blob: f167cdd80fd7d810feb58fb286700ecdba02b11b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
Rusty Russell673eae82006-09-25 23:32:29 -07004#ifndef __ASSEMBLY__
Greg Ungerer95352392007-08-10 13:01:20 -07005#ifdef CONFIG_MMU
Rusty Russell673eae82006-09-25 23:32:29 -07006
Ben Hutchingsfbd71842011-02-27 05:41:35 +00007#include <linux/mm_types.h>
Paul Gortmaker187f1882011-11-23 20:12:59 -05008#include <linux/bug.h>
Toshi Kanie61ce6a2015-04-14 15:47:23 -07009#include <linux/errno.h>
Ben Hutchingsfbd71842011-02-27 05:41:35 +000010
Kirill A. Shutemov235a8f02015-04-14 15:46:17 -070011#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
12 CONFIG_PGTABLE_LEVELS
13#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
14#endif
15
Hugh Dickins6ee86302013-04-29 15:07:44 -070016/*
17 * On almost all architectures and configurations, 0 can be used as the
18 * upper ceiling to free_pgtables(): on many architectures it has the same
19 * effect as using TASK_SIZE. However, there is one configuration which
20 * must impose a more careful limit, to avoid freeing kernel pgtables.
21 */
22#ifndef USER_PGTABLES_CEILING
23#define USER_PGTABLES_CEILING 0UL
24#endif
25
Linus Torvalds1da177e2005-04-16 15:20:36 -070026#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
Andrea Arcangelie2cda322011-01-13 15:46:40 -080027extern int ptep_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pte_t *ptep,
29 pte_t entry, int dirty);
30#endif
31
32#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
33extern int pmdp_set_access_flags(struct vm_area_struct *vma,
34 unsigned long address, pmd_t *pmdp,
35 pmd_t entry, int dirty);
Linus Torvalds1da177e2005-04-16 15:20:36 -070036#endif
37
38#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
Andrea Arcangelie2cda322011-01-13 15:46:40 -080039static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
41 pte_t *ptep)
42{
43 pte_t pte = *ptep;
44 int r = 1;
45 if (!pte_young(pte))
46 r = 0;
47 else
48 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
49 return r;
50}
51#endif
52
53#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE
55static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
56 unsigned long address,
57 pmd_t *pmdp)
58{
59 pmd_t pmd = *pmdp;
60 int r = 1;
61 if (!pmd_young(pmd))
62 r = 0;
63 else
64 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
65 return r;
66}
67#else /* CONFIG_TRANSPARENT_HUGEPAGE */
68static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
69 unsigned long address,
70 pmd_t *pmdp)
71{
72 BUG();
73 return 0;
74}
75#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -070076#endif
77
78#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
Andrea Arcangelie2cda322011-01-13 15:46:40 -080079int ptep_clear_flush_young(struct vm_area_struct *vma,
80 unsigned long address, pte_t *ptep);
81#endif
82
83#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
84int pmdp_clear_flush_young(struct vm_area_struct *vma,
85 unsigned long address, pmd_t *pmdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -070086#endif
87
Linus Torvalds1da177e2005-04-16 15:20:36 -070088#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
Andrea Arcangelie2cda322011-01-13 15:46:40 -080089static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
90 unsigned long address,
91 pte_t *ptep)
92{
93 pte_t pte = *ptep;
94 pte_clear(mm, address, ptep);
95 return pte;
96}
97#endif
98
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -070099#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800100#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700101static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
102 unsigned long address,
103 pmd_t *pmdp)
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800104{
105 pmd_t pmd = *pmdp;
Catalin Marinas2d28a222012-10-08 16:32:59 -0700106 pmd_clear(pmdp);
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800107 return pmd;
Nicolas Kaiser49b24d62011-06-15 15:08:34 -0700108}
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800109#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700110#endif
111
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700112#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
Martin Schwidefskyfcbe08d62014-10-24 10:52:29 +0200113#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700114static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
Martin Schwidefskyfcbe08d62014-10-24 10:52:29 +0200115 unsigned long address, pmd_t *pmdp,
116 int full)
117{
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700118 return pmdp_huge_get_and_clear(mm, address, pmdp);
Martin Schwidefskyfcbe08d62014-10-24 10:52:29 +0200119}
120#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
121#endif
122
Zachary Amsdena6003882005-09-03 15:55:04 -0700123#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800124static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
125 unsigned long address, pte_t *ptep,
126 int full)
127{
128 pte_t pte;
129 pte = ptep_get_and_clear(mm, address, ptep);
130 return pte;
131}
Zachary Amsdena6003882005-09-03 15:55:04 -0700132#endif
133
Zachary Amsden9888a1c2006-09-30 23:29:31 -0700134/*
135 * Some architectures may be able to avoid expensive synchronization
136 * primitives when modifications are made to PTE's which are already
137 * not present, or in the process of an address space destruction.
