and passing the
274 * segment register index resolved by this function.
275 *
276 * Returns:
277 *
278 * An index identifying the segment register to use, among CS, SS, DS,
279 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
280 *
281 * -EINVAL in case of error.
282 */
283static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
284{
285 int idx;
286
287 /*
288 * In the unlikely event of having to resolve the segment register
289 * index for rIP, do it first. Segment override prefixes should not
290 * be used. Hence, it is not necessary to inspect the instruction,
291 * which may be invalid at this point.
292 */
293 if (regoff == offsetof(struct pt_regs, ip)) {
Jann Horn7be44122019-12-19 00:11:47 +0100294 if (any_64bit_mode(regs))
Ricardo Neri32d0b952017-10-27 13:25:40 -0700295 return INAT_SEG_REG_IGNORE;
296 else
297 return INAT_SEG_REG_CS;
298 }
299
300 if (!insn)
301 return -EINVAL;
302
303 if (!check_seg_overrides(insn, regoff))
304 return resolve_default_seg(insn, regs, regoff);
305
306 idx = get_seg_reg_override_idx(insn);
307 if (idx < 0)
308 return idx;
309
310 if (idx == INAT_SEG_REG_DEFAULT)
311 return resolve_default_seg(insn, regs, regoff);
312
313 /*
314 * In long mode, segment override prefixes are ignored, except for
315 * overrides for FS and GS.
316 */
Jann Horn7be44122019-12-19 00:11:47 +0100317 if (any_64bit_mode(regs)) {
Ricardo Neri32d0b952017-10-27 13:25:40 -0700318 if (idx != INAT_SEG_REG_FS &&
319 idx != INAT_SEG_REG_GS)
320 idx = INAT_SEG_REG_IGNORE;
321 }
322
323 return idx;
324}
325
326/**
327 * get_segment_selector() - obtain segment selector
328 * @regs: Register values as seen when entering kernel mode
329 * @seg_reg_idx: Segment register index to use
330 *
331 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
332 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
333 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
334 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
335 * registers. This done for only for completeness as in CONFIG_X86_64 segment
336 * registers are ignored.
337 *
338 * Returns:
339 *
340 * Value of the segment selector, including null when running in
341 * long mode.
342 *
343 * -EINVAL on error.
344 */
345static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
346{
347#ifdef CONFIG_X86_64
348 unsigned short sel;
349
350 switch (seg_reg_idx) {
351 case INAT_SEG_REG_IGNORE:
352 return 0;
353 case INAT_SEG_REG_CS:
354 return (unsigned short)(regs->cs & 0xffff);
355 case INAT_SEG_REG_SS:
356 return (unsigned short)(regs->ss & 0xffff);
357 case INAT_SEG_REG_DS:
358 savesegment(ds, sel);
359 return sel;
360 case INAT_SEG_REG_ES:
361 savesegment(es, sel);
362 return sel;
363 case INAT_SEG_REG_FS:
364 savesegment(fs, sel);
365 return sel;
366 case INAT_SEG_REG_GS:
367 savesegment(gs, sel);
368 return sel;
369 default:
370 return -EINVAL;
371 }
372#else /* CONFIG_X86_32 */
373 struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
374
375 if (v8086_mode(regs)) {
376 switch (seg_reg_idx) {
377 case INAT_SEG_REG_CS:
378 return (unsigned short)(regs->cs & 0xffff);
379 case INAT_SEG_REG_SS:
380 return (unsigned short)(regs->ss & 0xffff);
381 case INAT_SEG_REG_DS:
382 return vm86regs->ds;
383 case INAT_SEG_REG_ES:
384 return vm86regs->es;
385 case INAT_SEG_REG_FS:
386 return vm86regs->fs;
387 case INAT_SEG_REG_GS:
388 return vm86regs->gs;
389 case INAT_SEG_REG_IGNORE:
Ricardo Neri32d0b952017-10-27 13:25:40 -0700390 default:
391 return -EINVAL;
392 }
393 }
394
395 switch (seg_reg_idx) {
396 case INAT_SEG_REG_CS:
397 return (unsigned short)(regs->cs & 0xffff);
398 case INAT_SEG_REG_SS:
399 return (unsigned short)(regs->ss & 0xffff);
400 case INAT_SEG_REG_DS:
401 return (unsigned short)(regs->ds & 0xffff);
402 case INAT_SEG_REG_ES:
403 return (unsigned short)(regs->es & 0xffff);
404 case INAT_SEG_REG_FS:
405 return (unsigned short)(regs->fs & 0xffff);
406 case INAT_SEG_REG_GS:
Ricardo Neri32d0b952017-10-27 13:25:40 -0700407 return get_user_gs(regs);
408 case INAT_SEG_REG_IGNORE:
Ricardo Neri32d0b952017-10-27 13:25:40 -0700409 default:
410 return -EINVAL;
411 }
412#endif /* CONFIG_X86_64 */
413}
414
Ricardo Neri32542ee2017-10-27 13:25:36 -0700415static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
416 enum reg_type type)
417{
418 int regno = 0;
419
420 static const int regoff[] = {
421 offsetof(struct pt_regs, ax),
422 offsetof(struct pt_regs, cx),
423 offsetof(struct pt_regs, dx),
424 offsetof(struct pt_regs, bx),
425 offsetof(struct pt_regs, sp),
426 offsetof(struct pt_regs, bp),
427 offsetof(struct pt_regs, si),
428 offsetof(struct pt_regs, di),
429#ifdef CONFIG_X86_64
430 offsetof(struct pt_regs, r8),
431 offsetof(struct pt_regs, r9),
432 offsetof(struct pt_regs, r10),
433 offsetof(struct pt_regs, r11),
434 offsetof(struct pt_regs, r12),
435 offsetof(struct pt_regs, r13),
436 offsetof(struct pt_regs, r14),
437 offsetof(struct pt_regs, r15),
438#endif
439 };
440 int nr_registers = ARRAY_SIZE(regoff);
441 /*
442 * Don't possibly decode a 32-bit instructions as
443 * reading a 64-bit-only register.
444 */
445 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
446 nr_registers -= 8;
447
448 switch (type) {
449 case REG_TYPE_RM:
450 regno = X86_MODRM_RM(insn->modrm.value);
Ricardo Nerie526a302017-10-27 13:25:44 -0700451
452 /*
453 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
454 * follows the ModRM byte.
