Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * TI K3 R5F (MCU) Remote Processor driver |
| 4 | * |
| 5 | * Copyright (C) 2017-2020 Texas Instruments Incorporated - https://www.ti.com/ |
| 6 | * Suman Anna <s-anna@ti.com> |
| 7 | */ |
| 8 | |
| 9 | #include <linux/dma-mapping.h> |
| 10 | #include <linux/err.h> |
| 11 | #include <linux/interrupt.h> |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/mailbox_client.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/of_address.h> |
| 16 | #include <linux/of_device.h> |
| 17 | #include <linux/of_reserved_mem.h> |
| 18 | #include <linux/omap-mailbox.h> |
| 19 | #include <linux/platform_device.h> |
| 20 | #include <linux/pm_runtime.h> |
| 21 | #include <linux/remoteproc.h> |
| 22 | #include <linux/reset.h> |
| 23 | #include <linux/slab.h> |
| 24 | |
| 25 | #include "omap_remoteproc.h" |
| 26 | #include "remoteproc_internal.h" |
| 27 | #include "ti_sci_proc.h" |
| 28 | |
| 29 | /* This address can either be for ATCM or BTCM with the other at address 0x0 */ |
| 30 | #define K3_R5_TCM_DEV_ADDR 0x41010000 |
| 31 | |
| 32 | /* R5 TI-SCI Processor Configuration Flags */ |
| 33 | #define PROC_BOOT_CFG_FLAG_R5_DBG_EN 0x00000001 |
| 34 | #define PROC_BOOT_CFG_FLAG_R5_DBG_NIDEN 0x00000002 |
| 35 | #define PROC_BOOT_CFG_FLAG_R5_LOCKSTEP 0x00000100 |
| 36 | #define PROC_BOOT_CFG_FLAG_R5_TEINIT 0x00000200 |
| 37 | #define PROC_BOOT_CFG_FLAG_R5_NMFI_EN 0x00000400 |
| 38 | #define PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE 0x00000800 |
| 39 | #define PROC_BOOT_CFG_FLAG_R5_BTCM_EN 0x00001000 |
| 40 | #define PROC_BOOT_CFG_FLAG_R5_ATCM_EN 0x00002000 |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 41 | /* Available from J7200 SoCs onwards */ |
| 42 | #define PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS 0x00004000 |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 43 | |
| 44 | /* R5 TI-SCI Processor Control Flags */ |
| 45 | #define PROC_BOOT_CTRL_FLAG_R5_CORE_HALT 0x00000001 |
| 46 | |
| 47 | /* R5 TI-SCI Processor Status Flags */ |
| 48 | #define PROC_BOOT_STATUS_FLAG_R5_WFE 0x00000001 |
| 49 | #define PROC_BOOT_STATUS_FLAG_R5_WFI 0x00000002 |
| 50 | #define PROC_BOOT_STATUS_FLAG_R5_CLK_GATED 0x00000004 |
| 51 | #define PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED 0x00000100 |
| 52 | |
| 53 | /** |
| 54 | * struct k3_r5_mem - internal memory structure |
| 55 | * @cpu_addr: MPU virtual address of the memory region |
| 56 | * @bus_addr: Bus address used to access the memory region |
| 57 | * @dev_addr: Device address from remoteproc view |
| 58 | * @size: Size of the memory region |
| 59 | */ |
| 60 | struct k3_r5_mem { |
| 61 | void __iomem *cpu_addr; |
| 62 | phys_addr_t bus_addr; |
| 63 | u32 dev_addr; |
| 64 | size_t size; |
| 65 | }; |
| 66 | |
| 67 | enum cluster_mode { |
| 68 | CLUSTER_MODE_SPLIT = 0, |
| 69 | CLUSTER_MODE_LOCKSTEP, |
| 70 | }; |
| 71 | |
| 72 | /** |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 73 | * struct k3_r5_soc_data - match data to handle SoC variations |
| 74 | * @tcm_ecc_autoinit: flag to denote the auto-initialization of TCMs for ECC |
| 75 | */ |
| 76 | struct k3_r5_soc_data { |
| 77 | bool tcm_ecc_autoinit; |
| 78 | }; |
| 79 | |
| 80 | /** |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 81 | * struct k3_r5_cluster - K3 R5F Cluster structure |
| 82 | * @dev: cached device pointer |
| 83 | * @mode: Mode to configure the Cluster - Split or LockStep |
| 84 | * @cores: list of R5 cores within the cluster |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 85 | * @soc_data: SoC-specific feature data for a R5FSS |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 86 | */ |
| 87 | struct k3_r5_cluster { |
| 88 | struct device *dev; |
| 89 | enum cluster_mode mode; |
| 90 | struct list_head cores; |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 91 | const struct k3_r5_soc_data *soc_data; |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 92 | }; |
| 93 | |
| 94 | /** |
| 95 | * struct k3_r5_core - K3 R5 core structure |
| 96 | * @elem: linked list item |
| 97 | * @dev: cached device pointer |
| 98 | * @rproc: rproc handle representing this core |
| 99 | * @mem: internal memory regions data |
Suman Anna | ea47c68 | 2020-10-02 18:42:34 -0500 | [diff] [blame] | 100 | * @sram: on-chip SRAM memory regions data |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 101 | * @num_mems: number of internal memory regions |
Suman Anna | ea47c68 | 2020-10-02 18:42:34 -0500 | [diff] [blame] | 102 | * @num_sram: number of on-chip SRAM memory regions |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 103 | * @reset: reset control handle |
| 104 | * @tsp: TI-SCI processor control handle |
| 105 | * @ti_sci: TI-SCI handle |
| 106 | * @ti_sci_id: TI-SCI device identifier |
| 107 | * @atcm_enable: flag to control ATCM enablement |
| 108 | * @btcm_enable: flag to control BTCM enablement |
| 109 | * @loczrama: flag to dictate which TCM is at device address 0x0 |
| 110 | */ |
| 111 | struct k3_r5_core { |
| 112 | struct list_head elem; |
| 113 | struct device *dev; |
| 114 | struct rproc *rproc; |
| 115 | struct k3_r5_mem *mem; |
Suman Anna | ea47c68 | 2020-10-02 18:42:34 -0500 | [diff] [blame] | 116 | struct k3_r5_mem *sram; |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 117 | int num_mems; |
Suman Anna | ea47c68 | 2020-10-02 18:42:34 -0500 | [diff] [blame] | 118 | int num_sram; |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 119 | struct reset_control *reset; |
| 120 | struct ti_sci_proc *tsp; |
| 121 | const struct ti_sci_handle *ti_sci; |
| 122 | u32 ti_sci_id; |
| 123 | u32 atcm_enable; |
| 124 | u32 btcm_enable; |
| 125 | u32 loczrama; |
| 126 | }; |
| 127 | |
| 128 | /** |
| 129 | * struct k3_r5_rproc - K3 remote processor state |
| 130 | * @dev: cached device pointer |
| 131 | * @cluster: cached pointer to parent cluster structure |
| 132 | * @mbox: mailbox channel handle |
| 133 | * @client: mailbox client to request the mailbox channel |
| 134 | * @rproc: rproc handle |
| 135 | * @core: cached pointer to r5 core structure being used |
| 136 | * @rmem: reserved memory regions data |
| 137 | * @num_rmems: number of reserved memory regions |
| 138 | */ |
| 139 | struct k3_r5_rproc { |
| 140 | struct device *dev; |
| 141 | struct k3_r5_cluster *cluster; |
| 142 | struct mbox_chan *mbox; |
| 143 | struct mbox_client client; |
| 144 | struct rproc *rproc; |
| 145 | struct k3_r5_core *core; |
| 146 | struct k3_r5_mem *rmem; |
| 147 | int num_rmems; |
| 148 | }; |
| 149 | |
| 150 | /** |
| 151 | * k3_r5_rproc_mbox_callback() - inbound mailbox message handler |
| 152 | * @client: mailbox client pointer used for requesting the mailbox channel |
| 153 | * @data: mailbox payload |
| 154 | * |
| 155 | * This handler is invoked by the OMAP mailbox driver whenever a mailbox |
| 156 | * message is received. Usually, the mailbox payload simply contains |
| 157 | * the index of the virtqueue that is kicked by the remote processor, |
| 158 | * and we let remoteproc core handle it. |
| 159 | * |
