blob: 0240649fb3ac4846b9f8fdc8490cbd32b712f962 [file] [log] [blame]
David Sterbac1d7c512018-04-03 19:23:33 +02001// SPDX-License-Identifier: GPL-2.0
Chris Masonc8b97812008-10-29 14:49:59 -04002/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
Chris Masonc8b97812008-10-29 14:49:59 -04004 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
Chris Masonc8b97812008-10-29 14:49:59 -04008#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
Chris Masonc8b97812008-10-29 14:49:59 -040015#include <linux/backing-dev.h>
Chris Masonc8b97812008-10-29 14:49:59 -040016#include <linux/writeback.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090017#include <linux/slab.h>
David Sterbafe308532017-05-31 17:14:56 +020018#include <linux/sched/mm.h>
Timofey Titovets19562432017-10-08 16:11:59 +030019#include <linux/log2.h>
Chris Masonc8b97812008-10-29 14:49:59 -040020#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
24#include "volumes.h"
25#include "ordered-data.h"
Chris Masonc8b97812008-10-29 14:49:59 -040026#include "compression.h"
27#include "extent_io.h"
28#include "extent_map.h"
29
David Sterbae128f9c2017-10-31 17:24:26 +010030static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31
32const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33{
34 switch (type) {
35 case BTRFS_COMPRESS_ZLIB:
36 case BTRFS_COMPRESS_LZO:
37 case BTRFS_COMPRESS_ZSTD:
38 case BTRFS_COMPRESS_NONE:
39 return btrfs_compress_types[type];
40 }
41
42 return NULL;
43}
44
Anand Jain8140dc32017-05-26 15:44:58 +080045static int btrfs_decompress_bio(struct compressed_bio *cb);
Eric Sandeen48a3b632013-04-25 20:41:01 +000046
Jeff Mahoney2ff7e612016-06-22 18:54:24 -040047static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
Chris Masond20f7042008-12-08 16:58:54 -050048 unsigned long disk_size)
49{
Jeff Mahoney0b246af2016-06-22 18:54:23 -040050 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
David Sterba6c417612011-04-13 15:41:04 +020051
Chris Masond20f7042008-12-08 16:58:54 -050052 return sizeof(struct compressed_bio) +
Jeff Mahoney0b246af2016-06-22 18:54:23 -040053 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
Chris Masond20f7042008-12-08 16:58:54 -050054}
55
Nikolay Borisovf898ac62017-02-20 13:50:54 +020056static int check_compressed_csum(struct btrfs_inode *inode,
Chris Masond20f7042008-12-08 16:58:54 -050057 struct compressed_bio *cb,
58 u64 disk_start)
59{
60 int ret;
Chris Masond20f7042008-12-08 16:58:54 -050061 struct page *page;
62 unsigned long i;
63 char *kaddr;
64 u32 csum;
65 u32 *cb_sum = &cb->sums;
66
Nikolay Borisovf898ac62017-02-20 13:50:54 +020067 if (inode->flags & BTRFS_INODE_NODATASUM)
Chris Masond20f7042008-12-08 16:58:54 -050068 return 0;
69
70 for (i = 0; i < cb->nr_pages; i++) {
71 page = cb->compressed_pages[i];
72 csum = ~(u32)0;
73
Cong Wang7ac687d2011-11-25 23:14:28 +080074 kaddr = kmap_atomic(page);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +030075 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
Domagoj Tršan0b5e3da2016-10-27 08:52:33 +010076 btrfs_csum_final(csum, (u8 *)&csum);
Cong Wang7ac687d2011-11-25 23:14:28 +080077 kunmap_atomic(kaddr);
Chris Masond20f7042008-12-08 16:58:54 -050078
79 if (csum != *cb_sum) {
Nikolay Borisovf898ac62017-02-20 13:50:54 +020080 btrfs_print_data_csum_error(inode, disk_start, csum,
Nikolay Borisov0970a222017-02-20 13:50:53 +020081 *cb_sum, cb->mirror_num);
Chris Masond20f7042008-12-08 16:58:54 -050082 ret = -EIO;
83 goto fail;
84 }
85 cb_sum++;
86
87 }
88 ret = 0;
89fail:
90 return ret;
91}
92
Chris Masonc8b97812008-10-29 14:49:59 -040093/* when we finish reading compressed pages from the disk, we
94 * decompress them and then run the bio end_io routines on the
95 * decompressed pages (in the inode address space).
96 *
97 * This allows the checksumming and other IO error handling routines
98 * to work normally
99 *
100 * The compressed pages are freed here, and it must be run
101 * in process context
102 */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200103static void end_compressed_bio_read(struct bio *bio)
Chris Masonc8b97812008-10-29 14:49:59 -0400104{
Chris Masonc8b97812008-10-29 14:49:59 -0400105 struct compressed_bio *cb = bio->bi_private;
106 struct inode *inode;
107 struct page *page;
108 unsigned long index;
Liu Bocf1167d2017-09-20 17:50:18 -0600109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
Liu Boe6311f22017-09-20 17:50:19 -0600110 int ret = 0;
Chris Masonc8b97812008-10-29 14:49:59 -0400111
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200112 if (bio->bi_status)
Chris Masonc8b97812008-10-29 14:49:59 -0400113 cb->errors = 1;
114
115 /* if there are more bios still pending for this compressed
116 * extent, just exit
117 */
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200118 if (!refcount_dec_and_test(&cb->pending_bios))
Chris Masonc8b97812008-10-29 14:49:59 -0400119 goto out;
120
Liu Bocf1167d2017-09-20 17:50:18 -0600121 /*
122 * Record the correct mirror_num in cb->orig_bio so that
123 * read-repair can work properly.
124 */
125 ASSERT(btrfs_io_bio(cb->orig_bio));
126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 cb->mirror_num = mirror;
128
Liu Boe6311f22017-09-20 17:50:19 -0600129 /*
130 * Some IO in this cb have failed, just skip checksum as there
131 * is no way it could be correct.
132 */
133 if (cb->errors == 1)
134 goto csum_failed;
135
Chris Masond20f7042008-12-08 16:58:54 -0500136 inode = cb->inode;
Nikolay Borisovf898ac62017-02-20 13:50:54 +0200137 ret = check_compressed_csum(BTRFS_I(inode), cb,
Kent Overstreet4f024f32013-10-11 15:44:27 -0700138 (u64)bio->bi_iter.bi_sector << 9);
Chris Masond20f7042008-12-08 16:58:54 -0500139 if (ret)
140 goto csum_failed;
141
Chris Masonc8b97812008-10-29 14:49:59 -0400142 /* ok, we're the last bio for this extent, lets start
143 * the decompression.
144 */
Anand Jain8140dc32017-05-26 15:44:58 +0800145 ret = btrfs_decompress_bio(cb);
146
Chris Masond20f7042008-12-08 16:58:54 -0500147csum_failed:
Chris Masonc8b97812008-10-29 14:49:59 -0400148 if (ret)
149 cb->errors = 1;
150
151 /* release the compressed pages */
152 index = 0;
153 for (index = 0; index < cb->nr_pages; index++) {
154 page = cb->compressed_pages[index];
155 page->mapping = NULL;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300156 put_page(page);
Chris Masonc8b97812008-10-29 14:49:59 -0400157 }
158
159 /* do io completion on the original bio */
Chris Mason771ed682008-11-06 22:02:51 -0500160 if (cb->errors) {
Chris Masonc8b97812008-10-29 14:49:59 -0400161 bio_io_error(cb->orig_bio);
Chris Masond20f7042008-12-08 16:58:54 -0500162 } else {
Kent Overstreet2c30c712013-11-07 12:20:26 -0800163 int i;
164 struct bio_vec *bvec;
Chris Masond20f7042008-12-08 16:58:54 -0500165
166 /*
167 * we have verified the checksum already, set page
168 * checked so the end_io handlers know about it
169 */
David Sterbac09abff2017-07-13 18:10:07 +0200170 ASSERT(!bio_flagged(bio, BIO_CLONED));
Kent Overstreet2c30c712013-11-07 12:20:26 -0800171 bio_for_each_segment_all(bvec, cb->orig_bio, i)
Chris Masond20f7042008-12-08 16:58:54 -0500172 SetPageChecked(bvec->bv_page);
Kent Overstreet2c30c712013-11-07 12:20:26 -0800173
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200174 bio_endio(cb->orig_bio);
Chris Masond20f7042008-12-08 16:58:54 -0500175 }
Chris Masonc8b97812008-10-29 14:49:59 -0400176
177 /* finally free the cb struct */
178 kfree(cb->compressed_pages);
179 kfree(cb);
180out:
181 bio_put(bio);
182}
183
184/*
185 * Clear the writeback bits on all of the file
186 * pages for a compressed write
187 */
Filipe Manana7bdcefc2014-10-07 01:48:26 +0100188static noinline void end_compressed_writeback(struct inode *inode,
189 const struct compressed_bio *cb)
Chris Masonc8b97812008-10-29 14:49:59 -0400190{
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300191 unsigned long index = cb->start >> PAGE_SHIFT;
192 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
Chris Masonc8b97812008-10-29 14:49:59 -0400193 struct page *pages[16];
194 unsigned long nr_pages = end_index - index + 1;
195 int i;
196 int ret;
197
Filipe Manana7bdcefc2014-10-07 01:48:26 +0100198 if (cb->errors)
199 mapping_set_error(inode->i_mapping, -EIO);
200
Chris Masond3977122009-01-05 21:25:51 -0500201 while (nr_pages > 0) {
Chris Masonc8b97812008-10-29 14:49:59 -0400202 ret = find_get_pages_contig(inode->i_mapping, index,
Chris Mason5b050f02008-11-11 09:34:41 -0500203 min_t(unsigned long,
204 nr_pages, ARRAY_SIZE(pages)), pages);
Chris Masonc8b97812008-10-29 14:49:59 -0400205 if (ret == 0) {
206 nr_pages -= 1;
207 index += 1;
208 continue;
209 }
210 for (i = 0; i < ret; i++) {
Filipe Manana7bdcefc2014-10-07 01:48:26 +0100211 if (cb->errors)
212 SetPageError(pages[i]);
Chris Masonc8b97812008-10-29 14:49:59 -0400213 end_page_writeback(pages[i]);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300214 put_page(pages[i]);
Chris Masonc8b97812008-10-29 14:49:59 -0400215 }
216 nr_pages -= ret;
217 index += ret;
218 }
219 /* the inode may be gone now */
Chris Masonc8b97812008-10-29 14:49:59 -0400220}
221
222/*
223 * do the cleanup once all the compressed pages hit the disk.
