blob: 969531c05b13a36fa7d7ece9f822b1edf124f352 [file] [log] [blame]
Suman Anna6dedbd12020-10-02 18:42:32 -05001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TI K3 R5F (MCU) Remote Processor driver
4 *
5 * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/
6 * Suman Anna <s-anna@ti.com>
7 */
8
9#include <linux/dma-mapping.h>
10#include <linux/err.h>
11#include <linux/interrupt.h>
12#include <linux/kernel.h>
13#include <linux/mailbox_client.h>
14#include <linux/module.h>
15#include <linux/of_address.h>
16#include <linux/of_device.h>
17#include <linux/of_reserved_mem.h>
18#include <linux/omap-mailbox.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/remoteproc.h>
22#include <linux/reset.h>
23#include <linux/slab.h>
24
25#include "omap_remoteproc.h"
26#include "remoteproc_internal.h"
27#include "ti_sci_proc.h"
28
29/* This address can either be for ATCM or BTCM with the other at address 0x0 */
30#define K3_R5_TCM_DEV_ADDR 0x41010000
31
32/* R5 TI-SCI Processor Configuration Flags */
33#define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001
34#define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002
35#define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100
36#define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200
37#define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400
38#define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800
39#define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000
40#define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000
Suman Anna7508ea12020-11-18 19:05:30 -060041/* Available from J7200 SoCs onwards */
42#define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000
Suman Annaee99ee72021-03-27 09:31:17 -050043/* Applicable to only AM64x SoCs */
44#define PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE 0x00008000
Suman Anna6dedbd12020-10-02 18:42:32 -050045
46/* R5 TI-SCI Processor Control Flags */
47#define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001
48
49/* R5 TI-SCI Processor Status Flags */
50#define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001
51#define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002
52#define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004
53#define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100
Suman Annaee99ee72021-03-27 09:31:17 -050054/* Applicable to only AM64x SoCs */
55#define PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY 0x00000200
Suman Anna6dedbd12020-10-02 18:42:32 -050056
57/**
58 * struct k3_r5_mem - internal memory structure
59 * @cpu_addr: MPU virtual address of the memory region
60 * @bus_addr: Bus address used to access the memory region
61 * @dev_addr: Device address from remoteproc view
62 * @size: Size of the memory region
63 */
64struct k3_r5_mem {
65 void __iomem *cpu_addr;
66 phys_addr_t bus_addr;
67 u32 dev_addr;
68 size_t size;
69};
70
Suman Annaee99ee72021-03-27 09:31:17 -050071/*
72 * All cluster mode values are not applicable on all SoCs. The following
73 * are the modes supported on various SoCs:
74 * Split mode : AM65x, J721E, J7200 and AM64x SoCs
75 * LockStep mode : AM65x, J721E and J7200 SoCs
76 * Single-CPU mode : AM64x SoCs only
77 */
Suman Anna6dedbd12020-10-02 18:42:32 -050078enum cluster_mode {
79 CLUSTER_MODE_SPLIT = 0,
80 CLUSTER_MODE_LOCKSTEP,
Suman Annaee99ee72021-03-27 09:31:17 -050081 CLUSTER_MODE_SINGLECPU,
Suman Anna6dedbd12020-10-02 18:42:32 -050082};
83
84/**
Suman Anna7508ea12020-11-18 19:05:30 -060085 * struct k3_r5_soc_data - match data to handle SoC variations
Suman Annac3c21b32020-11-18 19:05:31 -060086 * @tcm_is_double: flag to denote the larger unified TCMs in certain modes
Suman Anna7508ea12020-11-18 19:05:30 -060087 * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC
Suman Annaee99ee72021-03-27 09:31:17 -050088 * @single_cpu_mode: flag to denote if SoC/IP supports Single-CPU mode
Suman Anna7508ea12020-11-18 19:05:30 -060089 */
90struct k3_r5_soc_data {
Suman Annac3c21b32020-11-18 19:05:31 -060091 bool tcm_is_double;
Suman Anna7508ea12020-11-18 19:05:30 -060092 bool tcm_ecc_autoinit;
Suman Annaee99ee72021-03-27 09:31:17 -050093 bool single_cpu_mode;
Suman Anna7508ea12020-11-18 19:05:30 -060094};
95
96/**
Suman Anna6dedbd12020-10-02 18:42:32 -050097 * struct k3_r5_cluster - K3 R5F Cluster structure
98 * @dev: cached device pointer
99 * @mode: Mode to configure the Cluster - Split or LockStep
100 * @cores: list of R5 cores within the cluster
Suman Anna7508ea12020-11-18 19:05:30 -0600101 * @soc_data: SoC-specific feature data for a R5FSS
Suman Anna6dedbd12020-10-02 18:42:32 -0500102 */
103struct k3_r5_cluster {
104 struct device *dev;
105 enum cluster_mode mode;
106 struct list_head cores;
Suman Anna7508ea12020-11-18 19:05:30 -0600107 const struct k3_r5_soc_data *soc_data;
Suman Anna6dedbd12020-10-02 18:42:32 -0500108};
109
110/**
111 * struct k3_r5_core - K3 R5 core structure
112 * @elem: linked list item
113 * @dev: cached device pointer
114 * @rproc: rproc handle representing this core
115 * @mem: internal memory regions data
Suman Annaea47c682020-10-02 18:42:34 -0500116 * @sram: on-chip SRAM memory regions data
Suman Anna6dedbd12020-10-02 18:42:32 -0500117 * @num_mems: number of internal memory regions
Suman Annaea47c682020-10-02 18:42:34 -0500118 * @num_sram: number of on-chip SRAM memory regions
Suman Anna6dedbd12020-10-02 18:42:32 -0500119 * @reset: reset control handle
120 * @tsp: TI-SCI processor control handle
121 * @ti_sci: TI-SCI handle
122 * @ti_sci_id: TI-SCI device identifier
123 * @atcm_enable: flag to control ATCM enablement
124 * @btcm_enable: flag to control BTCM enablement
125 * @loczrama: flag to dictate which TCM is at device address 0x0
126 */
127struct k3_r5_core {
128 struct list_head elem;
129 struct device *dev;
130 struct rproc *rproc;
131 struct k3_r5_mem *mem;
Suman Annaea47c682020-10-02 18:42:34 -0500132 struct k3_r5_mem *sram;
Suman Anna6dedbd12020-10-02 18:42:32 -0500133 int num_mems;
Suman Annaea47c682020-10-02 18:42:34 -0500134 int num_sram;
Suman Anna6dedbd12020-10-02 18:42:32 -0500135 struct reset_control *reset;
136 struct ti_sci_proc *tsp;
137 const struct ti_sci_handle *ti_sci;
138 u32 ti_sci_id;
139 u32 atcm_enable;
140 u32 btcm_enable;
141 u32 loczrama;
142};
143
144/**
145 * struct k3_r5_rproc - K3 remote processor state
146 * @dev: cached device pointer
147 * @cluster: cached pointer to parent cluster structure
148 * @mbox: mailbox channel handle
149 * @client: mailbox client to request the mailbox channel
150 * @rproc: rproc handle
151 * @core: cached pointer to r5 core structure being used
152 * @rmem: reserved memory regions data
153 * @num_rmems: number of reserved memory regions
154 */
155struct k3_r5_rproc {
156 struct device *dev;
157 struct k3_r5_cluster *cluster;
158 struct mbox_chan *mbox;
159 struct mbox_client client;
160 struct rproc *rproc;
161 struct k3_r5_core *core;
162 struct k3_r5_mem *rmem;
163 int num_rmems;
164};
165
166/**
167 * k3_r5_rproc_mbox_callback() - inbound mailbox message handler
168 * @client: mailbox client pointer used for requesting the mailbox channel
169 * @data: mailbox payload
170 *
171 * This handler is invoked by the OMAP mailbox driver whenever a mailbox
172 * message is received. Usually, the mailbox payload simply contains
173 * the index of the virtqueue that is kicked by the remote processor,
174 * and we let remoteproc core handle it.