455 */
456 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
457 return -EDOM;
458
Ricardo Neri32542ee2017-10-27 13:25:36 -0700459 if (X86_REX_B(insn->rex_prefix.value))
460 regno += 8;
461 break;
462
Joerg Roedel7af1bd82020-09-07 15:15:11 +0200463 case REG_TYPE_REG:
464 regno = X86_MODRM_REG(insn->modrm.value);
465
466 if (X86_REX_R(insn->rex_prefix.value))
467 regno += 8;
468 break;
469
Ricardo Neri32542ee2017-10-27 13:25:36 -0700470 case REG_TYPE_INDEX:
471 regno = X86_SIB_INDEX(insn->sib.value);
472 if (X86_REX_X(insn->rex_prefix.value))
473 regno += 8;
474
475 /*
476 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
477 * portion of the address computation is null. This is
478 * true only if REX.X is 0. In such a case, the SIB index
479 * is used in the address computation.
480 */
481 if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
482 return -EDOM;
483 break;
484
485 case REG_TYPE_BASE:
486 regno = X86_SIB_BASE(insn->sib.value);
487 /*
488 * If ModRM.mod is 0 and SIB.base == 5, the base of the
489 * register-indirect addressing is 0. In this case, a
490 * 32-bit displacement follows the SIB byte.
491 */
492 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
493 return -EDOM;
494
495 if (X86_REX_B(insn->rex_prefix.value))
496 regno += 8;
497 break;
498
499 default:
Ricardo Neried594e42017-10-27 13:25:37 -0700500 pr_err_ratelimited("invalid register type: %d\n", type);
501 return -EINVAL;
Ricardo Neri32542ee2017-10-27 13:25:36 -0700502 }
503
504 if (regno >= nr_registers) {
505 WARN_ONCE(1, "decoded an instruction with an invalid register");
506 return -EINVAL;
507 }
508 return regoff[regno];
509}
510
Ricardo Nerie5e45f12017-10-27 13:25:38 -0700511/**
Ricardo Neri9c6c7992017-11-05 18:27:50 -0800512 * get_reg_offset_16() - Obtain offset of register indicated by instruction
513 * @insn: Instruction containing ModRM byte
514 * @regs: Register values as seen when entering kernel mode
515 * @offs1: Offset of the first operand register
Ingo Molnard9f6e122021-03-18 15:28:01 +0100516 * @offs2: Offset of the second operand register, if applicable
Ricardo Neri9c6c7992017-11-05 18:27:50 -0800517 *
518 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
519 * in @insn. This function is to be used with 16-bit address encodings. The
520 * @offs1 and @offs2 will be written with the offset of the two registers
521 * indicated by the instruction. In cases where any of the registers is not
522 * referenced by the instruction, the value will be set to -EDOM.
523 *
524 * Returns:
525 *
526 * 0 on success, -EINVAL on error.
527 */
528static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
529 int *offs1, int *offs2)
530{
531 /*
532 * 16-bit addressing can use one or two registers. Specifics of
533 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
534 * ModR/M Byte" of the Intel Software Development Manual.
535 */
536 static const int regoff1[] = {
537 offsetof(struct pt_regs, bx),
538 offsetof(struct pt_regs, bx),
539 offsetof(struct pt_regs, bp),
540 offsetof(struct pt_regs, bp),
541 offsetof(struct pt_regs, si),
542 offsetof(struct pt_regs, di),
543 offsetof(struct pt_regs, bp),
544 offsetof(struct pt_regs, bx),
545 };
546
547 static const int regoff2[] = {
548 offsetof(struct pt_regs, si),
549 offsetof(struct pt_regs, di),
550 offsetof(struct pt_regs, si),
551 offsetof(struct pt_regs, di),
552 -EDOM,
553 -EDOM,
554 -EDOM,
555 -EDOM,
556 };
557
558 if (!offs1 || !offs2)
559 return -EINVAL;
560
561 /* Operand is a register, use the generic function. */
562 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
563 *offs1 = insn_get_modrm_rm_off(insn, regs);
564 *offs2 = -EDOM;
565 return 0;
566 }
567
568 *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
569 *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
570
571 /*
572 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
573 * only addressing. This means that no registers are involved in
574 * computing the effective address. Thus, ensure that the first
Ingo Molnard9f6e122021-03-18 15:28:01 +0100575 * register offset is invalid. The second register offset is already
Ricardo Neri9c6c7992017-11-05 18:27:50 -0800576 * invalid under the aforementioned conditions.
577 */
578 if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
579 (X86_MODRM_RM(insn->modrm.value) == 6))
580 *offs1 = -EDOM;
581
582 return 0;
583}
584
585/**
Jann Hornde9f8692019-06-02 03:15:58 +0200586 * get_desc() - Obtain contents of a segment descriptor
587 * @out: Segment descriptor contents on success
Ricardo Neri670f9282017-10-27 13:25:41 -0700588 * @sel: Segment selector
589 *
590 * Given a segment selector, obtain a pointer to the segment descriptor.
591 * Both global and local descriptor tables are supported.
592 *
593 * Returns:
594 *
Jann Hornde9f8692019-06-02 03:15:58 +0200595 * True on success, false on failure.
Ricardo Neri670f9282017-10-27 13:25:41 -0700596 *
597 * NULL on error.
598 */
Jann Hornde9f8692019-06-02 03:15:58 +0200599static bool get_desc(struct desc_struct *out, unsigned short sel)
Ricardo Neri670f9282017-10-27 13:25:41 -0700600{
601 struct desc_ptr gdt_desc = {0, 0};
602 unsigned long desc_base;
603
604#ifdef CONFIG_MODIFY_LDT_SYSCALL
605 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
Jann Hornde9f8692019-06-02 03:15:58 +0200606 bool success = false;
Ricardo Neri670f9282017-10-27 13:25:41 -0700607 struct ldt_struct *ldt;
608
609 /* Bits [15:3] contain the index of the desired entry. */
610 sel >>= 3;
611
612 mutex_lock(&current->active_mm->context.lock);
613 ldt = current->active_mm->context.ldt;
Jann Hornde9f8692019-06-02 03:15:58 +0200614 if (ldt && sel < ldt->nr_entries) {
615 *out = ldt->entries[sel];
616 success = true;
617 }
Ricardo Neri670f9282017-10-27 13:25:41 -0700618
619 mutex_unlock(&current->active_mm->context.lock);
620
Jann Hornde9f8692019-06-02 03:15:58 +0200621 return success;
Ricardo Neri670f9282017-10-27 13:25:41 -0700622 }
623#endif
624 native_store_gdt(&gdt_desc);
625
626 /*
627 * Segment descriptors have a size of 8 bytes. Thus, the index is
628 * multiplied by 8 to obtain the memory offset of the desired descriptor
629 * from the base of the GDT. As bits [15:3] of the segment selector
630 * contain the index, it can be regarded as multiplied by 8 already.