| 160 | * In addition to virtqueue indices, we also have some out-of-band values |
| 161 | * that indicate different events. Those values are deliberately very |
| 162 | * large so they don't coincide with virtqueue indices. |
| 163 | */ |
| 164 | static void k3_r5_rproc_mbox_callback(struct mbox_client *client, void *data) |
| 165 | { |
| 166 | struct k3_r5_rproc *kproc = container_of(client, struct k3_r5_rproc, |
| 167 | client); |
| 168 | struct device *dev = kproc->rproc->dev.parent; |
| 169 | const char *name = kproc->rproc->name; |
| 170 | u32 msg = omap_mbox_message(data); |
| 171 | |
| 172 | dev_dbg(dev, "mbox msg: 0x%x\n", msg); |
| 173 | |
| 174 | switch (msg) { |
| 175 | case RP_MBOX_CRASH: |
| 176 | /* |
| 177 | * remoteproc detected an exception, but error recovery is not |
| 178 | * supported. So, just log this for now |
| 179 | */ |
| 180 | dev_err(dev, "K3 R5F rproc %s crashed\n", name); |
| 181 | break; |
| 182 | case RP_MBOX_ECHO_REPLY: |
| 183 | dev_info(dev, "received echo reply from %s\n", name); |
| 184 | break; |
| 185 | default: |
| 186 | /* silently handle all other valid messages */ |
| 187 | if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG) |
| 188 | return; |
| 189 | if (msg > kproc->rproc->max_notifyid) { |
| 190 | dev_dbg(dev, "dropping unknown message 0x%x", msg); |
| 191 | return; |
| 192 | } |
| 193 | /* msg contains the index of the triggered vring */ |
| 194 | if (rproc_vq_interrupt(kproc->rproc, msg) == IRQ_NONE) |
| 195 | dev_dbg(dev, "no message was found in vqid %d\n", msg); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | /* kick a virtqueue */ |
| 200 | static void k3_r5_rproc_kick(struct rproc *rproc, int vqid) |
| 201 | { |
| 202 | struct k3_r5_rproc *kproc = rproc->priv; |
| 203 | struct device *dev = rproc->dev.parent; |
| 204 | mbox_msg_t msg = (mbox_msg_t)vqid; |
| 205 | int ret; |
| 206 | |
| 207 | /* send the index of the triggered virtqueue in the mailbox payload */ |
| 208 | ret = mbox_send_message(kproc->mbox, (void *)msg); |
| 209 | if (ret < 0) |
| 210 | dev_err(dev, "failed to send mailbox message, status = %d\n", |
| 211 | ret); |
| 212 | } |
| 213 | |
| 214 | static int k3_r5_split_reset(struct k3_r5_core *core) |
| 215 | { |
| 216 | int ret; |
| 217 | |
| 218 | ret = reset_control_assert(core->reset); |
| 219 | if (ret) { |
| 220 | dev_err(core->dev, "local-reset assert failed, ret = %d\n", |
| 221 | ret); |
| 222 | return ret; |
| 223 | } |
| 224 | |
| 225 | ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, |
| 226 | core->ti_sci_id); |
| 227 | if (ret) { |
| 228 | dev_err(core->dev, "module-reset assert failed, ret = %d\n", |
| 229 | ret); |
| 230 | if (reset_control_deassert(core->reset)) |
| 231 | dev_warn(core->dev, "local-reset deassert back failed\n"); |
| 232 | } |
| 233 | |
| 234 | return ret; |
| 235 | } |
| 236 | |
| 237 | static int k3_r5_split_release(struct k3_r5_core *core) |
| 238 | { |
| 239 | int ret; |
| 240 | |
| 241 | ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, |
| 242 | core->ti_sci_id); |
| 243 | if (ret) { |
| 244 | dev_err(core->dev, "module-reset deassert failed, ret = %d\n", |
| 245 | ret); |
| 246 | return ret; |
| 247 | } |
| 248 | |
| 249 | ret = reset_control_deassert(core->reset); |
| 250 | if (ret) { |
| 251 | dev_err(core->dev, "local-reset deassert failed, ret = %d\n", |
| 252 | ret); |
| 253 | if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, |
| 254 | core->ti_sci_id)) |
| 255 | dev_warn(core->dev, "module-reset assert back failed\n"); |
| 256 | } |
| 257 | |
| 258 | return ret; |
| 259 | } |
| 260 | |
| 261 | static int k3_r5_lockstep_reset(struct k3_r5_cluster *cluster) |
| 262 | { |
| 263 | struct k3_r5_core *core; |
| 264 | int ret; |
| 265 | |
| 266 | /* assert local reset on all applicable cores */ |
| 267 | list_for_each_entry(core, &cluster->cores, elem) { |
| 268 | ret = reset_control_assert(core->reset); |
| 269 | if (ret) { |
| 270 | dev_err(core->dev, "local-reset assert failed, ret = %d\n", |
| 271 | ret); |
| 272 | core = list_prev_entry(core, elem); |
| 273 | goto unroll_local_reset; |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | /* disable PSC modules on all applicable cores */ |
| 278 | list_for_each_entry(core, &cluster->cores, elem) { |
| 279 | ret = core->ti_sci->ops.dev_ops.put_device(core->ti_sci, |
| 280 | core->ti_sci_id); |
| 281 | if (ret) { |
| 282 | dev_err(core->dev, "module-reset assert failed, ret = %d\n", |
| 283 | ret); |
| 284 | goto unroll_module_reset; |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | return 0; |
| 289 | |
| 290 | unroll_module_reset: |
| 291 | list_for_each_entry_continue_reverse(core, &cluster->cores, elem) { |
| 292 | if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, |
| 293 | core->ti_sci_id)) |
| 294 | dev_warn(core->dev, "module-reset assert back failed\n"); |
| 295 | } |
| 296 | core = list_last_entry(&cluster->cores, struct k3_r5_core, elem); |
| 297 | unroll_local_reset: |
| 298 | list_for_each_entry_from_reverse(core, &cluster->cores, elem) { |
| 299 | if (reset_control_deassert(core->reset)) |
| 300 | dev_warn(core->dev, "local-reset deassert back failed\n"); |
| 301 | } |
| 302 | |
| 303 | return ret; |
| 304 | } |
| 305 | |
| 306 | static int k3_r5_lockstep_release(struct k3_r5_cluster *cluster) |
| 307 | { |
| 308 | struct k3_r5_core *core; |
| 309 | int ret; |
| 310 | |
| 311 | /* enable PSC modules on all applicable cores */ |
| 312 | list_for_each_entry_reverse(core, &cluster->cores, elem) { |
| 313 | ret = core->ti_sci->ops.dev_ops.get_device(core->ti_sci, |
| 314 | core->ti_sci_id); |
| 315 | if (ret) { |
| 316 | dev_err(core->dev, "module-reset deassert failed, ret = %d\n", |
| 317 | ret); |
| 318 | core = list_next_entry(core, elem); |
| 319 | goto unroll_module_reset; |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | /* deassert local reset on all applicable cores */ |
| 324 | list_for_each_entry_reverse(core, &cluster->cores, elem) { |
| 325 | ret = reset_control_deassert(core->reset); |
| 326 | if (ret) { |
| 327 | dev_err(core->dev, "module-reset deassert failed, ret = %d\n", |
| 328 | ret); |
| 329 | goto unroll_local_reset; |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | return 0; |
| 334 | |
| 335 | unroll_local_reset: |
| 336 | list_for_each_entry_continue(core, &cluster->cores, elem) { |
| 337 | if (reset_control_assert(core->reset)) |
| 338 | dev_warn(core->dev, "local-reset assert back failed\n"); |
| 339 | } |
| 340 | core = list_first_entry(&cluster->cores, struct k3_r5_core, elem); |
| 341 | unroll_module_reset: |
| 342 | list_for_each_entry_from(core, &cluster->cores, elem) { |
| 343 | if (core->ti_sci->ops.dev_ops.put_device(core->ti_sci, |
| 344 | core->ti_sci_id)) |
| 345 | dev_warn(core->dev, "module-reset assert back failed\n"); |
| 346 | } |
| 347 | |
| 348 | return ret; |
| 349 | } |
| 350 | |
| 351 | static inline int k3_r5_core_halt(struct k3_r5_core *core) |
| 352 | { |
| 353 | return ti_sci_proc_set_control(core->tsp, |
| 354 | PROC_BOOT_CTRL_FLAG_R5_CORE_HALT, 0); |
