blob: 7240f8df0ea2c53e76eb4caaf726cfadbe7ef371 [file] [log] [blame]
David Sterbac1d7c512018-04-03 19:23:33 +02001// SPDX-License-Identifier: GPL-2.0
Chris Masonc8b97812008-10-29 14:49:59 -04002/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
Chris Masonc8b97812008-10-29 14:49:59 -04004 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
Chris Masonc8b97812008-10-29 14:49:59 -04008#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
Chris Masonc8b97812008-10-29 14:49:59 -040015#include <linux/backing-dev.h>
Chris Masonc8b97812008-10-29 14:49:59 -040016#include <linux/writeback.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090017#include <linux/slab.h>
David Sterbafe308532017-05-31 17:14:56 +020018#include <linux/sched/mm.h>
Timofey Titovets19562432017-10-08 16:11:59 +030019#include <linux/log2.h>
Chris Masonc8b97812008-10-29 14:49:59 -040020#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
24#include "volumes.h"
25#include "ordered-data.h"
Chris Masonc8b97812008-10-29 14:49:59 -040026#include "compression.h"
27#include "extent_io.h"
28#include "extent_map.h"
29
David Sterbae128f9c2017-10-31 17:24:26 +010030static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31
32const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33{
34 switch (type) {
35 case BTRFS_COMPRESS_ZLIB:
36 case BTRFS_COMPRESS_LZO:
37 case BTRFS_COMPRESS_ZSTD:
38 case BTRFS_COMPRESS_NONE:
39 return btrfs_compress_types[type];
40 }
41
42 return NULL;
43}
44
Anand Jain8140dc32017-05-26 15:44:58 +080045static int btrfs_decompress_bio(struct compressed_bio *cb);
Eric Sandeen48a3b632013-04-25 20:41:01 +000046
Jeff Mahoney2ff7e612016-06-22 18:54:24 -040047static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
Chris Masond20f7042008-12-08 16:58:54 -050048 unsigned long disk_size)
49{
Jeff Mahoney0b246af2016-06-22 18:54:23 -040050 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
David Sterba6c417612011-04-13 15:41:04 +020051
Chris Masond20f7042008-12-08 16:58:54 -050052 return sizeof(struct compressed_bio) +
Jeff Mahoney0b246af2016-06-22 18:54:23 -040053 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
Chris Masond20f7042008-12-08 16:58:54 -050054}
55
Nikolay Borisovf898ac62017-02-20 13:50:54 +020056static int check_compressed_csum(struct btrfs_inode *inode,
Chris Masond20f7042008-12-08 16:58:54 -050057 struct compressed_bio *cb,
58 u64 disk_start)
59{
60 int ret;
Chris Masond20f7042008-12-08 16:58:54 -050061 struct page *page;
62 unsigned long i;
63 char *kaddr;
64 u32 csum;
65 u32 *cb_sum = &cb->sums;
66
Nikolay Borisovf898ac62017-02-20 13:50:54 +020067 if (inode->flags & BTRFS_INODE_NODATASUM)
Chris Masond20f7042008-12-08 16:58:54 -050068 return 0;
69
70 for (i = 0; i < cb->nr_pages; i++) {
71 page = cb->compressed_pages[i];
72 csum = ~(u32)0;
73
Cong Wang7ac687d2011-11-25 23:14:28 +080074 kaddr = kmap_atomic(page);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +030075 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
Domagoj Tršan0b5e3da2016-10-27 08:52:33 +010076 btrfs_csum_final(csum, (u8 *)&csum);
Cong Wang7ac687d2011-11-25 23:14:28 +080077 kunmap_atomic(kaddr);
Chris Masond20f7042008-12-08 16:58:54 -050078
79 if (csum != *cb_sum) {
Nikolay Borisovf898ac62017-02-20 13:50:54 +020080 btrfs_print_data_csum_error(inode, disk_start, csum,
Nikolay Borisov0970a222017-02-20 13:50:53 +020081 *cb_sum, cb->mirror_num);
Chris Masond20f7042008-12-08 16:58:54 -050082 ret = -EIO;
83 goto fail;
84 }
85 cb_sum++;
86
87 }
88 ret = 0;
89fail:
90 return ret;
91}
92
Chris Masonc8b97812008-10-29 14:49:59 -040093/* when we finish reading compressed pages from the disk, we
94 * decompress them and then run the bio end_io routines on the
95 * decompressed pages (in the inode address space).
96 *
97 * This allows the checksumming and other IO error handling routines
98 * to work normally
99 *
100 * The compressed pages are freed here, and it must be run
101 * in process context
102 */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200103static void end_compressed_bio_read(struct bio *bio)
Chris Masonc8b97812008-10-29 14:49:59 -0400104{
Chris Masonc8b97812008-10-29 14:49:59 -0400105 struct compressed_bio *cb = bio->bi_private;
106 struct inode *inode;
107 struct page *page;
108 unsigned long index;
Liu Bocf1167d2017-09-20 17:50:18 -0600109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
Liu Boe6311f22017-09-20 17:50:19 -0600110 int ret = 0;
Chris Masonc8b97812008-10-29 14:49:59 -0400111
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200112 if (bio->bi_status)
Chris Masonc8b97812008-10-29 14:49:59 -0400113 cb->errors = 1;
114
115 /* if there are more bios still pending for this compressed
116 * extent, just exit
117 */
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200118 if (!refcount_dec_and_test(&cb->pending_bios))
Chris Masonc8b97812008-10-29 14:49:59 -0400119 goto out;
120
Liu Bocf1167d2017-09-20 17:50:18 -0600121 /*
122 * Record the correct mirror_num in cb->orig_bio so that
123 * read-repair can work properly.
124 */
125 ASSERT(btrfs_io_bio(cb->orig_bio));
126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 cb->mirror_num = mirror;
128
Liu Boe6311f22017-09-20 17:50:19 -0600129 /*
130 * Some IO in this cb have failed, just skip checksum as there
131 * is no way it could be correct.
132 */
133 if (cb->errors == 1)
134 goto csum_failed;
135
Chris Masond20f7042008-12-08 16:58:54 -0500136 inode = cb->inode;
Nikolay Borisovf898ac62017-02-20 13:50:54 +0200137 ret = check_compressed_csum(BTRFS_I(inode), cb,
Kent Overstreet4f024f32013-10-11 15:44:27 -0700138 (u64)bio->bi_iter.bi_sector << 9);
Chris Masond20f7042008-12-08 16:58:54 -0500139 if (ret)
140 goto csum_failed;
141
Chris Masonc8b97812008-10-29 14:49:59 -0400142 /* ok, we're the last bio for this extent, lets start
143 * the decompression.
144 */
Anand Jain8140dc32017-05-26 15:44:58 +0800145 ret = btrfs_decompress_bio(cb);
146
Chris Masond20f7042008-12-08 16:58:54 -0500147csum_failed:
Chris Masonc8b97812008-10-29 14:49:59 -0400148 if (ret)
149 cb->errors = 1;
150
151 /* release the compressed pages */
152 index = 0;
153 for (index = 0; index < cb->nr_pages; index++) {
154 page = cb->compressed_pages[index];
155 page->mapping = NULL;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300156 put_page(page);
Chris Masonc8b97812008-10-29 14:49:59 -0400157 }
158
159 /* do io completion on the original bio */
Chris Mason771ed682008-11-06 22:02:51 -0500160 if (cb->errors) {
Chris Masonc8b97812008-10-29 14:49:59 -0400161 bio_io_error(cb->orig_bio);
Chris Masond20f7042008-12-08 16:58:54 -0500162 } else {
Kent Overstreet2c30c712013-11-07 12:20:26 -0800163 int i;
164 struct bio_vec *bvec;
Chris Masond20f7042008-12-08 16:58:54 -0500165
166 /*
167 * we have verified the checksum already, set page
168 * checked so the end_io handlers know about it
169 */
David Sterbac09abff2017-07-13 18:10:07 +0200170 ASSERT(!bio_flagged(bio, BIO_CLONED));
Kent Overstreet2c30c712013-11-07 12:20:26 -0800171 bio_for_each_segment_all(bvec, cb->orig_bio, i)
Chris Masond20f7042008-12-08 16:58:54 -0500172 SetPageChecked(bvec->bv_page);
Kent Overstreet2c30c712013-11-07 12:20:26 -0800173
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200174 bio_endio(cb->orig_bio);
Chris Masond20f7042008-12-08 16:58:54 -0500175 }
Chris Masonc8b97812008-10-29 14:49:59 -0400176
177 /* finally free the cb struct */
178 kfree(cb->compressed_pages);
179 kfree(cb);
180out:
181 bio_put(bio);
182}
183
184/*
185 * Clear the writeback bits on all of the file
186 * pages for a compressed write
187 */
Filipe Manana7bdcefc2014-10-07 01:48:26 +0100188static noinline void end_compressed_writeback(struct inode *inode,
189 const struct compressed_bio *cb)
Chris Masonc8b97812008-10-29 14:49:59 -0400190{
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300191 unsigned long index = cb->start >> PAGE_SHIFT;
192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
Chris Masonc8b97812008-10-29 14:49:59 -0400193 struct page *pages[16];
194 unsigned long nr_pages = end_index - index + 1;
195 int i;
196 int ret;
197
Filipe Manana7bdcefc2014-10-07 01:48:26 +0100198 if (cb->errors)
199 mapping_set_error(inode->i_mapping, -EIO);
200
Chris Masond3977122009-01-05 21:25:51 -0500201 while (nr_pages > 0) {
Chris Masonc8b97812008-10-29 14:49:59 -0400202 ret = find_get_pages_contig(inode->i_mapping, index,
Chris Mason5b050f02008-11-11 09:34:41 -0500203 min_t(unsigned long,
204 nr_pages, ARRAY_SIZE(pages)), pages);
Chris Masonc8b97812008-10-29 14:49:59 -0400205 if (ret == 0) {
206 nr_pages -= 1;
207 index += 1;
208 continue;
209 }
210 for (i = 0; i < ret; i++) {
Filipe Manana7bdcefc2014-10-07 01:48:26 +0100211 if (cb->errors)
212 SetPageError(pages[i]);
Chris Masonc8b97812008-10-29 14:49:59 -0400213 end_page_writeback(pages[i]);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300214 put_page(pages[i]);
Chris Masonc8b97812008-10-29 14:49:59 -0400215 }
216 nr_pages -= ret;
217 index += ret;
218 }
219 /* the inode may be gone now */
Chris Masonc8b97812008-10-29 14:49:59 -0400220}
221
222/*
223 * do the cleanup once all the compressed pages hit the disk.
