blob: 01e36bd86a5d689d7e733971adc8db100d077bce [file] [log] [blame]
Ricardo Neri32542ee2017-10-27 13:25:36 -07001/*
2 * Utility functions for x86 operand and address decoding
3 *
4 * Copyright (C) Intel Corporation 2017
5 */
6#include <linux/kernel.h>
7#include <linux/string.h>
Ricardo Neried594e42017-10-27 13:25:37 -07008#include <linux/ratelimit.h>
Ricardo Neri670f9282017-10-27 13:25:41 -07009#include <linux/mmu_context.h>
10#include <asm/desc_defs.h>
11#include <asm/desc.h>
Ricardo Neri32542ee2017-10-27 13:25:36 -070012#include <asm/inat.h>
13#include <asm/insn.h>
14#include <asm/insn-eval.h>
Ricardo Neri670f9282017-10-27 13:25:41 -070015#include <asm/ldt.h>
Ricardo Neri32d0b952017-10-27 13:25:40 -070016#include <asm/vm86.h>
Ricardo Neri32542ee2017-10-27 13:25:36 -070017
Ricardo Neried594e42017-10-27 13:25:37 -070018#undef pr_fmt
19#define pr_fmt(fmt) "insn: " fmt
20
Ricardo Neri32542ee2017-10-27 13:25:36 -070021enum reg_type {
22 REG_TYPE_RM = 0,
23 REG_TYPE_INDEX,
24 REG_TYPE_BASE,
25};
26
Ricardo Neri536b8152017-10-27 13:25:39 -070027/**
28 * is_string_insn() - Determine if instruction is a string instruction
29 * @insn: Instruction containing the opcode to inspect
30 *
31 * Returns:
32 *
33 * true if the instruction, determined by the opcode, is any of the
34 * string instructions as defined in the Intel Software Development manual.
35 * False otherwise.
36 */
37static bool is_string_insn(struct insn *insn)
38{
39 insn_get_opcode(insn);
40
41 /* All string instructions have a 1-byte opcode. */
42 if (insn->opcode.nbytes != 1)
43 return false;
44
45 switch (insn->opcode.bytes[0]) {
46 case 0x6c ... 0x6f: /* INS, OUTS */
47 case 0xa4 ... 0xa7: /* MOVS, CMPS */
48 case 0xaa ... 0xaf: /* STOS, LODS, SCAS */
49 return true;
50 default:
51 return false;
52 }
53}
54
Ricardo Neri32d0b952017-10-27 13:25:40 -070055/**
56 * get_seg_reg_override_idx() - obtain segment register override index
57 * @insn: Valid instruction with segment override prefixes
58 *
59 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
60 *
61 * Returns:
62 *
63 * A constant identifying the segment register to use, among CS, SS, DS,
64 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
65 * prefixes were found.
66 *
67 * -EINVAL in case of error.
68 */
69static int get_seg_reg_override_idx(struct insn *insn)
70{
71 int idx = INAT_SEG_REG_DEFAULT;
72 int num_overrides = 0, i;
73
74 insn_get_prefixes(insn);
75
76 /* Look for any segment override prefixes. */
77 for (i = 0; i < insn->prefixes.nbytes; i++) {
78 insn_attr_t attr;
79
80 attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
81 switch (attr) {
82 case INAT_MAKE_PREFIX(INAT_PFX_CS):
83 idx = INAT_SEG_REG_CS;
84 num_overrides++;
85 break;
86 case INAT_MAKE_PREFIX(INAT_PFX_SS):
87 idx = INAT_SEG_REG_SS;
88 num_overrides++;
89 break;
90 case INAT_MAKE_PREFIX(INAT_PFX_DS):
91 idx = INAT_SEG_REG_DS;
92 num_overrides++;
93 break;
94 case INAT_MAKE_PREFIX(INAT_PFX_ES):
95 idx = INAT_SEG_REG_ES;
96 num_overrides++;
97 break;
98 case INAT_MAKE_PREFIX(INAT_PFX_FS):
99 idx = INAT_SEG_REG_FS;
100 num_overrides++;
101 break;
102 case INAT_MAKE_PREFIX(INAT_PFX_GS):
103 idx = INAT_SEG_REG_GS;
104 num_overrides++;
105 break;
106 /* No default action needed. */
107 }
108 }
109
110 /* More than one segment override prefix leads to undefined behavior. */
111 if (num_overrides > 1)
112 return -EINVAL;
113
114 return idx;
115}
116
117/**
118 * check_seg_overrides() - check if segment override prefixes are allowed
119 * @insn: Valid instruction with segment override prefixes
120 * @regoff: Operand offset, in pt_regs, for which the check is performed
121 *
122 * For a particular register used in register-indirect addressing, determine if
123 * segment override prefixes can be used. Specifically, no overrides are allowed
124 * for rDI if used with a string instruction.