138 */
139#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800140static inline void pte_clear_not_present_full(struct mm_struct *mm,
141 unsigned long address,
142 pte_t *ptep,
143 int full)
144{
145 pte_clear(mm, address, ptep);
146}
Zachary Amsdena6003882005-09-03 15:55:04 -0700147#endif
148
Linus Torvalds1da177e2005-04-16 15:20:36 -0700149#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800150extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
151 unsigned long address,
152 pte_t *ptep);
153#endif
154
Aneesh Kumar K.V8809aa22015-06-24 16:57:44 -0700155#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
156extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800157 unsigned long address,
158 pmd_t *pmdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700159#endif
160
161#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
Tim Schmielau8c65b4a2005-11-07 00:59:43 -0800162struct mm_struct;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
164{
165 pte_t old_pte = *ptep;
166 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
167}
168#endif
169
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800170#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
171#ifdef CONFIG_TRANSPARENT_HUGEPAGE
172static inline void pmdp_set_wrprotect(struct mm_struct *mm,
173 unsigned long address, pmd_t *pmdp)
174{
175 pmd_t old_pmd = *pmdp;
176 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
177}
178#else /* CONFIG_TRANSPARENT_HUGEPAGE */
179static inline void pmdp_set_wrprotect(struct mm_struct *mm,
180 unsigned long address, pmd_t *pmdp)
181{
182 BUG();
183}
184#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
185#endif
186
187#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
Chris Metcalf73636b12012-03-28 13:59:18 -0400188extern void pmdp_splitting_flush(struct vm_area_struct *vma,
189 unsigned long address, pmd_t *pmdp);
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800190#endif
191
Aneesh Kumar K.V15a25b22015-06-24 16:57:39 -0700192#ifndef pmdp_collapse_flush
193#ifdef CONFIG_TRANSPARENT_HUGEPAGE
Aneesh Kumar K.Vf28b6ff2015-06-24 16:57:42 -0700194extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
195 unsigned long address, pmd_t *pmdp);
Aneesh Kumar K.V15a25b22015-06-24 16:57:39 -0700196#else
197static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
198 unsigned long address,
199 pmd_t *pmdp)
200{
201 BUILD_BUG();
202 return *pmdp;
203}
204#define pmdp_collapse_flush pmdp_collapse_flush
205#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
206#endif
207
Gerald Schaefere3ebcf642012-10-08 16:30:07 -0700208#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
Aneesh Kumar K.V6b0b50b2013-06-05 17:14:02 -0700209extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
210 pgtable_t pgtable);
Gerald Schaefere3ebcf642012-10-08 16:30:07 -0700211#endif
212
213#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
Aneesh Kumar K.V6b0b50b2013-06-05 17:14:02 -0700214extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
Gerald Schaefere3ebcf642012-10-08 16:30:07 -0700215#endif
216
Gerald Schaefer46dcde72012-10-08 16:30:09 -0700217#ifndef __HAVE_ARCH_PMDP_INVALIDATE
218extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
219 pmd_t *pmdp);
220#endif
221
Linus Torvalds1da177e2005-04-16 15:20:36 -0700222#ifndef __HAVE_ARCH_PTE_SAME
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800223static inline int pte_same(pte_t pte_a, pte_t pte_b)
224{
225 return pte_val(pte_a) == pte_val(pte_b);
226}
227#endif
228
Konstantin Weitz45961722013-04-17 13:59:32 +0200229#ifndef __HAVE_ARCH_PTE_UNUSED
230/*
231 * Some architectures provide facilities to virtualization guests
232 * so that they can flag allocated pages as unused. This allows the
233 * host to transparently reclaim unused pages. This function returns
234 * whether the pte's page is unused.