| 355 | } |
| 356 | |
| 357 | static inline int k3_r5_core_run(struct k3_r5_core *core) |
| 358 | { |
| 359 | return ti_sci_proc_set_control(core->tsp, |
| 360 | 0, PROC_BOOT_CTRL_FLAG_R5_CORE_HALT); |
| 361 | } |
| 362 | |
| 363 | /* |
| 364 | * The R5F cores have controls for both a reset and a halt/run. The code |
| 365 | * execution from DDR requires the initial boot-strapping code to be run |
| 366 | * from the internal TCMs. This function is used to release the resets on |
| 367 | * applicable cores to allow loading into the TCMs. The .prepare() ops is |
| 368 | * invoked by remoteproc core before any firmware loading, and is followed |
| 369 | * by the .start() ops after loading to actually let the R5 cores run. |
| 370 | */ |
| 371 | static int k3_r5_rproc_prepare(struct rproc *rproc) |
| 372 | { |
| 373 | struct k3_r5_rproc *kproc = rproc->priv; |
| 374 | struct k3_r5_cluster *cluster = kproc->cluster; |
| 375 | struct k3_r5_core *core = kproc->core; |
| 376 | struct device *dev = kproc->dev; |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 377 | u32 ctrl = 0, cfg = 0, stat = 0; |
| 378 | u64 boot_vec = 0; |
| 379 | bool mem_init_dis; |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 380 | int ret; |
| 381 | |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 382 | ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, &stat); |
| 383 | if (ret < 0) |
| 384 | return ret; |
| 385 | mem_init_dis = !!(cfg & PROC_BOOT_CFG_FLAG_R5_MEM_INIT_DIS); |
| 386 | |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 387 | ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? |
| 388 | k3_r5_lockstep_release(cluster) : k3_r5_split_release(core); |
Suman Anna | 34f2653 | 2020-10-02 18:42:33 -0500 | [diff] [blame] | 389 | if (ret) { |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 390 | dev_err(dev, "unable to enable cores for TCM loading, ret = %d\n", |
| 391 | ret); |
Suman Anna | 34f2653 | 2020-10-02 18:42:33 -0500 | [diff] [blame] | 392 | return ret; |
| 393 | } |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 394 | |
Suman Anna | 34f2653 | 2020-10-02 18:42:33 -0500 | [diff] [blame] | 395 | /* |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 396 | * Newer IP revisions like on J7200 SoCs support h/w auto-initialization |
| 397 | * of TCMs, so there is no need to perform the s/w memzero. This bit is |
| 398 | * configurable through System Firmware, the default value does perform |
| 399 | * auto-init, but account for it in case it is disabled |
| 400 | */ |
| 401 | if (cluster->soc_data->tcm_ecc_autoinit && !mem_init_dis) { |
| 402 | dev_dbg(dev, "leveraging h/w init for TCM memories\n"); |
| 403 | return 0; |
| 404 | } |
| 405 | |
| 406 | /* |
Suman Anna | 34f2653 | 2020-10-02 18:42:33 -0500 | [diff] [blame] | 407 | * Zero out both TCMs unconditionally (access from v8 Arm core is not |
| 408 | * affected by ATCM & BTCM enable configuration values) so that ECC |
| 409 | * can be effective on all TCM addresses. |
| 410 | */ |
| 411 | dev_dbg(dev, "zeroing out ATCM memory\n"); |
| 412 | memset(core->mem[0].cpu_addr, 0x00, core->mem[0].size); |
| 413 | |
| 414 | dev_dbg(dev, "zeroing out BTCM memory\n"); |
| 415 | memset(core->mem[1].cpu_addr, 0x00, core->mem[1].size); |
| 416 | |
| 417 | return 0; |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 418 | } |
| 419 | |
| 420 | /* |
| 421 | * This function implements the .unprepare() ops and performs the complimentary |
| 422 | * operations to that of the .prepare() ops. The function is used to assert the |
| 423 | * resets on all applicable cores for the rproc device (depending on LockStep |
| 424 | * or Split mode). This completes the second portion of powering down the R5F |
| 425 | * cores. The cores themselves are only halted in the .stop() ops, and the |
| 426 | * .unprepare() ops is invoked by the remoteproc core after the remoteproc is |
| 427 | * stopped. |
| 428 | */ |
| 429 | static int k3_r5_rproc_unprepare(struct rproc *rproc) |
| 430 | { |
| 431 | struct k3_r5_rproc *kproc = rproc->priv; |
| 432 | struct k3_r5_cluster *cluster = kproc->cluster; |
| 433 | struct k3_r5_core *core = kproc->core; |
| 434 | struct device *dev = kproc->dev; |
| 435 | int ret; |
| 436 | |
| 437 | ret = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? |
| 438 | k3_r5_lockstep_reset(cluster) : k3_r5_split_reset(core); |
| 439 | if (ret) |
| 440 | dev_err(dev, "unable to disable cores, ret = %d\n", ret); |
| 441 | |
| 442 | return ret; |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * The R5F start sequence includes two different operations |
| 447 | * 1. Configure the boot vector for R5F core(s) |
| 448 | * 2. Unhalt/Run the R5F core(s) |
| 449 | * |
| 450 | * The sequence is different between LockStep and Split modes. The LockStep |
| 451 | * mode requires the boot vector to be configured only for Core0, and then |
| 452 | * unhalt both the cores to start the execution - Core1 needs to be unhalted |
| 453 | * first followed by Core0. The Split-mode requires that Core0 to be maintained |
| 454 | * always in a higher power state that Core1 (implying Core1 needs to be started |
| 455 | * always only after Core0 is started). |
| 456 | */ |
| 457 | static int k3_r5_rproc_start(struct rproc *rproc) |
| 458 | { |
| 459 | struct k3_r5_rproc *kproc = rproc->priv; |
| 460 | struct k3_r5_cluster *cluster = kproc->cluster; |
| 461 | struct mbox_client *client = &kproc->client; |
| 462 | struct device *dev = kproc->dev; |
| 463 | struct k3_r5_core *core; |
| 464 | u32 boot_addr; |
| 465 | int ret; |
| 466 | |
| 467 | client->dev = dev; |
| 468 | client->tx_done = NULL; |
| 469 | client->rx_callback = k3_r5_rproc_mbox_callback; |
| 470 | client->tx_block = false; |
| 471 | client->knows_txdone = false; |
| 472 | |
| 473 | kproc->mbox = mbox_request_channel(client, 0); |
| 474 | if (IS_ERR(kproc->mbox)) { |
| 475 | ret = -EBUSY; |
| 476 | dev_err(dev, "mbox_request_channel failed: %ld\n", |
| 477 | PTR_ERR(kproc->mbox)); |
| 478 | return ret; |
| 479 | } |
| 480 | |
| 481 | /* |
| 482 | * Ping the remote processor, this is only for sanity-sake for now; |
| 483 | * there is no functional effect whatsoever. |
| 484 | * |
| 485 | * Note that the reply will _not_ arrive immediately: this message |
| 486 | * will wait in the mailbox fifo until the remote processor is booted. |
| 487 | */ |
| 488 | ret = mbox_send_message(kproc->mbox, (void *)RP_MBOX_ECHO_REQUEST); |
| 489 | if (ret < 0) { |
| 490 | dev_err(dev, "mbox_send_message failed: %d\n", ret); |
| 491 | goto put_mbox; |
| 492 | } |
| 493 | |
| 494 | boot_addr = rproc->bootaddr; |
| 495 | /* TODO: add boot_addr sanity checking */ |
| 496 | dev_dbg(dev, "booting R5F core using boot addr = 0x%x\n", boot_addr); |
| 497 | |
| 498 | /* boot vector need not be programmed for Core1 in LockStep mode */ |
| 499 | core = kproc->core; |
| 500 | ret = ti_sci_proc_set_config(core->tsp, boot_addr, 0, 0); |
| 501 | if (ret) |
| 502 | goto put_mbox; |
| 503 | |
| 504 | /* unhalt/run all applicable cores */ |