125 *
126 * Returns:
127 *
128 * True if segment override prefixes can be used with the register indicated
129 * in @regoff. False if otherwise.
130 */
131static bool check_seg_overrides(struct insn *insn, int regoff)
132{
133 if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
134 return false;
135
136 return true;
137}
138
139/**
140 * resolve_default_seg() - resolve default segment register index for an operand
141 * @insn: Instruction with opcode and address size. Must be valid.
142 * @regs: Register values as seen when entering kernel mode
143 * @off: Operand offset, in pt_regs, for which resolution is needed
144 *
145 * Resolve the default segment register index associated with the instruction
146 * operand register indicated by @off. Such index is resolved based on defaults
147 * described in the Intel Software Development Manual.
148 *
149 * Returns:
150 *
151 * If in protected mode, a constant identifying the segment register to use,
152 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
153 *
154 * -EINVAL in case of error.
155 */
156static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
157{
158 if (user_64bit_mode(regs))
159 return INAT_SEG_REG_IGNORE;
160 /*
161 * Resolve the default segment register as described in Section 3.7.4
162 * of the Intel Software Development Manual Vol. 1:
163 *
164 * + DS for all references involving r[ABCD]X, and rSI.
165 * + If used in a string instruction, ES for rDI. Otherwise, DS.
166 * + AX, CX and DX are not valid register operands in 16-bit address
167 * encodings but are valid for 32-bit and 64-bit encodings.
168 * + -EDOM is reserved to identify for cases in which no register
169 * is used (i.e., displacement-only addressing). Use DS.
170 * + SS for rSP or rBP.
171 * + CS for rIP.
172 */
173
174 switch (off) {
175 case offsetof(struct pt_regs, ax):
176 case offsetof(struct pt_regs, cx):
177 case offsetof(struct pt_regs, dx):
178 /* Need insn to verify address size. */
179 if (insn->addr_bytes == 2)
180 return -EINVAL;
181
182 case -EDOM:
183 case offsetof(struct pt_regs, bx):
184 case offsetof(struct pt_regs, si):
185 return INAT_SEG_REG_DS;
186
187 case offsetof(struct pt_regs, di):
188 if (is_string_insn(insn))
189 return INAT_SEG_REG_ES;
190 return INAT_SEG_REG_DS;
191
192 case offsetof(struct pt_regs, bp):
193 case offsetof(struct pt_regs, sp):
194 return INAT_SEG_REG_SS;
195
196 case offsetof(struct pt_regs, ip):
197 return INAT_SEG_REG_CS;
198
199 default:
200 return -EINVAL;
201 }
202}
203
204/**
205 * resolve_seg_reg() - obtain segment register index
206 * @insn: Instruction with operands
207 * @regs: Register values as seen when entering kernel mode
208 * @regoff: Operand offset, in pt_regs, used to deterimine segment register
209 *
210 * Determine the segment register associated with the operands and, if
211 * applicable, prefixes and the instruction pointed by @insn.
212 *
213 * The segment register associated to an operand used in register-indirect
214 * addressing depends on:
215 *
216 * a) Whether running in long mode (in such a case segments are ignored, except
217 * if FS or GS are used).
218 *
219 * b) Whether segment override prefixes can be used. Certain instructions and
220 * registers do not allow override prefixes.
221 *
222 * c) Whether segment overrides prefixes are found in the instruction prefixes.
223 *
224 * d) If there are not segment override prefixes or they cannot be used, the
225 * default segment register associated with the operand register is used.
226 *
227 * The function checks first if segment override prefixes can be used with the
228 * operand indicated by @regoff. If allowed, obtain such overridden segment
229 * register index. Lastly, if not prefixes were found or cannot be used, resolve
230 * the segment register index to use based on the defaults described in the
231 * Intel documentation. In long mode, all segment register indexes will be
232 * ignored, except if overrides were found for FS or GS. All these operations
233 * are done using helper functions.