631 * All that remains is to clear bits [2:0].
632 */
633 desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
634
635 if (desc_base > gdt_desc.size)
Jann Hornde9f8692019-06-02 03:15:58 +0200636 return false;
Ricardo Neri670f9282017-10-27 13:25:41 -0700637
Jann Hornde9f8692019-06-02 03:15:58 +0200638 *out = *(struct desc_struct *)(gdt_desc.address + desc_base);
639 return true;
Ricardo Neri670f9282017-10-27 13:25:41 -0700640}
641
642/**
Ricardo Neribd5a4102017-10-27 13:25:42 -0700643 * insn_get_seg_base() - Obtain base address of segment descriptor.
644 * @regs: Register values as seen when entering kernel mode
645 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
646 *
647 * Obtain the base address of the segment as indicated by the segment descriptor
648 * pointed by the segment selector. The segment selector is obtained from the
649 * input segment register index @seg_reg_idx.
650 *
651 * Returns:
652 *
653 * In protected mode, base address of the segment. Zero in long mode,
654 * except when FS or GS are used. In virtual-8086 mode, the segment
655 * selector shifted 4 bits to the right.
656 *
657 * -1L in case of error.
658 */
659unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
660{
Jann Hornde9f8692019-06-02 03:15:58 +0200661 struct desc_struct desc;
Ricardo Neribd5a4102017-10-27 13:25:42 -0700662 short sel;
663
664 sel = get_segment_selector(regs, seg_reg_idx);
665 if (sel < 0)
666 return -1L;
667
668 if (v8086_mode(regs))
669 /*
670 * Base is simply the segment selector shifted 4
671 * bits to the right.
672 */
673 return (unsigned long)(sel << 4);
674
Jann Horn7be44122019-12-19 00:11:47 +0100675 if (any_64bit_mode(regs)) {
Ricardo Neribd5a4102017-10-27 13:25:42 -0700676 /*
677 * Only FS or GS will have a base address, the rest of
678 * the segments' bases are forced to 0.
679 */
680 unsigned long base;
681
Jann Horn7be44122019-12-19 00:11:47 +0100682 if (seg_reg_idx == INAT_SEG_REG_FS) {
Ricardo Neribd5a4102017-10-27 13:25:42 -0700683 rdmsrl(MSR_FS_BASE, base);
Jann Horn7be44122019-12-19 00:11:47 +0100684 } else if (seg_reg_idx == INAT_SEG_REG_GS) {
Ricardo Neribd5a4102017-10-27 13:25:42 -0700685 /*
686 * swapgs was called at the kernel entry point. Thus,
687 * MSR_KERNEL_GS_BASE will have the user-space GS base.
688 */
Jann Horn7be44122019-12-19 00:11:47 +0100689 if (user_mode(regs))
690 rdmsrl(MSR_KERNEL_GS_BASE, base);
691 else
692 rdmsrl(MSR_GS_BASE, base);
693 } else {
Ricardo Neribd5a4102017-10-27 13:25:42 -0700694 base = 0;
Jann Horn7be44122019-12-19 00:11:47 +0100695 }
Ricardo Neribd5a4102017-10-27 13:25:42 -0700696 return base;
697 }
698
699 /* In protected mode the segment selector cannot be null. */
700 if (!sel)
701 return -1L;
702
Jann Hornde9f8692019-06-02 03:15:58 +0200703 if (!get_desc(&desc, sel))
Ricardo Neribd5a4102017-10-27 13:25:42 -0700704 return -1L;
705
Jann Hornde9f8692019-06-02 03:15:58 +0200706 return get_desc_base(&desc);
Ricardo Neribd5a4102017-10-27 13:25:42 -0700707}
708
709/**
710 * get_seg_limit() - Obtain the limit of a segment descriptor
711 * @regs: Register values as seen when entering kernel mode
712 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
713 *
714 * Obtain the limit of the segment as indicated by the segment descriptor
715 * pointed by the segment selector. The segment selector is obtained from the
716 * input segment register index @seg_reg_idx.
717 *
718 * Returns:
719 *
720 * In protected mode, the limit of the segment descriptor in bytes.
721 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
722 * limit is returned as -1L to imply a limit-less segment.
723 *
724 * Zero is returned on error.
725 */
726static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
727{
Jann Hornde9f8692019-06-02 03:15:58 +0200728 struct desc_struct desc;
Ricardo Neribd5a4102017-10-27 13:25:42 -0700729 unsigned long limit;
730 short sel;
731
732 sel = get_segment_selector(regs, seg_reg_idx);
733 if (sel < 0)
734 return 0;
735
Jann Horn7be44122019-12-19 00:11:47 +0100736 if (any_64bit_mode(regs) || v8086_mode(regs))
Ricardo Neribd5a4102017-10-27 13:25:42 -0700737 return -1L;
738
739 if (!sel)
740 return 0;
741
Jann Hornde9f8692019-06-02 03:15:58 +0200742 if (!get_desc(&desc, sel))
Ricardo Neribd5a4102017-10-27 13:25:42 -0700743 return 0;
744
745 /*
746 * If the granularity bit is set, the limit is given in multiples
747 * of 4096. This also means that the 12 least significant bits are
748 * not tested when checking the segment limits. In practice,
749 * this means that the segment ends in (limit << 12) + 0xfff.
750 */
Jann Hornde9f8692019-06-02 03:15:58 +0200751 limit = get_desc_limit(&desc);
752 if (desc.g)
Ricardo Neribd5a4102017-10-27 13:25:42 -0700753 limit = (limit << 12) + 0xfff;
754
755 return limit;
756}
757
758/**
Ricardo Neri4efea852017-10-27 13:25:43 -0700759 * insn_get_code_seg_params() - Obtain code segment parameters
760 * @regs: Structure with register values as seen when entering kernel mode
761 *
762 * Obtain address and operand sizes of the code segment. It is obtained from the
763 * selector contained in the CS register in regs. In protected mode, the default
764 * address is determined by inspecting the L and D bits of the segment
765 * descriptor. In virtual-8086 mode, the default is always two bytes for both
766 * address and operand sizes.
