blob: 4e583bfecf6e8d06ec0e839b820f104b675fd221 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
Estelle Hammache7f716cf2005-01-24 21:24:18 +000012 * $Id: wbuf.c,v 1.83 2005/01/24 21:24:15 hammache Exp $
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/slab.h>
18#include <linux/mtd/mtd.h>
19#include <linux/crc32.h>
20#include <linux/mtd/nand.h>
21#include "nodelist.h"
22
23/* For testing write failures */
24#undef BREAKME
25#undef BREAKMEHEADER
26
27#ifdef BREAKME
28static unsigned char *brokenbuf;
29#endif
30
31/* max. erase failures before we mark a block bad */
32#define MAX_ERASE_FAILURES 2
33
34/* two seconds timeout for timed wbuf-flushing */
35#define WBUF_FLUSH_TIMEOUT 2 * HZ
36
37struct jffs2_inodirty {
38 uint32_t ino;
39 struct jffs2_inodirty *next;
40};
41
42static struct jffs2_inodirty inodirty_nomem;
43
44static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
45{
46 struct jffs2_inodirty *this = c->wbuf_inodes;
47
48 /* If a malloc failed, consider _everything_ dirty */
49 if (this == &inodirty_nomem)
50 return 1;
51
52 /* If ino == 0, _any_ non-GC writes mean 'yes' */
53 if (this && !ino)
54 return 1;
55
56 /* Look to see if the inode in question is pending in the wbuf */
57 while (this) {
58 if (this->ino == ino)
59 return 1;
60 this = this->next;
61 }
62 return 0;
63}
64
65static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
66{
67 struct jffs2_inodirty *this;
68
69 this = c->wbuf_inodes;
70
71 if (this != &inodirty_nomem) {
72 while (this) {
73 struct jffs2_inodirty *next = this->next;
74 kfree(this);
75 this = next;
76 }
77 }
78 c->wbuf_inodes = NULL;
79}
80
81static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
82{
83 struct jffs2_inodirty *new;
84
85 /* Mark the superblock dirty so that kupdated will flush... */
86 OFNI_BS_2SFFJ(c)->s_dirt = 1;
87
88 if (jffs2_wbuf_pending_for_ino(c, ino))
89 return;
90
91 new = kmalloc(sizeof(*new), GFP_KERNEL);
92 if (!new) {
93 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
94 jffs2_clear_wbuf_ino_list(c);
95 c->wbuf_inodes = &inodirty_nomem;
96 return;
97 }
98 new->ino = ino;
99 new->next = c->wbuf_inodes;
100 c->wbuf_inodes = new;
101 return;
102}
103
104static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
105{
106 struct list_head *this, *next;
107 static int n;
108
109 if (list_empty(&c->erasable_pending_wbuf_list))
110 return;
111
112 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
113 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
114
115 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
116 list_del(this);
117 if ((jiffies + (n++)) & 127) {
118 /* Most of the time, we just erase it immediately. Otherwise we
119 spend ages scanning it on mount, etc. */
120 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
121 list_add_tail(&jeb->list, &c->erase_pending_list);
122 c->nr_erasing_blocks++;
123 jffs2_erase_pending_trigger(c);
124 } else {
125 /* Sometimes, however, we leave it elsewhere so it doesn't get
126 immediately reused, and we spread the load a bit. */
127 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
128 list_add_tail(&jeb->list, &c->erasable_list);
129 }
130 }
131}
132
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000133#define REFILE_NOTEMPTY 0
134#define REFILE_ANYWAY 1
135
136static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700137{
138 D1(printk("About to refile bad block at %08x\n", jeb->offset));
139
140 D2(jffs2_dump_block_lists(c));
141 /* File the existing block on the bad_used_list.... */
142 if (c->nextblock == jeb)
143 c->nextblock = NULL;
144 else /* Not sure this should ever happen... need more coffee */
145 list_del(&jeb->list);
146 if (jeb->first_node) {
147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 list_add(&jeb->list, &c->bad_used_list);
149 } else {
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000150 if (allow_empty == REFILE_NOTEMPTY)
151 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700152 /* It has to have had some nodes or we couldn't be here */
153 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
154 list_add(&jeb->list, &c->erase_pending_list);
155 c->nr_erasing_blocks++;
156 jffs2_erase_pending_trigger(c);
157 }
158 D2(jffs2_dump_block_lists(c));
159
160 /* Adjust its size counts accordingly */
161 c->wasted_size += jeb->free_size;