175 *
176 * In addition to virtqueue indices, we also have some out-of-band values
177 * that indicate different events. Those values are deliberately very
178 * large so they don't coincide with virtqueue indices.
179 */
180static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data)
181{
182 struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc,
183 client);
184 struct device *dev = kproc->rproc->dev.parent;
185 const char *name = kproc->rproc->name;
186 u32 msg = omap_mbox_message(data);
187
188 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
189
190 switch (msg) {
191 case RP_MBOX_CRASH:
192 /*
193 * remoteproc detected an exception, but error recovery is not
194 * supported. So, just log this for now
195 */
196 dev_err(dev, "K3 R5F rproc %s crashed\n", name);
197 break;
198 case RP_MBOX_ECHO_REPLY:
199 dev_info(dev, "received echo reply from %s\n", name);
200 break;
201 default:
202 /* silently handle all other valid messages */
203 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
204 return;
205 if (msg > kproc->rproc->max_notifyid) {
206 dev_dbg(dev, "dropping unknown message 0x%x", msg);
207 return;
208 }
209 /* msg contains the index of the triggered vring */
210 if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE)
211 dev_dbg(dev, "no message was found in vqid %d\n", msg);
212 }
213}
214
215/* kick a virtqueue */
216static void k3_r5_rproc_kick(struct rproc *rproc, int vqid)
217{
218 struct k3_r5_rproc *kproc = rproc->priv;
219 struct device *dev = rproc->dev.parent;
220 mbox_msg_t msg = (mbox_msg_t)vqid;
221 int ret;
222
223 /* send the index of the triggered virtqueue in the mailbox payload */
224 ret = mbox_send_message(kproc->mbox, (void *)msg);
225 if (ret < 0)
226 dev_err(dev, "failed to send mailbox message, status = %d\n",
227 ret);
228}
229
230static int k3_r5_split_reset(struct k3_r5_core *core)
231{
232 int ret;
233
234 ret = reset_control_assert(core->reset);
235 if (ret) {
236 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
237 ret);
238 return ret;
239 }
240
241 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
242 core->ti_sci_id);
243 if (ret) {
244 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
245 ret);
246 if (reset_control_deassert(core->reset))
247 dev_warn(core->dev, "local-reset deassert back failed\n");
248 }
249
250 return ret;
251}
252
253static int k3_r5_split_release(struct k3_r5_core *core)
254{
255 int ret;
256
257 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
258 core->ti_sci_id);
259 if (ret) {
260 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
261 ret);
262 return ret;
263 }
264
265 ret = reset_control_deassert(core->reset);
266 if (ret) {
267 dev_err(core->dev, "local-reset deassert failed, ret = %d\n",
268 ret);
269 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
270 core->ti_sci_id))
271 dev_warn(core->dev, "module-reset assert back failed\n");
272 }
273
274 return ret;
275}
276
277static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster)
278{
279 struct k3_r5_core *core;
280 int ret;
281
282 /* assert local reset on all applicable cores */
283 list_for_each_entry(core, &cluster->cores, elem) {
284 ret = reset_control_assert(core->reset);
285 if (ret) {
286 dev_err(core->dev, "local-reset assert failed, ret = %d\n",
287 ret);
288 core = list_prev_entry(core, elem);
289 goto unroll_local_reset;
290 }
291 }
292
293 /* disable PSC modules on all applicable cores */
294 list_for_each_entry(core, &cluster->cores, elem) {
295 ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
296 core->ti_sci_id);
297 if (ret) {
298 dev_err(core->dev, "module-reset assert failed, ret = %d\n",
299 ret);
300 goto unroll_module_reset;
301 }
302 }
303
304 return 0;
305
306unroll_module_reset:
307 list_for_each_entry_continue_reverse(core, &cluster->cores, elem) {
308 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
309 core->ti_sci_id))
310 dev_warn(core->dev, "module-reset assert back failed\n");
311 }
312 core = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
313unroll_local_reset:
314 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
315 if (reset_control_deassert(core->reset))
316 dev_warn(core->dev, "local-reset deassert back failed\n");
317 }
318
319 return ret;
320}
321
322static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster)
323{
324 struct k3_r5_core *core;
325 int ret;
326
327 /* enable PSC modules on all applicable cores */
328 list_for_each_entry_reverse(core, &cluster->cores, elem) {
329 ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci,
330 core->ti_sci_id);
331 if (ret) {
332 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
333 ret);
334 core = list_next_entry(core, elem);
335 goto unroll_module_reset;
336 }
337 }
338
339 /* deassert local reset on all applicable cores */
340 list_for_each_entry_reverse(core, &cluster->cores, elem) {
341 ret = reset_control_deassert(core->reset);
342 if (ret) {
343 dev_err(core->dev, "module-reset deassert failed, ret = %d\n",
344 ret);
345 goto unroll_local_reset;
346 }
347 }
348
349 return 0;
350
351unroll_local_reset:
352 list_for_each_entry_continue(core, &cluster->cores, elem) {
353 if (reset_control_assert(core->reset))
354 dev_warn(core->dev, "local-reset assert back failed\n");
355 }
356 core = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
357unroll_module_reset:
358 list_for_each_entry_from(core, &cluster->cores, elem) {
359 if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci,
360 core->ti_sci_id))
361 dev_warn(core->dev, "module-reset assert back failed\n");
362 }
363
364 return ret;
365}
366
367static inline int k3_r5_core_halt(struct k3_r5_core *core)
368{
369 return ti_sci_proc_set_control(core->tsp,
370 PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0);
371}
372
373static inline int k3_r5_core_run(struct k3_r5_core *core)
374{
375 return ti_sci_proc_set_control(core->tsp,
376 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT);
377}
378
379/*
380 * The R5F cores have controls for both a reset and a halt/run. The code
381 * execution from DDR requires the initial boot-strapping code to be run
382 * from the internal TCMs. This function is used to release the resets on
383 * applicable cores to allow loading into the TCMs. The .prepare() ops is
384 * invoked by remoteproc core before any firmware loading, and is followed
385 * by the .start() ops after loading to actually let the R5 cores run.
Suman Annaee99ee72021-03-27 09:31:17 -0500386 *
387 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to
388 * execute code, but combines the TCMs from both cores. The resets for both
389 * cores need to be released to make this possible, as the TCMs are in general
390 * private to each core. Only Core0 needs to be unhalted for running the
391 * cluster in this mode. The function uses the same reset logic as LockStep
392 * mode for this (though the behavior is agnostic of the reset release order).