224 * This will clear writeback on the file pages and free the compressed
225 * pages.
226 *
227 * This also calls the writeback end hooks for the file pages so that
228 * metadata and checksums can be updated in the file.
229 */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200230static void end_compressed_bio_write(struct bio *bio)
Chris Masonc8b97812008-10-29 14:49:59 -0400231{
Chris Masonc8b97812008-10-29 14:49:59 -0400232 struct compressed_bio *cb = bio->bi_private;
233 struct inode *inode;
234 struct page *page;
235 unsigned long index;
236
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200237 if (bio->bi_status)
Chris Masonc8b97812008-10-29 14:49:59 -0400238 cb->errors = 1;
239
240 /* if there are more bios still pending for this compressed
241 * extent, just exit
242 */
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200243 if (!refcount_dec_and_test(&cb->pending_bios))
Chris Masonc8b97812008-10-29 14:49:59 -0400244 goto out;
245
246 /* ok, we're the last bio for this extent, step one is to
247 * call back into the FS and do all the end_io operations
248 */
249 inode = cb->inode;
Chris Mason70b99e62008-10-31 12:46:39 -0400250 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
Nikolay Borisov7087a9d2018-11-01 14:09:48 +0200251 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
Nikolay Borisovc6297322018-11-08 10:18:08 +0200252 cb->start, cb->start + cb->len - 1,
Nikolay Borisov7087a9d2018-11-01 14:09:48 +0200253 bio->bi_status ? BLK_STS_OK : BLK_STS_NOTSUPP);
Chris Mason70b99e62008-10-31 12:46:39 -0400254 cb->compressed_pages[0]->mapping = NULL;
Chris Masonc8b97812008-10-29 14:49:59 -0400255
Filipe Manana7bdcefc2014-10-07 01:48:26 +0100256 end_compressed_writeback(inode, cb);
Chris Masonc8b97812008-10-29 14:49:59 -0400257 /* note, our inode could be gone now */
258
259 /*
260 * release the compressed pages, these came from alloc_page and
261 * are not attached to the inode at all
262 */
263 index = 0;
264 for (index = 0; index < cb->nr_pages; index++) {
265 page = cb->compressed_pages[index];
266 page->mapping = NULL;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300267 put_page(page);
Chris Masonc8b97812008-10-29 14:49:59 -0400268 }
269
270 /* finally free the cb struct */
271 kfree(cb->compressed_pages);
272 kfree(cb);
273out:
274 bio_put(bio);
275}
276
277/*
278 * worker function to build and submit bios for previously compressed pages.
279 * The corresponding pages in the inode should be marked for writeback
280 * and the compressed pages should have a reference on them for dropping
281 * when the IO is complete.
282 *
283 * This also checksums the file bytes and gets things ready for
284 * the end io hooks.
285 */
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200286blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
Chris Masonc8b97812008-10-29 14:49:59 -0400287 unsigned long len, u64 disk_start,
288 unsigned long compressed_len,
289 struct page **compressed_pages,
Liu Bof82b7352017-10-23 23:18:16 -0600290 unsigned long nr_pages,
291 unsigned int write_flags)
Chris Masonc8b97812008-10-29 14:49:59 -0400292{
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
Chris Masonc8b97812008-10-29 14:49:59 -0400294 struct bio *bio = NULL;
Chris Masonc8b97812008-10-29 14:49:59 -0400295 struct compressed_bio *cb;
296 unsigned long bytes_left;
David Sterba306e16c2011-04-19 14:29:38 +0200297 int pg_index = 0;
Chris Masonc8b97812008-10-29 14:49:59 -0400298 struct page *page;
299 u64 first_byte = disk_start;
300 struct block_device *bdev;
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200301 blk_status_t ret;
Li Zefane55179b2011-07-14 03:16:47 +0000302 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
Chris Masonc8b97812008-10-29 14:49:59 -0400303
Johannes Thumshirnfdb1e122018-12-05 15:23:04 +0100304 WARN_ON(!PAGE_ALIGNED(start));
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400305 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
Yoshinori Sanodac97e52011-02-15 12:01:42 +0000306 if (!cb)
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200307 return BLK_STS_RESOURCE;
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200308 refcount_set(&cb->pending_bios, 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400309 cb->errors = 0;
310 cb->inode = inode;
311 cb->start = start;
312 cb->len = len;
Chris Masond20f7042008-12-08 16:58:54 -0500313 cb->mirror_num = 0;
Chris Masonc8b97812008-10-29 14:49:59 -0400314 cb->compressed_pages = compressed_pages;
315 cb->compressed_len = compressed_len;
316 cb->orig_bio = NULL;
317 cb->nr_pages = nr_pages;
318
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400319 bdev = fs_info->fs_devices->latest_bdev;
Chris Masonc8b97812008-10-29 14:49:59 -0400320
David Sterbac821e7f32017-06-02 18:35:36 +0200321 bio = btrfs_bio_alloc(bdev, first_byte);
Liu Bof82b7352017-10-23 23:18:16 -0600322 bio->bi_opf = REQ_OP_WRITE | write_flags;
Chris Masonc8b97812008-10-29 14:49:59 -0400323 bio->bi_private = cb;
324 bio->bi_end_io = end_compressed_bio_write;
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200325 refcount_set(&cb->pending_bios, 1);
Chris Masonc8b97812008-10-29 14:49:59 -0400326
327 /* create and submit bios for the compressed pages */
328 bytes_left = compressed_len;
David Sterba306e16c2011-04-19 14:29:38 +0200329 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200330 int submit = 0;
331
David Sterba306e16c2011-04-19 14:29:38 +0200332 page = compressed_pages[pg_index];
Chris Masonc8b97812008-10-29 14:49:59 -0400333 page->mapping = inode->i_mapping;
Kent Overstreet4f024f32013-10-11 15:44:27 -0700334 if (bio->bi_iter.bi_size)
Nikolay Borisovda12fe52018-11-27 20:57:58 +0200335 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
336 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400337
Chris Mason70b99e62008-10-31 12:46:39 -0400338 page->mapping = NULL;
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200339 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300340 PAGE_SIZE) {
Chris Masonaf09abf2008-11-07 12:35:44 -0500341 /*
342 * inc the count before we submit the bio so
343 * we know the end IO handler won't happen before
344 * we inc the count. Otherwise, the cb might get
345 * freed before we're done setting it up
346 */
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200347 refcount_inc(&cb->pending_bios);
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400348 ret = btrfs_bio_wq_end_io(fs_info, bio,
349 BTRFS_WQ_ENDIO_DATA);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100350 BUG_ON(ret); /* -ENOMEM */
Chris Masonc8b97812008-10-29 14:49:59 -0400351
Li Zefane55179b2011-07-14 03:16:47 +0000352 if (!skip_sum) {
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400353 ret = btrfs_csum_one_bio(inode, bio, start, 1);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100354 BUG_ON(ret); /* -ENOMEM */
Li Zefane55179b2011-07-14 03:16:47 +0000355 }
Chris Masond20f7042008-12-08 16:58:54 -0500356
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400357 ret = btrfs_map_bio(fs_info, bio, 0, 1);
Liu Bof5daf2c2016-06-22 18:32:06 -0700358 if (ret) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200359 bio->bi_status = ret;
Liu Bof5daf2c2016-06-22 18:32:06 -0700360 bio_endio(bio);
361 }
Chris Masonc8b97812008-10-29 14:49:59 -0400362
David Sterbac821e7f32017-06-02 18:35:36 +0200363 bio = btrfs_bio_alloc(bdev, first_byte);
Liu Bof82b7352017-10-23 23:18:16 -0600364 bio->bi_opf = REQ_OP_WRITE | write_flags;
Chris Masonc8b97812008-10-29 14:49:59 -0400365 bio->bi_private = cb;