162 c->free_size -= jeb->free_size;
163 jeb->wasted_size += jeb->free_size;
164 jeb->free_size = 0;
165
166 ACCT_SANITY_CHECK(c,jeb);
167 D1(ACCT_PARANOIA_CHECK(jeb));
168}
169
170/* Recover from failure to write wbuf. Recover the nodes up to the
171 * wbuf, not the one which we were starting to try to write. */
172
173static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
174{
175 struct jffs2_eraseblock *jeb, *new_jeb;
176 struct jffs2_raw_node_ref **first_raw, **raw;
177 size_t retlen;
178 int ret;
179 unsigned char *buf;
180 uint32_t start, end, ofs, len;
181
182 spin_lock(&c->erase_completion_lock);
183
184 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
185
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000186 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700187
188 /* Find the first node to be recovered, by skipping over every
189 node which ends before the wbuf starts, or which is obsolete. */
190 first_raw = &jeb->first_node;
191 while (*first_raw &&
192 (ref_obsolete(*first_raw) ||
193 (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
194 D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
195 ref_offset(*first_raw), ref_flags(*first_raw),
196 (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
197 c->wbuf_ofs));
198 first_raw = &(*first_raw)->next_phys;
199 }
200
201 if (!*first_raw) {
202 /* All nodes were obsolete. Nothing to recover. */
203 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
204 spin_unlock(&c->erase_completion_lock);
205 return;
206 }
207
208 start = ref_offset(*first_raw);
209 end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);
210
211 /* Find the last node to be recovered */
212 raw = first_raw;
213 while ((*raw)) {
214 if (!ref_obsolete(*raw))
215 end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);
216
217 raw = &(*raw)->next_phys;
218 }
219 spin_unlock(&c->erase_completion_lock);
220
221 D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));
222
223 buf = NULL;
224 if (start < c->wbuf_ofs) {
225 /* First affected node was already partially written.
226 * Attempt to reread the old data into our buffer. */
227
228 buf = kmalloc(end - start, GFP_KERNEL);
229 if (!buf) {
230 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
231
232 goto read_failed;
233 }
234
235 /* Do the read... */
236 if (jffs2_cleanmarker_oob(c))
237 ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
238 else
239 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
240
241 if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
242 /* ECC recovered */
243 ret = 0;
244 }
245 if (ret || retlen != c->wbuf_ofs - start) {
246 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
247
248 kfree(buf);
249 buf = NULL;
250 read_failed:
251 first_raw = &(*first_raw)->next_phys;
252 /* If this was the only node to be recovered, give up */
253 if (!(*first_raw))
254 return;
255
256 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
257 start = ref_offset(*first_raw);
258 } else {
259 /* Read succeeded. Copy the remaining data from the wbuf */
260 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
261 }
262 }
263 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
264 Either 'buf' contains the data, or we find it in the wbuf */
265
266
267 /* ... and get an allocation of space from a shiny new block instead */
268 ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len);
269 if (ret) {
270 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
271 if (buf)
272 kfree(buf);
273 return;
274 }
275 if (end-start >= c->wbuf_pagesize) {
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000276 /* Need to do another write immediately, but it's possible
277 that this is just because the wbuf itself is completely
278 full, and there's nothing earlier read back from the
279 flash. Hence 'buf' isn't necessarily what we're writing
280 from. */
281 unsigned char *rewrite_buf = buf?:c->wbuf;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700282 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
283
284 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
285 towrite, ofs));
286
287#ifdef BREAKMEHEADER
288 static int breakme;
289 if (breakme++ == 20) {
290 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
291 breakme = 0;
292 c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
293 brokenbuf, NULL, c->oobinfo);