224 * This will clear writeback on the file pages and free the compressed
225 * pages.
226 *
227 * This also calls the writeback end hooks for the file pages so that
228 * metadata and checksums can be updated in the file.
229 */
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200230static void end_compressed_bio_write(struct bio *bio)
Chris Masonc8b97812008-10-29 14:49:59 -0400231{
Chris Masonc8b97812008-10-29 14:49:59 -0400232 struct compressed_bio *cb = bio->bi_private;
233 struct inode *inode;
234 struct page *page;
235 unsigned long index;
236
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200237 if (bio->bi_status)
Chris Masonc8b97812008-10-29 14:49:59 -0400238 cb->errors = 1;
239
240 /* if there are more bios still pending for this compressed
241 * extent, just exit
242 */
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200243 if (!refcount_dec_and_test(&cb->pending_bios))
Chris Masonc8b97812008-10-29 14:49:59 -0400244 goto out;
245
246 /* ok, we're the last bio for this extent, step one is to
247 * call back into the FS and do all the end_io operations
248 */
249 inode = cb->inode;
Chris Mason70b99e62008-10-31 12:46:39 -0400250 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
Nikolay Borisov7087a9d2018-11-01 14:09:48 +0200251 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
Nikolay Borisovc6297322018-11-08 10:18:08 +0200252 cb->start, cb->start + cb->len - 1,
Nikolay Borisov7087a9d2018-11-01 14:09:48 +0200253 bio->bi_status ? BLK_STS_OK : BLK_STS_NOTSUPP);
Chris Mason70b99e62008-10-31 12:46:39 -0400254 cb->compressed_pages[0]->mapping = NULL;
Chris Masonc8b97812008-10-29 14:49:59 -0400255
Filipe Manana7bdcefc2014-10-07 01:48:26 +0100256 end_compressed_writeback(inode, cb);
Chris Masonc8b97812008-10-29 14:49:59 -0400257 /* note, our inode could be gone now */
258
259 /*
260 * release the compressed pages, these came from alloc_page and
261 * are not attached to the inode at all
262 */
263 index = 0;
264 for (index = 0; index < cb->nr_pages; index++) {
265 page = cb->compressed_pages[index];
266 page->mapping = NULL;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300267 put_page(page);
Chris Masonc8b97812008-10-29 14:49:59 -0400268 }
269
270 /* finally free the cb struct */
271 kfree(cb->compressed_pages);
272 kfree(cb);
273out:
274 bio_put(bio);
275}
276
277/*
278 * worker function to build and submit bios for previously compressed pages.
279 * The corresponding pages in the inode should be marked for writeback
280 * and the compressed pages should have a reference on them for dropping
281 * when the IO is complete.
282 *
283 * This also checksums the file bytes and gets things ready for
284 * the end io hooks.
285 */
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200286blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
Chris Masonc8b97812008-10-29 14:49:59 -0400287 unsigned long len, u64 disk_start,
288 unsigned long compressed_len,
289 struct page **compressed_pages,
Liu Bof82b7352017-10-23 23:18:16 -0600290 unsigned long nr_pages,
291 unsigned int write_flags)
Chris Masonc8b97812008-10-29 14:49:59 -0400292{
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
Chris Masonc8b97812008-10-29 14:49:59 -0400294 struct bio *bio = NULL;
Chris Masonc8b97812008-10-29 14:49:59 -0400295 struct compressed_bio *cb;
296 unsigned long bytes_left;
David Sterba306e16c2011-04-19 14:29:38 +0200297 int pg_index = 0;
Chris Masonc8b97812008-10-29 14:49:59 -0400298 struct page *page;
299 u64 first_byte = disk_start;
300 struct block_device *bdev;
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200301 blk_status_t ret;
Li Zefane55179b2011-07-14 03:16:47 +0000302 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
Chris Masonc8b97812008-10-29 14:49:59 -0400303
Johannes Thumshirnfdb1e122018-12-05 15:23:04 +0100304 WARN_ON(!PAGE_ALIGNED(start));
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400305 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
Yoshinori Sanodac97e52011-02-15 12:01:42 +0000306 if (!cb)
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200307 return BLK_STS_RESOURCE;
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200308 refcount_set(&cb->pending_bios, 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400309 cb->errors = 0;
310 cb->inode = inode;
311 cb->start = start;
312 cb->len = len;
Chris Masond20f7042008-12-08 16:58:54 -0500313 cb->mirror_num = 0;
Chris Masonc8b97812008-10-29 14:49:59 -0400314 cb->compressed_pages = compressed_pages;
315 cb->compressed_len = compressed_len;
316 cb->orig_bio = NULL;
317 cb->nr_pages = nr_pages;
318
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400319 bdev = fs_info->fs_devices->latest_bdev;
Chris Masonc8b97812008-10-29 14:49:59 -0400320
David Sterbac821e7f32017-06-02 18:35:36 +0200321 bio = btrfs_bio_alloc(bdev, first_byte);
Liu Bof82b7352017-10-23 23:18:16 -0600322 bio->bi_opf = REQ_OP_WRITE | write_flags;
Chris Masonc8b97812008-10-29 14:49:59 -0400323 bio->bi_private = cb;
324 bio->bi_end_io = end_compressed_bio_write;
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200325 refcount_set(&cb->pending_bios, 1);
Chris Masonc8b97812008-10-29 14:49:59 -0400326
327 /* create and submit bios for the compressed pages */
328 bytes_left = compressed_len;
David Sterba306e16c2011-04-19 14:29:38 +0200329 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200330 int submit = 0;
331
David Sterba306e16c2011-04-19 14:29:38 +0200332 page = compressed_pages[pg_index];
Chris Masonc8b97812008-10-29 14:49:59 -0400333 page->mapping = inode->i_mapping;
Kent Overstreet4f024f32013-10-11 15:44:27 -0700334 if (bio->bi_iter.bi_size)
Nikolay Borisovda12fe52018-11-27 20:57:58 +0200335 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
336 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400337
Chris Mason70b99e62008-10-31 12:46:39 -0400338 page->mapping = NULL;
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200339 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300340 PAGE_SIZE) {
Chris Masonaf09abf2008-11-07 12:35:44 -0500341 /*
342 * inc the count before we submit the bio so
343 * we know the end IO handler won't happen before
344 * we inc the count. Otherwise, the cb might get
345 * freed before we're done setting it up
346 */
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200347 refcount_inc(&cb->pending_bios);
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400348 ret = btrfs_bio_wq_end_io(fs_info, bio,
349 BTRFS_WQ_ENDIO_DATA);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100350 BUG_ON(ret); /* -ENOMEM */
Chris Masonc8b97812008-10-29 14:49:59 -0400351
Li Zefane55179b2011-07-14 03:16:47 +0000352 if (!skip_sum) {
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400353 ret = btrfs_csum_one_bio(inode, bio, start, 1);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100354 BUG_ON(ret); /* -ENOMEM */
Li Zefane55179b2011-07-14 03:16:47 +0000355 }
Chris Masond20f7042008-12-08 16:58:54 -0500356
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400357 ret = btrfs_map_bio(fs_info, bio, 0, 1);
Liu Bof5daf2c2016-06-22 18:32:06 -0700358 if (ret) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200359 bio->bi_status = ret;
Liu Bof5daf2c2016-06-22 18:32:06 -0700360 bio_endio(bio);
361 }
Chris Masonc8b97812008-10-29 14:49:59 -0400362
David Sterbac821e7f32017-06-02 18:35:36 +0200363 bio = btrfs_bio_alloc(bdev, first_byte);
Liu Bof82b7352017-10-23 23:18:16 -0600364 bio->bi_opf = REQ_OP_WRITE | write_flags;
Chris Masonc8b97812008-10-29 14:49:59 -0400365 bio->bi_private = cb;
