blob: 044939f21c166c980ce309fc54fc7b167e2dda63 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
Rusty Russell673eae82006-09-25 23:32:29 -07004#ifndef __ASSEMBLY__
Greg Ungerer95352392007-08-10 13:01:20 -07005#ifdef CONFIG_MMU
Rusty Russell673eae82006-09-25 23:32:29 -07006
Ben Hutchingsfbd71842011-02-27 05:41:35 +00007#include <linux/mm_types.h>
Paul Gortmaker187f1882011-11-23 20:12:59 -05008#include <linux/bug.h>
Ben Hutchingsfbd71842011-02-27 05:41:35 +00009
Linus Torvalds1da177e2005-04-16 15:20:36 -070010#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
Andrea Arcangelie2cda322011-01-13 15:46:40 -080011extern int ptep_set_access_flags(struct vm_area_struct *vma,
12 unsigned long address, pte_t *ptep,
13 pte_t entry, int dirty);
14#endif
15
16#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17extern int pmdp_set_access_flags(struct vm_area_struct *vma,
18 unsigned long address, pmd_t *pmdp,
19 pmd_t entry, int dirty);
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#endif
21
22#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
Andrea Arcangelie2cda322011-01-13 15:46:40 -080023static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
24 unsigned long address,
25 pte_t *ptep)
26{
27 pte_t pte = *ptep;
28 int r = 1;
29 if (!pte_young(pte))
30 r = 0;
31 else
32 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
33 return r;
34}
35#endif
36
37#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38#ifdef CONFIG_TRANSPARENT_HUGEPAGE
39static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
41 pmd_t *pmdp)
42{
43 pmd_t pmd = *pmdp;
44 int r = 1;
45 if (!pmd_young(pmd))
46 r = 0;
47 else
48 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
49 return r;
50}
51#else /* CONFIG_TRANSPARENT_HUGEPAGE */
52static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
53 unsigned long address,
54 pmd_t *pmdp)
55{
56 BUG();
57 return 0;
58}
59#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -070060#endif
61
62#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
Andrea Arcangelie2cda322011-01-13 15:46:40 -080063int ptep_clear_flush_young(struct vm_area_struct *vma,
64 unsigned long address, pte_t *ptep);
65#endif
66
67#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68int pmdp_clear_flush_young(struct vm_area_struct *vma,
69 unsigned long address, pmd_t *pmdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -070070#endif
71
Linus Torvalds1da177e2005-04-16 15:20:36 -070072#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
Andrea Arcangelie2cda322011-01-13 15:46:40 -080073static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
74 unsigned long address,
75 pte_t *ptep)
76{
77 pte_t pte = *ptep;
78 pte_clear(mm, address, ptep);
79 return pte;
80}
81#endif
82
83#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84#ifdef CONFIG_TRANSPARENT_HUGEPAGE
85static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
86 unsigned long address,
87 pmd_t *pmdp)
88{
89 pmd_t pmd = *pmdp;
90 pmd_clear(mm, address, pmdp);
91 return pmd;
Nicolas Kaiser49b24d62011-06-15 15:08:34 -070092}
Andrea Arcangelie2cda322011-01-13 15:46:40 -080093#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -070094#endif
95
Zachary Amsdena6003882005-09-03 15:55:04 -070096#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
Andrea Arcangelie2cda322011-01-13 15:46:40 -080097static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
98 unsigned long address, pte_t *ptep,
99 int full)
100{
101 pte_t pte;
102 pte = ptep_get_and_clear(mm, address, ptep);
103 return pte;
104}
Zachary Amsdena6003882005-09-03 15:55:04 -0700105#endif
106
Zachary Amsden9888a1c2006-09-30 23:29:31 -0700107/*
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
111 */
112#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800113static inline void pte_clear_not_present_full(struct mm_struct *mm,
114 unsigned long address,
115 pte_t *ptep,
116 int full)
117{
118 pte_clear(mm, address, ptep);
119}
Zachary Amsdena6003882005-09-03 15:55:04 -0700120#endif
121
Linus Torvalds1da177e2005-04-16 15:20:36 -0700122#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800123extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124 unsigned long address,
125 pte_t *ptep);
126#endif
127
128#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130 unsigned long address,
131 pmd_t *pmdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132#endif
133
134#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
Tim Schmielau8c65b4a2005-11-07 00:59:43 -0800135struct mm_struct;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700136static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
137{
138 pte_t old_pte = *ptep;