| 505 | if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { |
| 506 | list_for_each_entry_reverse(core, &cluster->cores, elem) { |
| 507 | ret = k3_r5_core_run(core); |
| 508 | if (ret) |
| 509 | goto unroll_core_run; |
| 510 | } |
| 511 | } else { |
| 512 | ret = k3_r5_core_run(core); |
| 513 | if (ret) |
| 514 | goto put_mbox; |
| 515 | } |
| 516 | |
| 517 | return 0; |
| 518 | |
| 519 | unroll_core_run: |
| 520 | list_for_each_entry_continue(core, &cluster->cores, elem) { |
| 521 | if (k3_r5_core_halt(core)) |
| 522 | dev_warn(core->dev, "core halt back failed\n"); |
| 523 | } |
| 524 | put_mbox: |
| 525 | mbox_free_channel(kproc->mbox); |
| 526 | return ret; |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * The R5F stop function includes the following operations |
| 531 | * 1. Halt R5F core(s) |
| 532 | * |
| 533 | * The sequence is different between LockStep and Split modes, and the order |
| 534 | * of cores the operations are performed are also in general reverse to that |
| 535 | * of the start function. The LockStep mode requires each operation to be |
| 536 | * performed first on Core0 followed by Core1. The Split-mode requires that |
| 537 | * Core0 to be maintained always in a higher power state that Core1 (implying |
| 538 | * Core1 needs to be stopped first before Core0). |
| 539 | * |
| 540 | * Note that the R5F halt operation in general is not effective when the R5F |
| 541 | * core is running, but is needed to make sure the core won't run after |
| 542 | * deasserting the reset the subsequent time. The asserting of reset can |
| 543 | * be done here, but is preferred to be done in the .unprepare() ops - this |
| 544 | * maintains the symmetric behavior between the .start(), .stop(), .prepare() |
| 545 | * and .unprepare() ops, and also balances them well between sysfs 'state' |
| 546 | * flow and device bind/unbind or module removal. |
| 547 | */ |
| 548 | static int k3_r5_rproc_stop(struct rproc *rproc) |
| 549 | { |
| 550 | struct k3_r5_rproc *kproc = rproc->priv; |
| 551 | struct k3_r5_cluster *cluster = kproc->cluster; |
| 552 | struct k3_r5_core *core = kproc->core; |
| 553 | int ret; |
| 554 | |
| 555 | /* halt all applicable cores */ |
| 556 | if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { |
| 557 | list_for_each_entry(core, &cluster->cores, elem) { |
| 558 | ret = k3_r5_core_halt(core); |
| 559 | if (ret) { |
| 560 | core = list_prev_entry(core, elem); |
| 561 | goto unroll_core_halt; |
| 562 | } |
| 563 | } |
| 564 | } else { |
| 565 | ret = k3_r5_core_halt(core); |
| 566 | if (ret) |
| 567 | goto out; |
| 568 | } |
| 569 | |
| 570 | mbox_free_channel(kproc->mbox); |
| 571 | |
| 572 | return 0; |
| 573 | |
| 574 | unroll_core_halt: |
| 575 | list_for_each_entry_from_reverse(core, &cluster->cores, elem) { |
| 576 | if (k3_r5_core_run(core)) |
| 577 | dev_warn(core->dev, "core run back failed\n"); |
| 578 | } |
| 579 | out: |
| 580 | return ret; |
| 581 | } |
| 582 | |
| 583 | /* |
| 584 | * Internal Memory translation helper |
| 585 | * |
| 586 | * Custom function implementing the rproc .da_to_va ops to provide address |
| 587 | * translation (device address to kernel virtual address) for internal RAMs |
| 588 | * present in a DSP or IPU device). The translated addresses can be used |
| 589 | * either by the remoteproc core for loading, or by any rpmsg bus drivers. |
| 590 | */ |
| 591 | static void *k3_r5_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len) |
| 592 | { |
| 593 | struct k3_r5_rproc *kproc = rproc->priv; |
| 594 | struct k3_r5_core *core = kproc->core; |
| 595 | void __iomem *va = NULL; |
| 596 | phys_addr_t bus_addr; |
| 597 | u32 dev_addr, offset; |
| 598 | size_t size; |
| 599 | int i; |
| 600 | |
| 601 | if (len == 0) |
| 602 | return NULL; |
| 603 | |
| 604 | /* handle both R5 and SoC views of ATCM and BTCM */ |
| 605 | for (i = 0; i < core->num_mems; i++) { |
| 606 | bus_addr = core->mem[i].bus_addr; |
| 607 | dev_addr = core->mem[i].dev_addr; |
| 608 | size = core->mem[i].size; |
| 609 | |
| 610 | /* handle R5-view addresses of TCMs */ |
| 611 | if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { |
| 612 | offset = da - dev_addr; |
| 613 | va = core->mem[i].cpu_addr + offset; |
| 614 | return (__force void *)va; |
| 615 | } |
| 616 | |
| 617 | /* handle SoC-view addresses of TCMs */ |
| 618 | if (da >= bus_addr && ((da + len) <= (bus_addr + size))) { |
| 619 | offset = da - bus_addr; |
| 620 | va = core->mem[i].cpu_addr + offset; |
| 621 | return (__force void *)va; |
| 622 | } |
| 623 | } |
| 624 | |
Suman Anna | ea47c68 | 2020-10-02 18:42:34 -0500 | [diff] [blame] | 625 | /* handle any SRAM regions using SoC-view addresses */ |
| 626 | for (i = 0; i < core->num_sram; i++) { |
| 627 | dev_addr = core->sram[i].dev_addr; |
| 628 | size = core->sram[i].size; |
| 629 | |
| 630 | if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { |
| 631 | offset = da - dev_addr; |
| 632 | va = core->sram[i].cpu_addr + offset; |
| 633 | return (__force void *)va; |
| 634 | } |
| 635 | } |
| 636 | |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 637 | /* handle static DDR reserved memory regions */ |
| 638 | for (i = 0; i < kproc->num_rmems; i++) { |
| 639 | dev_addr = kproc->rmem[i].dev_addr; |
| 640 | size = kproc->rmem[i].size; |
| 641 | |
| 642 | if (da >= dev_addr && ((da + len) <= (dev_addr + size))) { |
| 643 | offset = da - dev_addr; |
| 644 | va = kproc->rmem[i].cpu_addr + offset; |
| 645 | return (__force void *)va; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | return NULL; |
| 650 | } |
| 651 | |
| 652 | static const struct rproc_ops k3_r5_rproc_ops = { |
| 653 | .prepare = k3_r5_rproc_prepare, |
| 654 | .unprepare = k3_r5_rproc_unprepare, |
| 655 | .start = k3_r5_rproc_start, |
| 656 | .stop = k3_r5_rproc_stop, |
| 657 | .kick = k3_r5_rproc_kick, |
| 658 | .da_to_va = k3_r5_rproc_da_to_va, |
| 659 | }; |
| 660 | |
| 661 | /* |
| 662 | * Internal R5F Core configuration |
| 663 | * |
| 664 | * Each R5FSS has a cluster-level setting for configuring the processor |
| 665 | * subsystem either in a safety/fault-tolerant LockStep mode or a performance |
| 666 | * oriented Split mode. Each R5F core has a number of settings to either |
| 667 | * enable/disable each of the TCMs, control which TCM appears at the R5F core's |
| 668 | * address 0x0. These settings need to be configured before the resets for the |
| 669 | * corresponding core are released. These settings are all protected and managed |
| 670 | * by the System Processor. |
| 671 | * |
| 672 | * This function is used to pre-configure these settings for each R5F core, and |
| 673 | * the configuration is all done through various ti_sci_proc functions that |
| 674 | * communicate with the System Processor. The function also ensures that both |
| 675 | * the cores are halted before the .prepare() step. |
| 676 | * |
| 677 | * The function is called from k3_r5_cluster_rproc_init() and is invoked either |
| 678 | * once (in LockStep mode) or twice (in Split mode). Support for LockStep-mode |