366 bio->bi_end_io = end_compressed_bio_write;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300367 bio_add_page(bio, page, PAGE_SIZE, 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400368 }
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300369 if (bytes_left < PAGE_SIZE) {
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400370 btrfs_info(fs_info,
Frank Holtonefe120a2013-12-20 11:37:06 -0500371 "bytes left %lu compress len %lu nr %lu",
Chris Masoncfbc2462008-10-30 13:22:14 -0400372 bytes_left, cb->compressed_len, cb->nr_pages);
373 }
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300374 bytes_left -= PAGE_SIZE;
375 first_byte += PAGE_SIZE;
Chris Mason771ed682008-11-06 22:02:51 -0500376 cond_resched();
Chris Masonc8b97812008-10-29 14:49:59 -0400377 }
Chris Masonc8b97812008-10-29 14:49:59 -0400378
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400379 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100380 BUG_ON(ret); /* -ENOMEM */
Chris Masonc8b97812008-10-29 14:49:59 -0400381
Li Zefane55179b2011-07-14 03:16:47 +0000382 if (!skip_sum) {
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400383 ret = btrfs_csum_one_bio(inode, bio, start, 1);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100384 BUG_ON(ret); /* -ENOMEM */
Li Zefane55179b2011-07-14 03:16:47 +0000385 }
Chris Masond20f7042008-12-08 16:58:54 -0500386
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400387 ret = btrfs_map_bio(fs_info, bio, 0, 1);
Liu Bof5daf2c2016-06-22 18:32:06 -0700388 if (ret) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200389 bio->bi_status = ret;
Liu Bof5daf2c2016-06-22 18:32:06 -0700390 bio_endio(bio);
391 }
Chris Masonc8b97812008-10-29 14:49:59 -0400392
Chris Masonc8b97812008-10-29 14:49:59 -0400393 return 0;
394}
395
Christoph Hellwig2a4d0c92016-11-25 09:07:51 +0100396static u64 bio_end_offset(struct bio *bio)
397{
Ming Leic45a8f22017-12-18 20:22:05 +0800398 struct bio_vec *last = bio_last_bvec_all(bio);
Christoph Hellwig2a4d0c92016-11-25 09:07:51 +0100399
400 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
401}
402
Chris Mason771ed682008-11-06 22:02:51 -0500403static noinline int add_ra_bio_pages(struct inode *inode,
404 u64 compressed_end,
405 struct compressed_bio *cb)
406{
407 unsigned long end_index;
David Sterba306e16c2011-04-19 14:29:38 +0200408 unsigned long pg_index;
Chris Mason771ed682008-11-06 22:02:51 -0500409 u64 last_offset;
410 u64 isize = i_size_read(inode);
411 int ret;
412 struct page *page;
413 unsigned long nr_pages = 0;
414 struct extent_map *em;
415 struct address_space *mapping = inode->i_mapping;
Chris Mason771ed682008-11-06 22:02:51 -0500416 struct extent_map_tree *em_tree;
417 struct extent_io_tree *tree;
418 u64 end;
419 int misses = 0;
420
Christoph Hellwig2a4d0c92016-11-25 09:07:51 +0100421 last_offset = bio_end_offset(cb->orig_bio);
Chris Mason771ed682008-11-06 22:02:51 -0500422 em_tree = &BTRFS_I(inode)->extent_tree;
423 tree = &BTRFS_I(inode)->io_tree;
424
425 if (isize == 0)
426 return 0;
427
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300428 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
Chris Mason771ed682008-11-06 22:02:51 -0500429
Chris Masond3977122009-01-05 21:25:51 -0500430 while (last_offset < compressed_end) {
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300431 pg_index = last_offset >> PAGE_SHIFT;
Chris Mason771ed682008-11-06 22:02:51 -0500432
David Sterba306e16c2011-04-19 14:29:38 +0200433 if (pg_index > end_index)
Chris Mason771ed682008-11-06 22:02:51 -0500434 break;
435
Matthew Wilcox0a943c62017-12-04 10:37:22 -0500436 page = xa_load(&mapping->i_pages, pg_index);
Matthew Wilcox3159f942017-11-03 13:30:42 -0400437 if (page && !xa_is_value(page)) {
Chris Mason771ed682008-11-06 22:02:51 -0500438 misses++;
439 if (misses > 4)
440 break;
441 goto next;
442 }
443
Michal Hockoc62d2552015-11-06 16:28:49 -0800444 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
445 ~__GFP_FS));
Chris Mason771ed682008-11-06 22:02:51 -0500446 if (!page)
447 break;
448
Michal Hockoc62d2552015-11-06 16:28:49 -0800449 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300450 put_page(page);
Chris Mason771ed682008-11-06 22:02:51 -0500451 goto next;
452 }
453
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300454 end = last_offset + PAGE_SIZE - 1;
Chris Mason771ed682008-11-06 22:02:51 -0500455 /*
456 * at this point, we have a locked page in the page cache
457 * for these bytes in the file. But, we have to make
458 * sure they map to this compressed extent on disk.
459 */
460 set_page_extent_mapped(page);
Jeff Mahoneyd0082372012-03-01 14:57:19 +0100461 lock_extent(tree, last_offset, end);
Chris Mason890871b2009-09-02 16:24:52 -0400462 read_lock(&em_tree->lock);
Chris Mason771ed682008-11-06 22:02:51 -0500463 em = lookup_extent_mapping(em_tree, last_offset,
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300464 PAGE_SIZE);
Chris Mason890871b2009-09-02 16:24:52 -0400465 read_unlock(&em_tree->lock);
Chris Mason771ed682008-11-06 22:02:51 -0500466
467 if (!em || last_offset < em->start ||
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300468 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
Kent Overstreet4f024f32013-10-11 15:44:27 -0700469 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
Chris Mason771ed682008-11-06 22:02:51 -0500470 free_extent_map(em);
Jeff Mahoneyd0082372012-03-01 14:57:19 +0100471 unlock_extent(tree, last_offset, end);
Chris Mason771ed682008-11-06 22:02:51 -0500472 unlock_page(page);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300473 put_page(page);
Chris Mason771ed682008-11-06 22:02:51 -0500474 break;
475 }
476 free_extent_map(em);
477
478 if (page->index == end_index) {
479 char *userpage;
Johannes Thumshirn70730172018-12-05 15:23:03 +0100480 size_t zero_offset = offset_in_page(isize);
Chris Mason771ed682008-11-06 22:02:51 -0500481
482 if (zero_offset) {
483 int zeros;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300484 zeros = PAGE_SIZE - zero_offset;
Cong Wang7ac687d2011-11-25 23:14:28 +0800485 userpage = kmap_atomic(page);
Chris Mason771ed682008-11-06 22:02:51 -0500486 memset(userpage + zero_offset, 0, zeros);
487 flush_dcache_page(page);
Cong Wang7ac687d2011-11-25 23:14:28 +0800488 kunmap_atomic(userpage);
Chris Mason771ed682008-11-06 22:02:51 -0500489 }
490 }
491
492 ret = bio_add_page(cb->orig_bio, page,
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300493 PAGE_SIZE, 0);
Chris Mason771ed682008-11-06 22:02:51 -0500494
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300495 if (ret == PAGE_SIZE) {
Chris Mason771ed682008-11-06 22:02:51 -0500496 nr_pages++;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300497 put_page(page);
Chris Mason771ed682008-11-06 22:02:51 -0500498 } else {
Jeff Mahoneyd0082372012-03-01 14:57:19 +0100499 unlock_extent(tree, last_offset, end);
Chris Mason771ed682008-11-06 22:02:51 -0500500 unlock_page(page);
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300501 put_page(page);
Chris Mason771ed682008-11-06 22:02:51 -0500502 break;
503 }
504next:
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300505 last_offset += PAGE_SIZE;
Chris Mason771ed682008-11-06 22:02:51 -0500506 }
Chris Mason771ed682008-11-06 22:02:51 -0500507 return 0;
508}
509
Chris Masonc8b97812008-10-29 14:49:59 -0400510/*
511 * for a compressed read, the bio we get passed has all the inode pages
512 * in it. We don't actually do IO on those pages but allocate new ones
513 * to hold the compressed pages on disk.