235 */
236static inline int pte_unused(pte_t pte)
237{
238 return 0;
239}
240#endif
241
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800242#ifndef __HAVE_ARCH_PMD_SAME
243#ifdef CONFIG_TRANSPARENT_HUGEPAGE
244static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
245{
246 return pmd_val(pmd_a) == pmd_val(pmd_b);
247}
248#else /* CONFIG_TRANSPARENT_HUGEPAGE */
249static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
250{
251 BUG();
252 return 0;
253}
254#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700255#endif
256
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
258#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
259#endif
260
David S. Miller0b0968a2006-06-01 17:47:25 -0700261#ifndef __HAVE_ARCH_MOVE_PTE
Nick Piggin8b1f3122005-09-27 21:45:18 -0700262#define move_pte(pte, prot, old_addr, new_addr) (pte)
Nick Piggin8b1f3122005-09-27 21:45:18 -0700263#endif
264
Rik van Riel2c3cf552012-10-09 15:31:12 +0200265#ifndef pte_accessible
Rik van Riel20841402013-12-18 17:08:44 -0800266# define pte_accessible(mm, pte) ((void)(pte), 1)
Rik van Riel2c3cf552012-10-09 15:31:12 +0200267#endif
268
Shaohua Li61c77322010-08-16 09:16:55 +0800269#ifndef flush_tlb_fix_spurious_fault
270#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
271#endif
272
Paul Mundt0634a632009-06-23 13:51:19 +0200273#ifndef pgprot_noncached
274#define pgprot_noncached(prot) (prot)
275#endif
276
venkatesh.pallipadi@intel.com2520bd32008-12-18 11:41:32 -0800277#ifndef pgprot_writecombine
278#define pgprot_writecombine pgprot_noncached
279#endif
280
Toshi Kanid1b4bfb2015-06-04 18:55:18 +0200281#ifndef pgprot_writethrough
282#define pgprot_writethrough pgprot_noncached
283#endif
284
Liviu Dudau8b921ac2014-09-29 15:29:30 +0100285#ifndef pgprot_device
286#define pgprot_device pgprot_noncached
287#endif
288
Peter Feiner64e455072014-10-13 15:55:46 -0700289#ifndef pgprot_modify
290#define pgprot_modify pgprot_modify
291static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
292{
293 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
294 newprot = pgprot_noncached(newprot);
295 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
296 newprot = pgprot_writecombine(newprot);
297 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
298 newprot = pgprot_device(newprot);
299 return newprot;
300}
301#endif
302
Linus Torvalds1da177e2005-04-16 15:20:36 -0700303/*
Hugh Dickins8f6c99c2005-04-19 13:29:17 -0700304 * When walking page tables, get the address of the next boundary,
305 * or the end address of the range if that comes earlier. Although no
306 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700307 */
308
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309#define pgd_addr_end(addr, end) \
310({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
311 (__boundary - 1 < (end) - 1)? __boundary: (end); \
312})
Linus Torvalds1da177e2005-04-16 15:20:36 -0700313
314#ifndef pud_addr_end
315#define pud_addr_end(addr, end) \
316({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
317 (__boundary - 1 < (end) - 1)? __boundary: (end); \
318})
319#endif
320
321#ifndef pmd_addr_end
322#define pmd_addr_end(addr, end) \
323({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
324 (__boundary - 1 < (end) - 1)? __boundary: (end); \
325})
326#endif
327
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328/*
329 * When walking page tables, we usually want to skip any p?d_none entries;
330 * and any p?d_bad entries - reporting the error before resetting to none.