Suman Anna6dedbd12020-10-02 18:42:32 -0500393 */
394static int k3_r5_rproc_prepare(struct rproc *rproc)
395{
396 struct k3_r5_rproc *kproc = rproc->priv;
397 struct k3_r5_cluster *cluster = kproc->cluster;
398 struct k3_r5_core *core = kproc->core;
399 struct device *dev = kproc->dev;
Suman Anna7508ea12020-11-18 19:05:30 -0600400 u32 ctrl = 0, cfg = 0, stat = 0;
401 u64 boot_vec = 0;
402 bool mem_init_dis;
Suman Anna6dedbd12020-10-02 18:42:32 -0500403 int ret;
404
Suman Anna7508ea12020-11-18 19:05:30 -0600405 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat);
406 if (ret < 0)
407 return ret;
408 mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS);
409
Suman Annaee99ee72021-03-27 09:31:17 -0500410 /* Re-use LockStep-mode reset logic for Single-CPU mode */
411 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
412 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
Suman Anna6dedbd12020-10-02 18:42:32 -0500413 k3_r5_lockstep_release(cluster) : k3_r5_split_release(core);
Suman Anna34f26532020-10-02 18:42:33 -0500414 if (ret) {
Suman Anna6dedbd12020-10-02 18:42:32 -0500415 dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n",
416 ret);
Suman Anna34f26532020-10-02 18:42:33 -0500417 return ret;
418 }
Suman Anna6dedbd12020-10-02 18:42:32 -0500419
Suman Anna34f26532020-10-02 18:42:33 -0500420 /*
Suman Anna7508ea12020-11-18 19:05:30 -0600421 * Newer IP revisions like on J7200 SoCs support h/w auto-initialization
422 * of TCMs, so there is no need to perform the s/w memzero. This bit is
423 * configurable through System Firmware, the default value does perform
424 * auto-init, but account for it in case it is disabled
425 */
426 if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) {
427 dev_dbg(dev, "leveraging h/w init for TCM memories\n");
428 return 0;
429 }
430
431 /*
Suman Anna34f26532020-10-02 18:42:33 -0500432 * Zero out both TCMs unconditionally (access from v8 Arm core is not
433 * affected by ATCM & BTCM enable configuration values) so that ECC
434 * can be effective on all TCM addresses.
435 */
436 dev_dbg(dev, "zeroing out ATCM memory\n");
437 memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size);
438
439 dev_dbg(dev, "zeroing out BTCM memory\n");
440 memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size);
441
442 return 0;
Suman Anna6dedbd12020-10-02 18:42:32 -0500443}
444
445/*
446 * This function implements the .unprepare() ops and performs the complimentary
447 * operations to that of the .prepare() ops. The function is used to assert the
448 * resets on all applicable cores for the rproc device (depending on LockStep
449 * or Split mode). This completes the second portion of powering down the R5F
450 * cores. The cores themselves are only halted in the .stop() ops, and the
451 * .unprepare() ops is invoked by the remoteproc core after the remoteproc is
452 * stopped.
Suman Annaee99ee72021-03-27 09:31:17 -0500453 *
454 * The Single-CPU mode on applicable SoCs (eg: AM64x) combines the TCMs from
455 * both cores. The access is made possible only with releasing the resets for
456 * both cores, but with only Core0 unhalted. This function re-uses the same
457 * reset assert logic as LockStep mode for this mode (though the behavior is
458 * agnostic of the reset assert order).
Suman Anna6dedbd12020-10-02 18:42:32 -0500459 */
460static int k3_r5_rproc_unprepare(struct rproc *rproc)
461{
462 struct k3_r5_rproc *kproc = rproc->priv;
463 struct k3_r5_cluster *cluster = kproc->cluster;
464 struct k3_r5_core *core = kproc->core;
465 struct device *dev = kproc->dev;
466 int ret;
467
Suman Annaee99ee72021-03-27 09:31:17 -0500468 /* Re-use LockStep-mode reset logic for Single-CPU mode */
469 ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
470 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
Suman Anna6dedbd12020-10-02 18:42:32 -0500471 k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core);
472 if (ret)
473 dev_err(dev, "unable to disable cores, ret = %d\n", ret);
474
475 return ret;
476}
477
478/*
479 * The R5F start sequence includes two different operations
480 * 1. Configure the boot vector for R5F core(s)
481 * 2. Unhalt/Run the R5F core(s)
482 *
483 * The sequence is different between LockStep and Split modes. The LockStep
484 * mode requires the boot vector to be configured only for Core0, and then
485 * unhalt both the cores to start the execution - Core1 needs to be unhalted
486 * first followed by Core0. The Split-mode requires that Core0 to be maintained
487 * always in a higher power state that Core1 (implying Core1 needs to be started
488 * always only after Core0 is started).
Suman Annaee99ee72021-03-27 09:31:17 -0500489 *
490 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
491 * code, so only Core0 needs to be unhalted. The function uses the same logic
492 * flow as Split-mode for this.
Suman Anna6dedbd12020-10-02 18:42:32 -0500493 */
494static int k3_r5_rproc_start(struct rproc *rproc)
495{
496 struct k3_r5_rproc *kproc = rproc->priv;
497 struct k3_r5_cluster *cluster = kproc->cluster;
498 struct mbox_client *client = &kproc->client;
499 struct device *dev = kproc->dev;
500 struct k3_r5_core *core;
501 u32 boot_addr;
502 int ret;
503
504 client->dev = dev;
505 client->tx_done = NULL;
506 client->rx_callback = k3_r5_rproc_mbox_callback;
507 client->tx_block = false;
508 client->knows_txdone = false;
509
510 kproc->mbox = mbox_request_channel(client, 0);
511 if (IS_ERR(kproc->mbox)) {
512 ret = -EBUSY;
513 dev_err(dev, "mbox_request_channel failed: %ld\n",
514 PTR_ERR(kproc->mbox));
515 return ret;
516 }
517
518 /*
519 * Ping the remote processor, this is only for sanity-sake for now;
520 * there is no functional effect whatsoever.
521 *
522 * Note that the reply will _not_ arrive immediately: this message
523 * will wait in the mailbox fifo until the remote processor is booted.
524 */
525 ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
526 if (ret < 0) {
527 dev_err(dev, "mbox_send_message failed: %d\n", ret);
528 goto put_mbox;
529 }
530
531 boot_addr = rproc->bootaddr;
532 /* TODO: add boot_addr sanity checking */
533 dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr);
534
535 /* boot vector need not be programmed for Core1 in LockStep mode */
536 core = kproc->core;
537 ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0);
538 if (ret)
539 goto put_mbox;
540
541 /* unhalt/run all applicable cores */
542 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
543 list_for_each_entry_reverse(core, &cluster->cores, elem) {
544 ret = k3_r5_core_run(core);
545 if (ret)
546 goto unroll_core_run;
547 }
548 } else {
549 ret = k3_r5_core_run(core);
550 if (ret)
551 goto put_mbox;
552 }
553
554 return 0;
555
556unroll_core_run:
557 list_for_each_entry_continue(core, &cluster->cores, elem) {
558 if (k3_r5_core_halt(core))
559 dev_warn(core->dev, "core halt back failed\n");
560 }
561put_mbox:
562 mbox_free_channel(kproc->mbox);
563 return ret;
564}
565
566/*
567 * The R5F stop function includes the following operations
568 * 1. Halt R5F core(s)
569 *
570 * The sequence is different between LockStep and Split modes, and the order
571 * of cores the operations are performed are also in general reverse to that
572 * of the start function. The LockStep mode requires each operation to be
573 * performed first on Core0 followed by Core1. The Split-mode requires that
574 * Core0 to be maintained always in a higher power state that Core1 (implying
575 * Core1 needs to be stopped first before Core0).
576 *
Suman Annaee99ee72021-03-27 09:31:17 -0500577 * The Single-CPU mode on applicable SoCs (eg: AM64x) only uses Core0 to execute
578 * code, so only Core0 needs to be halted. The function uses the same logic
579 * flow as Split-mode for this.