366 bio->bi_end_io = end_compressed_bio_write;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300367 bio_add_page(bio, page, PAGE_SIZE, 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400368 }
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300369 if (bytes_left < PAGE_SIZE) {
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400370 btrfs_info(fs_info,
Frank Holtonefe120a2013-12-20 11:37:06 -0500371 "bytes left %lu compress len %lu nr %lu",
Chris Masoncfbc2462008-10-30 13:22:14 -0400372 bytes_left, cb->compressed_len, cb->nr_pages);
373 }
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300374 bytes_left -= PAGE_SIZE;
375 first_byte += PAGE_SIZE;
Chris Mason771ed682008-11-06 22:02:51 -0500376 cond_resched();
Chris Masonc8b97812008-10-29 14:49:59 -0400377 }
Chris Masonc8b97812008-10-29 14:49:59 -0400378
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400379 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100380 BUG_ON(ret); /* -ENOMEM */
Chris Masonc8b97812008-10-29 14:49:59 -0400381
Li Zefane55179b2011-07-14 03:16:47 +0000382 if (!skip_sum) {
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400383 ret = btrfs_csum_one_bio(inode, bio, start, 1);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100384 BUG_ON(ret); /* -ENOMEM */
Li Zefane55179b2011-07-14 03:16:47 +0000385 }
Chris Masond20f7042008-12-08 16:58:54 -0500386
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400387 ret = btrfs_map_bio(fs_info, bio, 0, 1);
Liu Bof5daf2c2016-06-22 18:32:06 -0700388 if (ret) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200389 bio->bi_status = ret;
Liu Bof5daf2c2016-06-22 18:32:06 -0700390 bio_endio(bio);
391 }
Chris Masonc8b97812008-10-29 14:49:59 -0400392
Chris Masonc8b97812008-10-29 14:49:59 -0400393 return 0;
394}
395
Christoph Hellwig2a4d0c92016-11-25 09:07:51 +0100396static u64 bio_end_offset(struct bio *bio)
397{
Ming Leic45a8f22017-12-18 20:22:05 +0800398 struct bio_vec *last = bio_last_bvec_all(bio);
Christoph Hellwig2a4d0c92016-11-25 09:07:51 +0100399
400 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
401}
402
Chris Mason771ed682008-11-06 22:02:51 -0500403static noinline int add_ra_bio_pages(struct inode *inode,
404 u64 compressed_end,
405 struct compressed_bio *cb)
406{
407 unsigned long end_index;
David Sterba306e16c2011-04-19 14:29:38 +0200408 unsigned long pg_index;
Chris Mason771ed682008-11-06 22:02:51 -0500409 u64 last_offset;
410 u64 isize = i_size_read(inode);
411 int ret;
412 struct page *page;
413 unsigned long nr_pages = 0;
414 struct extent_map *em;
415 struct address_space *mapping = inode->i_mapping;
Chris Mason771ed682008-11-06 22:02:51 -0500416 struct extent_map_tree *em_tree;
417 struct extent_io_tree *tree;
418 u64 end;
419 int misses = 0;
420
Christoph Hellwig2a4d0c92016-11-25 09:07:51 +0100421 last_offset = bio_end_offset(cb->orig_bio);
Chris Mason771ed682008-11-06 22:02:51 -0500422 em_tree = &BTRFS_I(inode)->extent_tree;
423 tree = &BTRFS_I(inode)->io_tree;
424
425 if (isize == 0)
426 return 0;
427
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300428 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
Chris Mason771ed682008-11-06 22:02:51 -0500429
Chris Masond3977122009-01-05 21:25:51 -0500430 while (last_offset < compressed_end) {
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300431 pg_index = last_offset >> PAGE_SHIFT;
Chris Mason771ed682008-11-06 22:02:51 -0500432
David Sterba306e16c2011-04-19 14:29:38 +0200433 if (pg_index > end_index)
Chris Mason771ed682008-11-06 22:02:51 -0500434 break;
435
Matthew Wilcox0a943c62017-12-04 10:37:22 -0500436 page = xa_load(&mapping->i_pages, pg_index);
Matthew Wilcox3159f942017-11-03 13:30:42 -0400437 if (page && !xa_is_value(page)) {
Chris Mason771ed682008-11-06 22:02:51 -0500438 misses++;
439 if (misses > 4)
440 break;
441 goto next;
442 }
443
Michal Hockoc62d2552015-11-06 16:28:49 -0800444 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
445 ~__GFP_FS));
Chris Mason771ed682008-11-06 22:02:51 -0500446 if (!page)
447 break;
448
Michal Hockoc62d2552015-11-06 16:28:49 -0800449 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300450 put_page(page);
Chris Mason771ed682008-11-06 22:02:51 -0500451 goto next;
452 }
453
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300454 end = last_offset + PAGE_SIZE - 1;
Chris Mason771ed682008-11-06 22:02:51 -0500455 /*
456 * at this point, we have a locked page in the page cache
457 * for these bytes in the file. But, we have to make
458 * sure they map to this compressed extent on disk.
459 */
460 set_page_extent_mapped(page);
Jeff Mahoneyd0082372012-03-01 14:57:19 +0100461 lock_extent(tree, last_offset, end);
Chris Mason890871b2009-09-02 16:24:52 -0400462 read_lock(&em_tree->lock);
Chris Mason771ed682008-11-06 22:02:51 -0500463 em = lookup_extent_mapping(em_tree, last_offset,
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300464 PAGE_SIZE);
Chris Mason890871b2009-09-02 16:24:52 -0400465 read_unlock(&em_tree->lock);
Chris Mason771ed682008-11-06 22:02:51 -0500466
467 if (!em || last_offset < em->start ||
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300468 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
Kent Overstreet4f024f32013-10-11 15:44:27 -0700469 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
Chris Mason771ed682008-11-06 22:02:51 -0500470 free_extent_map(em);
Jeff Mahoneyd0082372012-03-01 14:57:19 +0100471 unlock_extent(tree, last_offset, end);
Chris Mason771ed682008-11-06 22:02:51 -0500472 unlock_page(page);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300473 put_page(page);
Chris Mason771ed682008-11-06 22:02:51 -0500474 break;
475 }
476 free_extent_map(em);
477
478 if (page->index == end_index) {
479 char *userpage;
Johannes Thumshirn70730172018-12-05 15:23:03 +0100480 size_t zero_offset = offset_in_page(isize);
Chris Mason771ed682008-11-06 22:02:51 -0500481
482 if (zero_offset) {
483 int zeros;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300484 zeros = PAGE_SIZE - zero_offset;
Cong Wang7ac687d2011-11-25 23:14:28 +0800485 userpage = kmap_atomic(page);
Chris Mason771ed682008-11-06 22:02:51 -0500486 memset(userpage + zero_offset, 0, zeros);
487 flush_dcache_page(page);
Cong Wang7ac687d2011-11-25 23:14:28 +0800488 kunmap_atomic(userpage);
Chris Mason771ed682008-11-06 22:02:51 -0500489 }
490 }
491
492 ret = bio_add_page(cb->orig_bio, page,
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300493 PAGE_SIZE, 0);
Chris Mason771ed682008-11-06 22:02:51 -0500494
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300495 if (ret == PAGE_SIZE) {
Chris Mason771ed682008-11-06 22:02:51 -0500496 nr_pages++;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300497 put_page(page);
Chris Mason771ed682008-11-06 22:02:51 -0500498 } else {
Jeff Mahoneyd0082372012-03-01 14:57:19 +0100499 unlock_extent(tree, last_offset, end);
Chris Mason771ed682008-11-06 22:02:51 -0500500 unlock_page(page);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300501 put_page(page);
Chris Mason771ed682008-11-06 22:02:51 -0500502 break;
503 }
504next:
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300505 last_offset += PAGE_SIZE;
Chris Mason771ed682008-11-06 22:02:51 -0500506 }
Chris Mason771ed682008-11-06 22:02:51 -0500507 return 0;
508}
509
Chris Masonc8b97812008-10-29 14:49:59 -0400510/*
511 * for a compressed read, the bio we get passed has all the inode pages
512 * in it. We don't actually do IO on those pages but allocate new ones
513 * to hold the compressed pages on disk.