331 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
332 */
333void pgd_clear_bad(pgd_t *);
334void pud_clear_bad(pud_t *);
335void pmd_clear_bad(pmd_t *);
336
337static inline int pgd_none_or_clear_bad(pgd_t *pgd)
338{
339 if (pgd_none(*pgd))
340 return 1;
341 if (unlikely(pgd_bad(*pgd))) {
342 pgd_clear_bad(pgd);
343 return 1;
344 }
345 return 0;
346}
347
348static inline int pud_none_or_clear_bad(pud_t *pud)
349{
350 if (pud_none(*pud))
351 return 1;
352 if (unlikely(pud_bad(*pud))) {
353 pud_clear_bad(pud);
354 return 1;
355 }
356 return 0;
357}
358
359static inline int pmd_none_or_clear_bad(pmd_t *pmd)
360{
361 if (pmd_none(*pmd))
362 return 1;
363 if (unlikely(pmd_bad(*pmd))) {
364 pmd_clear_bad(pmd);
365 return 1;
366 }
367 return 0;
368}
Greg Ungerer95352392007-08-10 13:01:20 -0700369
Jeremy Fitzhardinge1ea07042008-06-16 04:30:00 -0700370static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
371 unsigned long addr,
372 pte_t *ptep)
373{
374 /*
375 * Get the current pte state, but zero it out to make it
376 * non-present, preventing the hardware from asynchronously
377 * updating it.
378 */
379 return ptep_get_and_clear(mm, addr, ptep);
380}
381
382static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
383 unsigned long addr,
384 pte_t *ptep, pte_t pte)
385{
386 /*
387 * The pte is non-present, so there's no hardware state to
388 * preserve.
389 */
390 set_pte_at(mm, addr, ptep, pte);
391}
392
393#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
394/*
395 * Start a pte protection read-modify-write transaction, which
396 * protects against asynchronous hardware modifications to the pte.
397 * The intention is not to prevent the hardware from making pte
398 * updates, but to prevent any updates it may make from being lost.
399 *
400 * This does not protect against other software modifications of the
401 * pte; the appropriate pte lock must be held over the transation.
402 *
403 * Note that this interface is intended to be batchable, meaning that
404 * ptep_modify_prot_commit may not actually update the pte, but merely
405 * queue the update to be done at some later time. The update must be
406 * actually committed before the pte lock is released, however.
407 */
408static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
409 unsigned long addr,
410 pte_t *ptep)
411{
412 return __ptep_modify_prot_start(mm, addr, ptep);
413}
414
415/*
416 * Commit an update to a pte, leaving any hardware-controlled bits in
417 * the PTE unmodified.
418 */
419static inline void ptep_modify_prot_commit(struct mm_struct *mm,
420 unsigned long addr,
421 pte_t *ptep, pte_t pte)
422{
423 __ptep_modify_prot_commit(mm, addr, ptep, pte);
424}
425#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
Sebastian Siewiorfe1a6872008-07-15 22:28:46 +0200426#endif /* CONFIG_MMU */
Jeremy Fitzhardinge1ea07042008-06-16 04:30:00 -0700427
Greg Ungerer95352392007-08-10 13:01:20 -0700428/*
429 * A facility to provide lazy MMU batching. This allows PTE updates and
430 * page invalidations to be delayed until a call to leave lazy MMU mode
431 * is issued. Some architectures may benefit from doing this, and it is
432 * beneficial for both shadow and direct mode hypervisors, which may batch
433 * the PTE updates which happen during this window. Note that using this
434 * interface requires that read hazards be removed from the code. A read
435 * hazard could result in the direct mode hypervisor case, since the actual
436 * write to the page tables may not yet have taken place, so reads though
437 * a raw PTE pointer after it has been modified are not guaranteed to be
438 * up to date. This mode can only be entered and left under the protection of
439 * the page table locks for all page tables which may be modified. In the UP
440 * case, this is required so that preemption is disabled, and in the SMP case,
441 * it must synchronize the delayed page table writes properly on other CPUs.