514 *
Kent Overstreet4f024f32013-10-11 15:44:27 -0700515 * bio->bi_iter.bi_sector points to the compressed extent on disk
Chris Masonc8b97812008-10-29 14:49:59 -0400516 * bio->bi_io_vec points to all of the inode pages
Chris Masonc8b97812008-10-29 14:49:59 -0400517 *
518 * After the compressed pages are read, we copy the bytes into the
519 * bio we were passed and then call the bio end_io calls
520 */
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200521blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
Chris Masonc8b97812008-10-29 14:49:59 -0400522 int mirror_num, unsigned long bio_flags)
523{
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
Chris Masonc8b97812008-10-29 14:49:59 -0400525 struct extent_map_tree *em_tree;
526 struct compressed_bio *cb;
Chris Masonc8b97812008-10-29 14:49:59 -0400527 unsigned long compressed_len;
528 unsigned long nr_pages;
David Sterba306e16c2011-04-19 14:29:38 +0200529 unsigned long pg_index;
Chris Masonc8b97812008-10-29 14:49:59 -0400530 struct page *page;
531 struct block_device *bdev;
532 struct bio *comp_bio;
Kent Overstreet4f024f32013-10-11 15:44:27 -0700533 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
Chris Masone04ca622008-11-10 11:44:58 -0500534 u64 em_len;
535 u64 em_start;
Chris Masonc8b97812008-10-29 14:49:59 -0400536 struct extent_map *em;
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200537 blk_status_t ret = BLK_STS_RESOURCE;
Josef Bacik15e3004a2012-10-05 13:39:50 -0400538 int faili = 0;
Chris Masond20f7042008-12-08 16:58:54 -0500539 u32 *sums;
Chris Masonc8b97812008-10-29 14:49:59 -0400540
Chris Masonc8b97812008-10-29 14:49:59 -0400541 em_tree = &BTRFS_I(inode)->extent_tree;
542
543 /* we need the actual starting offset of this extent in the file */
Chris Mason890871b2009-09-02 16:24:52 -0400544 read_lock(&em_tree->lock);
Chris Masonc8b97812008-10-29 14:49:59 -0400545 em = lookup_extent_mapping(em_tree,
Ming Lei263663c2017-12-18 20:22:04 +0800546 page_offset(bio_first_page_all(bio)),
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300547 PAGE_SIZE);
Chris Mason890871b2009-09-02 16:24:52 -0400548 read_unlock(&em_tree->lock);
Tsutomu Itoh285190d2012-02-16 16:23:58 +0900549 if (!em)
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200550 return BLK_STS_IOERR;
Chris Masonc8b97812008-10-29 14:49:59 -0400551
Chris Masond20f7042008-12-08 16:58:54 -0500552 compressed_len = em->block_len;
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400553 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
liubo6b82ce82011-01-26 06:21:39 +0000554 if (!cb)
555 goto out;
556
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200557 refcount_set(&cb->pending_bios, 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400558 cb->errors = 0;
559 cb->inode = inode;
Chris Masond20f7042008-12-08 16:58:54 -0500560 cb->mirror_num = mirror_num;
561 sums = &cb->sums;
Chris Masonc8b97812008-10-29 14:49:59 -0400562
Yan Zhengff5b7ee2008-11-10 07:34:43 -0500563 cb->start = em->orig_start;
Chris Masone04ca622008-11-10 11:44:58 -0500564 em_len = em->len;
565 em_start = em->start;
Chris Masond20f7042008-12-08 16:58:54 -0500566
Chris Masonc8b97812008-10-29 14:49:59 -0400567 free_extent_map(em);
Chris Masone04ca622008-11-10 11:44:58 -0500568 em = NULL;
Chris Masonc8b97812008-10-29 14:49:59 -0400569
Christoph Hellwig81381052016-11-25 09:07:50 +0100570 cb->len = bio->bi_iter.bi_size;
Chris Masonc8b97812008-10-29 14:49:59 -0400571 cb->compressed_len = compressed_len;
Li Zefan261507a02010-12-17 14:21:50 +0800572 cb->compress_type = extent_compress_type(bio_flags);
Chris Masonc8b97812008-10-29 14:49:59 -0400573 cb->orig_bio = bio;
574
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300575 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
David Sterba31e818f2015-02-20 18:00:26 +0100576 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
Chris Masonc8b97812008-10-29 14:49:59 -0400577 GFP_NOFS);
liubo6b82ce82011-01-26 06:21:39 +0000578 if (!cb->compressed_pages)
579 goto fail1;
580
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400581 bdev = fs_info->fs_devices->latest_bdev;
Chris Masonc8b97812008-10-29 14:49:59 -0400582
David Sterba306e16c2011-04-19 14:29:38 +0200583 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
584 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
Chris Masonc8b97812008-10-29 14:49:59 -0400585 __GFP_HIGHMEM);
Josef Bacik15e3004a2012-10-05 13:39:50 -0400586 if (!cb->compressed_pages[pg_index]) {
587 faili = pg_index - 1;
Dan Carpenter0e9350d2017-06-19 13:55:37 +0300588 ret = BLK_STS_RESOURCE;
liubo6b82ce82011-01-26 06:21:39 +0000589 goto fail2;
Josef Bacik15e3004a2012-10-05 13:39:50 -0400590 }
Chris Masonc8b97812008-10-29 14:49:59 -0400591 }
Josef Bacik15e3004a2012-10-05 13:39:50 -0400592 faili = nr_pages - 1;
Chris Masonc8b97812008-10-29 14:49:59 -0400593 cb->nr_pages = nr_pages;
594
Filipe Manana7f042a82016-01-27 19:17:20 +0000595 add_ra_bio_pages(inode, em_start + em_len, cb);
Chris Mason771ed682008-11-06 22:02:51 -0500596
Chris Mason771ed682008-11-06 22:02:51 -0500597 /* include any pages we added in add_ra-bio_pages */
Christoph Hellwig81381052016-11-25 09:07:50 +0100598 cb->len = bio->bi_iter.bi_size;
Chris Mason771ed682008-11-06 22:02:51 -0500599
David Sterbac821e7f32017-06-02 18:35:36 +0200600 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
David Sterbaebcc3262018-06-29 10:56:53 +0200601 comp_bio->bi_opf = REQ_OP_READ;
Chris Masonc8b97812008-10-29 14:49:59 -0400602 comp_bio->bi_private = cb;
603 comp_bio->bi_end_io = end_compressed_bio_read;
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200604 refcount_set(&cb->pending_bios, 1);
Chris Masonc8b97812008-10-29 14:49:59 -0400605
David Sterba306e16c2011-04-19 14:29:38 +0200606 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200607 int submit = 0;
608
David Sterba306e16c2011-04-19 14:29:38 +0200609 page = cb->compressed_pages[pg_index];
Chris Masonc8b97812008-10-29 14:49:59 -0400610 page->mapping = inode->i_mapping;
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300611 page->index = em_start >> PAGE_SHIFT;
Chris Masond20f7042008-12-08 16:58:54 -0500612
Kent Overstreet4f024f32013-10-11 15:44:27 -0700613 if (comp_bio->bi_iter.bi_size)
Nikolay Borisovda12fe52018-11-27 20:57:58 +0200614 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
615 comp_bio, 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400616
Chris Mason70b99e62008-10-31 12:46:39 -0400617 page->mapping = NULL;
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200618 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300619 PAGE_SIZE) {
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400620 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
621 BTRFS_WQ_ENDIO_DATA);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100622 BUG_ON(ret); /* -ENOMEM */
Chris Masonc8b97812008-10-29 14:49:59 -0400623
Chris Masonaf09abf2008-11-07 12:35:44 -0500624 /*
625 * inc the count before we submit the bio so
626 * we know the end IO handler won't happen before
627 * we inc the count. Otherwise, the cb might get
628 * freed before we're done setting it up
629 */
Elena Reshetovaa50299a2017-03-03 10:55:20 +0200630 refcount_inc(&cb->pending_bios);
Chris Masonaf09abf2008-11-07 12:35:44 -0500631
Christoph Hellwig6cbff002009-04-17 10:37:41 +0200632 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400633 ret = btrfs_lookup_bio_sums(inode, comp_bio,
634 sums);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100635 BUG_ON(ret); /* -ENOMEM */
Chris Masond20f7042008-12-08 16:58:54 -0500636 }
David Sterbaed6078f2014-06-05 01:59:57 +0200637 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400638 fs_info->sectorsize);
Chris Masond20f7042008-12-08 16:58:54 -0500639
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400640 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200641 if (ret) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200642 comp_bio->bi_status = ret;
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200643 bio_endio(comp_bio);
644 }
Chris Masonc8b97812008-10-29 14:49:59 -0400645
David Sterbac821e7f32017-06-02 18:35:36 +0200646 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
David Sterbaebcc3262018-06-29 10:56:53 +0200647 comp_bio->bi_opf = REQ_OP_READ;
Chris Mason771ed682008-11-06 22:02:51 -0500648 comp_bio->bi_private = cb;
649 comp_bio->bi_end_io = end_compressed_bio_read;
650
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300651 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
Chris Masonc8b97812008-10-29 14:49:59 -0400652 }
Kirill A. Shutemov09cbfea2016-04-01 15:29:47 +0300653 cur_disk_byte += PAGE_SIZE;
Chris Masonc8b97812008-10-29 14:49:59 -0400654 }
Chris Masonc8b97812008-10-29 14:49:59 -0400655
Jeff Mahoney0b246af2016-06-22 18:54:23 -0400656 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100657 BUG_ON(ret); /* -ENOMEM */
Chris Masonc8b97812008-10-29 14:49:59 -0400658
Tsutomu Itohc2db1072011-03-01 06:48:31 +0000659 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400660 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
Jeff Mahoney79787ea2012-03-12 16:03:00 +0100661 BUG_ON(ret); /* -ENOMEM */
Tsutomu Itohc2db1072011-03-01 06:48:31 +0000662 }
Chris Masond20f7042008-12-08 16:58:54 -0500663
Jeff Mahoney2ff7e612016-06-22 18:54:24 -0400664 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200665 if (ret) {
Christoph Hellwig4e4cbee2017-06-03 09:38:06 +0200666 comp_bio->bi_status = ret;
Christoph Hellwig4246a0b2015-07-20 15:29:37 +0200667 bio_endio(comp_bio);
668 }
Chris Masonc8b97812008-10-29 14:49:59 -0400669
Chris Masonc8b97812008-10-29 14:49:59 -0400670 return 0;
liubo6b82ce82011-01-26 06:21:39 +0000671
672fail2:
Josef Bacik15e3004a2012-10-05 13:39:50 -0400673 while (faili >= 0) {
674 __free_page(cb->compressed_pages[faili]);
675 faili--;
676 }
liubo6b82ce82011-01-26 06:21:39 +0000677
678 kfree(cb->compressed_pages);
679fail1:
680 kfree(cb);
681out:
682 free_extent_map(em);
683 return ret;
Chris Masonc8b97812008-10-29 14:49:59 -0400684}
Li Zefan261507a02010-12-17 14:21:50 +0800685
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300686/*
687 * Heuristic uses systematic sampling to collect data from the input data
688 * range, the logic can be tuned by the following constants:
689 *
690 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
691 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
692 */
693#define SAMPLING_READ_SIZE (16)
694#define SAMPLING_INTERVAL (256)
695
696/*
697 * For statistical analysis of the input data we consider bytes that form a
698 * Galois Field of 256 objects. Each object has an attribute count, ie. how
699 * many times the object appeared in the sample.
700 */
701#define BUCKET_SIZE (256)
702
703/*
704 * The size of the sample is based on a statistical sampling rule of thumb.
705 * The common way is to perform sampling tests as long as the number of
706 * elements in each cell is at least 5.
707 *
708 * Instead of 5, we choose 32 to obtain more accurate results.
709 * If the data contain the maximum number of symbols, which is 256, we obtain a
710 * sample size bound by 8192.
711 *
712 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
713 * from up to 512 locations.