514 *
Kent Overstreet4f024f32013-10-11 15:44:27 -0700515 * bio->bi_iter.bi_sector points to the compressed extent on disk
Chris Masonc8b97812008-10-29 14:49:59 -0400516 * bio->bi_io_vec points to all of the inode pages
Chris Masonc8b97812008-10-29 14:49:59 -0400517 *
518 * After the compressed pages are read, we copy the bytes into the
519 * bio we were passed and then call the bio end_io calls
520 */
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200521blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
Chris Masonc8b97812008-10-29 14:49:59 -0400522 int mirror_num, unsigned long bio_flags)
523{
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
Chris Masonc8b97812008-10-29 14:49:59 -0400525 struct extent_map_tree *em_tree;
526 struct compressed_bio *cb;
Chris Masonc8b97812008-10-29 14:49:59 -0400527 unsigned long compressed_len;
528 unsigned long nr_pages;
David Sterba306e16c2011-04-19 14:29:38 +0200529 unsigned long pg_index;
Chris Masonc8b97812008-10-29 14:49:59 -0400530 struct page *page;
531 struct block_device *bdev;
532 struct bio *comp_bio;
Kent Overstreet4f024f32013-10-11 15:44:27 -0700533 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
Chris Masone04ca622008-11-10 11:44:58 -0500534 u64 em_len;
535 u64 em_start;
Chris Masonc8b97812008-10-29 14:49:59 -0400536 struct extent_map *em;
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200537 blk_status_t ret = BLK_STS_RESOURCE;
Josef Bacik15e3004a2012-10-05 13:39:50 -0400538 int faili = 0;
Chris Masond20f7042008-12-08 16:58:54 -0500539 u32 *sums;
Chris Masonc8b97812008-10-29 14:49:59 -0400540
Chris Masonc8b97812008-10-29 14:49:59 -0400541 em_tree = &BTRFS_I(inode)->extent_tree;
542
543 /* we need the actual starting offset of this extent in the file */
Chris Mason890871b2009-09-02 16:24:52 -0400544 read_lock(&em_tree->lock);
Chris Masonc8b97812008-10-29 14:49:59 -0400545 em = lookup_extent_mapping(em_tree,
Ming Lei263663c2017-12-18 20:22:04 +0800546 page_offset(bio_first_page_all(bio)),
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300547 PAGE_SIZE);
Chris Mason890871b2009-09-02 16:24:52 -0400548 read_unlock(&em_tree->lock);
Tsutomu Itoh285190d2012-02-16 16:23:58 +0900549 if (!em)
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200550 return BLK_STS_IOERR;
Chris Masonc8b97812008-10-29 14:49:59 -0400551
Chris Masond20f7042008-12-08 16:58:54 -0500552 compressed_len = em->block_len;
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400553 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
liubo6b82ce82011-01-26 06:21:39 +0000554 if (!cb)
555 goto out;
556
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200557 refcount_set(&cb->pending_bios, 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400558 cb->errors = 0;
559 cb->inode = inode;
Chris Masond20f7042008-12-08 16:58:54 -0500560 cb->mirror_num = mirror_num;
561 sums = &cb->sums;
Chris Masonc8b97812008-10-29 14:49:59 -0400562
Yan Zhengff5b7ee2008-11-10 07:34:43 -0500563 cb->start = em->orig_start;
Chris Masone04ca622008-11-10 11:44:58 -0500564 em_len = em->len;
565 em_start = em->start;
Chris Masond20f7042008-12-08 16:58:54 -0500566
Chris Masonc8b97812008-10-29 14:49:59 -0400567 free_extent_map(em);
Chris Masone04ca622008-11-10 11:44:58 -0500568 em = NULL;
Chris Masonc8b97812008-10-29 14:49:59 -0400569
Christoph Hellwig81381052016-11-25 09:07:50 +0100570 cb->len = bio->bi_iter.bi_size;
Chris Masonc8b97812008-10-29 14:49:59 -0400571 cb->compressed_len = compressed_len;
Li Zefan261507a02010-12-17 14:21:50 +0800572 cb->compress_type = extent_compress_type(bio_flags);
Chris Masonc8b97812008-10-29 14:49:59 -0400573 cb->orig_bio = bio;
574
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300575 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
David Sterba31e818f2015-02-20 18:00:26 +0100576 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
Chris Masonc8b97812008-10-29 14:49:59 -0400577 GFP_NOFS);
liubo6b82ce82011-01-26 06:21:39 +0000578 if (!cb->compressed_pages)
579 goto fail1;
580
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400581 bdev = fs_info->fs_devices->latest_bdev;
Chris Masonc8b97812008-10-29 14:49:59 -0400582
David Sterba306e16c2011-04-19 14:29:38 +0200583 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
584 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
Chris Masonc8b97812008-10-29 14:49:59 -0400585 __GFP_HIGHMEM);
Josef Bacik15e3004a2012-10-05 13:39:50 -0400586 if (!cb->compressed_pages[pg_index]) {
587 faili = pg_index - 1;
Dan Carpenter0e9350d2017-06-19 13:55:37 +0300588 ret = BLK_STS_RESOURCE;
liubo6b82ce82011-01-26 06:21:39 +0000589 goto fail2;
Josef Bacik15e3004a2012-10-05 13:39:50 -0400590 }
Chris Masonc8b97812008-10-29 14:49:59 -0400591 }
Josef Bacik15e3004a2012-10-05 13:39:50 -0400592 faili = nr_pages - 1;
Chris Masonc8b97812008-10-29 14:49:59 -0400593 cb->nr_pages = nr_pages;
594
Filipe Manana7f042a82016-01-27 19:17:20 +0000595 add_ra_bio_pages(inode, em_start + em_len, cb);
Chris Mason771ed682008-11-06 22:02:51 -0500596
Chris Mason771ed682008-11-06 22:02:51 -0500597 /* include any pages we added in add_ra-bio_pages */
Christoph Hellwig81381052016-11-25 09:07:50 +0100598 cb->len = bio->bi_iter.bi_size;
Chris Mason771ed682008-11-06 22:02:51 -0500599
David Sterbac821e7f32017-06-02 18:35:36 +0200600 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
David Sterbaebcc3262018-06-29 10:56:53 +0200601 comp_bio->bi_opf = REQ_OP_READ;
Chris Masonc8b97812008-10-29 14:49:59 -0400602 comp_bio->bi_private = cb;
603 comp_bio->bi_end_io = end_compressed_bio_read;
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200604 refcount_set(&cb->pending_bios, 1);
Chris Masonc8b97812008-10-29 14:49:59 -0400605
David Sterba306e16c2011-04-19 14:29:38 +0200606 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200607 int submit = 0;
608
David Sterba306e16c2011-04-19 14:29:38 +0200609 page = cb->compressed_pages[pg_index];
Chris Masonc8b97812008-10-29 14:49:59 -0400610 page->mapping = inode->i_mapping;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300611 page->index = em_start >> PAGE_SHIFT;
Chris Masond20f7042008-12-08 16:58:54 -0500612
Kent Overstreet4f024f32013-10-11 15:44:27 -0700613 if (comp_bio->bi_iter.bi_size)
Nikolay Borisovda12fe52018-11-27 20:57:58 +0200614 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
615 comp_bio, 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400616
Chris Mason70b99e62008-10-31 12:46:39 -0400617 page->mapping = NULL;
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200618 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300619 PAGE_SIZE) {
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400620 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
621 BTRFS_WQ_ENDIO_DATA);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100622 BUG_ON(ret); /* -ENOMEM */
Chris Masonc8b97812008-10-29 14:49:59 -0400623
Chris Masonaf09abf2008-11-07 12:35:44 -0500624 /*
625 * inc the count before we submit the bio so
626 * we know the end IO handler won't happen before
627 * we inc the count. Otherwise, the cb might get
628 * freed before we're done setting it up
629 */
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200630 refcount_inc(&cb->pending_bios);
Chris Masonaf09abf2008-11-07 12:35:44 -0500631
Christoph Hellwig6cbff002009-04-17 10:37:41 +0200632 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400633 ret = btrfs_lookup_bio_sums(inode, comp_bio,
634 sums);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100635 BUG_ON(ret); /* -ENOMEM */
Chris Masond20f7042008-12-08 16:58:54 -0500636 }
David Sterbaed6078f2014-06-05 01:59:57 +0200637 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400638 fs_info->sectorsize);
Chris Masond20f7042008-12-08 16:58:54 -0500639
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400640 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200641 if (ret) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200642 comp_bio->bi_status = ret;
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200643 bio_endio(comp_bio);
644 }
Chris Masonc8b97812008-10-29 14:49:59 -0400645
David Sterbac821e7f32017-06-02 18:35:36 +0200646 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
David Sterbaebcc3262018-06-29 10:56:53 +0200647 comp_bio->bi_opf = REQ_OP_READ;
Chris Mason771ed682008-11-06 22:02:51 -0500648 comp_bio->bi_private = cb;
649 comp_bio->bi_end_io = end_compressed_bio_read;
650
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300651 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400652 }
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300653 cur_disk_byte += PAGE_SIZE;
Chris Masonc8b97812008-10-29 14:49:59 -0400654 }
Chris Masonc8b97812008-10-29 14:49:59 -0400655
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400656 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100657 BUG_ON(ret); /* -ENOMEM */
Chris Masonc8b97812008-10-29 14:49:59 -0400658
Tsutomu Itohc2db1072011-03-01 06:48:31 +0000659 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400660 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100661 BUG_ON(ret); /* -ENOMEM */
Tsutomu Itohc2db1072011-03-01 06:48:31 +0000662 }
Chris Masond20f7042008-12-08 16:58:54 -0500663
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400664 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200665 if (ret) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200666 comp_bio->bi_status = ret;
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200667 bio_endio(comp_bio);
668 }
Chris Masonc8b97812008-10-29 14:49:59 -0400669
Chris Masonc8b97812008-10-29 14:49:59 -0400670 return 0;
liubo6b82ce82011-01-26 06:21:39 +0000671
672fail2:
Josef Bacik15e3004a2012-10-05 13:39:50 -0400673 while (faili >= 0) {
674 __free_page(cb->compressed_pages[faili]);
675 faili--;
676 }
liubo6b82ce82011-01-26 06:21:39 +0000677
678 kfree(cb->compressed_pages);
679fail1:
680 kfree(cb);
681out:
682 free_extent_map(em);
683 return ret;
Chris Masonc8b97812008-10-29 14:49:59 -0400684}
Li Zefan261507a02010-12-17 14:21:50 +0800685
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300686/*
687 * Heuristic uses systematic sampling to collect data from the input data
688 * range, the logic can be tuned by the following constants:
689 *
690 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
691 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
692 */
693#define SAMPLING_READ_SIZE (16)
694#define SAMPLING_INTERVAL (256)
695
696/*
697 * For statistical analysis of the input data we consider bytes that form a
698 * Galois Field of 256 objects. Each object has an attribute count, ie. how
699 * many times the object appeared in the sample.
700 */
701#define BUCKET_SIZE (256)
702
703/*
704 * The size of the sample is based on a statistical sampling rule of thumb.
705 * The common way is to perform sampling tests as long as the number of
706 * elements in each cell is at least 5.
707 *
708 * Instead of 5, we choose 32 to obtain more accurate results.
709 * If the data contain the maximum number of symbols, which is 256, we obtain a
710 * sample size bound by 8192.
711 *
712 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
713 * from up to 512 locations.