139 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
140}
141#endif
142
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800143#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144#ifdef CONFIG_TRANSPARENT_HUGEPAGE
145static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146 unsigned long address, pmd_t *pmdp)
147{
148 pmd_t old_pmd = *pmdp;
149 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
150}
151#else /* CONFIG_TRANSPARENT_HUGEPAGE */
152static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153 unsigned long address, pmd_t *pmdp)
154{
155 BUG();
156}
157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158#endif
159
160#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
Chris Metcalf73636b12012-03-28 13:59:18 -0400161extern void pmdp_splitting_flush(struct vm_area_struct *vma,
162 unsigned long address, pmd_t *pmdp);
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800163#endif
164
Gerald Schaefere3ebcf642012-10-08 16:30:07 -0700165#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
166extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
167#endif
168
169#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
170extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
171#endif
172
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173#ifndef __HAVE_ARCH_PTE_SAME
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800174static inline int pte_same(pte_t pte_a, pte_t pte_b)
175{
176 return pte_val(pte_a) == pte_val(pte_b);
177}
178#endif
179
180#ifndef __HAVE_ARCH_PMD_SAME
181#ifdef CONFIG_TRANSPARENT_HUGEPAGE
182static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
183{
184 return pmd_val(pmd_a) == pmd_val(pmd_b);
185}
186#else /* CONFIG_TRANSPARENT_HUGEPAGE */
187static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
188{
189 BUG();
190 return 0;
191}
192#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700193#endif
194
Martin Schwidefsky2d425522011-05-23 10:24:39 +0200195#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
196#define page_test_and_clear_dirty(pfn, mapped) (0)
Martin Schwidefsky6c210482007-04-27 16:01:57 +0200197#endif
198
Martin Schwidefsky2d425522011-05-23 10:24:39 +0200199#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
Abhijit Karmarkarb4955ce2005-06-21 17:15:13 -0700200#define pte_maybe_dirty(pte) pte_dirty(pte)
201#else
202#define pte_maybe_dirty(pte) (1)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700203#endif
204
205#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
Martin Schwidefsky2d425522011-05-23 10:24:39 +0200206#define page_test_and_clear_young(pfn) (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700207#endif
208
209#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
210#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
211#endif
212
David S. Miller0b0968a2006-06-01 17:47:25 -0700213#ifndef __HAVE_ARCH_MOVE_PTE
Nick Piggin8b1f3122005-09-27 21:45:18 -0700214#define move_pte(pte, prot, old_addr, new_addr) (pte)
Nick Piggin8b1f3122005-09-27 21:45:18 -0700215#endif
216
Shaohua Li61c77322010-08-16 09:16:55 +0800217#ifndef flush_tlb_fix_spurious_fault
218#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
219#endif
220
Paul Mundt0634a632009-06-23 13:51:19 +0200221#ifndef pgprot_noncached
222#define pgprot_noncached(prot) (prot)
223#endif
224
venkatesh.pallipadi@intel.com2520bd32008-12-18 11:41:32 -0800225#ifndef pgprot_writecombine
226#define pgprot_writecombine pgprot_noncached
227#endif
228
Linus Torvalds1da177e2005-04-16 15:20:36 -0700229/*
Hugh Dickins8f6c99c2005-04-19 13:29:17 -0700230 * When walking page tables, get the address of the next boundary,
231 * or the end address of the range if that comes earlier. Although no
232 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700233 */
234
Linus Torvalds1da177e2005-04-16 15:20:36 -0700235#define pgd_addr_end(addr, end) \
236({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
237 (__boundary - 1 < (end) - 1)? __boundary: (end); \
238})
Linus Torvalds1da177e2005-04-16 15:20:36 -0700239
240#ifndef pud_addr_end
241#define pud_addr_end(addr, end) \
242({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
243 (__boundary - 1 < (end) - 1)? __boundary: (end); \
244})
245#endif
246
247#ifndef pmd_addr_end
248#define pmd_addr_end(addr, end) \
249({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
250 (__boundary - 1 < (end) - 1)? __boundary: (end); \
251})
252#endif
253
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254/*
255 * When walking page tables, we usually want to skip any p?d_none entries;
256 * and any p?d_bad entries - reporting the error before resetting to none.