| 679 | * is dictated by an eFUSE register bit, and the config settings retrieved from |
| 680 | * DT are adjusted accordingly as per the permitted cluster mode. All cluster |
| 681 | * level settings like Cluster mode and TEINIT (exception handling state |
| 682 | * dictating ARM or Thumb mode) can only be set and retrieved using Core0. |
| 683 | * |
| 684 | * The function behavior is different based on the cluster mode. The R5F cores |
| 685 | * are configured independently as per their individual settings in Split mode. |
| 686 | * They are identically configured in LockStep mode using the primary Core0 |
| 687 | * settings. However, some individual settings cannot be set in LockStep mode. |
| 688 | * This is overcome by switching to Split-mode initially and then programming |
| 689 | * both the cores with the same settings, before reconfiguing again for |
| 690 | * LockStep mode. |
| 691 | */ |
| 692 | static int k3_r5_rproc_configure(struct k3_r5_rproc *kproc) |
| 693 | { |
| 694 | struct k3_r5_cluster *cluster = kproc->cluster; |
| 695 | struct device *dev = kproc->dev; |
| 696 | struct k3_r5_core *core0, *core, *temp; |
| 697 | u32 ctrl = 0, cfg = 0, stat = 0; |
| 698 | u32 set_cfg = 0, clr_cfg = 0; |
| 699 | u64 boot_vec = 0; |
| 700 | bool lockstep_en; |
| 701 | int ret; |
| 702 | |
| 703 | core0 = list_first_entry(&cluster->cores, struct k3_r5_core, elem); |
| 704 | core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? core0 : kproc->core; |
| 705 | |
| 706 | ret = ti_sci_proc_get_status(core->tsp, &boot_vec, &cfg, &ctrl, |
| 707 | &stat); |
| 708 | if (ret < 0) |
| 709 | return ret; |
| 710 | |
| 711 | dev_dbg(dev, "boot_vector = 0x%llx, cfg = 0x%x ctrl = 0x%x stat = 0x%x\n", |
| 712 | boot_vec, cfg, ctrl, stat); |
| 713 | |
| 714 | lockstep_en = !!(stat & PROC_BOOT_STATUS_FLAG_R5_LOCKSTEP_PERMITTED); |
| 715 | if (!lockstep_en && cluster->mode == CLUSTER_MODE_LOCKSTEP) { |
| 716 | dev_err(cluster->dev, "lockstep mode not permitted, force configuring for split-mode\n"); |
| 717 | cluster->mode = CLUSTER_MODE_SPLIT; |
| 718 | } |
| 719 | |
| 720 | /* always enable ARM mode and set boot vector to 0 */ |
| 721 | boot_vec = 0x0; |
| 722 | if (core == core0) { |
| 723 | clr_cfg = PROC_BOOT_CFG_FLAG_R5_TEINIT; |
| 724 | /* |
| 725 | * LockStep configuration bit is Read-only on Split-mode _only_ |
| 726 | * devices and system firmware will NACK any requests with the |
| 727 | * bit configured, so program it only on permitted devices |
| 728 | */ |
| 729 | if (lockstep_en) |
| 730 | clr_cfg |= PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; |
| 731 | } |
| 732 | |
| 733 | if (core->atcm_enable) |
| 734 | set_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; |
| 735 | else |
| 736 | clr_cfg |= PROC_BOOT_CFG_FLAG_R5_ATCM_EN; |
| 737 | |
| 738 | if (core->btcm_enable) |
| 739 | set_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; |
| 740 | else |
| 741 | clr_cfg |= PROC_BOOT_CFG_FLAG_R5_BTCM_EN; |
| 742 | |
| 743 | if (core->loczrama) |
| 744 | set_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; |
| 745 | else |
| 746 | clr_cfg |= PROC_BOOT_CFG_FLAG_R5_TCM_RSTBASE; |
| 747 | |
| 748 | if (cluster->mode == CLUSTER_MODE_LOCKSTEP) { |
| 749 | /* |
| 750 | * work around system firmware limitations to make sure both |
| 751 | * cores are programmed symmetrically in LockStep. LockStep |
| 752 | * and TEINIT config is only allowed with Core0. |
| 753 | */ |
| 754 | list_for_each_entry(temp, &cluster->cores, elem) { |
| 755 | ret = k3_r5_core_halt(temp); |
| 756 | if (ret) |
| 757 | goto out; |
| 758 | |
| 759 | if (temp != core) { |
| 760 | clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; |
| 761 | clr_cfg &= ~PROC_BOOT_CFG_FLAG_R5_TEINIT; |
| 762 | } |
| 763 | ret = ti_sci_proc_set_config(temp->tsp, boot_vec, |
| 764 | set_cfg, clr_cfg); |
| 765 | if (ret) |
| 766 | goto out; |
| 767 | } |
| 768 | |
| 769 | set_cfg = PROC_BOOT_CFG_FLAG_R5_LOCKSTEP; |
| 770 | clr_cfg = 0; |
| 771 | ret = ti_sci_proc_set_config(core->tsp, boot_vec, |
| 772 | set_cfg, clr_cfg); |
| 773 | } else { |
| 774 | ret = k3_r5_core_halt(core); |
| 775 | if (ret) |
| 776 | goto out; |
| 777 | |
| 778 | ret = ti_sci_proc_set_config(core->tsp, boot_vec, |
| 779 | set_cfg, clr_cfg); |
| 780 | } |
| 781 | |
| 782 | out: |
| 783 | return ret; |
| 784 | } |
| 785 | |
| 786 | static int k3_r5_reserved_mem_init(struct k3_r5_rproc *kproc) |
| 787 | { |
| 788 | struct device *dev = kproc->dev; |
| 789 | struct device_node *np = dev_of_node(dev); |
| 790 | struct device_node *rmem_np; |
| 791 | struct reserved_mem *rmem; |
| 792 | int num_rmems; |
| 793 | int ret, i; |
| 794 | |
| 795 | num_rmems = of_property_count_elems_of_size(np, "memory-region", |
| 796 | sizeof(phandle)); |
| 797 | if (num_rmems <= 0) { |
| 798 | dev_err(dev, "device does not have reserved memory regions, ret = %d\n", |
| 799 | num_rmems); |
| 800 | return -EINVAL; |
| 801 | } |
| 802 | if (num_rmems < 2) { |
| 803 | dev_err(dev, "device needs atleast two memory regions to be defined, num = %d\n", |
| 804 | num_rmems); |
| 805 | return -EINVAL; |
| 806 | } |
| 807 | |
| 808 | /* use reserved memory region 0 for vring DMA allocations */ |
| 809 | ret = of_reserved_mem_device_init_by_idx(dev, np, 0); |
| 810 | if (ret) { |
| 811 | dev_err(dev, "device cannot initialize DMA pool, ret = %d\n", |
| 812 | ret); |
| 813 | return ret; |
| 814 | } |
| 815 | |
| 816 | num_rmems--; |
| 817 | kproc->rmem = kcalloc(num_rmems, sizeof(*kproc->rmem), GFP_KERNEL); |
| 818 | if (!kproc->rmem) { |
| 819 | ret = -ENOMEM; |
| 820 | goto release_rmem; |
| 821 | } |
| 822 | |
| 823 | /* use remaining reserved memory regions for static carveouts */ |
| 824 | for (i = 0; i < num_rmems; i++) { |
| 825 | rmem_np = of_parse_phandle(np, "memory-region", i + 1); |
| 826 | if (!rmem_np) { |
| 827 | ret = -EINVAL; |
| 828 | goto unmap_rmem; |
| 829 | } |
| 830 | |
| 831 | rmem = of_reserved_mem_lookup(rmem_np); |
| 832 | if (!rmem) { |
| 833 | of_node_put(rmem_np); |
| 834 | ret = -EINVAL; |
| 835 | goto unmap_rmem; |
| 836 | } |
| 837 | of_node_put(rmem_np); |
| 838 | |
| 839 | kproc->rmem[i].bus_addr = rmem->base; |
| 840 | /* |
| 841 | * R5Fs do not have an MMU, but have a Region Address Translator |
| 842 | * (RAT) module that provides a fixed entry translation between |
| 843 | * the 32-bit processor addresses to 64-bit bus addresses. The |
| 844 | * RAT is programmable only by the R5F cores. Support for RAT |
| 845 | * is currently not supported, so 64-bit address regions are not |
| 846 | * supported. The absence of MMUs implies that the R5F device |
| 847 | * addresses/supported memory regions are restricted to 32-bit |
| 848 | * bus addresses, and are identical |
| 849 | */ |
| 850 | kproc->rmem[i].dev_addr = (u32)rmem->base; |
| 851 | kproc->rmem[i].size = rmem->size; |
| 852 | kproc->rmem[i].cpu_addr = ioremap_wc(rmem->base, rmem->size); |
| 853 | if (!kproc->rmem[i].cpu_addr) { |
| 854 | dev_err(dev, "failed to map reserved memory#%d at %pa of size %pa\n", |
| 855 | i + 1, &rmem->base, &rmem->size); |