442 */
443#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
444#define arch_enter_lazy_mmu_mode() do {} while (0)
445#define arch_leave_lazy_mmu_mode() do {} while (0)
446#define arch_flush_lazy_mmu_mode() do {} while (0)
447#endif
448
449/*
Jeremy Fitzhardinge7fd7d832009-02-17 23:24:03 -0800450 * A facility to provide batching of the reload of page tables and
451 * other process state with the actual context switch code for
452 * paravirtualized guests. By convention, only one of the batched
453 * update (lazy) modes (CPU, MMU) should be active at any given time,
454 * entry should never be nested, and entry and exits should always be
455 * paired. This is for sanity of maintaining and reasoning about the
456 * kernel code. In this case, the exit (end of the context switch) is
457 * in architecture-specific code, and so doesn't need a generic
458 * definition.
Greg Ungerer95352392007-08-10 13:01:20 -0700459 */
Jeremy Fitzhardinge7fd7d832009-02-17 23:24:03 -0800460#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
Jeremy Fitzhardinge224101e2009-02-18 11:18:57 -0800461#define arch_start_context_switch(prev) do {} while (0)
Greg Ungerer95352392007-08-10 13:01:20 -0700462#endif
463
Pavel Emelyanov0f8975e2013-07-03 15:01:20 -0700464#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
465static inline int pte_soft_dirty(pte_t pte)
466{
467 return 0;
468}
469
470static inline int pmd_soft_dirty(pmd_t pmd)
471{
472 return 0;
473}
474
475static inline pte_t pte_mksoft_dirty(pte_t pte)
476{
477 return pte;
478}
479
480static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
481{
482 return pmd;
483}
Cyrill Gorcunov179ef712013-08-13 16:00:49 -0700484
Martin Schwidefskya7b76172015-04-22 14:20:47 +0200485static inline pte_t pte_clear_soft_dirty(pte_t pte)
486{
487 return pte;
488}
489
490static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
491{
492 return pmd;
493}
494
Cyrill Gorcunov179ef712013-08-13 16:00:49 -0700495static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
496{
497 return pte;
498}
499
500static inline int pte_swp_soft_dirty(pte_t pte)
501{
502 return 0;
503}
504
505static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
506{
507 return pte;
508}
Pavel Emelyanov0f8975e2013-07-03 15:01:20 -0700509#endif
510
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800511#ifndef __HAVE_PFNMAP_TRACKING
512/*
Suresh Siddha5180da42012-10-08 16:28:29 -0700513 * Interfaces that can be used by architecture code to keep track of
514 * memory type of pfn mappings specified by the remap_pfn_range,
515 * vm_insert_pfn.
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800516 */
Suresh Siddha5180da42012-10-08 16:28:29 -0700517
518/*
519 * track_pfn_remap is called when a _new_ pfn mapping is being established
520 * by remap_pfn_range() for physical range indicated by pfn and size.
521 */
522static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
Konstantin Khlebnikovb3b9c292012-10-08 16:28:34 -0700523 unsigned long pfn, unsigned long addr,
524 unsigned long size)
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800525{
526 return 0;
527}
528
529/*
Suresh Siddha5180da42012-10-08 16:28:29 -0700530 * track_pfn_insert is called when a _new_ single pfn is established
531 * by vm_insert_pfn().
532 */
533static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
534 unsigned long pfn)
535{
536 return 0;
537}
538
539/*
540 * track_pfn_copy is called when vma that is covering the pfnmap gets
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800541 * copied through copy_page_range().
542 */
Suresh Siddha5180da42012-10-08 16:28:29 -0700543static inline int track_pfn_copy(struct vm_area_struct *vma)
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800544{
545 return 0;
546}
547
548/*
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800549 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
550 * untrack can be called for a specific region indicated by pfn and size or
Suresh Siddha5180da42012-10-08 16:28:29 -0700551 * can be for the entire vma (in which case pfn, size are zero).