234 *
235 * The operand register, @regoff, is represented as the offset from the base of
236 * pt_regs.
237 *
238 * As stated, the main use of this function is to determine the segment register
239 * index based on the instruction, its operands and prefixes. Hence, @insn
240 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
241 * @insn at all as in this case CS is used in all cases. This case is checked
242 * before proceeding further.
243 *
244 * Please note that this function does not return the value in the segment
245 * register (i.e., the segment selector) but our defined index. The segment
246 * selector needs to be obtained using get_segment_selector() and passing the
247 * segment register index resolved by this function.
248 *
249 * Returns:
250 *
251 * An index identifying the segment register to use, among CS, SS, DS,
252 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
253 *
254 * -EINVAL in case of error.
255 */
256static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
257{
258 int idx;
259
260 /*
261 * In the unlikely event of having to resolve the segment register
262 * index for rIP, do it first. Segment override prefixes should not
263 * be used. Hence, it is not necessary to inspect the instruction,
264 * which may be invalid at this point.
265 */
266 if (regoff == offsetof(struct pt_regs, ip)) {
267 if (user_64bit_mode(regs))
268 return INAT_SEG_REG_IGNORE;
269 else
270 return INAT_SEG_REG_CS;
271 }
272
273 if (!insn)
274 return -EINVAL;
275
276 if (!check_seg_overrides(insn, regoff))
277 return resolve_default_seg(insn, regs, regoff);
278
279 idx = get_seg_reg_override_idx(insn);
280 if (idx < 0)
281 return idx;
282
283 if (idx == INAT_SEG_REG_DEFAULT)
284 return resolve_default_seg(insn, regs, regoff);
285
286 /*
287 * In long mode, segment override prefixes are ignored, except for
288 * overrides for FS and GS.
289 */
290 if (user_64bit_mode(regs)) {
291 if (idx != INAT_SEG_REG_FS &&
292 idx != INAT_SEG_REG_GS)
293 idx = INAT_SEG_REG_IGNORE;
294 }
295
296 return idx;
297}
298
299/**
300 * get_segment_selector() - obtain segment selector
301 * @regs: Register values as seen when entering kernel mode
302 * @seg_reg_idx: Segment register index to use
303 *
304 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
305 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
306 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
307 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
308 * registers. This done for only for completeness as in CONFIG_X86_64 segment
309 * registers are ignored.
310 *
311 * Returns:
312 *
313 * Value of the segment selector, including null when running in
314 * long mode.
315 *
316 * -EINVAL on error.
317 */
318static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
319{
320#ifdef CONFIG_X86_64
321 unsigned short sel;
322
323 switch (seg_reg_idx) {
324 case INAT_SEG_REG_IGNORE:
325 return 0;
326 case INAT_SEG_REG_CS:
327 return (unsigned short)(regs->cs & 0xffff);
328 case INAT_SEG_REG_SS:
329 return (unsigned short)(regs->ss & 0xffff);
330 case INAT_SEG_REG_DS:
331 savesegment(ds, sel);
332 return sel;
333 case INAT_SEG_REG_ES:
334 savesegment(es, sel);
335 return sel;
336 case INAT_SEG_REG_FS:
337 savesegment(fs, sel);
338 return sel;
339 case INAT_SEG_REG_GS:
340 savesegment(gs, sel);
341 return sel;
342 default:
343 return -EINVAL;
344 }
345#else /* CONFIG_X86_32 */
346 struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
347
348 if (v8086_mode(regs)) {
349 switch (seg_reg_idx) {
350 case INAT_SEG_REG_CS:
351 return (unsigned short)(regs->cs & 0xffff);
352 case INAT_SEG_REG_SS:
353 return (unsigned short)(regs->ss & 0xffff);
354 case INAT_SEG_REG_DS:
355 return vm86regs->ds;
356 case INAT_SEG_REG_ES:
357 return vm86regs->es;
358 case INAT_SEG_REG_FS:
359 return vm86regs->fs;
360 case INAT_SEG_REG_GS:
361 return vm86regs->gs;
362 case INAT_SEG_REG_IGNORE:
363 /* fall through */
364 default:
365 return -EINVAL;
366 }
367 }
368
369 switch (seg_reg_idx) {
370 case INAT_SEG_REG_CS:
371 return (unsigned short)(regs->cs & 0xffff);
372 case INAT_SEG_REG_SS:
373 return (unsigned short)(regs->ss & 0xffff);
374 case INAT_SEG_REG_DS:
375 return (unsigned short)(regs->ds & 0xffff);
376 case INAT_SEG_REG_ES:
377 return (unsigned short)(regs->es & 0xffff);
378 case INAT_SEG_REG_FS:
379 return (unsigned short)(regs->fs & 0xffff);
380 case INAT_SEG_REG_GS:
381 /*
382 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
383 * The macro below takes care of both cases.