714 */
715#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
716 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
717
718struct bucket_item {
719 u32 count;
720};
Timofey Titovets4e439a02017-09-28 17:33:36 +0300721
722struct heuristic_ws {
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300723 /* Partial copy of input data */
724 u8 *sample;
Timofey Titovetsa440d482017-09-28 17:33:38 +0300725 u32 sample_size;
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300726 /* Buckets store counters for each byte value */
727 struct bucket_item *bucket;
Timofey Titovets440c8402017-12-04 00:30:33 +0300728 /* Sorting buffer */
729 struct bucket_item *bucket_b;
Timofey Titovets4e439a02017-09-28 17:33:36 +0300730 struct list_head list;
731};
732
733static void free_heuristic_ws(struct list_head *ws)
734{
735 struct heuristic_ws *workspace;
736
737 workspace = list_entry(ws, struct heuristic_ws, list);
738
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300739 kvfree(workspace->sample);
740 kfree(workspace->bucket);
Timofey Titovets440c8402017-12-04 00:30:33 +0300741 kfree(workspace->bucket_b);
Timofey Titovets4e439a02017-09-28 17:33:36 +0300742 kfree(workspace);
743}
744
745static struct list_head *alloc_heuristic_ws(void)
746{
747 struct heuristic_ws *ws;
748
749 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
750 if (!ws)
751 return ERR_PTR(-ENOMEM);
752
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300753 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
754 if (!ws->sample)
755 goto fail;
Timofey Titovets4e439a02017-09-28 17:33:36 +0300756
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300757 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
758 if (!ws->bucket)
759 goto fail;
760
Timofey Titovets440c8402017-12-04 00:30:33 +0300761 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
762 if (!ws->bucket_b)
763 goto fail;
764
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300765 INIT_LIST_HEAD(&ws->list);
Timofey Titovets4e439a02017-09-28 17:33:36 +0300766 return &ws->list;
Timofey Titovets17b5a6c2017-09-28 17:33:37 +0300767fail:
768 free_heuristic_ws(&ws->list);
769 return ERR_PTR(-ENOMEM);
Timofey Titovets4e439a02017-09-28 17:33:36 +0300770}
771
Dennis Zhouca4ac362019-02-04 15:19:59 -0500772const struct btrfs_compress_op btrfs_heuristic_compress = {
773 .alloc_workspace = alloc_heuristic_ws,
774 .free_workspace = free_heuristic_ws,
775};
776
Dennis Zhouacce85d2019-02-04 15:19:58 -0500777struct workspace_manager {
Dennis Zhou10b94a52019-02-04 15:20:00 -0500778 const struct btrfs_compress_op *ops;
Byongho Leed9187642015-10-14 14:05:24 +0900779 struct list_head idle_ws;
780 spinlock_t ws_lock;
David Sterba6ac10a62016-04-27 02:15:15 +0200781 /* Number of free workspaces */
782 int free_ws;
783 /* Total number of allocated workspaces */
784 atomic_t total_ws;
785 /* Waiters for a free workspace */
Byongho Leed9187642015-10-14 14:05:24 +0900786 wait_queue_head_t ws_wait;
Timofey Titovets4e439a02017-09-28 17:33:36 +0300787};
788
Dennis Zhouca4ac362019-02-04 15:19:59 -0500789static struct workspace_manager wsm[BTRFS_NR_WORKSPACE_MANAGERS];
Li Zefan261507a02010-12-17 14:21:50 +0800790
David Sterbae8c9f182015-01-02 18:23:10 +0100791static const struct btrfs_compress_op * const btrfs_compress_op[] = {
Dennis Zhouca4ac362019-02-04 15:19:59 -0500792 /* The heuristic is represented as compression type 0 */
793 &btrfs_heuristic_compress,
Li Zefan261507a02010-12-17 14:21:50 +0800794 &btrfs_zlib_compress,
Li Zefana6fa6fa2010-10-25 15:12:26 +0800795 &btrfs_lzo_compress,
Nick Terrell5c1aab12017-08-09 19:39:02 -0700796 &btrfs_zstd_compress,
Li Zefan261507a02010-12-17 14:21:50 +0800797};
798
Dennis Zhou1666eda2019-02-04 15:20:01 -0500799static void btrfs_init_workspace_manager(int type)
Li Zefan261507a02010-12-17 14:21:50 +0800800{
Dennis Zhou1666eda2019-02-04 15:20:01 -0500801 struct workspace_manager *wsman = &wsm[type];
Timofey Titovets4e439a02017-09-28 17:33:36 +0300802 struct list_head *workspace;
Li Zefan261507a02010-12-17 14:21:50 +0800803
Dennis Zhou1666eda2019-02-04 15:20:01 -0500804 wsman->ops = btrfs_compress_op[type];
Dennis Zhou10b94a52019-02-04 15:20:00 -0500805
Dennis Zhou1666eda2019-02-04 15:20:01 -0500806 INIT_LIST_HEAD(&wsman->idle_ws);
807 spin_lock_init(&wsman->ws_lock);
808 atomic_set(&wsman->total_ws, 0);
809 init_waitqueue_head(&wsman->ws_wait);
David Sterbaf77dd0d2016-04-27 02:55:15 +0200810
Dennis Zhou1666eda2019-02-04 15:20:01 -0500811 /*
812 * Preallocate one workspace for each compression type so we can
813 * guarantee forward progress in the worst case
814 */
815 workspace = wsman->ops->alloc_workspace();
816 if (IS_ERR(workspace)) {
817 pr_warn(
818 "BTRFS: cannot preallocate compression workspace, will try later\n");
819 } else {
820 atomic_set(&wsman->total_ws, 1);
821 wsman->free_ws = 1;
822 list_add(workspace, &wsman->idle_ws);
823 }
824}
825
826static void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
827{
828 struct list_head *ws;
829
830 while (!list_empty(&wsman->idle_ws)) {
831 ws = wsman->idle_ws.next;
832 list_del(ws);
833 wsman->ops->free_workspace(ws);
834 atomic_dec(&wsman->total_ws);
Li Zefan261507a02010-12-17 14:21:50 +0800835 }
Li Zefan261507a02010-12-17 14:21:50 +0800836}
837
838/*
David Sterbae721e492016-04-27 02:41:17 +0200839 * This finds an available workspace or allocates a new one.
840 * If it's not possible to allocate a new one, waits until there's one.
841 * Preallocation makes a forward progress guarantees and we do not return
842 * errors.
Li Zefan261507a02010-12-17 14:21:50 +0800843 */
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500844static struct list_head *btrfs_get_workspace(struct workspace_manager *wsman)
Li Zefan261507a02010-12-17 14:21:50 +0800845{
846 struct list_head *workspace;
847 int cpus = num_online_cpus();
David Sterbafe308532017-05-31 17:14:56 +0200848 unsigned nofs_flag;
Timofey Titovets4e439a02017-09-28 17:33:36 +0300849 struct list_head *idle_ws;
850 spinlock_t *ws_lock;
851 atomic_t *total_ws;
852 wait_queue_head_t *ws_wait;
853 int *free_ws;
Li Zefan261507a02010-12-17 14:21:50 +0800854
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500855 idle_ws = &wsman->idle_ws;
856 ws_lock = &wsman->ws_lock;
857 total_ws = &wsman->total_ws;
858 ws_wait = &wsman->ws_wait;
859 free_ws = &wsman->free_ws;
Timofey Titovets4e439a02017-09-28 17:33:36 +0300860
Li Zefan261507a02010-12-17 14:21:50 +0800861again:
Byongho Leed9187642015-10-14 14:05:24 +0900862 spin_lock(ws_lock);
863 if (!list_empty(idle_ws)) {
864 workspace = idle_ws->next;
Li Zefan261507a02010-12-17 14:21:50 +0800865 list_del(workspace);
David Sterba6ac10a62016-04-27 02:15:15 +0200866 (*free_ws)--;
Byongho Leed9187642015-10-14 14:05:24 +0900867 spin_unlock(ws_lock);
Li Zefan261507a02010-12-17 14:21:50 +0800868 return workspace;
869
870 }
David Sterba6ac10a62016-04-27 02:15:15 +0200871 if (atomic_read(total_ws) > cpus) {
Li Zefan261507a02010-12-17 14:21:50 +0800872 DEFINE_WAIT(wait);
873
Byongho Leed9187642015-10-14 14:05:24 +0900874 spin_unlock(ws_lock);
875 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
David Sterba6ac10a62016-04-27 02:15:15 +0200876 if (atomic_read(total_ws) > cpus && !*free_ws)
Li Zefan261507a02010-12-17 14:21:50 +0800877 schedule();
Byongho Leed9187642015-10-14 14:05:24 +0900878 finish_wait(ws_wait, &wait);
Li Zefan261507a02010-12-17 14:21:50 +0800879 goto again;
880 }
David Sterba6ac10a62016-04-27 02:15:15 +0200881 atomic_inc(total_ws);
Byongho Leed9187642015-10-14 14:05:24 +0900882 spin_unlock(ws_lock);
Li Zefan261507a02010-12-17 14:21:50 +0800883
David Sterbafe308532017-05-31 17:14:56 +0200884 /*
885 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
886 * to turn it off here because we might get called from the restricted
887 * context of btrfs_compress_bio/btrfs_compress_pages
888 */
889 nofs_flag = memalloc_nofs_save();
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500890 workspace = wsman->ops->alloc_workspace();
David Sterbafe308532017-05-31 17:14:56 +0200891 memalloc_nofs_restore(nofs_flag);
892
Li Zefan261507a02010-12-17 14:21:50 +0800893 if (IS_ERR(workspace)) {
David Sterba6ac10a62016-04-27 02:15:15 +0200894 atomic_dec(total_ws);
Byongho Leed9187642015-10-14 14:05:24 +0900895 wake_up(ws_wait);
David Sterbae721e492016-04-27 02:41:17 +0200896
897 /*
898 * Do not return the error but go back to waiting. There's a
899 * workspace preallocated for each type and the compression
900 * time is bounded so we get to a workspace eventually. This
901 * makes our caller's life easier.