257 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
258 */
259void pgd_clear_bad(pgd_t *);
260void pud_clear_bad(pud_t *);
261void pmd_clear_bad(pmd_t *);
262
263static inline int pgd_none_or_clear_bad(pgd_t *pgd)
264{
265 if (pgd_none(*pgd))
266 return 1;
267 if (unlikely(pgd_bad(*pgd))) {
268 pgd_clear_bad(pgd);
269 return 1;
270 }
271 return 0;
272}
273
274static inline int pud_none_or_clear_bad(pud_t *pud)
275{
276 if (pud_none(*pud))
277 return 1;
278 if (unlikely(pud_bad(*pud))) {
279 pud_clear_bad(pud);
280 return 1;
281 }
282 return 0;
283}
284
285static inline int pmd_none_or_clear_bad(pmd_t *pmd)
286{
287 if (pmd_none(*pmd))
288 return 1;
289 if (unlikely(pmd_bad(*pmd))) {
290 pmd_clear_bad(pmd);
291 return 1;
292 }
293 return 0;
294}
Greg Ungerer95352392007-08-10 13:01:20 -0700295
Jeremy Fitzhardinge1ea07042008-06-16 04:30:00 -0700296static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
297 unsigned long addr,
298 pte_t *ptep)
299{
300 /*
301 * Get the current pte state, but zero it out to make it
302 * non-present, preventing the hardware from asynchronously
303 * updating it.
304 */
305 return ptep_get_and_clear(mm, addr, ptep);
306}
307
308static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
309 unsigned long addr,
310 pte_t *ptep, pte_t pte)
311{
312 /*
313 * The pte is non-present, so there's no hardware state to
314 * preserve.
315 */
316 set_pte_at(mm, addr, ptep, pte);
317}
318
319#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
320/*
321 * Start a pte protection read-modify-write transaction, which
322 * protects against asynchronous hardware modifications to the pte.
323 * The intention is not to prevent the hardware from making pte
324 * updates, but to prevent any updates it may make from being lost.
325 *
326 * This does not protect against other software modifications of the
327 * pte; the appropriate pte lock must be held over the transation.
328 *
329 * Note that this interface is intended to be batchable, meaning that
330 * ptep_modify_prot_commit may not actually update the pte, but merely
331 * queue the update to be done at some later time. The update must be
332 * actually committed before the pte lock is released, however.
333 */
334static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
335 unsigned long addr,
336 pte_t *ptep)
337{
338 return __ptep_modify_prot_start(mm, addr, ptep);
339}
340
341/*
342 * Commit an update to a pte, leaving any hardware-controlled bits in
343 * the PTE unmodified.
344 */
345static inline void ptep_modify_prot_commit(struct mm_struct *mm,
346 unsigned long addr,
347 pte_t *ptep, pte_t pte)
348{
349 __ptep_modify_prot_commit(mm, addr, ptep, pte);
350}
351#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
Sebastian Siewiorfe1a6872008-07-15 22:28:46 +0200352#endif /* CONFIG_MMU */
Jeremy Fitzhardinge1ea07042008-06-16 04:30:00 -0700353
Greg Ungerer95352392007-08-10 13:01:20 -0700354/*
355 * A facility to provide lazy MMU batching. This allows PTE updates and
356 * page invalidations to be delayed until a call to leave lazy MMU mode
357 * is issued. Some architectures may benefit from doing this, and it is
358 * beneficial for both shadow and direct mode hypervisors, which may batch
359 * the PTE updates which happen during this window. Note that using this
360 * interface requires that read hazards be removed from the code. A read
361 * hazard could result in the direct mode hypervisor case, since the actual
362 * write to the page tables may not yet have taken place, so reads though
363 * a raw PTE pointer after it has been modified are not guaranteed to be
364 * up to date. This mode can only be entered and left under the protection of
365 * the page table locks for all page tables which may be modified. In the UP
366 * case, this is required so that preemption is disabled, and in the SMP case,
367 * it must synchronize the delayed page table writes properly on other CPUs.