580 *
Suman Anna6dedbd12020-10-02 18:42:32 -0500581 * Note that the R5F halt operation in general is not effective when the R5F
582 * core is running, but is needed to make sure the core won't run after
583 * deasserting the reset the subsequent time. The asserting of reset can
584 * be done here, but is preferred to be done in the .unprepare() ops - this
585 * maintains the symmetric behavior between the .start(), .stop(), .prepare()
586 * and .unprepare() ops, and also balances them well between sysfs 'state'
587 * flow and device bind/unbind or module removal.
588 */
589static int k3_r5_rproc_stop(struct rproc *rproc)
590{
591 struct k3_r5_rproc *kproc = rproc->priv;
592 struct k3_r5_cluster *cluster = kproc->cluster;
593 struct k3_r5_core *core = kproc->core;
594 int ret;
595
596 /* halt all applicable cores */
597 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
598 list_for_each_entry(core, &cluster->cores, elem) {
599 ret = k3_r5_core_halt(core);
600 if (ret) {
601 core = list_prev_entry(core, elem);
602 goto unroll_core_halt;
603 }
604 }
605 } else {
606 ret = k3_r5_core_halt(core);
607 if (ret)
608 goto out;
609 }
610
611 mbox_free_channel(kproc->mbox);
612
613 return 0;
614
615unroll_core_halt:
616 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
617 if (k3_r5_core_run(core))
618 dev_warn(core->dev, "core run back failed\n");
619 }
620out:
621 return ret;
622}
623
624/*
625 * Internal Memory translation helper
626 *
627 * Custom function implementing the rproc .da_to_va ops to provide address
628 * translation (device address to kernel virtual address) for internal RAMs
629 * present in a DSP or IPU device). The translated addresses can be used
630 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
631 */
Peng Fan40df0a92021-03-06 19:24:19 +0800632static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
Suman Anna6dedbd12020-10-02 18:42:32 -0500633{
634 struct k3_r5_rproc *kproc = rproc->priv;
635 struct k3_r5_core *core = kproc->core;
636 void __iomem *va = NULL;
637 phys_addr_t bus_addr;
638 u32 dev_addr, offset;
639 size_t size;
640 int i;
641
642 if (len == 0)
643 return NULL;
644
645 /* handle both R5 and SoC views of ATCM and BTCM */
646 for (i = 0; i < core->num_mems; i++) {
647 bus_addr = core->mem[i].bus_addr;
648 dev_addr = core->mem[i].dev_addr;
649 size = core->mem[i].size;
650
651 /* handle R5-view addresses of TCMs */
652 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
653 offset = da - dev_addr;
654 va = core->mem[i].cpu_addr + offset;
655 return (__force void *)va;
656 }
657
658 /* handle SoC-view addresses of TCMs */
659 if (da >= bus_addr && ((da + len) <= (bus_addr + size))) {
660 offset = da - bus_addr;
661 va = core->mem[i].cpu_addr + offset;
662 return (__force void *)va;
663 }
664 }
665
Suman Annaea47c682020-10-02 18:42:34 -0500666 /* handle any SRAM regions using SoC-view addresses */
667 for (i = 0; i < core->num_sram; i++) {
668 dev_addr = core->sram[i].dev_addr;
669 size = core->sram[i].size;
670
671 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
672 offset = da - dev_addr;
673 va = core->sram[i].cpu_addr + offset;
674 return (__force void *)va;
675 }
676 }
677
Suman Anna6dedbd12020-10-02 18:42:32 -0500678 /* handle static DDR reserved memory regions */
679 for (i = 0; i < kproc->num_rmems; i++) {
680 dev_addr = kproc->rmem[i].dev_addr;
681 size = kproc->rmem[i].size;
682
683 if (da >= dev_addr && ((da + len) <= (dev_addr + size))) {
684 offset = da - dev_addr;
685 va = kproc->rmem[i].cpu_addr + offset;
686 return (__force void *)va;
687 }
688 }
689
690 return NULL;
691}
692
693static const struct rproc_ops k3_r5_rproc_ops = {
694 .prepare = k3_r5_rproc_prepare,
695 .unprepare = k3_r5_rproc_unprepare,
696 .start = k3_r5_rproc_start,
697 .stop = k3_r5_rproc_stop,
698 .kick = k3_r5_rproc_kick,
699 .da_to_va = k3_r5_rproc_da_to_va,
700};
701
702/*
703 * Internal R5F Core configuration
704 *
705 * Each R5FSS has a cluster-level setting for configuring the processor
706 * subsystem either in a safety/fault-tolerant LockStep mode or a performance
Suman Annaee99ee72021-03-27 09:31:17 -0500707 * oriented Split mode on most SoCs. A fewer SoCs support a non-safety mode
708 * as an alternate for LockStep mode that exercises only a single R5F core
709 * called Single-CPU mode. Each R5F core has a number of settings to either
Suman Anna6dedbd12020-10-02 18:42:32 -0500710 * enable/disable each of the TCMs, control which TCM appears at the R5F core's
711 * address 0x0. These settings need to be configured before the resets for the
712 * corresponding core are released. These settings are all protected and managed
713 * by the System Processor.
714 *
715 * This function is used to pre-configure these settings for each R5F core, and
716 * the configuration is all done through various ti_sci_proc functions that
717 * communicate with the System Processor. The function also ensures that both
718 * the cores are halted before the .prepare() step.
719 *
720 * The function is called from k3_r5_cluster_rproc_init() and is invoked either
Suman Annaee99ee72021-03-27 09:31:17 -0500721 * once (in LockStep mode or Single-CPU modes) or twice (in Split mode). Support
722 * for LockStep-mode is dictated by an eFUSE register bit, and the config
723 * settings retrieved from DT are adjusted accordingly as per the permitted
724 * cluster mode. Another eFUSE register bit dictates if the R5F cluster only
725 * supports a Single-CPU mode. All cluster level settings like Cluster mode and
726 * TEINIT (exception handling state dictating ARM or Thumb mode) can only be set
727 * and retrieved using Core0.
Suman Anna6dedbd12020-10-02 18:42:32 -0500728 *
729 * The function behavior is different based on the cluster mode. The R5F cores
730 * are configured independently as per their individual settings in Split mode.
731 * They are identically configured in LockStep mode using the primary Core0
732 * settings. However, some individual settings cannot be set in LockStep mode.
733 * This is overcome by switching to Split-mode initially and then programming
734 * both the cores with the same settings, before reconfiguing again for
735 * LockStep mode.