| 856 | ret = -ENOMEM; |
| 857 | goto unmap_rmem; |
| 858 | } |
| 859 | |
| 860 | dev_dbg(dev, "reserved memory%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", |
| 861 | i + 1, &kproc->rmem[i].bus_addr, |
| 862 | kproc->rmem[i].size, kproc->rmem[i].cpu_addr, |
| 863 | kproc->rmem[i].dev_addr); |
| 864 | } |
| 865 | kproc->num_rmems = num_rmems; |
| 866 | |
| 867 | return 0; |
| 868 | |
| 869 | unmap_rmem: |
| 870 | for (i--; i >= 0; i--) |
| 871 | iounmap(kproc->rmem[i].cpu_addr); |
| 872 | kfree(kproc->rmem); |
| 873 | release_rmem: |
| 874 | of_reserved_mem_device_release(dev); |
| 875 | return ret; |
| 876 | } |
| 877 | |
| 878 | static void k3_r5_reserved_mem_exit(struct k3_r5_rproc *kproc) |
| 879 | { |
| 880 | int i; |
| 881 | |
| 882 | for (i = 0; i < kproc->num_rmems; i++) |
| 883 | iounmap(kproc->rmem[i].cpu_addr); |
| 884 | kfree(kproc->rmem); |
| 885 | |
| 886 | of_reserved_mem_device_release(kproc->dev); |
| 887 | } |
| 888 | |
| 889 | static int k3_r5_cluster_rproc_init(struct platform_device *pdev) |
| 890 | { |
| 891 | struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); |
| 892 | struct device *dev = &pdev->dev; |
| 893 | struct k3_r5_rproc *kproc; |
| 894 | struct k3_r5_core *core, *core1; |
| 895 | struct device *cdev; |
| 896 | const char *fw_name; |
| 897 | struct rproc *rproc; |
| 898 | int ret; |
| 899 | |
| 900 | core1 = list_last_entry(&cluster->cores, struct k3_r5_core, elem); |
| 901 | list_for_each_entry(core, &cluster->cores, elem) { |
| 902 | cdev = core->dev; |
| 903 | ret = rproc_of_parse_firmware(cdev, 0, &fw_name); |
| 904 | if (ret) { |
| 905 | dev_err(dev, "failed to parse firmware-name property, ret = %d\n", |
| 906 | ret); |
| 907 | goto out; |
| 908 | } |
| 909 | |
| 910 | rproc = rproc_alloc(cdev, dev_name(cdev), &k3_r5_rproc_ops, |
| 911 | fw_name, sizeof(*kproc)); |
| 912 | if (!rproc) { |
| 913 | ret = -ENOMEM; |
| 914 | goto out; |
| 915 | } |
| 916 | |
| 917 | /* K3 R5s have a Region Address Translator (RAT) but no MMU */ |
| 918 | rproc->has_iommu = false; |
| 919 | /* error recovery is not supported at present */ |
| 920 | rproc->recovery_disabled = true; |
| 921 | |
| 922 | kproc = rproc->priv; |
| 923 | kproc->cluster = cluster; |
| 924 | kproc->core = core; |
| 925 | kproc->dev = cdev; |
| 926 | kproc->rproc = rproc; |
| 927 | core->rproc = rproc; |
| 928 | |
| 929 | ret = k3_r5_rproc_configure(kproc); |
| 930 | if (ret) { |
| 931 | dev_err(dev, "initial configure failed, ret = %d\n", |
| 932 | ret); |
| 933 | goto err_config; |
| 934 | } |
| 935 | |
| 936 | ret = k3_r5_reserved_mem_init(kproc); |
| 937 | if (ret) { |
| 938 | dev_err(dev, "reserved memory init failed, ret = %d\n", |
| 939 | ret); |
| 940 | goto err_config; |
| 941 | } |
| 942 | |
| 943 | ret = rproc_add(rproc); |
| 944 | if (ret) { |
| 945 | dev_err(dev, "rproc_add failed, ret = %d\n", ret); |
| 946 | goto err_add; |
| 947 | } |
| 948 | |
| 949 | /* create only one rproc in lockstep mode */ |
| 950 | if (cluster->mode == CLUSTER_MODE_LOCKSTEP) |
| 951 | break; |
| 952 | } |
| 953 | |
| 954 | return 0; |
| 955 | |
| 956 | err_split: |
| 957 | rproc_del(rproc); |
| 958 | err_add: |
| 959 | k3_r5_reserved_mem_exit(kproc); |
| 960 | err_config: |
| 961 | rproc_free(rproc); |
| 962 | core->rproc = NULL; |
| 963 | out: |
| 964 | /* undo core0 upon any failures on core1 in split-mode */ |
| 965 | if (cluster->mode == CLUSTER_MODE_SPLIT && core == core1) { |
| 966 | core = list_prev_entry(core, elem); |
| 967 | rproc = core->rproc; |
| 968 | kproc = rproc->priv; |
| 969 | goto err_split; |
| 970 | } |
| 971 | return ret; |
| 972 | } |
| 973 | |
Arnd Bergmann | 2316822 | 2020-10-26 17:05:23 +0100 | [diff] [blame] | 974 | static void k3_r5_cluster_rproc_exit(void *data) |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 975 | { |
Arnd Bergmann | 2316822 | 2020-10-26 17:05:23 +0100 | [diff] [blame] | 976 | struct k3_r5_cluster *cluster = platform_get_drvdata(data); |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 977 | struct k3_r5_rproc *kproc; |
| 978 | struct k3_r5_core *core; |
| 979 | struct rproc *rproc; |
| 980 | |
| 981 | /* |
| 982 | * lockstep mode has only one rproc associated with first core, whereas |
| 983 | * split-mode has two rprocs associated with each core, and requires |
| 984 | * that core1 be powered down first |
| 985 | */ |
| 986 | core = (cluster->mode == CLUSTER_MODE_LOCKSTEP) ? |
| 987 | list_first_entry(&cluster->cores, struct k3_r5_core, elem) : |
| 988 | list_last_entry(&cluster->cores, struct k3_r5_core, elem); |
| 989 | |
| 990 | list_for_each_entry_from_reverse(core, &cluster->cores, elem) { |
| 991 | rproc = core->rproc; |
| 992 | kproc = rproc->priv; |
| 993 | |
| 994 | rproc_del(rproc); |
| 995 | |
| 996 | k3_r5_reserved_mem_exit(kproc); |
| 997 | |
| 998 | rproc_free(rproc); |
| 999 | core->rproc = NULL; |
| 1000 | } |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1001 | } |
| 1002 | |
| 1003 | static int k3_r5_core_of_get_internal_memories(struct platform_device *pdev, |
| 1004 | struct k3_r5_core *core) |
| 1005 | { |
| 1006 | static const char * const mem_names[] = {"atcm", "btcm"}; |
| 1007 | struct device *dev = &pdev->dev; |
| 1008 | struct resource *res; |
| 1009 | int num_mems; |
| 1010 | int i; |
| 1011 | |
| 1012 | num_mems = ARRAY_SIZE(mem_names); |
| 1013 | core->mem = devm_kcalloc(dev, num_mems, sizeof(*core->mem), GFP_KERNEL); |
| 1014 | if (!core->mem) |
| 1015 | return -ENOMEM; |
| 1016 | |
| 1017 | for (i = 0; i < num_mems; i++) { |
| 1018 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| 1019 | mem_names[i]); |
| 1020 | if (!res) { |
| 1021 | dev_err(dev, "found no memory resource for %s\n", |
| 1022 | mem_names[i]); |
| 1023 | return -EINVAL; |
| 1024 | } |
| 1025 | if (!devm_request_mem_region(dev, res->start, |
| 1026 | resource_size(res), |
| 1027 | dev_name(dev))) { |
| 1028 | dev_err(dev, "could not request %s region for resource\n", |
| 1029 | mem_names[i]); |
| 1030 | return -EBUSY; |
| 1031 | } |
| 1032 | |
| 1033 | /* |
| 1034 | * TCMs are designed in general to support RAM-like backing |
| 1035 | * memories. So, map these as Normal Non-Cached memories. This |
| 1036 | * also avoids/fixes any potential alignment faults due to |
| 1037 | * unaligned data accesses when using memcpy() or memset() |
| 1038 | * functions (normally seen with device type memory). |
| 1039 | */ |
| 1040 | core->mem[i].cpu_addr = devm_ioremap_wc(dev, res->start, |
| 1041 | resource_size(res)); |
| 1042 | if (!core->mem[i].cpu_addr) { |
| 1043 | dev_err(dev, "failed to map %s memory\n", mem_names[i]); |
| 1044 | return -ENOMEM; |
| 1045 | } |
| 1046 | core->mem[i].bus_addr = res->start; |
| 1047 | |
| 1048 | /* |
| 1049 | * TODO: |
| 1050 | * The R5F cores can place ATCM & BTCM anywhere in its address |
| 1051 | * based on the corresponding Region Registers in the System |
| 1052 | * Control coprocessor. For now, place ATCM and BTCM at |
| 1053 | * addresses 0 and 0x41010000 (same as the bus address on AM65x |
| 1054 | * SoCs) based on loczrama setting |
| 1055 | */ |