294 ret = -EIO;
295 } else
296#endif
297 if (jffs2_cleanmarker_oob(c))
298 ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000299 rewrite_buf, NULL, c->oobinfo);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700300 else
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000301 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302
303 if (ret || retlen != towrite) {
304 /* Argh. We tried. Really we did. */
305 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000306 if (buf)
307 kfree(buf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700308
309 if (retlen) {
310 struct jffs2_raw_node_ref *raw2;
311
312 raw2 = jffs2_alloc_raw_node_ref();
313 if (!raw2)
314 return;
315
316 raw2->flash_offset = ofs | REF_OBSOLETE;
317 raw2->__totlen = ref_totlen(c, jeb, *first_raw);
318 raw2->next_phys = NULL;
319 raw2->next_in_ino = NULL;
320
321 jffs2_add_physical_node_ref(c, raw2);
322 }
323 return;
324 }
325 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
326
327 c->wbuf_len = (end - start) - towrite;
328 c->wbuf_ofs = ofs + towrite;
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000329 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700330 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000331 if (buf)
332 kfree(buf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700333 } else {
334 /* OK, now we're left with the dregs in whichever buffer we're using */
335 if (buf) {
336 memcpy(c->wbuf, buf, end-start);
337 kfree(buf);
338 } else {
339 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
340 }
341 c->wbuf_ofs = ofs;
342 c->wbuf_len = end - start;
343 }
344
345 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
346 new_jeb = &c->blocks[ofs / c->sector_size];
347
348 spin_lock(&c->erase_completion_lock);
349 if (new_jeb->first_node) {
350 /* Odd, but possible with ST flash later maybe */
351 new_jeb->last_node->next_phys = *first_raw;
352 } else {
353 new_jeb->first_node = *first_raw;
354 }
355
356 raw = first_raw;
357 while (*raw) {
358 uint32_t rawlen = ref_totlen(c, jeb, *raw);
359
360 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
361 rawlen, ref_offset(*raw), ref_flags(*raw), ofs));
362
363 if (ref_obsolete(*raw)) {
364 /* Shouldn't really happen much */
365 new_jeb->dirty_size += rawlen;
366 new_jeb->free_size -= rawlen;
367 c->dirty_size += rawlen;
368 } else {
369 new_jeb->used_size += rawlen;
370 new_jeb->free_size -= rawlen;
371 jeb->dirty_size += rawlen;
372 jeb->used_size -= rawlen;
373 c->dirty_size += rawlen;
374 }
375 c->free_size -= rawlen;
376 (*raw)->flash_offset = ofs | ref_flags(*raw);
377 ofs += rawlen;
378 new_jeb->last_node = *raw;
379
380 raw = &(*raw)->next_phys;
381 }
382
383 /* Fix up the original jeb now it's on the bad_list */
384 *first_raw = NULL;
385 if (first_raw == &jeb->first_node) {
386 jeb->last_node = NULL;
387 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
388 list_del(&jeb->list);
389 list_add(&jeb->list, &c->erase_pending_list);
390 c->nr_erasing_blocks++;
391 jffs2_erase_pending_trigger(c);
392 }
393 else
394 jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);
395
396 ACCT_SANITY_CHECK(c,jeb);
397 D1(ACCT_PARANOIA_CHECK(jeb));
398
399 ACCT_SANITY_CHECK(c,new_jeb);
400 D1(ACCT_PARANOIA_CHECK(new_jeb));
401
402 spin_unlock(&c->erase_completion_lock);
403
404 D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
405}
406
407/* Meaning of pad argument:
408 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
409 1: Pad, do not adjust nextblock free_size
410 2: Pad, adjust nextblock free_size
411*/
412#define NOPAD 0
413#define PAD_NOACCOUNT 1
414#define PAD_ACCOUNTING 2
415
416static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
417{
418 int ret;
419 size_t retlen;
420
421 /* Nothing to do if not NAND flash. In particular, we shouldn't
422 del_timer() the timer we never initialised. */
423 if (jffs2_can_mark_obsolete(c))
424 return 0;
425
426 if (!down_trylock(&c->alloc_sem)) {
427 up(&c->alloc_sem);
428 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
429 BUG();
430 }
431
432 if(!c->wbuf || !c->wbuf_len)
433 return 0;
434
435 /* claim remaining space on the page
436 this happens, if we have a change to a new block,
437 or if fsync forces us to flush the writebuffer.
438 if we have a switch to next page, we will not have
439 enough remaining space for this.