736 */
737static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc)
738{
739 struct k3_r5_cluster *cluster = kproc->cluster;
740 struct device *dev = kproc->dev;
741 struct k3_r5_core *core0, *core, *temp;
742 u32 ctrl = 0, cfg = 0, stat = 0;
743 u32 set_cfg = 0, clr_cfg = 0;
744 u64 boot_vec = 0;
745 bool lockstep_en;
Suman Annaee99ee72021-03-27 09:31:17 -0500746 bool single_cpu;
Suman Anna6dedbd12020-10-02 18:42:32 -0500747 int ret;
748
749 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
Suman Annaee99ee72021-03-27 09:31:17 -0500750 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
751 cluster->mode == CLUSTER_MODE_SINGLECPU) {
752 core = core0;
753 } else {
754 core = kproc->core;
755 }
Suman Anna6dedbd12020-10-02 18:42:32 -0500756
757 ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl,
758 &stat);
759 if (ret < 0)
760 return ret;
761
762 dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n",
763 boot_vec, cfg, ctrl, stat);
764
Suman Annaee99ee72021-03-27 09:31:17 -0500765 /* check if only Single-CPU mode is supported on applicable SoCs */
766 if (cluster->soc_data->single_cpu_mode) {
767 single_cpu =
768 !!(stat & PROC_BOOT_STATUS_FLAG_R5_SINGLECORE_ONLY);
769 if (single_cpu && cluster->mode == CLUSTER_MODE_SPLIT) {
770 dev_err(cluster->dev, "split-mode not permitted, force configuring for single-cpu mode\n");
771 cluster->mode = CLUSTER_MODE_SINGLECPU;
772 }
773 goto config;
774 }
775
776 /* check conventional LockStep vs Split mode configuration */
Suman Anna6dedbd12020-10-02 18:42:32 -0500777 lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED);
778 if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) {
779 dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n");
780 cluster->mode = CLUSTER_MODE_SPLIT;
781 }
782
Suman Annaee99ee72021-03-27 09:31:17 -0500783config:
Suman Anna6dedbd12020-10-02 18:42:32 -0500784 /* always enable ARM mode and set boot vector to 0 */
785 boot_vec = 0x0;
786 if (core == core0) {
787 clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT;
Suman Annaee99ee72021-03-27 09:31:17 -0500788 if (cluster->soc_data->single_cpu_mode) {
789 /*
790 * Single-CPU configuration bit can only be configured
791 * on Core0 and system firmware will NACK any requests
792 * with the bit configured, so program it only on
793 * permitted cores
794 */
795 if (cluster->mode == CLUSTER_MODE_SINGLECPU)
796 set_cfg = PROC_BOOT_CFG_FLAG_R5_SINGLE_CORE;
797 } else {
798 /*
799 * LockStep configuration bit is Read-only on Split-mode
800 * _only_ devices and system firmware will NACK any
801 * requests with the bit configured, so program it only
802 * on permitted devices
803 */
804 if (lockstep_en)
805 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
806 }
Suman Anna6dedbd12020-10-02 18:42:32 -0500807 }
808
809 if (core->atcm_enable)
810 set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
811 else
812 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN;
813
814 if (core->btcm_enable)
815 set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
816 else
817 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN;
818
819 if (core->loczrama)
820 set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
821 else
822 clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE;
823
824 if (cluster->mode == CLUSTER_MODE_LOCKSTEP) {
825 /*
826 * work around system firmware limitations to make sure both
827 * cores are programmed symmetrically in LockStep. LockStep
828 * and TEINIT config is only allowed with Core0.
829 */
830 list_for_each_entry(temp, &cluster->cores, elem) {
831 ret = k3_r5_core_halt(temp);
832 if (ret)
833 goto out;
834
835 if (temp != core) {
836 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
837 clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT;
838 }
839 ret = ti_sci_proc_set_config(temp->tsp, boot_vec,
840 set_cfg, clr_cfg);
841 if (ret)
842 goto out;
843 }
844
845 set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP;
846 clr_cfg = 0;
847 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
848 set_cfg, clr_cfg);
849 } else {
850 ret = k3_r5_core_halt(core);
851 if (ret)
852 goto out;
853
854 ret = ti_sci_proc_set_config(core->tsp, boot_vec,
855 set_cfg, clr_cfg);
856 }
857
858out:
859 return ret;
860}
861
862static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc)
863{
864 struct device *dev = kproc->dev;
865 struct device_node *np = dev_of_node(dev);
866 struct device_node *rmem_np;
867 struct reserved_mem *rmem;
868 int num_rmems;
869 int ret, i;
870
871 num_rmems = of_property_count_elems_of_size(np, "memory-region",
872 sizeof(phandle));
873 if (num_rmems <= 0) {
874 dev_err(dev, "device does not have reserved memory regions, ret = %d\n",
875 num_rmems);
876 return -EINVAL;
877 }
878 if (num_rmems < 2) {
Colin Ian Kingd6a33c52021-08-26 13:37:35 +0100879 dev_err(dev, "device needs at least two memory regions to be defined, num = %d\n",
Suman Anna6dedbd12020-10-02 18:42:32 -0500880 num_rmems);
881 return -EINVAL;
882 }
883
884 /* use reserved memory region 0 for vring DMA allocations */
885 ret = of_reserved_mem_device_init_by_idx(dev, np, 0);
886 if (ret) {
887 dev_err(dev, "device cannot initialize DMA pool, ret = %d\n",
888 ret);
889 return ret;
890 }
891
892 num_rmems--;
893 kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL);
894 if (!kproc->rmem) {
895 ret = -ENOMEM;
896 goto release_rmem;
897 }
898
899 /* use remaining reserved memory regions for static carveouts */
900 for (i = 0; i < num_rmems; i++) {
901 rmem_np = of_parse_phandle(np, "memory-region", i + 1);
902 if (!rmem_np) {
903 ret = -EINVAL;
904 goto unmap_rmem;
905 }
906
907 rmem = of_reserved_mem_lookup(rmem_np);
908 if (!rmem) {
909 of_node_put(rmem_np);
910 ret = -EINVAL;
911 goto unmap_rmem;
912 }
913 of_node_put(rmem_np);
914
915 kproc->rmem[i].bus_addr = rmem->base;
916 /*
917 * R5Fs do not have an MMU, but have a Region Address Translator
918 * (RAT) module that provides a fixed entry translation between
919 * the 32-bit processor addresses to 64-bit bus addresses. The
920 * RAT is programmable only by the R5F cores. Support for RAT
921 * is currently not supported, so 64-bit address regions are not
922 * supported. The absence of MMUs implies that the R5F device
923 * addresses/supported memory regions are restricted to 32-bit
924 * bus addresses, and are identical
925 */
926 kproc->rmem[i].dev_addr = (u32)rmem->base;
927 kproc->rmem[i].size = rmem->size;
928 kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size);
929 if (!kproc->rmem[i].cpu_addr) {
930 dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n",
931 i + 1, &rmem->base, &rmem->size);
932 ret = -ENOMEM;
933 goto unmap_rmem;
934 }
935
936 dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
937 i + 1, &kproc->rmem[i].bus_addr,
938 kproc->rmem[i].size, kproc->rmem[i].cpu_addr,
939 kproc->rmem[i].dev_addr);
940 }
941 kproc->num_rmems = num_rmems;
942
943 return 0;
944
945unmap_rmem:
946 for (i--; i >= 0; i--)
947 iounmap(kproc->rmem[i].cpu_addr);
948 kfree(kproc->rmem);
949release_rmem:
950 of_reserved_mem_device_release(dev);
951 return ret;
952}
953
954static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc)
955{
956 int i;
957
958 for (i = 0; i < kproc->num_rmems; i++)
959 iounmap(kproc->rmem[i].cpu_addr);
960 kfree(kproc->rmem);
961
962 of_reserved_mem_device_release(kproc->dev);
963}
964
Suman Annac3c21b32020-11-18 19:05:31 -0600965/*
966 * Each R5F core within a typical R5FSS instance has a total of 64 KB of TCMs,
967 * split equally into two 32 KB banks between ATCM and BTCM. The TCMs from both
968 * cores are usable in Split-mode, but only the Core0 TCMs can be used in
969 * LockStep-mode. The newer revisions of the R5FSS IP maximizes these TCMs by
970 * leveraging the Core1 TCMs as well in certain modes where they would have
Suman Annaee99ee72021-03-27 09:31:17 -0500971 * otherwise been unusable (Eg: LockStep-mode on J7200 SoCs, Single-CPU mode on
972 * AM64x SoCs). This is done by making a Core1 TCM visible immediately after the
973 * corresponding Core0 TCM. The SoC memory map uses the larger 64 KB sizes for
974 * the Core0 TCMs, and the dts representation reflects this increased size on
975 * supported SoCs. The Core0 TCM sizes therefore have to be adjusted to only
976 * half the original size in Split mode.