767 *
768 * Returns:
769 *
Borislav Petkove2a5dca2017-11-23 10:19:51 +0100770 * An int containing ORed-in default parameters on success.
Ricardo Neri4efea852017-10-27 13:25:43 -0700771 *
772 * -EINVAL on error.
773 */
Borislav Petkove2a5dca2017-11-23 10:19:51 +0100774int insn_get_code_seg_params(struct pt_regs *regs)
Ricardo Neri4efea852017-10-27 13:25:43 -0700775{
Jann Hornde9f8692019-06-02 03:15:58 +0200776 struct desc_struct desc;
Ricardo Neri4efea852017-10-27 13:25:43 -0700777 short sel;
778
779 if (v8086_mode(regs))
780 /* Address and operand size are both 16-bit. */
781 return INSN_CODE_SEG_PARAMS(2, 2);
782
783 sel = get_segment_selector(regs, INAT_SEG_REG_CS);
784 if (sel < 0)
785 return sel;
786
Jann Hornde9f8692019-06-02 03:15:58 +0200787 if (!get_desc(&desc, sel))
Ricardo Neri4efea852017-10-27 13:25:43 -0700788 return -EINVAL;
789
790 /*
791 * The most significant byte of the Type field of the segment descriptor
792 * determines whether a segment contains data or code. If this is a data
793 * segment, return error.
794 */
Jann Hornde9f8692019-06-02 03:15:58 +0200795 if (!(desc.type & BIT(3)))
Ricardo Neri4efea852017-10-27 13:25:43 -0700796 return -EINVAL;
797
Jann Hornde9f8692019-06-02 03:15:58 +0200798 switch ((desc.l << 1) | desc.d) {
Ricardo Neri4efea852017-10-27 13:25:43 -0700799 case 0: /*
800 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
801 * both 16-bit.
802 */
803 return INSN_CODE_SEG_PARAMS(2, 2);
804 case 1: /*
805 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
806 * both 32-bit.
807 */
808 return INSN_CODE_SEG_PARAMS(4, 4);
809 case 2: /*
810 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
811 * operand size is 32-bit.
812 */
813 return INSN_CODE_SEG_PARAMS(4, 8);
814 case 3: /* Invalid setting. CS.L=1, CS.D=1 */
Gustavo A. R. Silvadf561f662020-08-23 17:36:59 -0500815 fallthrough;
Ricardo Neri4efea852017-10-27 13:25:43 -0700816 default:
817 return -EINVAL;
818 }
819}
820
821/**
Ricardo Nerie5e45f12017-10-27 13:25:38 -0700822 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
823 * @insn: Instruction containing the ModRM byte
824 * @regs: Register values as seen when entering kernel mode
825 *
826 * Returns:
827 *
828 * The register indicated by the r/m part of the ModRM byte. The
829 * register is obtained as an offset from the base of pt_regs. In specific
830 * cases, the returned value can be -EDOM to indicate that the particular value
831 * of ModRM does not refer to a register and shall be ignored.
832 */
833int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
834{
835 return get_reg_offset(insn, regs, REG_TYPE_RM);
836}
837
Ricardo Neri10890442017-10-27 13:25:45 -0700838/**
Joerg Roedel7af1bd82020-09-07 15:15:11 +0200839 * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte
840 * @insn: Instruction containing the ModRM byte
841 * @regs: Register values as seen when entering kernel mode
842 *
843 * Returns:
844 *
845 * The register indicated by the reg part of the ModRM byte. The
846 * register is obtained as an offset from the base of pt_regs.
847 */
848int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs)
849{
850 return get_reg_offset(insn, regs, REG_TYPE_REG);
851}
852
853/**
Ricardo Neri71271262017-10-27 16:51:38 -0700854 * get_seg_base_limit() - obtain base address and limit of a segment
Ricardo Neri10890442017-10-27 13:25:45 -0700855 * @insn: Instruction. Must be valid.
856 * @regs: Register values as seen when entering kernel mode
857 * @regoff: Operand offset, in pt_regs, used to resolve segment descriptor
858 * @base: Obtained segment base
Ricardo Neri71271262017-10-27 16:51:38 -0700859 * @limit: Obtained segment limit
Ricardo Neri10890442017-10-27 13:25:45 -0700860 *
Ricardo Neri71271262017-10-27 16:51:38 -0700861 * Obtain the base address and limit of the segment associated with the operand
862 * @regoff and, if any or allowed, override prefixes in @insn. This function is
Ricardo Neri10890442017-10-27 13:25:45 -0700863 * different from insn_get_seg_base() as the latter does not resolve the segment
Ricardo Neri71271262017-10-27 16:51:38 -0700864 * associated with the instruction operand. If a limit is not needed (e.g.,
865 * when running in long mode), @limit can be NULL.
Ricardo Neri10890442017-10-27 13:25:45 -0700866 *
867 * Returns:
868 *
Ricardo Neri71271262017-10-27 16:51:38 -0700869 * 0 on success. @base and @limit will contain the base address and of the
870 * resolved segment, respectively.
Ricardo Neri10890442017-10-27 13:25:45 -0700871 *
872 * -EINVAL on error.
873 */
Ricardo Neri71271262017-10-27 16:51:38 -0700874static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
875 int regoff, unsigned long *base,
876 unsigned long *limit)
Ricardo Neri10890442017-10-27 13:25:45 -0700877{
878 int seg_reg_idx;
879
880 if (!base)
881 return -EINVAL;
882
883 seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
884 if (seg_reg_idx < 0)
885 return seg_reg_idx;
886
887 *base = insn_get_seg_base(regs, seg_reg_idx);
888 if (*base == -1L)
889 return -EINVAL;
890
Ricardo Neri71271262017-10-27 16:51:38 -0700891 if (!limit)
892 return 0;
893
894 *limit = get_seg_limit(regs, seg_reg_idx);
895 if (!(*limit))
896 return -EINVAL;
897
Ricardo Neri10890442017-10-27 13:25:45 -0700898 return 0;
899}
900
Ricardo Neri70e57c02017-11-05 18:27:46 -0800901/**
902 * get_eff_addr_reg() - Obtain effective address from register operand
903 * @insn: Instruction. Must be valid.