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800552 */
Suresh Siddha5180da42012-10-08 16:28:29 -0700553static inline void untrack_pfn(struct vm_area_struct *vma,
554 unsigned long pfn, unsigned long size)
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800555{
556}
557#else
Suresh Siddha5180da42012-10-08 16:28:29 -0700558extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
Konstantin Khlebnikovb3b9c292012-10-08 16:28:34 -0700559 unsigned long pfn, unsigned long addr,
560 unsigned long size);
Suresh Siddha5180da42012-10-08 16:28:29 -0700561extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
562 unsigned long pfn);
563extern int track_pfn_copy(struct vm_area_struct *vma);
564extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
565 unsigned long size);
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800566#endif
567
Kirill A. Shutemov816422a2012-12-12 13:52:36 -0800568#ifdef __HAVE_COLOR_ZERO_PAGE
569static inline int is_zero_pfn(unsigned long pfn)
570{
571 extern unsigned long zero_pfn;
572 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
573 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
574}
575
Kirill A. Shutemov2f91ec82012-12-26 03:19:55 +0300576#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
577
Kirill A. Shutemov816422a2012-12-12 13:52:36 -0800578#else
579static inline int is_zero_pfn(unsigned long pfn)
580{
581 extern unsigned long zero_pfn;
582 return pfn == zero_pfn;
583}
584
585static inline unsigned long my_zero_pfn(unsigned long addr)
586{
587 extern unsigned long zero_pfn;
588 return zero_pfn;
589}
590#endif
591
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700592#ifdef CONFIG_MMU
593
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800594#ifndef CONFIG_TRANSPARENT_HUGEPAGE
595static inline int pmd_trans_huge(pmd_t pmd)
596{
597 return 0;
598}
599static inline int pmd_trans_splitting(pmd_t pmd)
600{
601 return 0;
602}
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800603#ifndef __HAVE_ARCH_PMD_WRITE
604static inline int pmd_write(pmd_t pmd)
605{
606 BUG();
607 return 0;
608}
609#endif /* __HAVE_ARCH_PMD_WRITE */
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700610#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
611
Andrea Arcangeli26c19172012-05-29 15:06:49 -0700612#ifndef pmd_read_atomic
613static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
614{
615 /*
616 * Depend on compiler for an atomic pmd read. NOTE: this is
617 * only going to work, if the pmdval_t isn't larger than
618 * an unsigned long.
619 */
620 return *pmdp;
621}
622#endif
623
Aneesh Kumar K.Vb3084f42014-01-13 11:34:24 +0530624#ifndef pmd_move_must_withdraw
625static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
626 spinlock_t *old_pmd_ptl)
627{
628 /*
629 * With split pmd lock we also need to move preallocated
630 * PTE page table if new_pmd is on different PMD page table.
631 */
632 return new_pmd_ptl != old_pmd_ptl;
633}
634#endif
635
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700636/*
637 * This function is meant to be used by sites walking pagetables with
638 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
639 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
640 * into a null pmd and the transhuge page fault can convert a null pmd
641 * into an hugepmd or into a regular pmd (if the hugepage allocation
642 * fails). While holding the mmap_sem in read mode the pmd becomes
643 * stable and stops changing under us only if it's not null and not a
644 * transhuge pmd. When those races occurs and this function makes a
645 * difference vs the standard pmd_none_or_clear_bad, the result is
646 * undefined so behaving like if the pmd was none is safe (because it
647 * can return none anyway). The compiler level barrier() is critically
648 * important to compute the two checks atomically on the same pmdval.
Andrea Arcangeli26c19172012-05-29 15:06:49 -0700649 *
650 * For 32bit kernels with a 64bit large pmd_t this automatically takes
651 * care of reading the pmd atomically to avoid SMP race conditions
652 * against pmd_populate() when the mmap_sem is hold for reading by the
653 * caller (a special atomic read not done by "gcc" as in the generic
654 * version above, is also needed when THP is disabled because the page
655 * fault can populate the pmd from under us).