David Sterba523567162016-04-27 03:07:39 +0200902 *
903 * To prevent silent and low-probability deadlocks (when the
904 * initial preallocation fails), check if there are any
905 * workspaces at all.
David Sterbae721e492016-04-27 02:41:17 +0200906 */
David Sterba523567162016-04-27 03:07:39 +0200907 if (atomic_read(total_ws) == 0) {
908 static DEFINE_RATELIMIT_STATE(_rs,
909 /* once per minute */ 60 * HZ,
910 /* no burst */ 1);
911
912 if (__ratelimit(&_rs)) {
Jeff Mahoneyab8d0fc2016-09-20 10:05:02 -0400913 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
David Sterba523567162016-04-27 03:07:39 +0200914 }
915 }
David Sterbae721e492016-04-27 02:41:17 +0200916 goto again;
Li Zefan261507a02010-12-17 14:21:50 +0800917 }
918 return workspace;
919}
920
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500921static struct list_head *get_workspace(int type)
922{
923 return btrfs_get_workspace(&wsm[type]);
924}
925
Li Zefan261507a02010-12-17 14:21:50 +0800926/*
927 * put a workspace struct back on the list or free it if we have enough
928 * idle ones sitting around
929 */
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500930static void btrfs_put_workspace(struct workspace_manager *wsman,
931 struct list_head *ws)
Li Zefan261507a02010-12-17 14:21:50 +0800932{
Timofey Titovets4e439a02017-09-28 17:33:36 +0300933 struct list_head *idle_ws;
934 spinlock_t *ws_lock;
935 atomic_t *total_ws;
936 wait_queue_head_t *ws_wait;
937 int *free_ws;
938
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500939 idle_ws = &wsman->idle_ws;
940 ws_lock = &wsman->ws_lock;
941 total_ws = &wsman->total_ws;
942 ws_wait = &wsman->ws_wait;
943 free_ws = &wsman->free_ws;
Li Zefan261507a02010-12-17 14:21:50 +0800944
Byongho Leed9187642015-10-14 14:05:24 +0900945 spin_lock(ws_lock);
Nick Terrell26b28dc2017-06-29 10:57:26 -0700946 if (*free_ws <= num_online_cpus()) {
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500947 list_add(ws, idle_ws);
David Sterba6ac10a62016-04-27 02:15:15 +0200948 (*free_ws)++;
Byongho Leed9187642015-10-14 14:05:24 +0900949 spin_unlock(ws_lock);
Li Zefan261507a02010-12-17 14:21:50 +0800950 goto wake;
951 }
Byongho Leed9187642015-10-14 14:05:24 +0900952 spin_unlock(ws_lock);
Li Zefan261507a02010-12-17 14:21:50 +0800953
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500954 wsman->ops->free_workspace(ws);
David Sterba6ac10a62016-04-27 02:15:15 +0200955 atomic_dec(total_ws);
Li Zefan261507a02010-12-17 14:21:50 +0800956wake:
David Sterba093258e2018-02-26 16:15:17 +0100957 cond_wake_up(ws_wait);
Li Zefan261507a02010-12-17 14:21:50 +0800958}
959
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500960static void put_workspace(int type, struct list_head *ws)
961{
962 return btrfs_put_workspace(&wsm[type], ws);
963}
964
Li Zefan261507a02010-12-17 14:21:50 +0800965/*
David Sterba38c31462017-02-14 19:04:07 +0100966 * Given an address space and start and length, compress the bytes into @pages
967 * that are allocated on demand.
Li Zefan261507a02010-12-17 14:21:50 +0800968 *
David Sterbaf51d2b52017-09-15 17:36:57 +0200969 * @type_level is encoded algorithm and level, where level 0 means whatever
970 * default the algorithm chooses and is opaque here;
971 * - compression algo are 0-3
972 * - the level are bits 4-7
973 *
David Sterba4d3a8002017-02-14 19:04:07 +0100974 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
975 * and returns number of actually allocated pages
Li Zefan261507a02010-12-17 14:21:50 +0800976 *
David Sterba38c31462017-02-14 19:04:07 +0100977 * @total_in is used to return the number of bytes actually read. It
978 * may be smaller than the input length if we had to exit early because we
Li Zefan261507a02010-12-17 14:21:50 +0800979 * ran out of room in the pages array or because we cross the
980 * max_out threshold.
981 *
David Sterba38c31462017-02-14 19:04:07 +0100982 * @total_out is an in/out parameter, must be set to the input length and will
983 * be also used to return the total number of compressed bytes
Li Zefan261507a02010-12-17 14:21:50 +0800984 *
David Sterba38c31462017-02-14 19:04:07 +0100985 * @max_out tells us the max number of bytes that we're allowed to
Li Zefan261507a02010-12-17 14:21:50 +0800986 * stuff into pages
987 */
David Sterbaf51d2b52017-09-15 17:36:57 +0200988int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
David Sterba38c31462017-02-14 19:04:07 +0100989 u64 start, struct page **pages,
Li Zefan261507a02010-12-17 14:21:50 +0800990 unsigned long *out_pages,
991 unsigned long *total_in,
David Sterbae5d74902017-02-14 19:45:05 +0100992 unsigned long *total_out)
Li Zefan261507a02010-12-17 14:21:50 +0800993{
Dennis Zhou19727082019-02-04 15:19:57 -0500994 int type = btrfs_compress_type(type_level);
Li Zefan261507a02010-12-17 14:21:50 +0800995 struct list_head *workspace;
996 int ret;
997
Dennis Zhou929f4ba2019-02-04 15:20:02 -0500998 workspace = get_workspace(type);
Li Zefan261507a02010-12-17 14:21:50 +0800999
Dennis Zhouca4ac362019-02-04 15:19:59 -05001000 btrfs_compress_op[type]->set_level(workspace, type_level);
1001 ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
David Sterba38c31462017-02-14 19:04:07 +01001002 start, pages,
David Sterba4d3a8002017-02-14 19:04:07 +01001003 out_pages,
David Sterbae5d74902017-02-14 19:45:05 +01001004 total_in, total_out);
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001005 put_workspace(type, workspace);
Li Zefan261507a02010-12-17 14:21:50 +08001006 return ret;
1007}
1008
1009/*
1010 * pages_in is an array of pages with compressed data.
1011 *
1012 * disk_start is the starting logical offset of this array in the file
1013 *
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001014 * orig_bio contains the pages from the file that we want to decompress into
Li Zefan261507a02010-12-17 14:21:50 +08001015 *
1016 * srclen is the number of bytes in pages_in
1017 *
1018 * The basic idea is that we have a bio that was created by readpages.
1019 * The pages in the bio are for the uncompressed data, and they may not
1020 * be contiguous. They all correspond to the range of bytes covered by
1021 * the compressed extent.
1022 */
Anand Jain8140dc32017-05-26 15:44:58 +08001023static int btrfs_decompress_bio(struct compressed_bio *cb)
Li Zefan261507a02010-12-17 14:21:50 +08001024{
1025 struct list_head *workspace;
1026 int ret;
Anand Jain8140dc32017-05-26 15:44:58 +08001027 int type = cb->compress_type;
Li Zefan261507a02010-12-17 14:21:50 +08001028
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001029 workspace = get_workspace(type);
Dennis Zhouca4ac362019-02-04 15:19:59 -05001030 ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001031 put_workspace(type, workspace);
Anand Jaine1ddce72017-05-26 15:44:59 +08001032
Li Zefan261507a02010-12-17 14:21:50 +08001033 return ret;
1034}
1035
1036/*
1037 * a less complex decompression routine. Our compressed data fits in a
1038 * single page, and we want to read a single page out of it.
1039 * start_byte tells us the offset into the compressed data we're interested in
1040 */
1041int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1042 unsigned long start_byte, size_t srclen, size_t destlen)
1043{
1044 struct list_head *workspace;
1045 int ret;
1046
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001047 workspace = get_workspace(type);
Li Zefan261507a02010-12-17 14:21:50 +08001048
Dennis Zhouca4ac362019-02-04 15:19:59 -05001049 ret = btrfs_compress_op[type]->decompress(workspace, data_in,
Li Zefan261507a02010-12-17 14:21:50 +08001050 dest_page, start_byte,
1051 srclen, destlen);
1052
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001053 put_workspace(type, workspace);
Li Zefan261507a02010-12-17 14:21:50 +08001054 return ret;
1055}
1056
Dennis Zhou1666eda2019-02-04 15:20:01 -05001057void __init btrfs_init_compress(void)
1058{
1059 int i;
1060
1061 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1062 btrfs_init_workspace_manager(i);
1063}
1064
David Sterbae67c7182018-02-19 17:24:18 +01001065void __cold btrfs_exit_compress(void)
Li Zefan261507a02010-12-17 14:21:50 +08001066{
Dennis Zhou1666eda2019-02-04 15:20:01 -05001067 int i;
1068
1069 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1070 btrfs_cleanup_workspace_manager(&wsm[i]);
Li Zefan261507a02010-12-17 14:21:50 +08001071}
Li Zefan3a39c182010-11-08 15:22:19 +08001072
1073/*
1074 * Copy uncompressed data from working buffer to pages.
1075 *
1076 * buf_start is the byte offset we're of the start of our workspace buffer.