904 * @regs: Register values as seen when entering kernel mode
905 * @regoff: Obtained operand offset, in pt_regs, with the effective address
906 * @eff_addr: Obtained effective address
907 *
908 * Obtain the effective address stored in the register operand as indicated by
909 * the ModRM byte. This function is to be used only with register addressing
910 * (i.e., ModRM.mod is 3). The effective address is saved in @eff_addr. The
911 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
912 * such offset can then be used to resolve the segment associated with the
913 * operand. This function can be used with any of the supported address sizes
914 * in x86.
915 *
916 * Returns:
917 *
918 * 0 on success. @eff_addr will have the effective address stored in the
919 * operand indicated by ModRM. @regoff will have such operand as an offset from
920 * the base of pt_regs.
921 *
922 * -EINVAL on error.
923 */
924static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
925 int *regoff, long *eff_addr)
926{
Borislav Petkov6e8c83d2020-11-19 19:20:18 +0100927 int ret;
Ricardo Neri70e57c02017-11-05 18:27:46 -0800928
Borislav Petkov6e8c83d2020-11-19 19:20:18 +0100929 ret = insn_get_modrm(insn);
930 if (ret)
931 return ret;
Ricardo Neri70e57c02017-11-05 18:27:46 -0800932
933 if (X86_MODRM_MOD(insn->modrm.value) != 3)
934 return -EINVAL;
935
936 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
937 if (*regoff < 0)
938 return -EINVAL;
939
Ricardo Neri7a6daf72017-11-05 18:27:47 -0800940 /* Ignore bytes that are outside the address size. */
Ricardo Neri9c6c7992017-11-05 18:27:50 -0800941 if (insn->addr_bytes == 2)
942 *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
943 else if (insn->addr_bytes == 4)
Ricardo Neri7a6daf72017-11-05 18:27:47 -0800944 *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
945 else /* 64-bit address */
946 *eff_addr = regs_get_register(regs, *regoff);
Ricardo Neri70e57c02017-11-05 18:27:46 -0800947
948 return 0;
949}
950
951/**
952 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
953 * @insn: Instruction. Must be valid.
954 * @regs: Register values as seen when entering kernel mode
955 * @regoff: Obtained operand offset, in pt_regs, associated with segment
956 * @eff_addr: Obtained effective address
957 *
958 * Obtain the effective address referenced by the ModRM byte of @insn. After
959 * identifying the registers involved in the register-indirect memory reference,
960 * its value is obtained from the operands in @regs. The computed address is
961 * stored @eff_addr. Also, the register operand that indicates the associated
962 * segment is stored in @regoff, this parameter can later be used to determine
963 * such segment.
964 *
965 * Returns:
966 *
967 * 0 on success. @eff_addr will have the referenced effective address. @regoff
968 * will have a register, as an offset from the base of pt_regs, that can be used
969 * to resolve the associated segment.
970 *
971 * -EINVAL on error.
972 */
973static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
974 int *regoff, long *eff_addr)
975{
976 long tmp;
Borislav Petkov6e8c83d2020-11-19 19:20:18 +0100977 int ret;
Ricardo Neri70e57c02017-11-05 18:27:46 -0800978
Ricardo Neri7a6daf72017-11-05 18:27:47 -0800979 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
Ricardo Neri70e57c02017-11-05 18:27:46 -0800980 return -EINVAL;
981
Borislav Petkov6e8c83d2020-11-19 19:20:18 +0100982 ret = insn_get_modrm(insn);
983 if (ret)
984 return ret;
Ricardo Neri70e57c02017-11-05 18:27:46 -0800985
986 if (X86_MODRM_MOD(insn->modrm.value) > 2)
987 return -EINVAL;
988
989 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
990
991 /*
992 * -EDOM means that we must ignore the address_offset. In such a case,
993 * in 64-bit mode the effective address relative to the rIP of the
994 * following instruction.
995 */
996 if (*regoff == -EDOM) {
Jann Horn7be44122019-12-19 00:11:47 +0100997 if (any_64bit_mode(regs))
Ricardo Neri70e57c02017-11-05 18:27:46 -0800998 tmp = regs->ip + insn->length;
999 else
1000 tmp = 0;
1001 } else if (*regoff < 0) {
1002 return -EINVAL;
1003 } else {
1004 tmp = regs_get_register(regs, *regoff);
1005 }
1006
Ricardo Neri7a6daf72017-11-05 18:27:47 -08001007 if (insn->addr_bytes == 4) {
1008 int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
1009
1010 *eff_addr = addr32 & 0xffffffff;
1011 } else {
1012 *eff_addr = tmp + insn->displacement.value;
1013 }
Ricardo Neri70e57c02017-11-05 18:27:46 -08001014
1015 return 0;
1016}
1017
1018/**
Ricardo Neri9c6c7992017-11-05 18:27:50 -08001019 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
1020 * @insn: Instruction. Must be valid.
1021 * @regs: Register values as seen when entering kernel mode
1022 * @regoff: Obtained operand offset, in pt_regs, associated with segment
1023 * @eff_addr: Obtained effective address
1024 *
1025 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
1026 * After identifying the registers involved in the register-indirect memory
1027 * reference, its value is obtained from the operands in @regs. The computed
1028 * address is stored @eff_addr. Also, the register operand that indicates
1029 * the associated segment is stored in @regoff, this parameter can later be used
1030 * to determine such segment.
1031 *
1032 * Returns:
1033 *
1034 * 0 on success. @eff_addr will have the referenced effective address. @regoff
1035 * will have a register, as an offset from the base of pt_regs, that can be used
1036 * to resolve the associated segment.
1037 *
1038 * -EINVAL on error.
1039 */
1040static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
1041 int *regoff, short *eff_addr)
1042{
1043 int addr_offset1, addr_offset2, ret;
1044 short addr1 = 0, addr2 = 0, displacement;
1045
1046 if (insn->addr_bytes != 2)
1047 return -EINVAL;
1048
1049 insn_get_modrm(insn);
1050
1051 if (!insn->modrm.nbytes)
1052 return -EINVAL;
1053
1054 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1055 return -EINVAL;
1056
1057 ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1058 if (ret < 0)
1059 return -EINVAL;
1060
1061 /*
1062 * Don't fail on invalid offset values. They might be invalid because
1063 * they cannot be used for this particular value of ModRM. Instead, use
1064 * them in the computation only if they contain a valid value.