384 */
385 return get_user_gs(regs);
386 case INAT_SEG_REG_IGNORE:
387 /* fall through */
388 default:
389 return -EINVAL;
390 }
391#endif /* CONFIG_X86_64 */
392}
393
Ricardo Neri32542ee2017-10-27 13:25:36 -0700394static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
395 enum reg_type type)
396{
397 int regno = 0;
398
399 static const int regoff[] = {
400 offsetof(struct pt_regs, ax),
401 offsetof(struct pt_regs, cx),
402 offsetof(struct pt_regs, dx),
403 offsetof(struct pt_regs, bx),
404 offsetof(struct pt_regs, sp),
405 offsetof(struct pt_regs, bp),
406 offsetof(struct pt_regs, si),
407 offsetof(struct pt_regs, di),
408#ifdef CONFIG_X86_64
409 offsetof(struct pt_regs, r8),
410 offsetof(struct pt_regs, r9),
411 offsetof(struct pt_regs, r10),
412 offsetof(struct pt_regs, r11),
413 offsetof(struct pt_regs, r12),
414 offsetof(struct pt_regs, r13),
415 offsetof(struct pt_regs, r14),
416 offsetof(struct pt_regs, r15),
417#endif
418 };
419 int nr_registers = ARRAY_SIZE(regoff);
420 /*
421 * Don't possibly decode a 32-bit instructions as
422 * reading a 64-bit-only register.
423 */
424 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
425 nr_registers -= 8;
426
427 switch (type) {
428 case REG_TYPE_RM:
429 regno = X86_MODRM_RM(insn->modrm.value);
430 if (X86_REX_B(insn->rex_prefix.value))
431 regno += 8;
432 break;
433
434 case REG_TYPE_INDEX:
435 regno = X86_SIB_INDEX(insn->sib.value);
436 if (X86_REX_X(insn->rex_prefix.value))
437 regno += 8;
438
439 /*
440 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
441 * portion of the address computation is null. This is
442 * true only if REX.X is 0. In such a case, the SIB index
443 * is used in the address computation.
444 */
445 if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
446 return -EDOM;
447 break;
448
449 case REG_TYPE_BASE:
450 regno = X86_SIB_BASE(insn->sib.value);
451 /*
452 * If ModRM.mod is 0 and SIB.base == 5, the base of the
453 * register-indirect addressing is 0. In this case, a
454 * 32-bit displacement follows the SIB byte.
455 */
456 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
457 return -EDOM;
458
459 if (X86_REX_B(insn->rex_prefix.value))
460 regno += 8;
461 break;
462
463 default:
Ricardo Neried594e42017-10-27 13:25:37 -0700464 pr_err_ratelimited("invalid register type: %d\n", type);
465 return -EINVAL;
Ricardo Neri32542ee2017-10-27 13:25:36 -0700466 }
467
468 if (regno >= nr_registers) {
469 WARN_ONCE(1, "decoded an instruction with an invalid register");
470 return -EINVAL;
471 }
472 return regoff[regno];
473}
474
Ricardo Nerie5e45f12017-10-27 13:25:38 -0700475/**
Ricardo Neri670f9282017-10-27 13:25:41 -0700476 * get_desc() - Obtain pointer to a segment descriptor
477 * @sel: Segment selector
478 *
479 * Given a segment selector, obtain a pointer to the segment descriptor.
480 * Both global and local descriptor tables are supported.
481 *
482 * Returns:
483 *
484 * Pointer to segment descriptor on success.
485 *
486 * NULL on error.