Suman Annac3c21b32020-11-18 19:05:31 -0600977 */
978static void k3_r5_adjust_tcm_sizes(struct k3_r5_rproc *kproc)
979{
980 struct k3_r5_cluster *cluster = kproc->cluster;
981 struct k3_r5_core *core = kproc->core;
982 struct device *cdev = core->dev;
983 struct k3_r5_core *core0;
984
985 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
Suman Annaee99ee72021-03-27 09:31:17 -0500986 cluster->mode == CLUSTER_MODE_SINGLECPU ||
Suman Annac3c21b32020-11-18 19:05:31 -0600987 !cluster->soc_data->tcm_is_double)
988 return;
989
990 core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem);
991 if (core == core0) {
992 WARN_ON(core->mem[0].size != SZ_64K);
993 WARN_ON(core->mem[1].size != SZ_64K);
994
995 core->mem[0].size /= 2;
996 core->mem[1].size /= 2;
997
998 dev_dbg(cdev, "adjusted TCM sizes, ATCM = 0x%zx BTCM = 0x%zx\n",
999 core->mem[0].size, core->mem[1].size);
1000 }
1001}
1002
Suman Anna6dedbd12020-10-02 18:42:32 -05001003static int k3_r5_cluster_rproc_init(struct platform_device *pdev)
1004{
1005 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1006 struct device *dev = &pdev->dev;
1007 struct k3_r5_rproc *kproc;
1008 struct k3_r5_core *core, *core1;
1009 struct device *cdev;
1010 const char *fw_name;
1011 struct rproc *rproc;
1012 int ret;
1013
1014 core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1015 list_for_each_entry(core, &cluster->cores, elem) {
1016 cdev = core->dev;
1017 ret = rproc_of_parse_firmware(cdev, 0, &fw_name);
1018 if (ret) {
1019 dev_err(dev, "failed to parse firmware-name property, ret = %d\n",
1020 ret);
1021 goto out;
1022 }
1023
1024 rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops,
1025 fw_name, sizeof(*kproc));
1026 if (!rproc) {
1027 ret = -ENOMEM;
1028 goto out;
1029 }
1030
1031 /* K3 R5s have a Region Address Translator (RAT) but no MMU */
1032 rproc->has_iommu = false;
1033 /* error recovery is not supported at present */
1034 rproc->recovery_disabled = true;
1035
1036 kproc = rproc->priv;
1037 kproc->cluster = cluster;
1038 kproc->core = core;
1039 kproc->dev = cdev;
1040 kproc->rproc = rproc;
1041 core->rproc = rproc;
1042
1043 ret = k3_r5_rproc_configure(kproc);
1044 if (ret) {
1045 dev_err(dev, "initial configure failed, ret = %d\n",
1046 ret);
1047 goto err_config;
1048 }
1049
Suman Annac3c21b32020-11-18 19:05:31 -06001050 k3_r5_adjust_tcm_sizes(kproc);
1051
Suman Anna6dedbd12020-10-02 18:42:32 -05001052 ret = k3_r5_reserved_mem_init(kproc);
1053 if (ret) {
1054 dev_err(dev, "reserved memory init failed, ret = %d\n",
1055 ret);
1056 goto err_config;
1057 }
1058
1059 ret = rproc_add(rproc);
1060 if (ret) {
1061 dev_err(dev, "rproc_add failed, ret = %d\n", ret);
1062 goto err_add;
1063 }
1064
Suman Annaee99ee72021-03-27 09:31:17 -05001065 /* create only one rproc in lockstep mode or single-cpu mode */
1066 if (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1067 cluster->mode == CLUSTER_MODE_SINGLECPU)
Suman Anna6dedbd12020-10-02 18:42:32 -05001068 break;
1069 }
1070
1071 return 0;
1072
1073err_split:
1074 rproc_del(rproc);
1075err_add:
1076 k3_r5_reserved_mem_exit(kproc);
1077err_config:
1078 rproc_free(rproc);
1079 core->rproc = NULL;
1080out:
1081 /* undo core0 upon any failures on core1 in split-mode */
1082 if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) {
1083 core = list_prev_entry(core, elem);
1084 rproc = core->rproc;
1085 kproc = rproc->priv;
1086 goto err_split;
1087 }
1088 return ret;
1089}
1090
Arnd Bergmann23168222020-10-26 17:05:23 +01001091static void k3_r5_cluster_rproc_exit(void *data)
Suman Anna6dedbd12020-10-02 18:42:32 -05001092{
Arnd Bergmann23168222020-10-26 17:05:23 +01001093 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
Suman Anna6dedbd12020-10-02 18:42:32 -05001094 struct k3_r5_rproc *kproc;
1095 struct k3_r5_core *core;
1096 struct rproc *rproc;
1097
1098 /*
Suman Annaee99ee72021-03-27 09:31:17 -05001099 * lockstep mode and single-cpu modes have only one rproc associated
1100 * with first core, whereas split-mode has two rprocs associated with
1101 * each core, and requires that core1 be powered down first
Suman Anna6dedbd12020-10-02 18:42:32 -05001102 */
Suman Annaee99ee72021-03-27 09:31:17 -05001103 core = (cluster->mode == CLUSTER_MODE_LOCKSTEP ||
1104 cluster->mode == CLUSTER_MODE_SINGLECPU) ?
Suman Anna6dedbd12020-10-02 18:42:32 -05001105 list_first_entry(&cluster->cores, struct k3_r5_core, elem) :
1106 list_last_entry(&cluster->cores, struct k3_r5_core, elem);
1107
1108 list_for_each_entry_from_reverse(core, &cluster->cores, elem) {
1109 rproc = core->rproc;
1110 kproc = rproc->priv;
1111
1112 rproc_del(rproc);
1113
1114 k3_r5_reserved_mem_exit(kproc);
1115
1116 rproc_free(rproc);
1117 core->rproc = NULL;
1118 }
Suman Anna6dedbd12020-10-02 18:42:32 -05001119}
1120
1121static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev,
1122 struct k3_r5_core *core)
1123{
1124 static const char * const mem_names[] = {"atcm", "btcm"};
1125 struct device *dev = &pdev->dev;
1126 struct resource *res;
1127 int num_mems;
1128 int i;
1129
1130 num_mems = ARRAY_SIZE(mem_names);
1131 core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL);
1132 if (!core->mem)
1133 return -ENOMEM;
1134
1135 for (i = 0; i < num_mems; i++) {
1136 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1137 mem_names[i]);
1138 if (!res) {
1139 dev_err(dev, "found no memory resource for %s\n",
1140 mem_names[i]);
1141 return -EINVAL;
1142 }
1143 if (!devm_request_mem_region(dev, res->start,
1144 resource_size(res),
1145 dev_name(dev))) {
1146 dev_err(dev, "could not request %s region for resource\n",
1147 mem_names[i]);
1148 return -EBUSY;
1149 }
1150
1151 /*
1152 * TCMs are designed in general to support RAM-like backing
1153 * memories. So, map these as Normal Non-Cached memories. This
1154 * also avoids/fixes any potential alignment faults due to
1155 * unaligned data accesses when using memcpy() or memset()
1156 * functions (normally seen with device type memory).