368 */
369#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
370#define arch_enter_lazy_mmu_mode() do {} while (0)
371#define arch_leave_lazy_mmu_mode() do {} while (0)
372#define arch_flush_lazy_mmu_mode() do {} while (0)
373#endif
374
375/*
Jeremy Fitzhardinge7fd7d832009-02-17 23:24:03 -0800376 * A facility to provide batching of the reload of page tables and
377 * other process state with the actual context switch code for
378 * paravirtualized guests. By convention, only one of the batched
379 * update (lazy) modes (CPU, MMU) should be active at any given time,
380 * entry should never be nested, and entry and exits should always be
381 * paired. This is for sanity of maintaining and reasoning about the
382 * kernel code. In this case, the exit (end of the context switch) is
383 * in architecture-specific code, and so doesn't need a generic
384 * definition.
Greg Ungerer95352392007-08-10 13:01:20 -0700385 */
Jeremy Fitzhardinge7fd7d832009-02-17 23:24:03 -0800386#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
Jeremy Fitzhardinge224101e2009-02-18 11:18:57 -0800387#define arch_start_context_switch(prev) do {} while (0)
Greg Ungerer95352392007-08-10 13:01:20 -0700388#endif
389
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800390#ifndef __HAVE_PFNMAP_TRACKING
391/*
Suresh Siddha5180da42012-10-08 16:28:29 -0700392 * Interfaces that can be used by architecture code to keep track of
393 * memory type of pfn mappings specified by the remap_pfn_range,
394 * vm_insert_pfn.
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800395 */
Suresh Siddha5180da42012-10-08 16:28:29 -0700396
397/*
398 * track_pfn_remap is called when a _new_ pfn mapping is being established
399 * by remap_pfn_range() for physical range indicated by pfn and size.
400 */
401static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
Konstantin Khlebnikovb3b9c292012-10-08 16:28:34 -0700402 unsigned long pfn, unsigned long addr,
403 unsigned long size)
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800404{
405 return 0;
406}
407
408/*
Suresh Siddha5180da42012-10-08 16:28:29 -0700409 * track_pfn_insert is called when a _new_ single pfn is established
410 * by vm_insert_pfn().
411 */
412static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
413 unsigned long pfn)
414{
415 return 0;
416}
417
418/*
419 * track_pfn_copy is called when vma that is covering the pfnmap gets
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800420 * copied through copy_page_range().
421 */
Suresh Siddha5180da42012-10-08 16:28:29 -0700422static inline int track_pfn_copy(struct vm_area_struct *vma)
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800423{
424 return 0;
425}
426
427/*
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800428 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
429 * untrack can be called for a specific region indicated by pfn and size or
Suresh Siddha5180da42012-10-08 16:28:29 -0700430 * can be for the entire vma (in which case pfn, size are zero).
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800431 */
Suresh Siddha5180da42012-10-08 16:28:29 -0700432static inline void untrack_pfn(struct vm_area_struct *vma,
433 unsigned long pfn, unsigned long size)
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800434{
435}
436#else
Suresh Siddha5180da42012-10-08 16:28:29 -0700437extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
Konstantin Khlebnikovb3b9c292012-10-08 16:28:34 -0700438 unsigned long pfn, unsigned long addr,
439 unsigned long size);
Suresh Siddha5180da42012-10-08 16:28:29 -0700440extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
441 unsigned long pfn);
442extern int track_pfn_copy(struct vm_area_struct *vma);
443extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
444 unsigned long size);
venkatesh.pallipadi@intel.com34801ba2008-12-19 13:47:29 -0800445#endif
446
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700447#ifdef CONFIG_MMU
448
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800449#ifndef CONFIG_TRANSPARENT_HUGEPAGE
450static inline int pmd_trans_huge(pmd_t pmd)
451{
452 return 0;
453}
454static inline int pmd_trans_splitting(pmd_t pmd)
455{
456 return 0;
457}
Andrea Arcangelie2cda322011-01-13 15:46:40 -0800458#ifndef __HAVE_ARCH_PMD_WRITE
459static inline int pmd_write(pmd_t pmd)
460{
461 BUG();
462 return 0;
463}
464#endif /* __HAVE_ARCH_PMD_WRITE */
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700465#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
466
Andrea Arcangeli26c19172012-05-29 15:06:49 -0700467#ifndef pmd_read_atomic
468static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
469{
470 /*
471 * Depend on compiler for an atomic pmd read. NOTE: this is
472 * only going to work, if the pmdval_t isn't larger than
473 * an unsigned long.