1077 *
1078 * total_out is the last byte of the buffer
1079 */
David Sterba14a33572017-02-14 17:58:04 +01001080int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
Li Zefan3a39c182010-11-08 15:22:19 +08001081 unsigned long total_out, u64 disk_start,
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001082 struct bio *bio)
Li Zefan3a39c182010-11-08 15:22:19 +08001083{
1084 unsigned long buf_offset;
1085 unsigned long current_buf_start;
1086 unsigned long start_byte;
Omar Sandoval6e78b3f2017-02-10 15:03:35 -08001087 unsigned long prev_start_byte;
Li Zefan3a39c182010-11-08 15:22:19 +08001088 unsigned long working_bytes = total_out - buf_start;
1089 unsigned long bytes;
1090 char *kaddr;
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001091 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
Li Zefan3a39c182010-11-08 15:22:19 +08001092
1093 /*
1094 * start byte is the first byte of the page we're currently
1095 * copying into relative to the start of the compressed data.
1096 */
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001097 start_byte = page_offset(bvec.bv_page) - disk_start;
Li Zefan3a39c182010-11-08 15:22:19 +08001098
1099 /* we haven't yet hit data corresponding to this page */
1100 if (total_out <= start_byte)
1101 return 1;
1102
1103 /*
1104 * the start of the data we care about is offset into
1105 * the middle of our working buffer
1106 */
1107 if (total_out > start_byte && buf_start < start_byte) {
1108 buf_offset = start_byte - buf_start;
1109 working_bytes -= buf_offset;
1110 } else {
1111 buf_offset = 0;
1112 }
1113 current_buf_start = buf_start;
1114
1115 /* copy bytes from the working buffer into the pages */
1116 while (working_bytes > 0) {
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001117 bytes = min_t(unsigned long, bvec.bv_len,
1118 PAGE_SIZE - buf_offset);
Li Zefan3a39c182010-11-08 15:22:19 +08001119 bytes = min(bytes, working_bytes);
Li Zefan3a39c182010-11-08 15:22:19 +08001120
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001121 kaddr = kmap_atomic(bvec.bv_page);
1122 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1123 kunmap_atomic(kaddr);
1124 flush_dcache_page(bvec.bv_page);
1125
Li Zefan3a39c182010-11-08 15:22:19 +08001126 buf_offset += bytes;
1127 working_bytes -= bytes;
1128 current_buf_start += bytes;
1129
1130 /* check if we need to pick another page */
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001131 bio_advance(bio, bytes);
1132 if (!bio->bi_iter.bi_size)
1133 return 0;
1134 bvec = bio_iter_iovec(bio, bio->bi_iter);
Omar Sandoval6e78b3f2017-02-10 15:03:35 -08001135 prev_start_byte = start_byte;
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001136 start_byte = page_offset(bvec.bv_page) - disk_start;
Li Zefan3a39c182010-11-08 15:22:19 +08001137
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001138 /*
Omar Sandoval6e78b3f2017-02-10 15:03:35 -08001139 * We need to make sure we're only adjusting
1140 * our offset into compression working buffer when
1141 * we're switching pages. Otherwise we can incorrectly
1142 * keep copying when we were actually done.
Christoph Hellwig974b1ad2016-11-25 09:07:46 +01001143 */
Omar Sandoval6e78b3f2017-02-10 15:03:35 -08001144 if (start_byte != prev_start_byte) {
1145 /*
1146 * make sure our new page is covered by this
1147 * working buffer
1148 */
1149 if (total_out <= start_byte)
1150 return 1;
Li Zefan3a39c182010-11-08 15:22:19 +08001151
Omar Sandoval6e78b3f2017-02-10 15:03:35 -08001152 /*
1153 * the next page in the biovec might not be adjacent
1154 * to the last page, but it might still be found
1155 * inside this working buffer. bump our offset pointer
1156 */
1157 if (total_out > start_byte &&
1158 current_buf_start < start_byte) {
1159 buf_offset = start_byte - buf_start;
1160 working_bytes = total_out - start_byte;
1161 current_buf_start = buf_start + buf_offset;
1162 }
Li Zefan3a39c182010-11-08 15:22:19 +08001163 }
1164 }
1165
1166 return 1;
1167}
Timofey Titovetsc2fcdcd2017-07-17 16:52:58 +03001168
Timofey Titovets19562432017-10-08 16:11:59 +03001169/*
1170 * Shannon Entropy calculation
1171 *
Andrea Gelmini52042d82018-11-28 12:05:13 +01001172 * Pure byte distribution analysis fails to determine compressibility of data.
Timofey Titovets19562432017-10-08 16:11:59 +03001173 * Try calculating entropy to estimate the average minimum number of bits
1174 * needed to encode the sampled data.
1175 *
1176 * For convenience, return the percentage of needed bits, instead of amount of
1177 * bits directly.
1178 *
1179 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1180 * and can be compressible with high probability
1181 *
1182 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1183 *
1184 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1185 */
1186#define ENTROPY_LVL_ACEPTABLE (65)
1187#define ENTROPY_LVL_HIGH (80)
1188
1189/*
1190 * For increasead precision in shannon_entropy calculation,
1191 * let's do pow(n, M) to save more digits after comma:
1192 *
1193 * - maximum int bit length is 64
1194 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1195 * - 13 * 4 = 52 < 64 -> M = 4
1196 *
1197 * So use pow(n, 4).
1198 */
1199static inline u32 ilog2_w(u64 n)
1200{
1201 return ilog2(n * n * n * n);
1202}
1203
1204static u32 shannon_entropy(struct heuristic_ws *ws)
1205{
1206 const u32 entropy_max = 8 * ilog2_w(2);
1207 u32 entropy_sum = 0;
1208 u32 p, p_base, sz_base;
1209 u32 i;
1210
1211 sz_base = ilog2_w(ws->sample_size);
1212 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1213 p = ws->bucket[i].count;
1214 p_base = ilog2_w(p);
1215 entropy_sum += p * (sz_base - p_base);
1216 }
1217
1218 entropy_sum /= ws->sample_size;
1219 return entropy_sum * 100 / entropy_max;
1220}
1221
Timofey Titovets440c8402017-12-04 00:30:33 +03001222#define RADIX_BASE 4U
1223#define COUNTERS_SIZE (1U << RADIX_BASE)
Timofey Titovets858177d2017-09-28 17:33:41 +03001224
Timofey Titovets440c8402017-12-04 00:30:33 +03001225static u8 get4bits(u64 num, int shift) {
1226 u8 low4bits;
1227
1228 num >>= shift;
1229 /* Reverse order */
1230 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1231 return low4bits;
1232}
1233
Timofey Titovets440c8402017-12-04 00:30:33 +03001234/*
1235 * Use 4 bits as radix base
Andrea Gelmini52042d82018-11-28 12:05:13 +01001236 * Use 16 u32 counters for calculating new position in buf array
Timofey Titovets440c8402017-12-04 00:30:33 +03001237 *
1238 * @array - array that will be sorted
1239 * @array_buf - buffer array to store sorting results
1240 * must be equal in size to @array
1241 * @num - array size
Timofey Titovets440c8402017-12-04 00:30:33 +03001242 */
David Sterba23ae8c62017-12-12 20:35:02 +01001243static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
David Sterba36243c92017-12-12 20:35:02 +01001244 int num)
Timofey Titovets440c8402017-12-04 00:30:33 +03001245{
1246 u64 max_num;
1247 u64 buf_num;
1248 u32 counters[COUNTERS_SIZE];
1249 u32 new_addr;
1250 u32 addr;
1251 int bitlen;
1252 int shift;
1253 int i;
1254
1255 /*
1256 * Try avoid useless loop iterations for small numbers stored in big
1257 * counters. Example: 48 33 4 ... in 64bit array
1258 */
David Sterba23ae8c62017-12-12 20:35:02 +01001259 max_num = array[0].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001260 for (i = 1; i < num; i++) {
David Sterba23ae8c62017-12-12 20:35:02 +01001261 buf_num = array[i].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001262 if (buf_num > max_num)
1263 max_num = buf_num;
1264 }
1265
1266 buf_num = ilog2(max_num);
1267 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1268
1269 shift = 0;
1270 while (shift < bitlen) {
1271 memset(counters, 0, sizeof(counters));
1272
1273 for (i = 0; i < num; i++) {
David Sterba23ae8c62017-12-12 20:35:02 +01001274 buf_num = array[i].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001275 addr = get4bits(buf_num, shift);
1276 counters[addr]++;
1277 }
1278
1279 for (i = 1; i < COUNTERS_SIZE; i++)
1280 counters[i] += counters[i - 1];
1281
1282 for (i = num - 1; i >= 0; i--) {
David Sterba23ae8c62017-12-12 20:35:02 +01001283 buf_num = array[i].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001284 addr = get4bits(buf_num, shift);
1285 counters[addr]--;
1286 new_addr = counters[addr];
David Sterba7add17b2017-12-12 20:35:02 +01001287 array_buf[new_addr] = array[i];
Timofey Titovets440c8402017-12-04 00:30:33 +03001288 }
1289
1290 shift += RADIX_BASE;
1291
1292 /*
1293 * Normal radix expects to move data from a temporary array, to
1294 * the main one. But that requires some CPU time. Avoid that
1295 * by doing another sort iteration to original array instead of
1296 * memcpy()
1297 */
1298 memset(counters, 0, sizeof(counters));
1299
1300 for (i = 0; i < num; i ++) {
David Sterba23ae8c62017-12-12 20:35:02 +01001301 buf_num = array_buf[i].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001302 addr = get4bits(buf_num, shift);
1303 counters[addr]++;
1304 }
1305
1306 for (i = 1; i < COUNTERS_SIZE; i++)
1307 counters[i] += counters[i - 1];
1308
1309 for (i = num - 1; i >= 0; i--) {
David Sterba23ae8c62017-12-12 20:35:02 +01001310 buf_num = array_buf[i].count;
Timofey Titovets440c8402017-12-04 00:30:33 +03001311 addr = get4bits(buf_num, shift);
1312 counters[addr]--;
1313 new_addr = counters[addr];
David Sterba7add17b2017-12-12 20:35:02 +01001314 array[new_addr] = array_buf[i];
Timofey Titovets440c8402017-12-04 00:30:33 +03001315 }
1316
1317 shift += RADIX_BASE;
1318 }
Timofey Titovets858177d2017-09-28 17:33:41 +03001319}
1320
1321/*
1322 * Size of the core byte set - how many bytes cover 90% of the sample
1323 *
1324 * There are several types of structured binary data that use nearly all byte
1325 * values. The distribution can be uniform and counts in all buckets will be
1326 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1327 *
1328 * Other possibility is normal (Gaussian) distribution, where the data could
1329 * be potentially compressible, but we have to take a few more steps to decide
1330 * how much.