1065 */
1066 if (addr_offset1 != -EDOM)
1067 addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1068
1069 if (addr_offset2 != -EDOM)
1070 addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1071
1072 displacement = insn->displacement.value & 0xffff;
1073 *eff_addr = addr1 + addr2 + displacement;
1074
1075 /*
1076 * The first operand register could indicate to use of either SS or DS
1077 * registers to obtain the segment selector. The second operand
1078 * register can only indicate the use of DS. Thus, the first operand
1079 * will be used to obtain the segment selector.
1080 */
1081 *regoff = addr_offset1;
1082
1083 return 0;
1084}
1085
1086/**
Ricardo Neri70e57c02017-11-05 18:27:46 -08001087 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1088 * @insn: Instruction. Must be valid.
1089 * @regs: Register values as seen when entering kernel mode
1090 * @regoff: Obtained operand offset, in pt_regs, associated with segment
1091 * @eff_addr: Obtained effective address
1092 *
1093 * Obtain the effective address referenced by the SIB byte of @insn. After
1094 * identifying the registers involved in the indexed, register-indirect memory
1095 * reference, its value is obtained from the operands in @regs. The computed
1096 * address is stored @eff_addr. Also, the register operand that indicates the
1097 * associated segment is stored in @regoff, this parameter can later be used to
1098 * determine such segment.
1099 *
1100 * Returns:
1101 *
1102 * 0 on success. @eff_addr will have the referenced effective address.
1103 * @base_offset will have a register, as an offset from the base of pt_regs,
1104 * that can be used to resolve the associated segment.
1105 *
Borislav Petkov6e8c83d2020-11-19 19:20:18 +01001106 * Negative value on error.
Ricardo Neri70e57c02017-11-05 18:27:46 -08001107 */
1108static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1109 int *base_offset, long *eff_addr)
1110{
1111 long base, indx;
1112 int indx_offset;
Borislav Petkov6e8c83d2020-11-19 19:20:18 +01001113 int ret;
Ricardo Neri70e57c02017-11-05 18:27:46 -08001114
Ricardo Neri7a6daf72017-11-05 18:27:47 -08001115 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
Ricardo Neri70e57c02017-11-05 18:27:46 -08001116 return -EINVAL;
1117
Borislav Petkov6e8c83d2020-11-19 19:20:18 +01001118 ret = insn_get_modrm(insn);
1119 if (ret)
1120 return ret;
Ricardo Neri70e57c02017-11-05 18:27:46 -08001121
1122 if (!insn->modrm.nbytes)
1123 return -EINVAL;
1124
1125 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1126 return -EINVAL;
1127
Borislav Petkov6e8c83d2020-11-19 19:20:18 +01001128 ret = insn_get_sib(insn);
1129 if (ret)
1130 return ret;
Ricardo Neri70e57c02017-11-05 18:27:46 -08001131
1132 if (!insn->sib.nbytes)
1133 return -EINVAL;
1134
1135 *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1136 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1137
1138 /*
1139 * Negative values in the base and index offset means an error when
1140 * decoding the SIB byte. Except -EDOM, which means that the registers
1141 * should not be used in the address computation.
1142 */
1143 if (*base_offset == -EDOM)
1144 base = 0;
1145 else if (*base_offset < 0)
1146 return -EINVAL;
1147 else
1148 base = regs_get_register(regs, *base_offset);
1149
1150 if (indx_offset == -EDOM)
1151 indx = 0;
1152 else if (indx_offset < 0)
1153 return -EINVAL;
1154 else
1155 indx = regs_get_register(regs, indx_offset);
1156
Ricardo Neri7a6daf72017-11-05 18:27:47 -08001157 if (insn->addr_bytes == 4) {
1158 int addr32, base32, idx32;
Ricardo Neri70e57c02017-11-05 18:27:46 -08001159
Ricardo Neri7a6daf72017-11-05 18:27:47 -08001160 base32 = base & 0xffffffff;
1161 idx32 = indx & 0xffffffff;
1162
1163 addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1164 addr32 += insn->displacement.value;
1165
1166 *eff_addr = addr32 & 0xffffffff;
1167 } else {
1168 *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1169 *eff_addr += insn->displacement.value;
1170 }
Ricardo Neri70e57c02017-11-05 18:27:46 -08001171
1172 return 0;
1173}
Ricardo Neri7a6daf72017-11-05 18:27:47 -08001174
1175/**
Ricardo Neri9c6c7992017-11-05 18:27:50 -08001176 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1177 * @insn: Instruction containing ModRM byte and displacement
1178 * @regs: Register values as seen when entering kernel mode
1179 *
1180 * This function is to be used with 16-bit address encodings. Obtain the memory
1181 * address referred by the instruction's ModRM and displacement bytes. Also, the
1182 * segment used as base is determined by either any segment override prefixes in
1183 * @insn or the default segment of the registers involved in the address
1184 * computation. In protected mode, segment limits are enforced.
1185 *
1186 * Returns:
1187 *
1188 * Linear address referenced by the instruction operands on success.
1189 *
1190 * -1L on error.
1191 */
1192static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1193{
1194 unsigned long linear_addr = -1L, seg_base, seg_limit;
1195 int ret, regoff;
1196 short eff_addr;
1197 long tmp;
1198
Borislav Petkov6e8c83d2020-11-19 19:20:18 +01001199 if (insn_get_displacement(insn))
1200 goto out;
Ricardo Neri9c6c7992017-11-05 18:27:50 -08001201
1202 if (insn->addr_bytes != 2)
1203 goto out;
1204
1205 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1206 ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1207 if (ret)
1208 goto out;
1209
1210 eff_addr = tmp;
1211 } else {
1212 ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1213 if (ret)
1214 goto out;
1215 }
1216
1217 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1218 if (ret)
1219 goto out;
1220
1221 /*
1222 * Before computing the linear address, make sure the effective address
1223 * is within the limits of the segment. In virtual-8086 mode, segment
1224 * limits are not enforced. In such a case, the segment limit is -1L to
1225 * reflect this fact.
1226 */
1227 if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1228 goto out;
1229
1230 linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1231
1232 /* Limit linear address to 20 bits */
1233 if (v8086_mode(regs))
1234 linear_addr &= 0xfffff;
1235
1236out:
1237 return (void __user *)linear_addr;
1238}
1239
1240/**
Ricardo Neri7a6daf72017-11-05 18:27:47 -08001241 * get_addr_ref_32() - Obtain a 32-bit linear address
1242 * @insn: Instruction with ModRM, SIB bytes and displacement
1243 * @regs: Register values as seen when entering kernel mode
1244 *
1245 * This function is to be used with 32-bit address encodings to obtain the
1246 * linear memory address referred by the instruction's ModRM, SIB,
1247 * displacement bytes and segment base address, as applicable. If in protected
1248 * mode, segment limits are enforced.