1157 */
1158 core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start,
1159 resource_size(res));
1160 if (!core->mem[i].cpu_addr) {
1161 dev_err(dev, "failed to map %s memory\n", mem_names[i]);
1162 return -ENOMEM;
1163 }
1164 core->mem[i].bus_addr = res->start;
1165
1166 /*
1167 * TODO:
1168 * The R5F cores can place ATCM & BTCM anywhere in its address
1169 * based on the corresponding Region Registers in the System
1170 * Control coprocessor. For now, place ATCM and BTCM at
1171 * addresses 0 and 0x41010000 (same as the bus address on AM65x
1172 * SoCs) based on loczrama setting
1173 */
1174 if (!strcmp(mem_names[i], "atcm")) {
1175 core->mem[i].dev_addr = core->loczrama ?
1176 0 : K3_R5_TCM_DEV_ADDR;
1177 } else {
1178 core->mem[i].dev_addr = core->loczrama ?
1179 K3_R5_TCM_DEV_ADDR : 0;
1180 }
1181 core->mem[i].size = resource_size(res);
1182
1183 dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1184 mem_names[i], &core->mem[i].bus_addr,
1185 core->mem[i].size, core->mem[i].cpu_addr,
1186 core->mem[i].dev_addr);
1187 }
1188 core->num_mems = num_mems;
1189
1190 return 0;
1191}
1192
Suman Annaea47c682020-10-02 18:42:34 -05001193static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev,
1194 struct k3_r5_core *core)
1195{
1196 struct device_node *np = pdev->dev.of_node;
1197 struct device *dev = &pdev->dev;
1198 struct device_node *sram_np;
1199 struct resource res;
1200 int num_sram;
1201 int i, ret;
1202
1203 num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle));
1204 if (num_sram <= 0) {
1205 dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n",
1206 num_sram);
1207 return 0;
1208 }
1209
1210 core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL);
1211 if (!core->sram)
1212 return -ENOMEM;
1213
1214 for (i = 0; i < num_sram; i++) {
1215 sram_np = of_parse_phandle(np, "sram", i);
1216 if (!sram_np)
1217 return -EINVAL;
1218
1219 if (!of_device_is_available(sram_np)) {
1220 of_node_put(sram_np);
1221 return -EINVAL;
1222 }
1223
1224 ret = of_address_to_resource(sram_np, 0, &res);
1225 of_node_put(sram_np);
1226 if (ret)
1227 return -EINVAL;
1228
1229 core->sram[i].bus_addr = res.start;
1230 core->sram[i].dev_addr = res.start;
1231 core->sram[i].size = resource_size(&res);
1232 core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start,
1233 resource_size(&res));
1234 if (!core->sram[i].cpu_addr) {
1235 dev_err(dev, "failed to parse and map sram%d memory at %pad\n",
1236 i, &res.start);
1237 return -ENOMEM;
1238 }
1239
1240 dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n",
1241 i, &core->sram[i].bus_addr,
1242 core->sram[i].size, core->sram[i].cpu_addr,
1243 core->sram[i].dev_addr);
1244 }
1245 core->num_sram = num_sram;
1246
1247 return 0;
1248}
1249
Suman Anna6dedbd12020-10-02 18:42:32 -05001250static
1251struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev,
1252 const struct ti_sci_handle *sci)
1253{
1254 struct ti_sci_proc *tsp;
1255 u32 temp[2];
1256 int ret;
1257
1258 ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids",
1259 temp, 2);
1260 if (ret < 0)
1261 return ERR_PTR(ret);
1262
1263 tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL);
1264 if (!tsp)
1265 return ERR_PTR(-ENOMEM);
1266
1267 tsp->dev = dev;
1268 tsp->sci = sci;
1269 tsp->ops = &sci->ops.proc_ops;
1270 tsp->proc_id = temp[0];
1271 tsp->host_id = temp[1];
1272
1273 return tsp;
1274}
1275
1276static int k3_r5_core_of_init(struct platform_device *pdev)
1277{
1278 struct device *dev = &pdev->dev;
1279 struct device_node *np = dev_of_node(dev);
1280 struct k3_r5_core *core;
1281 int ret;
1282
1283 if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL))
1284 return -ENOMEM;
1285
1286 core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL);
1287 if (!core) {
1288 ret = -ENOMEM;
1289 goto err;
1290 }
1291
1292 core->dev = dev;
1293 /*
1294 * Use SoC Power-on-Reset values as default if no DT properties are
1295 * used to dictate the TCM configurations
1296 */
1297 core->atcm_enable = 0;
1298 core->btcm_enable = 1;
1299 core->loczrama = 1;
1300
1301 ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable);
1302 if (ret < 0 && ret != -EINVAL) {
1303 dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n",
1304 ret);
1305 goto err;
1306 }
1307
1308 ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable);
1309 if (ret < 0 && ret != -EINVAL) {
1310 dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n",
1311 ret);
1312 goto err;
1313 }
1314
1315 ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama);
1316 if (ret < 0 && ret != -EINVAL) {
1317 dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret);
1318 goto err;
1319 }
1320
1321 core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci");
1322 if (IS_ERR(core->ti_sci)) {
1323 ret = PTR_ERR(core->ti_sci);
1324 if (ret != -EPROBE_DEFER) {
1325 dev_err(dev, "failed to get ti-sci handle, ret = %d\n",
1326 ret);
1327 }
1328 core->ti_sci = NULL;
1329 goto err;
1330 }
1331
1332 ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id);
1333 if (ret) {
1334 dev_err(dev, "missing 'ti,sci-dev-id' property\n");
1335 goto err;
1336 }
1337
1338 core->reset = devm_reset_control_get_exclusive(dev, NULL);
1339 if (IS_ERR_OR_NULL(core->reset)) {
1340 ret = PTR_ERR_OR_ZERO(core->reset);
1341 if (!ret)
1342 ret = -ENODEV;
1343 if (ret != -EPROBE_DEFER) {
1344 dev_err(dev, "failed to get reset handle, ret = %d\n",
1345 ret);
1346 }
1347 goto err;
1348 }
1349
1350 core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci);
1351 if (IS_ERR(core->tsp)) {
Christophe JAILLET34c4da62021-05-06 22:46:01 +02001352 ret = PTR_ERR(core->tsp);
Suman Anna6dedbd12020-10-02 18:42:32 -05001353 dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n",
1354 ret);
Suman Anna6dedbd12020-10-02 18:42:32 -05001355 goto err;
1356 }
1357
1358 ret = k3_r5_core_of_get_internal_memories(pdev, core);
1359 if (ret) {
1360 dev_err(dev, "failed to get internal memories, ret = %d\n",
1361 ret);
1362 goto err;
1363 }
1364
Suman Annaea47c682020-10-02 18:42:34 -05001365 ret = k3_r5_core_of_get_sram_memories(pdev, core);
1366 if (ret) {
1367 dev_err(dev, "failed to get sram memories, ret = %d\n", ret);
1368 goto err;
1369 }
1370
Suman Anna6dedbd12020-10-02 18:42:32 -05001371 ret = ti_sci_proc_request(core->tsp);
1372 if (ret < 0) {
1373 dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret);
1374 goto err;
1375 }
1376
1377 platform_set_drvdata(pdev, core);
1378 devres_close_group(dev, k3_r5_core_of_init);
1379
1380 return 0;
1381
1382err:
1383 devres_release_group(dev, k3_r5_core_of_init);
1384 return ret;
1385}
1386