| 1056 | if (!strcmp(mem_names[i], "atcm")) { |
| 1057 | core->mem[i].dev_addr = core->loczrama ? |
| 1058 | 0 : K3_R5_TCM_DEV_ADDR; |
| 1059 | } else { |
| 1060 | core->mem[i].dev_addr = core->loczrama ? |
| 1061 | K3_R5_TCM_DEV_ADDR : 0; |
| 1062 | } |
| 1063 | core->mem[i].size = resource_size(res); |
| 1064 | |
| 1065 | dev_dbg(dev, "memory %5s: bus addr %pa size 0x%zx va %pK da 0x%x\n", |
| 1066 | mem_names[i], &core->mem[i].bus_addr, |
| 1067 | core->mem[i].size, core->mem[i].cpu_addr, |
| 1068 | core->mem[i].dev_addr); |
| 1069 | } |
| 1070 | core->num_mems = num_mems; |
| 1071 | |
| 1072 | return 0; |
| 1073 | } |
| 1074 | |
Suman Anna | ea47c68 | 2020-10-02 18:42:34 -0500 | [diff] [blame] | 1075 | static int k3_r5_core_of_get_sram_memories(struct platform_device *pdev, |
| 1076 | struct k3_r5_core *core) |
| 1077 | { |
| 1078 | struct device_node *np = pdev->dev.of_node; |
| 1079 | struct device *dev = &pdev->dev; |
| 1080 | struct device_node *sram_np; |
| 1081 | struct resource res; |
| 1082 | int num_sram; |
| 1083 | int i, ret; |
| 1084 | |
| 1085 | num_sram = of_property_count_elems_of_size(np, "sram", sizeof(phandle)); |
| 1086 | if (num_sram <= 0) { |
| 1087 | dev_dbg(dev, "device does not use reserved on-chip memories, num_sram = %d\n", |
| 1088 | num_sram); |
| 1089 | return 0; |
| 1090 | } |
| 1091 | |
| 1092 | core->sram = devm_kcalloc(dev, num_sram, sizeof(*core->sram), GFP_KERNEL); |
| 1093 | if (!core->sram) |
| 1094 | return -ENOMEM; |
| 1095 | |
| 1096 | for (i = 0; i < num_sram; i++) { |
| 1097 | sram_np = of_parse_phandle(np, "sram", i); |
| 1098 | if (!sram_np) |
| 1099 | return -EINVAL; |
| 1100 | |
| 1101 | if (!of_device_is_available(sram_np)) { |
| 1102 | of_node_put(sram_np); |
| 1103 | return -EINVAL; |
| 1104 | } |
| 1105 | |
| 1106 | ret = of_address_to_resource(sram_np, 0, &res); |
| 1107 | of_node_put(sram_np); |
| 1108 | if (ret) |
| 1109 | return -EINVAL; |
| 1110 | |
| 1111 | core->sram[i].bus_addr = res.start; |
| 1112 | core->sram[i].dev_addr = res.start; |
| 1113 | core->sram[i].size = resource_size(&res); |
| 1114 | core->sram[i].cpu_addr = devm_ioremap_wc(dev, res.start, |
| 1115 | resource_size(&res)); |
| 1116 | if (!core->sram[i].cpu_addr) { |
| 1117 | dev_err(dev, "failed to parse and map sram%d memory at %pad\n", |
| 1118 | i, &res.start); |
| 1119 | return -ENOMEM; |
| 1120 | } |
| 1121 | |
| 1122 | dev_dbg(dev, "memory sram%d: bus addr %pa size 0x%zx va %pK da 0x%x\n", |
| 1123 | i, &core->sram[i].bus_addr, |
| 1124 | core->sram[i].size, core->sram[i].cpu_addr, |
| 1125 | core->sram[i].dev_addr); |
| 1126 | } |
| 1127 | core->num_sram = num_sram; |
| 1128 | |
| 1129 | return 0; |
| 1130 | } |
| 1131 | |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1132 | static |
| 1133 | struct ti_sci_proc *k3_r5_core_of_get_tsp(struct device *dev, |
| 1134 | const struct ti_sci_handle *sci) |
| 1135 | { |
| 1136 | struct ti_sci_proc *tsp; |
| 1137 | u32 temp[2]; |
| 1138 | int ret; |
| 1139 | |
| 1140 | ret = of_property_read_u32_array(dev_of_node(dev), "ti,sci-proc-ids", |
| 1141 | temp, 2); |
| 1142 | if (ret < 0) |
| 1143 | return ERR_PTR(ret); |
| 1144 | |
| 1145 | tsp = devm_kzalloc(dev, sizeof(*tsp), GFP_KERNEL); |
| 1146 | if (!tsp) |
| 1147 | return ERR_PTR(-ENOMEM); |
| 1148 | |
| 1149 | tsp->dev = dev; |
| 1150 | tsp->sci = sci; |
| 1151 | tsp->ops = &sci->ops.proc_ops; |
| 1152 | tsp->proc_id = temp[0]; |
| 1153 | tsp->host_id = temp[1]; |
| 1154 | |
| 1155 | return tsp; |
| 1156 | } |
| 1157 | |
| 1158 | static int k3_r5_core_of_init(struct platform_device *pdev) |
| 1159 | { |
| 1160 | struct device *dev = &pdev->dev; |
| 1161 | struct device_node *np = dev_of_node(dev); |
| 1162 | struct k3_r5_core *core; |
| 1163 | int ret; |
| 1164 | |
| 1165 | if (!devres_open_group(dev, k3_r5_core_of_init, GFP_KERNEL)) |
| 1166 | return -ENOMEM; |
| 1167 | |
| 1168 | core = devm_kzalloc(dev, sizeof(*core), GFP_KERNEL); |
| 1169 | if (!core) { |
| 1170 | ret = -ENOMEM; |
| 1171 | goto err; |
| 1172 | } |
| 1173 | |
| 1174 | core->dev = dev; |
| 1175 | /* |
| 1176 | * Use SoC Power-on-Reset values as default if no DT properties are |
| 1177 | * used to dictate the TCM configurations |
| 1178 | */ |
| 1179 | core->atcm_enable = 0; |
| 1180 | core->btcm_enable = 1; |
| 1181 | core->loczrama = 1; |
| 1182 | |
| 1183 | ret = of_property_read_u32(np, "ti,atcm-enable", &core->atcm_enable); |
| 1184 | if (ret < 0 && ret != -EINVAL) { |
| 1185 | dev_err(dev, "invalid format for ti,atcm-enable, ret = %d\n", |
| 1186 | ret); |
| 1187 | goto err; |
| 1188 | } |
| 1189 | |
| 1190 | ret = of_property_read_u32(np, "ti,btcm-enable", &core->btcm_enable); |
| 1191 | if (ret < 0 && ret != -EINVAL) { |
| 1192 | dev_err(dev, "invalid format for ti,btcm-enable, ret = %d\n", |
| 1193 | ret); |
| 1194 | goto err; |
| 1195 | } |
| 1196 | |
| 1197 | ret = of_property_read_u32(np, "ti,loczrama", &core->loczrama); |
| 1198 | if (ret < 0 && ret != -EINVAL) { |
| 1199 | dev_err(dev, "invalid format for ti,loczrama, ret = %d\n", ret); |
| 1200 | goto err; |
| 1201 | } |
| 1202 | |
| 1203 | core->ti_sci = devm_ti_sci_get_by_phandle(dev, "ti,sci"); |
| 1204 | if (IS_ERR(core->ti_sci)) { |
| 1205 | ret = PTR_ERR(core->ti_sci); |
| 1206 | if (ret != -EPROBE_DEFER) { |
| 1207 | dev_err(dev, "failed to get ti-sci handle, ret = %d\n", |
| 1208 | ret); |
| 1209 | } |
| 1210 | core->ti_sci = NULL; |
| 1211 | goto err; |
| 1212 | } |
| 1213 | |
| 1214 | ret = of_property_read_u32(np, "ti,sci-dev-id", &core->ti_sci_id); |
| 1215 | if (ret) { |
| 1216 | dev_err(dev, "missing 'ti,sci-dev-id' property\n"); |
| 1217 | goto err; |
| 1218 | } |
| 1219 | |
| 1220 | core->reset = devm_reset_control_get_exclusive(dev, NULL); |
| 1221 | if (IS_ERR_OR_NULL(core->reset)) { |
| 1222 | ret = PTR_ERR_OR_ZERO(core->reset); |
| 1223 | if (!ret) |
| 1224 | ret = -ENODEV; |
| 1225 | if (ret != -EPROBE_DEFER) { |
| 1226 | dev_err(dev, "failed to get reset handle, ret = %d\n", |
| 1227 | ret); |
| 1228 | } |
| 1229 | goto err; |
| 1230 | } |
| 1231 | |
| 1232 | core->tsp = k3_r5_core_of_get_tsp(dev, core->ti_sci); |
| 1233 | if (IS_ERR(core->tsp)) { |
| 1234 | dev_err(dev, "failed to construct ti-sci proc control, ret = %d\n", |
| 1235 | ret); |
| 1236 | ret = PTR_ERR(core->tsp); |
| 1237 | goto err; |
| 1238 | } |
| 1239 | |
| 1240 | ret = k3_r5_core_of_get_internal_memories(pdev, core); |
| 1241 | if (ret) { |
| 1242 | dev_err(dev, "failed to get internal memories, ret = %d\n", |
| 1243 | ret); |
| 1244 | goto err; |
| 1245 | } |
| 1246 | |
Suman Anna | ea47c68 | 2020-10-02 18:42:34 -0500 | [diff] [blame] | 1247 | ret = k3_r5_core_of_get_sram_memories(pdev, core); |
| 1248 | if (ret) { |
| 1249 | dev_err(dev, "failed to get sram memories, ret = %d\n", ret); |
| 1250 | goto err; |
| 1251 | } |
| 1252 | |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1253 | ret = ti_sci_proc_request(core->tsp); |
| 1254 | if (ret < 0) { |
| 1255 | dev_err(dev, "ti_sci_proc_request failed, ret = %d\n", ret); |
| 1256 | goto err; |
| 1257 | } |
| 1258 | |