487 */
488static struct desc_struct *get_desc(unsigned short sel)
489{
490 struct desc_ptr gdt_desc = {0, 0};
491 unsigned long desc_base;
492
493#ifdef CONFIG_MODIFY_LDT_SYSCALL
494 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
495 struct desc_struct *desc = NULL;
496 struct ldt_struct *ldt;
497
498 /* Bits [15:3] contain the index of the desired entry. */
499 sel >>= 3;
500
501 mutex_lock(&current->active_mm->context.lock);
502 ldt = current->active_mm->context.ldt;
503 if (ldt && sel < ldt->nr_entries)
504 desc = &ldt->entries[sel];
505
506 mutex_unlock(&current->active_mm->context.lock);
507
508 return desc;
509 }
510#endif
511 native_store_gdt(&gdt_desc);
512
513 /*
514 * Segment descriptors have a size of 8 bytes. Thus, the index is
515 * multiplied by 8 to obtain the memory offset of the desired descriptor
516 * from the base of the GDT. As bits [15:3] of the segment selector
517 * contain the index, it can be regarded as multiplied by 8 already.
518 * All that remains is to clear bits [2:0].
519 */
520 desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
521
522 if (desc_base > gdt_desc.size)
523 return NULL;
524
525 return (struct desc_struct *)(gdt_desc.address + desc_base);
526}
527
528/**
Ricardo Neribd5a4102017-10-27 13:25:42 -0700529 * insn_get_seg_base() - Obtain base address of segment descriptor.
530 * @regs: Register values as seen when entering kernel mode
531 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
532 *
533 * Obtain the base address of the segment as indicated by the segment descriptor
534 * pointed by the segment selector. The segment selector is obtained from the
535 * input segment register index @seg_reg_idx.
536 *
537 * Returns:
538 *
539 * In protected mode, base address of the segment. Zero in long mode,
540 * except when FS or GS are used. In virtual-8086 mode, the segment
541 * selector shifted 4 bits to the right.
542 *
543 * -1L in case of error.
544 */
545unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
546{
547 struct desc_struct *desc;
548 short sel;
549
550 sel = get_segment_selector(regs, seg_reg_idx);
551 if (sel < 0)
552 return -1L;
553
554 if (v8086_mode(regs))
555 /*
556 * Base is simply the segment selector shifted 4
557 * bits to the right.
558 */
559 return (unsigned long)(sel << 4);
560
561 if (user_64bit_mode(regs)) {
562 /*
563 * Only FS or GS will have a base address, the rest of
564 * the segments' bases are forced to 0.
565 */
566 unsigned long base;
567
568 if (seg_reg_idx == INAT_SEG_REG_FS)
569 rdmsrl(MSR_FS_BASE, base);
570 else if (seg_reg_idx == INAT_SEG_REG_GS)
571 /*
572 * swapgs was called at the kernel entry point. Thus,
573 * MSR_KERNEL_GS_BASE will have the user-space GS base.
574 */
575 rdmsrl(MSR_KERNEL_GS_BASE, base);
576 else
577 base = 0;
578 return base;
579 }
580
581 /* In protected mode the segment selector cannot be null. */
582 if (!sel)
583 return -1L;
584
585 desc = get_desc(sel);
586 if (!desc)
587 return -1L;
588
589 return get_desc_base(desc);
590}
591
592/**
593 * get_seg_limit() - Obtain the limit of a segment descriptor
594 * @regs: Register values as seen when entering kernel mode
595 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
596 *
597 * Obtain the limit of the segment as indicated by the segment descriptor
598 * pointed by the segment selector. The segment selector is obtained from the
599 * input segment register index @seg_reg_idx.
600 *
601 * Returns:
602 *
603 * In protected mode, the limit of the segment descriptor in bytes.
604 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
605 * limit is returned as -1L to imply a limit-less segment.
606 *
607 * Zero is returned on error.
608 */
609static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
610{
611 struct desc_struct *desc;
612 unsigned long limit;
613 short sel;
614
615 sel = get_segment_selector(regs, seg_reg_idx);
616 if (sel < 0)
617 return 0;
618
619 if (user_64bit_mode(regs) || v8086_mode(regs))
620 return -1L;
621
622 if (!sel)
623 return 0;
624
625 desc = get_desc(sel);
626 if (!desc)
627 return 0;
628
629 /*
630 * If the granularity bit is set, the limit is given in multiples
631 * of 4096. This also means that the 12 least significant bits are
632 * not tested when checking the segment limits. In practice,
633 * this means that the segment ends in (limit << 12) + 0xfff.