1249 *
1250 * Returns:
1251 *
1252 * Linear address referenced by instruction and registers on success.
1253 *
1254 * -1L on error.
1255 */
1256static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1257{
1258 unsigned long linear_addr = -1L, seg_base, seg_limit;
1259 int eff_addr, regoff;
1260 long tmp;
1261 int ret;
1262
1263 if (insn->addr_bytes != 4)
1264 goto out;
1265
1266 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1267 ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1268 if (ret)
1269 goto out;
1270
1271 eff_addr = tmp;
1272
1273 } else {
1274 if (insn->sib.nbytes) {
1275 ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1276 if (ret)
1277 goto out;
1278
1279 eff_addr = tmp;
1280 } else {
1281 ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1282 if (ret)
1283 goto out;
1284
1285 eff_addr = tmp;
1286 }
1287 }
1288
1289 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1290 if (ret)
1291 goto out;
1292
1293 /*
1294 * In protected mode, before computing the linear address, make sure
1295 * the effective address is within the limits of the segment.
1296 * 32-bit addresses can be used in long and virtual-8086 modes if an
1297 * address override prefix is used. In such cases, segment limits are
1298 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1299 * to reflect this situation.
1300 *
1301 * After computed, the effective address is treated as an unsigned
1302 * quantity.
1303 */
Jann Horn7be44122019-12-19 00:11:47 +01001304 if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
Ricardo Neri7a6daf72017-11-05 18:27:47 -08001305 goto out;
1306
1307 /*
Ricardo Neri86cc3512017-11-05 18:27:49 -08001308 * Even though 32-bit address encodings are allowed in virtual-8086
1309 * mode, the address range is still limited to [0x-0xffff].
1310 */
1311 if (v8086_mode(regs) && (eff_addr & ~0xffff))
1312 goto out;
1313
1314 /*
Ricardo Neri7a6daf72017-11-05 18:27:47 -08001315 * Data type long could be 64 bits in size. Ensure that our 32-bit
1316 * effective address is not sign-extended when computing the linear
1317 * address.
1318 */
1319 linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1320
Ricardo Neri86cc3512017-11-05 18:27:49 -08001321 /* Limit linear address to 20 bits */
1322 if (v8086_mode(regs))
1323 linear_addr &= 0xfffff;
1324
Ricardo Neri7a6daf72017-11-05 18:27:47 -08001325out:
1326 return (void __user *)linear_addr;
1327}
1328
Ricardo Nericd9b5942017-11-05 18:27:48 -08001329/**
1330 * get_addr_ref_64() - Obtain a 64-bit linear address
1331 * @insn: Instruction struct with ModRM and SIB bytes and displacement
1332 * @regs: Structure with register values as seen when entering kernel mode
1333 *
1334 * This function is to be used with 64-bit address encodings to obtain the
1335 * linear memory address referred by the instruction's ModRM, SIB,
1336 * displacement bytes and segment base address, as applicable.
1337 *
1338 * Returns:
1339 *
1340 * Linear address referenced by instruction and registers on success.
1341 *
1342 * -1L on error.
Ricardo Neri32542ee2017-10-27 13:25:36 -07001343 */
Ricardo Nericd9b5942017-11-05 18:27:48 -08001344#ifndef CONFIG_X86_64
1345static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1346{
1347 return (void __user *)-1L;
1348}
1349#else
1350static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
Ricardo Neri32542ee2017-10-27 13:25:36 -07001351{
Ricardo Neri10890442017-10-27 13:25:45 -07001352 unsigned long linear_addr = -1L, seg_base;
Ricardo Neri70e57c02017-11-05 18:27:46 -08001353 int regoff, ret;
1354 long eff_addr;
Ricardo Neri32542ee2017-10-27 13:25:36 -07001355
Ricardo Nericd9b5942017-11-05 18:27:48 -08001356 if (insn->addr_bytes != 8)
1357 goto out;
1358
Ricardo Neri32542ee2017-10-27 13:25:36 -07001359 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
Ricardo Neri70e57c02017-11-05 18:27:46 -08001360 ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1361 if (ret)
Ricardo Neri32542ee2017-10-27 13:25:36 -07001362 goto out;
1363
Ricardo Neri32542ee2017-10-27 13:25:36 -07001364 } else {
1365 if (insn->sib.nbytes) {
Ricardo Neri70e57c02017-11-05 18:27:46 -08001366 ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1367 if (ret)
Ricardo Neri32542ee2017-10-27 13:25:36 -07001368 goto out;
Ricardo Neri32542ee2017-10-27 13:25:36 -07001369 } else {
Ricardo Neri70e57c02017-11-05 18:27:46 -08001370 ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1371 if (ret)
Ricardo Neri32542ee2017-10-27 13:25:36 -07001372 goto out;
Ricardo Neri32542ee2017-10-27 13:25:36 -07001373 }
1374
Ricardo Neri32542ee2017-10-27 13:25:36 -07001375 }
1376
Ricardo Neri70e57c02017-11-05 18:27:46 -08001377 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
Ricardo Neri10890442017-10-27 13:25:45 -07001378 if (ret)
1379 goto out;
1380
1381 linear_addr = (unsigned long)eff_addr + seg_base;
Ricardo Neri32542ee2017-10-27 13:25:36 -07001382
1383out:
1384 return (void __user *)linear_addr;
1385}
Ricardo Nericd9b5942017-11-05 18:27:48 -08001386#endif /* CONFIG_X86_64 */
1387
1388/**
1389 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1390 * @insn: Instruction structure containing ModRM byte and displacement
1391 * @regs: Structure with register values as seen when entering kernel mode
1392 *
1393 * Obtain the linear address referred by the instruction's ModRM, SIB and
1394 * displacement bytes, and segment base, as applicable. In protected mode,
1395 * segment limits are enforced.
1396 *
1397 * Returns:
1398 *
1399 * Linear address referenced by instruction and registers on success.
1400 *
1401 * -1L on error.