| 1259 | platform_set_drvdata(pdev, core); |
| 1260 | devres_close_group(dev, k3_r5_core_of_init); |
| 1261 | |
| 1262 | return 0; |
| 1263 | |
| 1264 | err: |
| 1265 | devres_release_group(dev, k3_r5_core_of_init); |
| 1266 | return ret; |
| 1267 | } |
| 1268 | |
| 1269 | /* |
| 1270 | * free the resources explicitly since driver model is not being used |
| 1271 | * for the child R5F devices |
| 1272 | */ |
| 1273 | static void k3_r5_core_of_exit(struct platform_device *pdev) |
| 1274 | { |
| 1275 | struct k3_r5_core *core = platform_get_drvdata(pdev); |
| 1276 | struct device *dev = &pdev->dev; |
| 1277 | int ret; |
| 1278 | |
| 1279 | ret = ti_sci_proc_release(core->tsp); |
| 1280 | if (ret) |
| 1281 | dev_err(dev, "failed to release proc, ret = %d\n", ret); |
| 1282 | |
| 1283 | platform_set_drvdata(pdev, NULL); |
| 1284 | devres_release_group(dev, k3_r5_core_of_init); |
| 1285 | } |
| 1286 | |
Arnd Bergmann | 2316822 | 2020-10-26 17:05:23 +0100 | [diff] [blame] | 1287 | static void k3_r5_cluster_of_exit(void *data) |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1288 | { |
Arnd Bergmann | 2316822 | 2020-10-26 17:05:23 +0100 | [diff] [blame] | 1289 | struct k3_r5_cluster *cluster = platform_get_drvdata(data); |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1290 | struct platform_device *cpdev; |
| 1291 | struct k3_r5_core *core, *temp; |
| 1292 | |
| 1293 | list_for_each_entry_safe_reverse(core, temp, &cluster->cores, elem) { |
| 1294 | list_del(&core->elem); |
| 1295 | cpdev = to_platform_device(core->dev); |
| 1296 | k3_r5_core_of_exit(cpdev); |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | static int k3_r5_cluster_of_init(struct platform_device *pdev) |
| 1301 | { |
| 1302 | struct k3_r5_cluster *cluster = platform_get_drvdata(pdev); |
| 1303 | struct device *dev = &pdev->dev; |
| 1304 | struct device_node *np = dev_of_node(dev); |
| 1305 | struct platform_device *cpdev; |
| 1306 | struct device_node *child; |
| 1307 | struct k3_r5_core *core; |
| 1308 | int ret; |
| 1309 | |
| 1310 | for_each_available_child_of_node(np, child) { |
| 1311 | cpdev = of_find_device_by_node(child); |
| 1312 | if (!cpdev) { |
| 1313 | ret = -ENODEV; |
| 1314 | dev_err(dev, "could not get R5 core platform device\n"); |
| 1315 | goto fail; |
| 1316 | } |
| 1317 | |
| 1318 | ret = k3_r5_core_of_init(cpdev); |
| 1319 | if (ret) { |
| 1320 | dev_err(dev, "k3_r5_core_of_init failed, ret = %d\n", |
| 1321 | ret); |
| 1322 | put_device(&cpdev->dev); |
| 1323 | goto fail; |
| 1324 | } |
| 1325 | |
| 1326 | core = platform_get_drvdata(cpdev); |
| 1327 | put_device(&cpdev->dev); |
| 1328 | list_add_tail(&core->elem, &cluster->cores); |
| 1329 | } |
| 1330 | |
| 1331 | return 0; |
| 1332 | |
| 1333 | fail: |
| 1334 | k3_r5_cluster_of_exit(pdev); |
| 1335 | return ret; |
| 1336 | } |
| 1337 | |
| 1338 | static int k3_r5_probe(struct platform_device *pdev) |
| 1339 | { |
| 1340 | struct device *dev = &pdev->dev; |
| 1341 | struct device_node *np = dev_of_node(dev); |
| 1342 | struct k3_r5_cluster *cluster; |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 1343 | const struct k3_r5_soc_data *data; |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1344 | int ret; |
| 1345 | int num_cores; |
| 1346 | |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 1347 | data = of_device_get_match_data(&pdev->dev); |
| 1348 | if (!data) { |
| 1349 | dev_err(dev, "SoC-specific data is not defined\n"); |
| 1350 | return -ENODEV; |
| 1351 | } |
| 1352 | |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1353 | cluster = devm_kzalloc(dev, sizeof(*cluster), GFP_KERNEL); |
| 1354 | if (!cluster) |
| 1355 | return -ENOMEM; |
| 1356 | |
| 1357 | cluster->dev = dev; |
| 1358 | cluster->mode = CLUSTER_MODE_LOCKSTEP; |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 1359 | cluster->soc_data = data; |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1360 | INIT_LIST_HEAD(&cluster->cores); |
| 1361 | |
| 1362 | ret = of_property_read_u32(np, "ti,cluster-mode", &cluster->mode); |
| 1363 | if (ret < 0 && ret != -EINVAL) { |
| 1364 | dev_err(dev, "invalid format for ti,cluster-mode, ret = %d\n", |
| 1365 | ret); |
| 1366 | return ret; |
| 1367 | } |
| 1368 | |
| 1369 | num_cores = of_get_available_child_count(np); |
| 1370 | if (num_cores != 2) { |
| 1371 | dev_err(dev, "MCU cluster requires both R5F cores to be enabled, num_cores = %d\n", |
| 1372 | num_cores); |
| 1373 | return -ENODEV; |
| 1374 | } |
| 1375 | |
| 1376 | platform_set_drvdata(pdev, cluster); |
| 1377 | |
| 1378 | ret = devm_of_platform_populate(dev); |
| 1379 | if (ret) { |
| 1380 | dev_err(dev, "devm_of_platform_populate failed, ret = %d\n", |
| 1381 | ret); |
| 1382 | return ret; |
| 1383 | } |
| 1384 | |
| 1385 | ret = k3_r5_cluster_of_init(pdev); |
| 1386 | if (ret) { |
| 1387 | dev_err(dev, "k3_r5_cluster_of_init failed, ret = %d\n", ret); |
| 1388 | return ret; |
| 1389 | } |
| 1390 | |
Arnd Bergmann | 2316822 | 2020-10-26 17:05:23 +0100 | [diff] [blame] | 1391 | ret = devm_add_action_or_reset(dev, k3_r5_cluster_of_exit, pdev); |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1392 | if (ret) |
| 1393 | return ret; |
| 1394 | |
| 1395 | ret = k3_r5_cluster_rproc_init(pdev); |
| 1396 | if (ret) { |
| 1397 | dev_err(dev, "k3_r5_cluster_rproc_init failed, ret = %d\n", |
| 1398 | ret); |
| 1399 | return ret; |
| 1400 | } |
| 1401 | |
Arnd Bergmann | 2316822 | 2020-10-26 17:05:23 +0100 | [diff] [blame] | 1402 | ret = devm_add_action_or_reset(dev, k3_r5_cluster_rproc_exit, pdev); |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1403 | if (ret) |
| 1404 | return ret; |
| 1405 | |
| 1406 | return 0; |
| 1407 | } |
| 1408 | |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 1409 | static const struct k3_r5_soc_data am65_j721e_soc_data = { |
| 1410 | .tcm_ecc_autoinit = false, |
| 1411 | }; |
| 1412 | |
| 1413 | static const struct k3_r5_soc_data j7200_soc_data = { |
| 1414 | .tcm_ecc_autoinit = true, |
| 1415 | }; |
| 1416 | |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1417 | static const struct of_device_id k3_r5_of_match[] = { |
Suman Anna | 7508ea1 | 2020-11-18 19:05:30 -0600 | [diff] [blame^] | 1418 | { .compatible = "ti,am654-r5fss", .data = &am65_j721e_soc_data, }, |
| 1419 | { .compatible = "ti,j721e-r5fss", .data = &am65_j721e_soc_data, }, |
| 1420 | { .compatible = "ti,j7200-r5fss", .data = &j7200_soc_data, }, |
Suman Anna | 6dedbd1 | 2020-10-02 18:42:32 -0500 | [diff] [blame] | 1421 | { /* sentinel */ }, |
| 1422 | }; |
| 1423 | MODULE_DEVICE_TABLE(of, k3_r5_of_match); |
| 1424 | |
| 1425 | static struct platform_driver k3_r5_rproc_driver = { |
| 1426 | .probe = k3_r5_probe, |
| 1427 | .driver = { |
| 1428 | .name = "k3_r5_rproc", |
| 1429 | .of_match_table = k3_r5_of_match, |
| 1430 | }, |
| 1431 | }; |
| 1432 | |
| 1433 | module_platform_driver(k3_r5_rproc_driver); |
| 1434 | |
| 1435 | MODULE_LICENSE("GPL v2"); |
| 1436 | MODULE_DESCRIPTION("TI K3 R5F remote processor driver"); |
| 1437 | MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); |