634 */
635 limit = get_desc_limit(desc);
636 if (desc->g)
637 limit = (limit << 12) + 0xfff;
638
639 return limit;
640}
641
642/**
Ricardo Neri4efea852017-10-27 13:25:43 -0700643 * insn_get_code_seg_params() - Obtain code segment parameters
644 * @regs: Structure with register values as seen when entering kernel mode
645 *
646 * Obtain address and operand sizes of the code segment. It is obtained from the
647 * selector contained in the CS register in regs. In protected mode, the default
648 * address is determined by inspecting the L and D bits of the segment
649 * descriptor. In virtual-8086 mode, the default is always two bytes for both
650 * address and operand sizes.
651 *
652 * Returns:
653 *
654 * A signed 8-bit value containing the default parameters on success.
655 *
656 * -EINVAL on error.
657 */
658char insn_get_code_seg_params(struct pt_regs *regs)
659{
660 struct desc_struct *desc;
661 short sel;
662
663 if (v8086_mode(regs))
664 /* Address and operand size are both 16-bit. */
665 return INSN_CODE_SEG_PARAMS(2, 2);
666
667 sel = get_segment_selector(regs, INAT_SEG_REG_CS);
668 if (sel < 0)
669 return sel;
670
671 desc = get_desc(sel);
672 if (!desc)
673 return -EINVAL;
674
675 /*
676 * The most significant byte of the Type field of the segment descriptor
677 * determines whether a segment contains data or code. If this is a data
678 * segment, return error.
679 */
680 if (!(desc->type & BIT(3)))
681 return -EINVAL;
682
683 switch ((desc->l << 1) | desc->d) {
684 case 0: /*
685 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
686 * both 16-bit.
687 */
688 return INSN_CODE_SEG_PARAMS(2, 2);
689 case 1: /*
690 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
691 * both 32-bit.
692 */
693 return INSN_CODE_SEG_PARAMS(4, 4);
694 case 2: /*
695 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
696 * operand size is 32-bit.
697 */
698 return INSN_CODE_SEG_PARAMS(4, 8);
699 case 3: /* Invalid setting. CS.L=1, CS.D=1 */
700 /* fall through */
701 default:
702 return -EINVAL;
703 }
704}
705
706/**
Ricardo Nerie5e45f12017-10-27 13:25:38 -0700707 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
708 * @insn: Instruction containing the ModRM byte
709 * @regs: Register values as seen when entering kernel mode
710 *
711 * Returns:
712 *
713 * The register indicated by the r/m part of the ModRM byte. The
714 * register is obtained as an offset from the base of pt_regs. In specific
715 * cases, the returned value can be -EDOM to indicate that the particular value
716 * of ModRM does not refer to a register and shall be ignored.
717 */
718int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
719{
720 return get_reg_offset(insn, regs, REG_TYPE_RM);
721}
722
Ricardo Neri32542ee2017-10-27 13:25:36 -0700723/*
724 * return the address being referenced be instruction
725 * for rm=3 returning the content of the rm reg
726 * for rm!=3 calculates the address using SIB and Disp
727 */
728void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
729{
730 int addr_offset, base_offset, indx_offset;
731 unsigned long linear_addr = -1L;
732 long eff_addr, base, indx;
733 insn_byte_t sib;
734
735 insn_get_modrm(insn);
736 insn_get_sib(insn);
737 sib = insn->sib.value;
738
739 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
740 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
741 if (addr_offset < 0)
742 goto out;
743
744 eff_addr = regs_get_register(regs, addr_offset);
745 } else {
746 if (insn->sib.nbytes) {
747 /*
748 * Negative values in the base and index offset means
749 * an error when decoding the SIB byte. Except -EDOM,
750 * which means that the registers should not be used
751 * in the address computation.
752 */
753 base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
754 if (base_offset == -EDOM)
755 base = 0;
756 else if (base_offset < 0)
757 goto out;
758 else
759 base = regs_get_register(regs, base_offset);
760
761 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
762
763 if (indx_offset == -EDOM)
764 indx = 0;
765 else if (indx_offset < 0)
766 goto out;
767 else
768 indx = regs_get_register(regs, indx_offset);
769
770 eff_addr = base + indx * (1 << X86_SIB_SCALE(sib));
771 } else {
772 addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
773 if (addr_offset < 0)
774 goto out;
775
776 eff_addr = regs_get_register(regs, addr_offset);
777 }
778
779 eff_addr += insn->displacement.value;
780 }
781
782 linear_addr = (unsigned long)eff_addr;
783
784out:
785 return (void __user *)linear_addr;
786}