440 */
441 if (pad) {
442 c->wbuf_len = PAD(c->wbuf_len);
443
444 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
445 with 8 byte page size */
446 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
447
448 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
449 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
450 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
451 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
452 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
453 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
454 }
455 }
456 /* else jffs2_flash_writev has actually filled in the rest of the
457 buffer for us, and will deal with the node refs etc. later. */
458
459#ifdef BREAKME
460 static int breakme;
461 if (breakme++ == 20) {
462 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
463 breakme = 0;
464 c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
465 &retlen, brokenbuf, NULL, c->oobinfo);
466 ret = -EIO;
467 } else
468#endif
469
470 if (jffs2_cleanmarker_oob(c))
471 ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
472 else
473 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
474
475 if (ret || retlen != c->wbuf_pagesize) {
476 if (ret)
477 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
478 else {
479 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
480 retlen, c->wbuf_pagesize);
481 ret = -EIO;
482 }
483
484 jffs2_wbuf_recover(c);
485
486 return ret;
487 }
488
489 spin_lock(&c->erase_completion_lock);
490
491 /* Adjust free size of the block if we padded. */
492 if (pad) {
493 struct jffs2_eraseblock *jeb;
494
495 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
496
497 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
498 (jeb==c->nextblock)?"next":"", jeb->offset));
499
500 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
501 padded. If there is less free space in the block than that,
502 something screwed up */
503 if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
504 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
505 c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
506 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
507 jeb->offset, jeb->free_size);
508 BUG();
509 }
510 jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
511 c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
512 jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
513 c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
514 }
515
516 /* Stick any now-obsoleted blocks on the erase_pending_list */
517 jffs2_refile_wbuf_blocks(c);
518 jffs2_clear_wbuf_ino_list(c);
519 spin_unlock(&c->erase_completion_lock);
520
521 memset(c->wbuf,0xff,c->wbuf_pagesize);
522 /* adjust write buffer offset, else we get a non contiguous write bug */
523 c->wbuf_ofs += c->wbuf_pagesize;
524 c->wbuf_len = 0;
525 return 0;
526}
527
528/* Trigger garbage collection to flush the write-buffer.
529 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
530 outstanding. If ino arg non-zero, do it only if a write for the
531 given inode is outstanding. */
532int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
533{
534 uint32_t old_wbuf_ofs;
535 uint32_t old_wbuf_len;
536 int ret = 0;
537
538 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
539
540 down(&c->alloc_sem);
541 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
542 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
543 up(&c->alloc_sem);
544 return 0;
545 }
546
547 old_wbuf_ofs = c->wbuf_ofs;
548 old_wbuf_len = c->wbuf_len;
549
550 if (c->unchecked_size) {
551 /* GC won't make any progress for a while */
552 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
553 down_write(&c->wbuf_sem);
554 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000555 /* retry flushing wbuf in case jffs2_wbuf_recover
556 left some data in the wbuf */
557 if (ret)
558 {
559 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
560 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700561 up_write(&c->wbuf_sem);
562 } else while (old_wbuf_len &&
563 old_wbuf_ofs == c->wbuf_ofs) {
564
565 up(&c->alloc_sem);
566
567 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
568
569 ret = jffs2_garbage_collect_pass(c);
570 if (ret) {
571 /* GC failed. Flush it with padding instead */
572 down(&c->alloc_sem);
573 down_write(&c->wbuf_sem);
574 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000575 /* retry flushing wbuf in case jffs2_wbuf_recover
576 left some data in the wbuf */
577 if (ret)
578 {
579 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
580 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581 up_write(&c->wbuf_sem);
582 break;
583 }
584 down(&c->alloc_sem);
585 }
586
587 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
588
589 up(&c->alloc_sem);
590 return ret;
591}
592
593/* Pad write-buffer to end and write it, wasting space. */
594int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
595{
596 int ret;
597
598 down_write(&c->wbuf_sem);
599 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000600 /* retry - maybe wbuf recover left some data in wbuf. */
601 if (ret)
602 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700603 up_write(&c->wbuf_sem);
604
605 return ret;
606}
607
608#define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) )
609#define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) )
610int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
611{
612 struct kvec outvecs[3];
613 uint32_t totlen = 0;
614 uint32_t split_ofs = 0;
615 uint32_t old_totlen;
616 int ret, splitvec = -1;
617 int invec, outvec;
618 size_t wbuf_retlen;
619 unsigned char *wbuf_ptr;
620 size_t donelen = 0;
621 uint32_t outvec_to = to;
622
623 /* If not NAND flash, don't bother */
624 if (!c->wbuf)
625 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
626
627 down_write(&c->wbuf_sem);
628
629 /* If wbuf_ofs is not initialized, set it to target address */
630 if (c->wbuf_ofs == 0xFFFFFFFF) {
631 c->wbuf_ofs = PAGE_DIV(to);
632 c->wbuf_len = PAGE_MOD(to);
633 memset(c->wbuf,0xff,c->wbuf_pagesize);
634 }
635
636 /* Fixup the wbuf if we are moving to a new eraseblock. The checks below
637 fail for ECC'd NOR because cleanmarker == 16, so a block starts at
638 xxx0010. */
639 if (jffs2_nor_ecc(c)) {
640 if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
641 c->wbuf_ofs = PAGE_DIV(to);
642 c->wbuf_len = PAGE_MOD(to);
643 memset(c->wbuf,0xff,c->wbuf_pagesize);
644 }
645 }
646
647 /* Sanity checks on target address.