714 */
715#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
716 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
717
718struct bucket_item {
719 u32 count;
720};
Timofey Titovets4e439a02017-09-28 17:33:36 +0300721
722struct heuristic_ws {
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300723 /* Partial copy of input data */
724 u8 *sample;
Timofey Titovetsa440d482017-09-28 17:33:38 +0300725 u32 sample_size;
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300726 /* Buckets store counters for each byte value */
727 struct bucket_item *bucket;
Timofey Titovets440c8402017-12-04 00:30:33 +0300728 /* Sorting buffer */
729 struct bucket_item *bucket_b;
Timofey Titovets4e439a02017-09-28 17:33:36 +0300730 struct list_head list;
731};
732
Dennis Zhou92ee55302019-02-04 15:20:03 -0500733static struct workspace_manager heuristic_wsm;
734
735static void heuristic_init_workspace_manager(void)
736{
737 btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
738}
739
740static void heuristic_cleanup_workspace_manager(void)
741{
742 btrfs_cleanup_workspace_manager(&heuristic_wsm);
743}
744
745static struct list_head *heuristic_get_workspace(void)
746{
747 return btrfs_get_workspace(&heuristic_wsm);
748}
749
750static void heuristic_put_workspace(struct list_head *ws)
751{
752 btrfs_put_workspace(&heuristic_wsm, ws);
753}
754
Timofey Titovets4e439a02017-09-28 17:33:36 +0300755static void free_heuristic_ws(struct list_head *ws)
756{
757 struct heuristic_ws *workspace;
758
759 workspace = list_entry(ws, struct heuristic_ws, list);
760
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300761 kvfree(workspace->sample);
762 kfree(workspace->bucket);
Timofey Titovets440c8402017-12-04 00:30:33 +0300763 kfree(workspace->bucket_b);
Timofey Titovets4e439a02017-09-28 17:33:36 +0300764 kfree(workspace);
765}
766
767static struct list_head *alloc_heuristic_ws(void)
768{
769 struct heuristic_ws *ws;
770
771 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
772 if (!ws)
773 return ERR_PTR(-ENOMEM);
774
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300775 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
776 if (!ws->sample)
777 goto fail;
Timofey Titovets4e439a02017-09-28 17:33:36 +0300778
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300779 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
780 if (!ws->bucket)
781 goto fail;
782
Timofey Titovets440c8402017-12-04 00:30:33 +0300783 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
784 if (!ws->bucket_b)
785 goto fail;
786
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300787 INIT_LIST_HEAD(&ws->list);
Timofey Titovets4e439a02017-09-28 17:33:36 +0300788 return &ws->list;
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300789fail:
790 free_heuristic_ws(&ws->list);
791 return ERR_PTR(-ENOMEM);
Timofey Titovets4e439a02017-09-28 17:33:36 +0300792}
793
Dennis Zhouca4ac362019-02-04 15:19:59 -0500794const struct btrfs_compress_op btrfs_heuristic_compress = {
Dennis Zhou92ee55302019-02-04 15:20:03 -0500795 .init_workspace_manager = heuristic_init_workspace_manager,
796 .cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
797 .get_workspace = heuristic_get_workspace,
798 .put_workspace = heuristic_put_workspace,
Dennis Zhouca4ac362019-02-04 15:19:59 -0500799 .alloc_workspace = alloc_heuristic_ws,
800 .free_workspace = free_heuristic_ws,
801};
802
David Sterbae8c9f182015-01-02 18:23:10 +0100803static const struct btrfs_compress_op * const btrfs_compress_op[] = {
Dennis Zhouca4ac362019-02-04 15:19:59 -0500804 /* The heuristic is represented as compression type 0 */
805 &btrfs_heuristic_compress,
Li Zefan261507a02010-12-17 14:21:50 +0800806 &btrfs_zlib_compress,
Li Zefana6fa6fa2010-10-25 15:12:26 +0800807 &btrfs_lzo_compress,
Nick Terrell5c1aab12017-08-09 19:39:02 -0700808 &btrfs_zstd_compress,
Li Zefan261507a02010-12-17 14:21:50 +0800809};
810
Dennis Zhou92ee55302019-02-04 15:20:03 -0500811void btrfs_init_workspace_manager(struct workspace_manager *wsm,
812 const struct btrfs_compress_op *ops)
Li Zefan261507a02010-12-17 14:21:50 +0800813{
Timofey Titovets4e439a02017-09-28 17:33:36 +0300814 struct list_head *workspace;
Li Zefan261507a02010-12-17 14:21:50 +0800815
Dennis Zhou92ee55302019-02-04 15:20:03 -0500816 wsm->ops = ops;
Dennis Zhou10b94a52019-02-04 15:20:00 -0500817
Dennis Zhou92ee55302019-02-04 15:20:03 -0500818 INIT_LIST_HEAD(&wsm->idle_ws);
819 spin_lock_init(&wsm->ws_lock);
820 atomic_set(&wsm->total_ws, 0);
821 init_waitqueue_head(&wsm->ws_wait);
David Sterbaf77dd0d2016-04-27 02:55:15 +0200822
Dennis Zhou1666eda2019-02-04 15:20:01 -0500823 /*
824 * Preallocate one workspace for each compression type so we can
825 * guarantee forward progress in the worst case
826 */
Dennis Zhou92ee55302019-02-04 15:20:03 -0500827 workspace = wsm->ops->alloc_workspace();
Dennis Zhou1666eda2019-02-04 15:20:01 -0500828 if (IS_ERR(workspace)) {
829 pr_warn(
830 "BTRFS: cannot preallocate compression workspace, will try later\n");
831 } else {
Dennis Zhou92ee55302019-02-04 15:20:03 -0500832 atomic_set(&wsm->total_ws, 1);
833 wsm->free_ws = 1;
834 list_add(workspace, &wsm->idle_ws);
Dennis Zhou1666eda2019-02-04 15:20:01 -0500835 }
836}
837
Dennis Zhou92ee55302019-02-04 15:20:03 -0500838void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
Dennis Zhou1666eda2019-02-04 15:20:01 -0500839{
840 struct list_head *ws;
841
842 while (!list_empty(&wsman->idle_ws)) {
843 ws = wsman->idle_ws.next;
844 list_del(ws);
845 wsman->ops->free_workspace(ws);
846 atomic_dec(&wsman->total_ws);
Li Zefan261507a02010-12-17 14:21:50 +0800847 }
Li Zefan261507a02010-12-17 14:21:50 +0800848}
849
850/*
David Sterbae721e492016-04-27 02:41:17 +0200851 * This finds an available workspace or allocates a new one.
852 * If it's not possible to allocate a new one, waits until there's one.
853 * Preallocation makes a forward progress guarantees and we do not return
854 * errors.
Li Zefan261507a02010-12-17 14:21:50 +0800855 */
Dennis Zhou92ee55302019-02-04 15:20:03 -0500856struct list_head *btrfs_get_workspace(struct workspace_manager *wsm)
Li Zefan261507a02010-12-17 14:21:50 +0800857{
858 struct list_head *workspace;
859 int cpus = num_online_cpus();
David Sterbafe308532017-05-31 17:14:56 +0200860 unsigned nofs_flag;
Timofey Titovets4e439a02017-09-28 17:33:36 +0300861 struct list_head *idle_ws;
862 spinlock_t *ws_lock;
863 atomic_t *total_ws;
864 wait_queue_head_t *ws_wait;
865 int *free_ws;
Li Zefan261507a02010-12-17 14:21:50 +0800866
Dennis Zhou92ee55302019-02-04 15:20:03 -0500867 idle_ws = &wsm->idle_ws;
868 ws_lock = &wsm->ws_lock;
869 total_ws = &wsm->total_ws;
870 ws_wait = &wsm->ws_wait;
871 free_ws = &wsm->free_ws;
Timofey Titovets4e439a02017-09-28 17:33:36 +0300872
Li Zefan261507a02010-12-17 14:21:50 +0800873again:
Byongho Leed9187642015-10-14 14:05:24 +0900874 spin_lock(ws_lock);
875 if (!list_empty(idle_ws)) {
876 workspace = idle_ws->next;
Li Zefan261507a02010-12-17 14:21:50 +0800877 list_del(workspace);
David Sterba6ac10a62016-04-27 02:15:15 +0200878 (*free_ws)--;
Byongho Leed9187642015-10-14 14:05:24 +0900879 spin_unlock(ws_lock);
Li Zefan261507a02010-12-17 14:21:50 +0800880 return workspace;
881
882 }
David Sterba6ac10a62016-04-27 02:15:15 +0200883 if (atomic_read(total_ws) > cpus) {
Li Zefan261507a02010-12-17 14:21:50 +0800884 DEFINE_WAIT(wait);
885
Byongho Leed9187642015-10-14 14:05:24 +0900886 spin_unlock(ws_lock);
887 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
David Sterba6ac10a62016-04-27 02:15:15 +0200888 if (atomic_read(total_ws) > cpus && !*free_ws)
Li Zefan261507a02010-12-17 14:21:50 +0800889 schedule();
Byongho Leed9187642015-10-14 14:05:24 +0900890 finish_wait(ws_wait, &wait);
Li Zefan261507a02010-12-17 14:21:50 +0800891 goto again;
892 }
David Sterba6ac10a62016-04-27 02:15:15 +0200893 atomic_inc(total_ws);
Byongho Leed9187642015-10-14 14:05:24 +0900894 spin_unlock(ws_lock);
Li Zefan261507a02010-12-17 14:21:50 +0800895
David Sterbafe308532017-05-31 17:14:56 +0200896 /*
897 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
898 * to turn it off here because we might get called from the restricted
899 * context of btrfs_compress_bio/btrfs_compress_pages
900 */
901 nofs_flag = memalloc_nofs_save();
Dennis Zhou92ee55302019-02-04 15:20:03 -0500902 workspace = wsm->ops->alloc_workspace();
David Sterbafe308532017-05-31 17:14:56 +0200903 memalloc_nofs_restore(nofs_flag);
904
Li Zefan261507a02010-12-17 14:21:50 +0800905 if (IS_ERR(workspace)) {
David Sterba6ac10a62016-04-27 02:15:15 +0200906 atomic_dec(total_ws);
Byongho Leed9187642015-10-14 14:05:24 +0900907 wake_up(ws_wait);
David Sterbae721e492016-04-27 02:41:17 +0200908
909 /*
910 * Do not return the error but go back to waiting. There's a
911 * workspace preallocated for each type and the compression
912 * time is bounded so we get to a workspace eventually. This
913 * makes our caller's life easier.