1402 */
1403void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1404{
1405 if (!insn || !regs)
1406 return (void __user *)-1L;
1407
1408 switch (insn->addr_bytes) {
Ricardo Neri9c6c7992017-11-05 18:27:50 -08001409 case 2:
1410 return get_addr_ref_16(insn, regs);
Ricardo Nericd9b5942017-11-05 18:27:48 -08001411 case 4:
1412 return get_addr_ref_32(insn, regs);
1413 case 8:
1414 return get_addr_ref_64(insn, regs);
1415 default:
1416 return (void __user *)-1L;
1417 }
1418}
Joerg Roedel172b75e2020-09-07 15:15:09 +02001419
Peter Zijlstrab968e842021-09-17 11:20:04 +02001420int insn_get_effective_ip(struct pt_regs *regs, unsigned long *ip)
Joerg Roedelbffe30d2021-03-03 15:17:16 +01001421{
1422 unsigned long seg_base = 0;
1423
1424 /*
1425 * If not in user-space long mode, a custom code segment could be in
1426 * use. This is true in protected mode (if the process defined a local
1427 * descriptor table), or virtual-8086 mode. In most of the cases
1428 * seg_base will be zero as in USER_CS.
1429 */
1430 if (!user_64bit_mode(regs)) {
1431 seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
1432 if (seg_base == -1L)
Joerg Roedelf2df1562021-05-19 15:52:49 +02001433 return -EINVAL;
Joerg Roedelbffe30d2021-03-03 15:17:16 +01001434 }
1435
Joerg Roedelf2df1562021-05-19 15:52:49 +02001436 *ip = seg_base + regs->ip;
1437
1438 return 0;
Joerg Roedelbffe30d2021-03-03 15:17:16 +01001439}
1440
Joerg Roedel172b75e2020-09-07 15:15:09 +02001441/**
1442 * insn_fetch_from_user() - Copy instruction bytes from user-space memory
1443 * @regs: Structure with register values as seen when entering kernel mode
1444 * @buf: Array to store the fetched instruction
1445 *
1446 * Gets the linear address of the instruction and copies the instruction bytes
1447 * to the buf.
1448 *
1449 * Returns:
1450 *
Joerg Roedel4aaa7eac2021-06-14 15:53:26 +02001451 * - number of instruction bytes copied.
1452 * - 0 if nothing was copied.
1453 * - -EINVAL if the linear address of the instruction could not be calculated
Joerg Roedel172b75e2020-09-07 15:15:09 +02001454 */
1455int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1456{
Joerg Roedelbffe30d2021-03-03 15:17:16 +01001457 unsigned long ip;
Joerg Roedel172b75e2020-09-07 15:15:09 +02001458 int not_copied;
1459
Joerg Roedelf2df1562021-05-19 15:52:49 +02001460 if (insn_get_effective_ip(regs, &ip))
Joerg Roedel4aaa7eac2021-06-14 15:53:26 +02001461 return -EINVAL;
Joerg Roedel172b75e2020-09-07 15:15:09 +02001462
Joerg Roedelbffe30d2021-03-03 15:17:16 +01001463 not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE);
Joerg Roedel172b75e2020-09-07 15:15:09 +02001464
Joerg Roedelbffe30d2021-03-03 15:17:16 +01001465 return MAX_INSN_SIZE - not_copied;
1466}
1467
1468/**
1469 * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory
1470 * while in atomic code
1471 * @regs: Structure with register values as seen when entering kernel mode
1472 * @buf: Array to store the fetched instruction
1473 *
1474 * Gets the linear address of the instruction and copies the instruction bytes
1475 * to the buf. This function must be used in atomic context.
1476 *
1477 * Returns:
1478 *
Joerg Roedel4aaa7eac2021-06-14 15:53:26 +02001479 * - number of instruction bytes copied.
1480 * - 0 if nothing was copied.
1481 * - -EINVAL if the linear address of the instruction could not be calculated.
Joerg Roedelbffe30d2021-03-03 15:17:16 +01001482 */
1483int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1484{
1485 unsigned long ip;
1486 int not_copied;
1487
Joerg Roedelf2df1562021-05-19 15:52:49 +02001488 if (insn_get_effective_ip(regs, &ip))
Joerg Roedel4aaa7eac2021-06-14 15:53:26 +02001489 return -EINVAL;
Joerg Roedelbffe30d2021-03-03 15:17:16 +01001490
1491 not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE);
Joerg Roedel172b75e2020-09-07 15:15:09 +02001492
1493 return MAX_INSN_SIZE - not_copied;
1494}
Joerg Roedel172639d2020-09-07 15:15:10 +02001495
1496/**
Borislav Petkov9e761292020-11-02 18:47:34 +01001497 * insn_decode_from_regs() - Decode an instruction
Joerg Roedel172639d2020-09-07 15:15:10 +02001498 * @insn: Structure to store decoded instruction
1499 * @regs: Structure with register values as seen when entering kernel mode
1500 * @buf: Buffer containing the instruction bytes
1501 * @buf_size: Number of instruction bytes available in buf
1502 *
1503 * Decodes the instruction provided in buf and stores the decoding results in
1504 * insn. Also determines the correct address and operand sizes.
1505 *
1506 * Returns:
1507 *
1508 * True if instruction was decoded, False otherwise.
1509 */
Borislav Petkov9e761292020-11-02 18:47:34 +01001510bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs,
1511 unsigned char buf[MAX_INSN_SIZE], int buf_size)
Joerg Roedel172639d2020-09-07 15:15:10 +02001512{
1513 int seg_defs;
1514
1515 insn_init(insn, buf, buf_size, user_64bit_mode(regs));
1516
1517 /*
1518 * Override the default operand and address sizes with what is specified
1519 * in the code segment descriptor. The instruction decoder only sets
1520 * the address size it to either 4 or 8 address bytes and does nothing
1521 * for the operand bytes. This OK for most of the cases, but we could
1522 * have special cases where, for instance, a 16-bit code segment
1523 * descriptor is used.
1524 * If there is an address override prefix, the instruction decoder
1525 * correctly updates these values, even for 16-bit defaults.
1526 */
1527 seg_defs = insn_get_code_seg_params(regs);
1528 if (seg_defs == -EINVAL)
1529 return false;
1530
1531 insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
1532 insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
1533
Borislav Petkov6e8c83d2020-11-19 19:20:18 +01001534 if (insn_get_length(insn))
1535 return false;
1536
Joerg Roedel172639d2020-09-07 15:15:10 +02001537 if (buf_size < insn->length)
1538 return false;
1539
1540 return true;
1541}