1387/*
1388 * free the resources explicitly since driver model is not being used
1389 * for the child R5F devices
1390 */
1391static void k3_r5_core_of_exit(struct platform_device *pdev)
1392{
1393 struct k3_r5_core *core = platform_get_drvdata(pdev);
1394 struct device *dev = &pdev->dev;
1395 int ret;
1396
1397 ret = ti_sci_proc_release(core->tsp);
1398 if (ret)
1399 dev_err(dev, "failed to release proc, ret = %d\n", ret);
1400
1401 platform_set_drvdata(pdev, NULL);
1402 devres_release_group(dev, k3_r5_core_of_init);
1403}
1404
Arnd Bergmann23168222020-10-26 17:05:23 +01001405static void k3_r5_cluster_of_exit(void *data)
Suman Anna6dedbd12020-10-02 18:42:32 -05001406{
Arnd Bergmann23168222020-10-26 17:05:23 +01001407 struct k3_r5_cluster *cluster = platform_get_drvdata(data);
Suman Anna6dedbd12020-10-02 18:42:32 -05001408 struct platform_device *cpdev;
1409 struct k3_r5_core *core, *temp;
1410
1411 list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) {
1412 list_del(&core->elem);
1413 cpdev = to_platform_device(core->dev);
1414 k3_r5_core_of_exit(cpdev);
1415 }
1416}
1417
1418static int k3_r5_cluster_of_init(struct platform_device *pdev)
1419{
1420 struct k3_r5_cluster *cluster = platform_get_drvdata(pdev);
1421 struct device *dev = &pdev->dev;
1422 struct device_node *np = dev_of_node(dev);
1423 struct platform_device *cpdev;
1424 struct device_node *child;
1425 struct k3_r5_core *core;
1426 int ret;
1427
1428 for_each_available_child_of_node(np, child) {
1429 cpdev = of_find_device_by_node(child);
1430 if (!cpdev) {
1431 ret = -ENODEV;
1432 dev_err(dev, "could not get R5 core platform device\n");
1433 goto fail;
1434 }
1435
1436 ret = k3_r5_core_of_init(cpdev);
1437 if (ret) {
1438 dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n",
1439 ret);
1440 put_device(&cpdev->dev);
1441 goto fail;
1442 }
1443
1444 core = platform_get_drvdata(cpdev);
1445 put_device(&cpdev->dev);
1446 list_add_tail(&core->elem, &cluster->cores);
1447 }
1448
1449 return 0;
1450
1451fail:
1452 k3_r5_cluster_of_exit(pdev);
1453 return ret;
1454}
1455
1456static int k3_r5_probe(struct platform_device *pdev)
1457{
1458 struct device *dev = &pdev->dev;
1459 struct device_node *np = dev_of_node(dev);
1460 struct k3_r5_cluster *cluster;
Suman Anna7508ea12020-11-18 19:05:30 -06001461 const struct k3_r5_soc_data *data;
Suman Anna6dedbd12020-10-02 18:42:32 -05001462 int ret;
1463 int num_cores;
1464
Suman Anna7508ea12020-11-18 19:05:30 -06001465 data = of_device_get_match_data(&pdev->dev);
1466 if (!data) {
1467 dev_err(dev, "SoC-specific data is not defined\n");
1468 return -ENODEV;
1469 }
1470
Suman Anna6dedbd12020-10-02 18:42:32 -05001471 cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL);
1472 if (!cluster)
1473 return -ENOMEM;
1474
1475 cluster->dev = dev;
Suman Annaee99ee72021-03-27 09:31:17 -05001476 /*
1477 * default to most common efuse configurations - Split-mode on AM64x
1478 * and LockStep-mode on all others
1479 */
1480 cluster->mode = data->single_cpu_mode ?
1481 CLUSTER_MODE_SPLIT : CLUSTER_MODE_LOCKSTEP;
Suman Anna7508ea12020-11-18 19:05:30 -06001482 cluster->soc_data = data;
Suman Anna6dedbd12020-10-02 18:42:32 -05001483 INIT_LIST_HEAD(&cluster->cores);
1484
1485 ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode);
1486 if (ret < 0 && ret != -EINVAL) {
1487 dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n",
1488 ret);
1489 return ret;
1490 }
1491
1492 num_cores = of_get_available_child_count(np);
1493 if (num_cores != 2) {
1494 dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n",
1495 num_cores);
1496 return -ENODEV;
1497 }
1498
1499 platform_set_drvdata(pdev, cluster);
1500
1501 ret = devm_of_platform_populate(dev);
1502 if (ret) {
1503 dev_err(dev, "devm_of_platform_populate failed, ret = %d\n",
1504 ret);
1505 return ret;
1506 }
1507
1508 ret = k3_r5_cluster_of_init(pdev);
1509 if (ret) {
1510 dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret);
1511 return ret;
1512 }
1513
Arnd Bergmann23168222020-10-26 17:05:23 +01001514 ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev);
Suman Anna6dedbd12020-10-02 18:42:32 -05001515 if (ret)
1516 return ret;
1517
1518 ret = k3_r5_cluster_rproc_init(pdev);
1519 if (ret) {
1520 dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n",
1521 ret);
1522 return ret;
1523 }
1524
Arnd Bergmann23168222020-10-26 17:05:23 +01001525 ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev);
Suman Anna6dedbd12020-10-02 18:42:32 -05001526 if (ret)
1527 return ret;
1528
1529 return 0;
1530}
1531
Suman Anna7508ea12020-11-18 19:05:30 -06001532static const struct k3_r5_soc_data am65_j721e_soc_data = {
Suman Annac3c21b32020-11-18 19:05:31 -06001533 .tcm_is_double = false,
Suman Anna7508ea12020-11-18 19:05:30 -06001534 .tcm_ecc_autoinit = false,
Suman Annaee99ee72021-03-27 09:31:17 -05001535 .single_cpu_mode = false,
Suman Anna7508ea12020-11-18 19:05:30 -06001536};
1537
Hari Nagallab20dc022021-11-22 06:27:26 -06001538static const struct k3_r5_soc_data j7200_j721s2_soc_data = {
Suman Annac3c21b32020-11-18 19:05:31 -06001539 .tcm_is_double = true,
Suman Anna7508ea12020-11-18 19:05:30 -06001540 .tcm_ecc_autoinit = true,
Suman Annaee99ee72021-03-27 09:31:17 -05001541 .single_cpu_mode = false,
1542};
1543
1544static const struct k3_r5_soc_data am64_soc_data = {
1545 .tcm_is_double = true,
1546 .tcm_ecc_autoinit = true,
1547 .single_cpu_mode = true,
Suman Anna7508ea12020-11-18 19:05:30 -06001548};
1549
Suman Anna6dedbd12020-10-02 18:42:32 -05001550static const struct of_device_id k3_r5_of_match[] = {
Suman Anna7508ea12020-11-18 19:05:30 -06001551 { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, },
1552 { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, },
Hari Nagallab20dc022021-11-22 06:27:26 -06001553 { .compatible = "ti,j7200-r5fss", .data = &j7200_j721s2_soc_data, },
Suman Annaee99ee72021-03-27 09:31:17 -05001554 { .compatible = "ti,am64-r5fss", .data = &am64_soc_data, },
Hari Nagallab20dc022021-11-22 06:27:26 -06001555 { .compatible = "ti,j721s2-r5fss", .data = &j7200_j721s2_soc_data, },
Suman Anna6dedbd12020-10-02 18:42:32 -05001556 { /* sentinel */ },
1557};
1558MODULE_DEVICE_TABLE(of, k3_r5_of_match);
1559
1560static struct platform_driver k3_r5_rproc_driver = {
1561 .probe = k3_r5_probe,
1562 .driver = {
1563 .name = "k3_r5_rproc",
1564 .of_match_table = k3_r5_of_match,
1565 },
1566};
1567
1568module_platform_driver(k3_r5_rproc_driver);
1569
1570MODULE_LICENSE("GPL v2");
1571MODULE_DESCRIPTION("TI K3 R5F remote processor driver");
1572MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");