David Sterba523567162016-04-27 03:07:39 +0200914 *
915 * To prevent silent and low-probability deadlocks (when the
916 * initial preallocation fails), check if there are any
917 * workspaces at all.
David Sterbae721e492016-04-27 02:41:17 +0200918 */
David Sterba523567162016-04-27 03:07:39 +0200919 if (atomic_read(total_ws) == 0) {
920 static DEFINE_RATELIMIT_STATE(_rs,
921 /* once per minute */ 60 * HZ,
922 /* no burst */ 1);
923
924 if (__ratelimit(&_rs)) {
Jeff Mahoneyab8d0fc2016-09-20 10:05:02 -0400925 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
David Sterba523567162016-04-27 03:07:39 +0200926 }
927 }
David Sterbae721e492016-04-27 02:41:17 +0200928 goto again;
Li Zefan261507a02010-12-17 14:21:50 +0800929 }
930 return workspace;
931}
932
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500933static struct list_head *get_workspace(int type)
934{
Dennis Zhou92ee55302019-02-04 15:20:03 -0500935 return btrfs_compress_op[type]->get_workspace();
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500936}
937
Li Zefan261507a02010-12-17 14:21:50 +0800938/*
939 * put a workspace struct back on the list or free it if we have enough
940 * idle ones sitting around
941 */
Dennis Zhou92ee55302019-02-04 15:20:03 -0500942void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
Li Zefan261507a02010-12-17 14:21:50 +0800943{
Timofey Titovets4e439a02017-09-28 17:33:36 +0300944 struct list_head *idle_ws;
945 spinlock_t *ws_lock;
946 atomic_t *total_ws;
947 wait_queue_head_t *ws_wait;
948 int *free_ws;
949
Dennis Zhou92ee55302019-02-04 15:20:03 -0500950 idle_ws = &wsm->idle_ws;
951 ws_lock = &wsm->ws_lock;
952 total_ws = &wsm->total_ws;
953 ws_wait = &wsm->ws_wait;
954 free_ws = &wsm->free_ws;
Li Zefan261507a02010-12-17 14:21:50 +0800955
Byongho Leed9187642015-10-14 14:05:24 +0900956 spin_lock(ws_lock);
Nick Terrell26b28dc2017-06-29 10:57:26 -0700957 if (*free_ws <= num_online_cpus()) {
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500958 list_add(ws, idle_ws);
David Sterba6ac10a62016-04-27 02:15:15 +0200959 (*free_ws)++;
Byongho Leed9187642015-10-14 14:05:24 +0900960 spin_unlock(ws_lock);
Li Zefan261507a02010-12-17 14:21:50 +0800961 goto wake;
962 }
Byongho Leed9187642015-10-14 14:05:24 +0900963 spin_unlock(ws_lock);
Li Zefan261507a02010-12-17 14:21:50 +0800964
Dennis Zhou92ee55302019-02-04 15:20:03 -0500965 wsm->ops->free_workspace(ws);
David Sterba6ac10a62016-04-27 02:15:15 +0200966 atomic_dec(total_ws);
Li Zefan261507a02010-12-17 14:21:50 +0800967wake:
David Sterba093258e2018-02-26 16:15:17 +0100968 cond_wake_up(ws_wait);
Li Zefan261507a02010-12-17 14:21:50 +0800969}
970
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500971static void put_workspace(int type, struct list_head *ws)
972{
Dennis Zhou92ee55302019-02-04 15:20:03 -0500973 return btrfs_compress_op[type]->put_workspace(ws);
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500974}
975
Li Zefan261507a02010-12-17 14:21:50 +0800976/*
David Sterba38c31462017-02-14 19:04:07 +0100977 * Given an address space and start and length, compress the bytes into @pages
978 * that are allocated on demand.
Li Zefan261507a02010-12-17 14:21:50 +0800979 *
David Sterbaf51d2b52017-09-15 17:36:57 +0200980 * @type_level is encoded algorithm and level, where level 0 means whatever
981 * default the algorithm chooses and is opaque here;
982 * - compression algo are 0-3
983 * - the level are bits 4-7
984 *
David Sterba4d3a8002017-02-14 19:04:07 +0100985 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
986 * and returns number of actually allocated pages
Li Zefan261507a02010-12-17 14:21:50 +0800987 *
David Sterba38c31462017-02-14 19:04:07 +0100988 * @total_in is used to return the number of bytes actually read. It
989 * may be smaller than the input length if we had to exit early because we
Li Zefan261507a02010-12-17 14:21:50 +0800990 * ran out of room in the pages array or because we cross the
991 * max_out threshold.
992 *
David Sterba38c31462017-02-14 19:04:07 +0100993 * @total_out is an in/out parameter, must be set to the input length and will
994 * be also used to return the total number of compressed bytes
Li Zefan261507a02010-12-17 14:21:50 +0800995 *
David Sterba38c31462017-02-14 19:04:07 +0100996 * @max_out tells us the max number of bytes that we're allowed to
Li Zefan261507a02010-12-17 14:21:50 +0800997 * stuff into pages
998 */
David Sterbaf51d2b52017-09-15 17:36:57 +0200999int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
David Sterba38c31462017-02-14 19:04:07 +01001000 u64 start, struct page **pages,
Li Zefan261507a02010-12-17 14:21:50 +08001001 unsigned long *out_pages,
1002 unsigned long *total_in,
David Sterbae5d74902017-02-14 19:45:05 +01001003 unsigned long *total_out)
Li Zefan261507a02010-12-17 14:21:50 +08001004{
Dennis Zhou19727082019-02-04 15:19:57 -05001005 int type = btrfs_compress_type(type_level);
Li Zefan261507a02010-12-17 14:21:50 +08001006 struct list_head *workspace;
1007 int ret;
1008
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001009 workspace = get_workspace(type);
Li Zefan261507a02010-12-17 14:21:50 +08001010
Dennis Zhouca4ac362019-02-04 15:19:59 -05001011 btrfs_compress_op[type]->set_level(workspace, type_level);
1012 ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
David Sterba38c31462017-02-14 19:04:07 +01001013 start, pages,
David Sterba4d3a8002017-02-14 19:04:07 +01001014 out_pages,
David Sterbae5d74902017-02-14 19:45:05 +01001015 total_in, total_out);
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001016 put_workspace(type, workspace);
Li Zefan261507a02010-12-17 14:21:50 +08001017 return ret;
1018}
1019
1020/*
1021 * pages_in is an array of pages with compressed data.
1022 *
1023 * disk_start is the starting logical offset of this array in the file
1024 *
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001025 * orig_bio contains the pages from the file that we want to decompress into
Li Zefan261507a02010-12-17 14:21:50 +08001026 *
1027 * srclen is the number of bytes in pages_in
1028 *
1029 * The basic idea is that we have a bio that was created by readpages.
1030 * The pages in the bio are for the uncompressed data, and they may not
1031 * be contiguous. They all correspond to the range of bytes covered by
1032 * the compressed extent.
1033 */
Anand Jain8140dc32017-05-26 15:44:58 +08001034static int btrfs_decompress_bio(struct compressed_bio *cb)
Li Zefan261507a02010-12-17 14:21:50 +08001035{
1036 struct list_head *workspace;
1037 int ret;
Anand Jain8140dc32017-05-26 15:44:58 +08001038 int type = cb->compress_type;
Li Zefan261507a02010-12-17 14:21:50 +08001039
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001040 workspace = get_workspace(type);
Dennis Zhouca4ac362019-02-04 15:19:59 -05001041 ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001042 put_workspace(type, workspace);
Anand Jaine1ddce72017-05-26 15:44:59 +08001043
Li Zefan261507a02010-12-17 14:21:50 +08001044 return ret;
1045}
1046
1047/*
1048 * a less complex decompression routine. Our compressed data fits in a
1049 * single page, and we want to read a single page out of it.
1050 * start_byte tells us the offset into the compressed data we're interested in
1051 */
1052int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1053 unsigned long start_byte, size_t srclen, size_t destlen)
1054{
1055 struct list_head *workspace;
1056 int ret;
1057
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001058 workspace = get_workspace(type);
Li Zefan261507a02010-12-17 14:21:50 +08001059
Dennis Zhouca4ac362019-02-04 15:19:59 -05001060 ret = btrfs_compress_op[type]->decompress(workspace, data_in,
Li Zefan261507a02010-12-17 14:21:50 +08001061 dest_page, start_byte,
1062 srclen, destlen);
1063
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001064 put_workspace(type, workspace);
Li Zefan261507a02010-12-17 14:21:50 +08001065 return ret;
1066}
1067
Dennis Zhou1666eda2019-02-04 15:20:01 -05001068void __init btrfs_init_compress(void)
1069{
1070 int i;
1071
1072 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
Dennis Zhou92ee55302019-02-04 15:20:03 -05001073 btrfs_compress_op[i]->init_workspace_manager();
Dennis Zhou1666eda2019-02-04 15:20:01 -05001074}
1075
David Sterbae67c7182018-02-19 17:24:18 +01001076void __cold btrfs_exit_compress(void)
Li Zefan261507a02010-12-17 14:21:50 +08001077{
Dennis Zhou1666eda2019-02-04 15:20:01 -05001078 int i;
1079
1080 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
Dennis Zhou92ee55302019-02-04 15:20:03 -05001081 btrfs_compress_op[i]->cleanup_workspace_manager();
Li Zefan261507a02010-12-17 14:21:50 +08001082}
Li Zefan3a39c182010-11-08 15:22:19 +08001083
1084/*
1085 * Copy uncompressed data from working buffer to pages.