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700656 */
657static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
658{
Andrea Arcangeli26c19172012-05-29 15:06:49 -0700659 pmd_t pmdval = pmd_read_atomic(pmd);
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700660 /*
661 * The barrier will stabilize the pmdval in a register or on
662 * the stack so that it will stop changing under the code.
Andrea Arcangelie4eed032012-06-20 12:52:57 -0700663 *
664 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
665 * pmd_read_atomic is allowed to return a not atomic pmdval
666 * (for example pointing to an hugepage that has never been
667 * mapped in the pmd). The below checks will only care about
668 * the low part of the pmd with 32bit PAE x86 anyway, with the
669 * exception of pmd_none(). So the important thing is that if
670 * the low part of the pmd is found null, the high part will
671 * be also null or the pmd_none() check below would be
672 * confused.
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700673 */
674#ifdef CONFIG_TRANSPARENT_HUGEPAGE
675 barrier();
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800676#endif
Kirill A. Shutemovee536642013-12-20 15:10:03 +0200677 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700678 return 1;
679 if (unlikely(pmd_bad(pmdval))) {
Kirill A. Shutemovee536642013-12-20 15:10:03 +0200680 pmd_clear_bad(pmd);
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700681 return 1;
682 }
683 return 0;
684}
685
686/*
687 * This is a noop if Transparent Hugepage Support is not built into
688 * the kernel. Otherwise it is equivalent to
689 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
690 * places that already verified the pmd is not none and they want to
691 * walk ptes while holding the mmap sem in read mode (write mode don't
692 * need this). If THP is not enabled, the pmd can't go away under the
693 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
694 * run a pmd_trans_unstable before walking the ptes after
695 * split_huge_page_pmd returns (because it may have run when the pmd
696 * become null, but then a page fault can map in a THP and not a
697 * regular page).
698 */
699static inline int pmd_trans_unstable(pmd_t *pmd)
700{
701#ifdef CONFIG_TRANSPARENT_HUGEPAGE
702 return pmd_none_or_trans_huge_or_clear_bad(pmd);
703#else
704 return 0;
705#endif
706}
707
Mel Gormane7bb4b6d2015-02-12 14:58:19 -0800708#ifndef CONFIG_NUMA_BALANCING
709/*
710 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
711 * the only case the kernel cares is for NUMA balancing and is only ever set
712 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
713 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
714 * is the responsibility of the caller to distinguish between PROT_NONE
715 * protections and NUMA hinting fault protections.
716 */
717static inline int pte_protnone(pte_t pte)
718{
719 return 0;
720}
721
722static inline int pmd_protnone(pmd_t pmd)
723{
724 return 0;
725}
726#endif /* CONFIG_NUMA_BALANCING */
727
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700728#endif /* CONFIG_MMU */
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800729
Toshi Kanie61ce6a2015-04-14 15:47:23 -0700730#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
731int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
732int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
Toshi Kanib9820d82015-04-14 15:47:26 -0700733int pud_clear_huge(pud_t *pud);
734int pmd_clear_huge(pmd_t *pmd);
Toshi Kanie61ce6a2015-04-14 15:47:23 -0700735#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
736static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
737{
738 return 0;
739}
740static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
741{
742 return 0;
743}
Toshi Kanib9820d82015-04-14 15:47:26 -0700744static inline int pud_clear_huge(pud_t *pud)
745{
746 return 0;
747}
748static inline int pmd_clear_huge(pmd_t *pmd)
749{
750 return 0;
751}
Toshi Kanie61ce6a2015-04-14 15:47:23 -0700752#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
753
Linus Torvalds1da177e2005-04-16 15:20:36 -0700754#endif /* !__ASSEMBLY__ */
755
Al Viro40d158e2013-05-11 12:13:10 -0400756#ifndef io_remap_pfn_range
757#define io_remap_pfn_range remap_pfn_range
758#endif
759
Linus Torvalds1da177e2005-04-16 15:20:36 -0700760#endif /* _ASM_GENERIC_PGTABLE_H */