474 */
475 return *pmdp;
476}
477#endif
478
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700479/*
480 * This function is meant to be used by sites walking pagetables with
481 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
482 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
483 * into a null pmd and the transhuge page fault can convert a null pmd
484 * into an hugepmd or into a regular pmd (if the hugepage allocation
485 * fails). While holding the mmap_sem in read mode the pmd becomes
486 * stable and stops changing under us only if it's not null and not a
487 * transhuge pmd. When those races occurs and this function makes a
488 * difference vs the standard pmd_none_or_clear_bad, the result is
489 * undefined so behaving like if the pmd was none is safe (because it
490 * can return none anyway). The compiler level barrier() is critically
491 * important to compute the two checks atomically on the same pmdval.
Andrea Arcangeli26c19172012-05-29 15:06:49 -0700492 *
493 * For 32bit kernels with a 64bit large pmd_t this automatically takes
494 * care of reading the pmd atomically to avoid SMP race conditions
495 * against pmd_populate() when the mmap_sem is hold for reading by the
496 * caller (a special atomic read not done by "gcc" as in the generic
497 * version above, is also needed when THP is disabled because the page
498 * fault can populate the pmd from under us).
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700499 */
500static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
501{
Andrea Arcangeli26c19172012-05-29 15:06:49 -0700502 pmd_t pmdval = pmd_read_atomic(pmd);
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700503 /*
504 * The barrier will stabilize the pmdval in a register or on
505 * the stack so that it will stop changing under the code.
Andrea Arcangelie4eed032012-06-20 12:52:57 -0700506 *
507 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
508 * pmd_read_atomic is allowed to return a not atomic pmdval
509 * (for example pointing to an hugepage that has never been
510 * mapped in the pmd). The below checks will only care about
511 * the low part of the pmd with 32bit PAE x86 anyway, with the
512 * exception of pmd_none(). So the important thing is that if
513 * the low part of the pmd is found null, the high part will
514 * be also null or the pmd_none() check below would be
515 * confused.
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700516 */
517#ifdef CONFIG_TRANSPARENT_HUGEPAGE
518 barrier();
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800519#endif
Andrea Arcangeli1a5a9902012-03-21 16:33:42 -0700520 if (pmd_none(pmdval))
521 return 1;
522 if (unlikely(pmd_bad(pmdval))) {
523 if (!pmd_trans_huge(pmdval))
524 pmd_clear_bad(pmd);
525 return 1;
526 }
527 return 0;
528}
529
530/*
531 * This is a noop if Transparent Hugepage Support is not built into
532 * the kernel. Otherwise it is equivalent to
533 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
534 * places that already verified the pmd is not none and they want to
535 * walk ptes while holding the mmap sem in read mode (write mode don't
536 * need this). If THP is not enabled, the pmd can't go away under the
537 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
538 * run a pmd_trans_unstable before walking the ptes after
539 * split_huge_page_pmd returns (because it may have run when the pmd
540 * become null, but then a page fault can map in a THP and not a
541 * regular page).
542 */
543static inline int pmd_trans_unstable(pmd_t *pmd)
544{
545#ifdef CONFIG_TRANSPARENT_HUGEPAGE
546 return pmd_none_or_trans_huge_or_clear_bad(pmd);
547#else
548 return 0;
549#endif
550}
551
552#endif /* CONFIG_MMU */
Andrea Arcangeli5f6e8da2011-01-13 15:46:40 -0800553
Linus Torvalds1da177e2005-04-16 15:20:36 -0700554#endif /* !__ASSEMBLY__ */
555
556#endif /* _ASM_GENERIC_PGTABLE_H */