1086 *
1087 * buf_start is the byte offset we're of the start of our workspace buffer.
1088 *
1089 * total_out is the last byte of the buffer
1090 */
David Sterba14a33572017-02-14 17:58:04 +01001091int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
Li Zefan3a39c182010-11-08 15:22:19 +08001092 unsigned long total_out, u64 disk_start,
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001093 struct bio *bio)
Li Zefan3a39c182010-11-08 15:22:19 +08001094{
1095 unsigned long buf_offset;
1096 unsigned long current_buf_start;
1097 unsigned long start_byte;
Omar Sandoval6e78b3f2017-02-10 15:03:35 -08001098 unsigned long prev_start_byte;
Li Zefan3a39c182010-11-08 15:22:19 +08001099 unsigned long working_bytes = total_out - buf_start;
1100 unsigned long bytes;
1101 char *kaddr;
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001102 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
Li Zefan3a39c182010-11-08 15:22:19 +08001103
1104 /*
1105 * start byte is the first byte of the page we're currently
1106 * copying into relative to the start of the compressed data.
1107 */
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001108 start_byte = page_offset(bvec.bv_page) - disk_start;
Li Zefan3a39c182010-11-08 15:22:19 +08001109
1110 /* we haven't yet hit data corresponding to this page */
1111 if (total_out <= start_byte)
1112 return 1;
1113
1114 /*
1115 * the start of the data we care about is offset into
1116 * the middle of our working buffer
1117 */
1118 if (total_out > start_byte && buf_start < start_byte) {
1119 buf_offset = start_byte - buf_start;
1120 working_bytes -= buf_offset;
1121 } else {
1122 buf_offset = 0;
1123 }
1124 current_buf_start = buf_start;
1125
1126 /* copy bytes from the working buffer into the pages */
1127 while (working_bytes > 0) {
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001128 bytes = min_t(unsigned long, bvec.bv_len,
1129 PAGE_SIZE - buf_offset);
Li Zefan3a39c182010-11-08 15:22:19 +08001130 bytes = min(bytes, working_bytes);
Li Zefan3a39c182010-11-08 15:22:19 +08001131
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001132 kaddr = kmap_atomic(bvec.bv_page);
1133 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1134 kunmap_atomic(kaddr);
1135 flush_dcache_page(bvec.bv_page);
1136
Li Zefan3a39c182010-11-08 15:22:19 +08001137 buf_offset += bytes;
1138 working_bytes -= bytes;
1139 current_buf_start += bytes;
1140
1141 /* check if we need to pick another page */
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001142 bio_advance(bio, bytes);
1143 if (!bio->bi_iter.bi_size)
1144 return 0;
1145 bvec = bio_iter_iovec(bio, bio->bi_iter);
Omar Sandoval6e78b3f2017-02-10 15:03:35 -08001146 prev_start_byte = start_byte;
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001147 start_byte = page_offset(bvec.bv_page) - disk_start;
Li Zefan3a39c182010-11-08 15:22:19 +08001148
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001149 /*
Omar Sandoval6e78b3f2017-02-10 15:03:35 -08001150 * We need to make sure we're only adjusting
1151 * our offset into compression working buffer when
1152 * we're switching pages. Otherwise we can incorrectly
1153 * keep copying when we were actually done.
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001154 */
Omar Sandoval6e78b3f2017-02-10 15:03:35 -08001155 if (start_byte != prev_start_byte) {
1156 /*
1157 * make sure our new page is covered by this
1158 * working buffer
1159 */
1160 if (total_out <= start_byte)
1161 return 1;
Li Zefan3a39c182010-11-08 15:22:19 +08001162
Omar Sandoval6e78b3f2017-02-10 15:03:35 -08001163 /*
1164 * the next page in the biovec might not be adjacent
1165 * to the last page, but it might still be found
1166 * inside this working buffer. bump our offset pointer
1167 */
1168 if (total_out > start_byte &&
1169 current_buf_start < start_byte) {
1170 buf_offset = start_byte - buf_start;
1171 working_bytes = total_out - start_byte;
1172 current_buf_start = buf_start + buf_offset;
1173 }
Li Zefan3a39c182010-11-08 15:22:19 +08001174 }
1175 }
1176
1177 return 1;
1178}
Timofey Titovetsc2fcdcd2017-07-17 16:52:58 +03001179
Timofey Titovets19562432017-10-08 16:11:59 +03001180/*
1181 * Shannon Entropy calculation
1182 *
Andrea Gelmini52042d82018-11-28 12:05:13 +01001183 * Pure byte distribution analysis fails to determine compressibility of data.
Timofey Titovets19562432017-10-08 16:11:59 +03001184 * Try calculating entropy to estimate the average minimum number of bits
1185 * needed to encode the sampled data.
1186 *
1187 * For convenience, return the percentage of needed bits, instead of amount of
1188 * bits directly.
1189 *
1190 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1191 * and can be compressible with high probability
1192 *
1193 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1194 *
1195 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1196 */
1197#define ENTROPY_LVL_ACEPTABLE (65)
1198#define ENTROPY_LVL_HIGH (80)
1199
1200/*
1201 * For increasead precision in shannon_entropy calculation,
1202 * let's do pow(n, M) to save more digits after comma:
1203 *
1204 * - maximum int bit length is 64
1205 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1206 * - 13 * 4 = 52 < 64 -> M = 4
1207 *
1208 * So use pow(n, 4).
1209 */
1210static inline u32 ilog2_w(u64 n)
1211{
1212 return ilog2(n * n * n * n);
1213}
1214
1215static u32 shannon_entropy(struct heuristic_ws *ws)
1216{
1217 const u32 entropy_max = 8 * ilog2_w(2);
1218 u32 entropy_sum = 0;
1219 u32 p, p_base, sz_base;
1220 u32 i;
1221
1222 sz_base = ilog2_w(ws->sample_size);
1223 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1224 p = ws->bucket[i].count;
1225 p_base = ilog2_w(p);
1226 entropy_sum += p * (sz_base - p_base);
1227 }
1228
1229 entropy_sum /= ws->sample_size;
1230 return entropy_sum * 100 / entropy_max;
1231}
1232
Timofey Titovets440c8402017-12-04 00:30:33 +03001233#define RADIX_BASE 4U
1234#define COUNTERS_SIZE (1U << RADIX_BASE)
Timofey Titovets858177d2017-09-28 17:33:41 +03001235
Timofey Titovets440c8402017-12-04 00:30:33 +03001236static u8 get4bits(u64 num, int shift) {
1237 u8 low4bits;
1238
1239 num >>= shift;
1240 /* Reverse order */
1241 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1242 return low4bits;
1243}
1244
Timofey Titovets440c8402017-12-04 00:30:33 +03001245/*
1246 * Use 4 bits as radix base
Andrea Gelmini52042d82018-11-28 12:05:13 +01001247 * Use 16 u32 counters for calculating new position in buf array
Timofey Titovets440c8402017-12-04 00:30:33 +03001248 *
1249 * @array - array that will be sorted
1250 * @array_buf - buffer array to store sorting results
1251 * must be equal in size to @array
1252 * @num - array size
Timofey Titovets440c8402017-12-04 00:30:33 +03001253 */
David Sterba23ae8c62017-12-12 20:35:02 +01001254static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
David Sterba36243c92017-12-12 20:35:02 +01001255 int num)
Timofey Titovets440c8402017-12-04 00:30:33 +03001256{
1257 u64 max_num;
1258 u64 buf_num;
1259 u32 counters[COUNTERS_SIZE];
1260 u32 new_addr;
1261 u32 addr;
1262 int bitlen;
1263 int shift;
1264 int i;
1265
1266 /*
1267 * Try avoid useless loop iterations for small numbers stored in big
1268 * counters. Example: 48 33 4 ... in 64bit array
1269 */
David Sterba23ae8c62017-12-12 20:35:02 +01001270 max_num = array[0].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001271 for (i = 1; i < num; i++) {
David Sterba23ae8c62017-12-12 20:35:02 +01001272 buf_num = array[i].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001273 if (buf_num > max_num)
1274 max_num = buf_num;
1275 }
1276
1277 buf_num = ilog2(max_num);
1278 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1279
1280 shift = 0;
1281 while (shift < bitlen) {
1282 memset(counters, 0, sizeof(counters));
1283
1284 for (i = 0; i < num; i++) {
David Sterba23ae8c62017-12-12 20:35:02 +01001285 buf_num = array[i].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001286 addr = get4bits(buf_num, shift);
1287 counters[addr]++;
1288 }
1289
1290 for (i = 1; i < COUNTERS_SIZE; i++)
1291 counters[i] += counters[i - 1];
1292
1293 for (i = num - 1; i >= 0; i--) {
David Sterba23ae8c62017-12-12 20:35:02 +01001294 buf_num = array[i].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001295 addr = get4bits(buf_num, shift);
1296 counters[addr]--;
1297 new_addr = counters[addr];
David Sterba7add17b2017-12-12 20:35:02 +01001298 array_buf[new_addr] = array[i];
Timofey Titovets440c8402017-12-04 00:30:33 +03001299 }
1300
1301 shift += RADIX_BASE;
1302
1303 /*
1304 * Normal radix expects to move data from a temporary array, to
1305 * the main one. But that requires some CPU time. Avoid that
1306 * by doing another sort iteration to original array instead of
1307 * memcpy()
1308 */
1309 memset(counters, 0, sizeof(counters));
1310
1311 for (i = 0; i < num; i ++) {
David Sterba23ae8c62017-12-12 20:35:02 +01001312 buf_num = array_buf[i].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001313 addr = get4bits(buf_num, shift);
1314 counters[addr]++;
1315 }
1316
1317 for (i = 1; i < COUNTERS_SIZE; i++)
1318 counters[i] += counters[i - 1];
1319
1320 for (i = num - 1; i >= 0; i--) {
David Sterba23ae8c62017-12-12 20:35:02 +01001321 buf_num = array_buf[i].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001322 addr = get4bits(buf_num, shift);
1323 counters[addr]--;
1324 new_addr = counters[addr];
David Sterba7add17b2017-12-12 20:35:02 +01001325 array[new_addr] = array_buf[i];
Timofey Titovets440c8402017-12-04 00:30:33 +03001326 }
1327
1328 shift += RADIX_BASE;
1329 }
Timofey Titovets858177d2017-09-28 17:33:41 +03001330}
1331
1332/*
1333 * Size of the core byte set - how many bytes cover 90% of the sample
1334 *
1335 * There are several types of structured binary data that use nearly all byte
1336 * values. The distribution can be uniform and counts in all buckets will be
1337 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1338 *
1339 * Other possibility is normal (Gaussian) distribution, where the data could
1340 * be potentially compressible, but we have to take a few more steps to decide
1341 * how much.