1331 *
1332 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1333 * compression algo can easy fix that
1334 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1335 * probability is not compressible
1336 */
1337#define BYTE_CORE_SET_LOW (64)
1338#define BYTE_CORE_SET_HIGH (200)
1339
1340static int byte_core_set_size(struct heuristic_ws *ws)
1341{
1342 u32 i;
1343 u32 coreset_sum = 0;
1344 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1345 struct bucket_item *bucket = ws->bucket;
1346
1347 /* Sort in reverse order */
David Sterba36243c92017-12-12 20:35:02 +01001348 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
Timofey Titovets858177d2017-09-28 17:33:41 +03001349
1350 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1351 coreset_sum += bucket[i].count;
1352
1353 if (coreset_sum > core_set_threshold)
1354 return i;
1355
1356 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1357 coreset_sum += bucket[i].count;
1358 if (coreset_sum > core_set_threshold)
1359 break;
1360 }
1361
1362 return i;
1363}
1364
Timofey Titovetsa288e922017-09-28 17:33:40 +03001365/*
1366 * Count byte values in buckets.
1367 * This heuristic can detect textual data (configs, xml, json, html, etc).
1368 * Because in most text-like data byte set is restricted to limited number of
1369 * possible characters, and that restriction in most cases makes data easy to
1370 * compress.
1371 *
1372 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1373 * less - compressible
1374 * more - need additional analysis
1375 */
1376#define BYTE_SET_THRESHOLD (64)
1377
1378static u32 byte_set_size(const struct heuristic_ws *ws)
1379{
1380 u32 i;
1381 u32 byte_set_size = 0;
1382
1383 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1384 if (ws->bucket[i].count > 0)
1385 byte_set_size++;
1386 }
1387
1388 /*
1389 * Continue collecting count of byte values in buckets. If the byte
1390 * set size is bigger then the threshold, it's pointless to continue,
1391 * the detection technique would fail for this type of data.
1392 */
1393 for (; i < BUCKET_SIZE; i++) {
1394 if (ws->bucket[i].count > 0) {
1395 byte_set_size++;
1396 if (byte_set_size > BYTE_SET_THRESHOLD)
1397 return byte_set_size;
1398 }
1399 }
1400
1401 return byte_set_size;
1402}
1403
Timofey Titovets1fe4f6f2017-09-28 17:33:39 +03001404static bool sample_repeated_patterns(struct heuristic_ws *ws)
1405{
1406 const u32 half_of_sample = ws->sample_size / 2;
1407 const u8 *data = ws->sample;
1408
1409 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1410}
1411
Timofey Titovetsa440d482017-09-28 17:33:38 +03001412static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1413 struct heuristic_ws *ws)
1414{
1415 struct page *page;
1416 u64 index, index_end;
1417 u32 i, curr_sample_pos;
1418 u8 *in_data;
1419
1420 /*
1421 * Compression handles the input data by chunks of 128KiB
1422 * (defined by BTRFS_MAX_UNCOMPRESSED)
1423 *
1424 * We do the same for the heuristic and loop over the whole range.
1425 *
1426 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1427 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1428 */
1429 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1430 end = start + BTRFS_MAX_UNCOMPRESSED;
1431
1432 index = start >> PAGE_SHIFT;
1433 index_end = end >> PAGE_SHIFT;
1434
1435 /* Don't miss unaligned end */
1436 if (!IS_ALIGNED(end, PAGE_SIZE))
1437 index_end++;
1438
1439 curr_sample_pos = 0;
1440 while (index < index_end) {
1441 page = find_get_page(inode->i_mapping, index);
1442 in_data = kmap(page);
1443 /* Handle case where the start is not aligned to PAGE_SIZE */
1444 i = start % PAGE_SIZE;
1445 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1446 /* Don't sample any garbage from the last page */
1447 if (start > end - SAMPLING_READ_SIZE)
1448 break;
1449 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1450 SAMPLING_READ_SIZE);
1451 i += SAMPLING_INTERVAL;
1452 start += SAMPLING_INTERVAL;
1453 curr_sample_pos += SAMPLING_READ_SIZE;
1454 }
1455 kunmap(page);
1456 put_page(page);
1457
1458 index++;
1459 }
1460
1461 ws->sample_size = curr_sample_pos;
1462}
1463
Timofey Titovetsc2fcdcd2017-07-17 16:52:58 +03001464/*
1465 * Compression heuristic.
1466 *
1467 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1468 * quickly (compared to direct compression) detect data characteristics
1469 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1470 * data.
1471 *
1472 * The following types of analysis can be performed:
1473 * - detect mostly zero data
1474 * - detect data with low "byte set" size (text, etc)
1475 * - detect data with low/high "core byte" set
1476 *
1477 * Return non-zero if the compression should be done, 0 otherwise.
1478 */
1479int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1480{
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001481 struct list_head *ws_list = get_workspace(0);
Timofey Titovets4e439a02017-09-28 17:33:36 +03001482 struct heuristic_ws *ws;
Timofey Titovetsa440d482017-09-28 17:33:38 +03001483 u32 i;
1484 u8 byte;
Timofey Titovets19562432017-10-08 16:11:59 +03001485 int ret = 0;
Timofey Titovetsc2fcdcd2017-07-17 16:52:58 +03001486
Timofey Titovets4e439a02017-09-28 17:33:36 +03001487 ws = list_entry(ws_list, struct heuristic_ws, list);
1488
Timofey Titovetsa440d482017-09-28 17:33:38 +03001489 heuristic_collect_sample(inode, start, end, ws);
1490
Timofey Titovets1fe4f6f2017-09-28 17:33:39 +03001491 if (sample_repeated_patterns(ws)) {
1492 ret = 1;
1493 goto out;
1494 }
1495
Timofey Titovetsa440d482017-09-28 17:33:38 +03001496 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1497
1498 for (i = 0; i < ws->sample_size; i++) {
1499 byte = ws->sample[i];
1500 ws->bucket[byte].count++;
Timofey Titovetsc2fcdcd2017-07-17 16:52:58 +03001501 }
1502
Timofey Titovetsa288e922017-09-28 17:33:40 +03001503 i = byte_set_size(ws);
1504 if (i < BYTE_SET_THRESHOLD) {
1505 ret = 2;
1506 goto out;
1507 }
1508
Timofey Titovets858177d2017-09-28 17:33:41 +03001509 i = byte_core_set_size(ws);
1510 if (i <= BYTE_CORE_SET_LOW) {
1511 ret = 3;
1512 goto out;
1513 }
1514
1515 if (i >= BYTE_CORE_SET_HIGH) {
1516 ret = 0;
1517 goto out;
1518 }
1519
Timofey Titovets19562432017-10-08 16:11:59 +03001520 i = shannon_entropy(ws);
1521 if (i <= ENTROPY_LVL_ACEPTABLE) {
1522 ret = 4;
1523 goto out;
1524 }
1525
1526 /*
1527 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1528 * needed to give green light to compression.
1529 *
1530 * For now just assume that compression at that level is not worth the
1531 * resources because:
1532 *
1533 * 1. it is possible to defrag the data later
1534 *
1535 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1536 * values, every bucket has counter at level ~54. The heuristic would
1537 * be confused. This can happen when data have some internal repeated
1538 * patterns like "abbacbbc...". This can be detected by analyzing
1539 * pairs of bytes, which is too costly.
1540 */
1541 if (i < ENTROPY_LVL_HIGH) {
1542 ret = 5;
1543 goto out;
1544 } else {
1545 ret = 0;
1546 goto out;
1547 }
1548
Timofey Titovets1fe4f6f2017-09-28 17:33:39 +03001549out:
Dennis Zhou929f4ba2019-02-04 15:20:02 -05001550 put_workspace(0, ws_list);
Timofey Titovetsc2fcdcd2017-07-17 16:52:58 +03001551 return ret;
1552}
David Sterbaf51d2b52017-09-15 17:36:57 +02001553
1554unsigned int btrfs_compress_str2level(const char *str)
1555{
1556 if (strncmp(str, "zlib", 4) != 0)
1557 return 0;
1558
Adam Borowskifa4d8852017-09-15 17:36:58 +02001559 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1560 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1561 return str[5] - '0';
David Sterbaf51d2b52017-09-15 17:36:57 +02001562
Qu Wenruoeae8d822017-11-06 10:43:18 +08001563 return BTRFS_ZLIB_DEFAULT_LEVEL;
David Sterbaf51d2b52017-09-15 17:36:57 +02001564}