1342 *
1343 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1344 * compression algo can easy fix that
1345 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1346 * probability is not compressible
1347 */
1348#define BYTE_CORE_SET_LOW (64)
1349#define BYTE_CORE_SET_HIGH (200)
1350
1351static int byte_core_set_size(struct heuristic_ws *ws)
1352{
1353 u32 i;
1354 u32 coreset_sum = 0;
1355 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1356 struct bucket_item *bucket = ws->bucket;
1357
1358 /* Sort in reverse order */
David Sterba36243c92017-12-12 20:35:02 +01001359 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
Timofey Titovets858177d2017-09-28 17:33:41 +03001360
1361 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1362 coreset_sum += bucket[i].count;
1363
1364 if (coreset_sum > core_set_threshold)
1365 return i;
1366
1367 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1368 coreset_sum += bucket[i].count;
1369 if (coreset_sum > core_set_threshold)
1370 break;
1371 }
1372
1373 return i;
1374}
1375
Timofey Titovetsa288e922017-09-28 17:33:40 +03001376/*
1377 * Count byte values in buckets.
1378 * This heuristic can detect textual data (configs, xml, json, html, etc).
1379 * Because in most text-like data byte set is restricted to limited number of
1380 * possible characters, and that restriction in most cases makes data easy to
1381 * compress.
1382 *
1383 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1384 * less - compressible
1385 * more - need additional analysis
1386 */
1387#define BYTE_SET_THRESHOLD (64)
1388
1389static u32 byte_set_size(const struct heuristic_ws *ws)
1390{
1391 u32 i;
1392 u32 byte_set_size = 0;
1393
1394 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1395 if (ws->bucket[i].count > 0)
1396 byte_set_size++;
1397 }
1398
1399 /*
1400 * Continue collecting count of byte values in buckets. If the byte
1401 * set size is bigger then the threshold, it's pointless to continue,
1402 * the detection technique would fail for this type of data.
1403 */
1404 for (; i < BUCKET_SIZE; i++) {
1405 if (ws->bucket[i].count > 0) {
1406 byte_set_size++;
1407 if (byte_set_size > BYTE_SET_THRESHOLD)
1408 return byte_set_size;
1409 }
1410 }
1411
1412 return byte_set_size;
1413}
1414
Timofey Titovets1fe4f6f2017-09-28 17:33:39 +03001415static bool sample_repeated_patterns(struct heuristic_ws *ws)
1416{
1417 const u32 half_of_sample = ws->sample_size / 2;
1418 const u8 *data = ws->sample;
1419
1420 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1421}
1422
Timofey Titovetsa440d482017-09-28 17:33:38 +03001423static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1424 struct heuristic_ws *ws)
1425{
1426 struct page *page;
1427 u64 index, index_end;
1428 u32 i, curr_sample_pos;
1429 u8 *in_data;
1430
1431 /*
1432 * Compression handles the input data by chunks of 128KiB
1433 * (defined by BTRFS_MAX_UNCOMPRESSED)
1434 *
1435 * We do the same for the heuristic and loop over the whole range.
1436 *
1437 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1438 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1439 */
1440 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1441 end = start + BTRFS_MAX_UNCOMPRESSED;
1442
1443 index = start >> PAGE_SHIFT;
1444 index_end = end >> PAGE_SHIFT;
1445
1446 /* Don't miss unaligned end */
1447 if (!IS_ALIGNED(end, PAGE_SIZE))
1448 index_end++;
1449
1450 curr_sample_pos = 0;
1451 while (index < index_end) {
1452 page = find_get_page(inode->i_mapping, index);
1453 in_data = kmap(page);
1454 /* Handle case where the start is not aligned to PAGE_SIZE */
1455 i = start % PAGE_SIZE;
1456 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1457 /* Don't sample any garbage from the last page */
1458 if (start > end - SAMPLING_READ_SIZE)
1459 break;
1460 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1461 SAMPLING_READ_SIZE);
1462 i += SAMPLING_INTERVAL;
1463 start += SAMPLING_INTERVAL;
1464 curr_sample_pos += SAMPLING_READ_SIZE;
1465 }
1466 kunmap(page);
1467 put_page(page);
1468
1469 index++;
1470 }
1471
1472 ws->sample_size = curr_sample_pos;
1473}
1474
Timofey Titovetsc2fcdcd2017-07-17 16:52:58 +03001475/*
1476 * Compression heuristic.
1477 *
1478 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1479 * quickly (compared to direct compression) detect data characteristics
1480 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1481 * data.
1482 *
1483 * The following types of analysis can be performed:
1484 * - detect mostly zero data
1485 * - detect data with low "byte set" size (text, etc)
1486 * - detect data with low/high "core byte" set
1487 *
1488 * Return non-zero if the compression should be done, 0 otherwise.
1489 */
1490int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1491{
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001492 struct list_head *ws_list = get_workspace(0);
Timofey Titovets4e439a02017-09-28 17:33:36 +03001493 struct heuristic_ws *ws;
Timofey Titovetsa440d482017-09-28 17:33:38 +03001494 u32 i;
1495 u8 byte;
Timofey Titovets19562432017-10-08 16:11:59 +03001496 int ret = 0;
Timofey Titovetsc2fcdcd2017-07-17 16:52:58 +03001497
Timofey Titovets4e439a02017-09-28 17:33:36 +03001498 ws = list_entry(ws_list, struct heuristic_ws, list);
1499
Timofey Titovetsa440d482017-09-28 17:33:38 +03001500 heuristic_collect_sample(inode, start, end, ws);
1501
Timofey Titovets1fe4f6f2017-09-28 17:33:39 +03001502 if (sample_repeated_patterns(ws)) {
1503 ret = 1;
1504 goto out;
1505 }
1506
Timofey Titovetsa440d482017-09-28 17:33:38 +03001507 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1508
1509 for (i = 0; i < ws->sample_size; i++) {
1510 byte = ws->sample[i];
1511 ws->bucket[byte].count++;
Timofey Titovetsc2fcdcd2017-07-17 16:52:58 +03001512 }
1513
Timofey Titovetsa288e922017-09-28 17:33:40 +03001514 i = byte_set_size(ws);
1515 if (i < BYTE_SET_THRESHOLD) {
1516 ret = 2;
1517 goto out;
1518 }
1519
Timofey Titovets858177d2017-09-28 17:33:41 +03001520 i = byte_core_set_size(ws);
1521 if (i <= BYTE_CORE_SET_LOW) {
1522 ret = 3;
1523 goto out;
1524 }
1525
1526 if (i >= BYTE_CORE_SET_HIGH) {
1527 ret = 0;
1528 goto out;
1529 }
1530
Timofey Titovets19562432017-10-08 16:11:59 +03001531 i = shannon_entropy(ws);
1532 if (i <= ENTROPY_LVL_ACEPTABLE) {
1533 ret = 4;
1534 goto out;
1535 }
1536
1537 /*
1538 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1539 * needed to give green light to compression.
1540 *
1541 * For now just assume that compression at that level is not worth the
1542 * resources because:
1543 *
1544 * 1. it is possible to defrag the data later
1545 *
1546 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1547 * values, every bucket has counter at level ~54. The heuristic would
1548 * be confused. This can happen when data have some internal repeated
1549 * patterns like "abbacbbc...". This can be detected by analyzing
1550 * pairs of bytes, which is too costly.
1551 */
1552 if (i < ENTROPY_LVL_HIGH) {
1553 ret = 5;
1554 goto out;
1555 } else {
1556 ret = 0;
1557 goto out;
1558 }
1559
Timofey Titovets1fe4f6f2017-09-28 17:33:39 +03001560out:
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001561 put_workspace(0, ws_list);
Timofey Titovetsc2fcdcd2017-07-17 16:52:58 +03001562 return ret;
1563}
David Sterbaf51d2b52017-09-15 17:36:57 +02001564
1565unsigned int btrfs_compress_str2level(const char *str)
1566{
1567 if (strncmp(str, "zlib", 4) != 0)
1568 return 0;
1569
Adam Borowskifa4d8852017-09-15 17:36:58 +02001570 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1571 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1572 return str[5] - '0';
David Sterbaf51d2b52017-09-15 17:36:57 +02001573
Qu Wenruoeae8d822017-11-06 10:43:18 +08001574 return BTRFS_ZLIB_DEFAULT_LEVEL;
David Sterbaf51d2b52017-09-15 17:36:57 +02001575}