648 It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
649 and it's permitted to write at the beginning of a new
650 erase block. Anything else, and you die.
651 New block starts at xxx000c (0-b = block header)
652 */
653 if ( (to & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) {
654 /* It's a write to a new block */
655 if (c->wbuf_len) {
656 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
657 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
658 if (ret) {
659 /* the underlying layer has to check wbuf_len to do the cleanup */
660 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
661 *retlen = 0;
662 goto exit;
663 }
664 }
665 /* set pointer to new block */
666 c->wbuf_ofs = PAGE_DIV(to);
667 c->wbuf_len = PAGE_MOD(to);
668 }
669
670 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
671 /* We're not writing immediately after the writebuffer. Bad. */
672 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
673 if (c->wbuf_len)
674 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
675 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
676 BUG();
677 }
678
679 /* Note outvecs[3] above. We know count is never greater than 2 */
680 if (count > 2) {
681 printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
682 BUG();
683 }
684
685 invec = 0;
686 outvec = 0;
687
688 /* Fill writebuffer first, if already in use */
689 if (c->wbuf_len) {
690 uint32_t invec_ofs = 0;
691
692 /* adjust alignment offset */
693 if (c->wbuf_len != PAGE_MOD(to)) {
694 c->wbuf_len = PAGE_MOD(to);
695 /* take care of alignment to next page */
696 if (!c->wbuf_len)
697 c->wbuf_len = c->wbuf_pagesize;
698 }
699
700 while(c->wbuf_len < c->wbuf_pagesize) {
701 uint32_t thislen;
702
703 if (invec == count)
704 goto alldone;
705
706 thislen = c->wbuf_pagesize - c->wbuf_len;
707
708 if (thislen >= invecs[invec].iov_len)
709 thislen = invecs[invec].iov_len;
710
711 invec_ofs = thislen;
712
713 memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
714 c->wbuf_len += thislen;
715 donelen += thislen;
716 /* Get next invec, if actual did not fill the buffer */
717 if (c->wbuf_len < c->wbuf_pagesize)
718 invec++;
719 }
720
721 /* write buffer is full, flush buffer */
722 ret = __jffs2_flush_wbuf(c, NOPAD);
723 if (ret) {
724 /* the underlying layer has to check wbuf_len to do the cleanup */
725 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
726 /* Retlen zero to make sure our caller doesn't mark the space dirty.
727 We've already done everything that's necessary */
728 *retlen = 0;
729 goto exit;
730 }
731 outvec_to += donelen;
732 c->wbuf_ofs = outvec_to;
733
734 /* All invecs done ? */
735 if (invec == count)
736 goto alldone;
737
738 /* Set up the first outvec, containing the remainder of the
739 invec we partially used */
740 if (invecs[invec].iov_len > invec_ofs) {
741 outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
742 totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
743 if (totlen > c->wbuf_pagesize) {
744 splitvec = outvec;
745 split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
746 }
747 outvec++;
748 }
749 invec++;
750 }
751
752 /* OK, now we've flushed the wbuf and the start of the bits
753 we have been asked to write, now to write the rest.... */
754
755 /* totlen holds the amount of data still to be written */
756 old_totlen = totlen;
757 for ( ; invec < count; invec++,outvec++ ) {
758 outvecs[outvec].iov_base = invecs[invec].iov_base;
759 totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
760 if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
761 splitvec = outvec;
762 split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
763 old_totlen = totlen;
764 }
765 }
766
767 /* Now the outvecs array holds all the remaining data to write */
768 /* Up to splitvec,split_ofs is to be written immediately. The rest
769 goes into the (now-empty) wbuf */
770
771 if (splitvec != -1) {
772 uint32_t remainder;
773
774 remainder = outvecs[splitvec].iov_len - split_ofs;
775 outvecs[splitvec].iov_len = split_ofs;
776
777 /* We did cross a page boundary, so we write some now */
778 if (jffs2_cleanmarker_oob(c))
779 ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);
780 else
781 ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
782
783 if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
784 /* At this point we have no problem,
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000785 c->wbuf is empty. However refile nextblock to avoid
786 writing again to same address.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700787 */
Estelle Hammache7f716cf2005-01-24 21:24:18 +0000788 struct jffs2_eraseblock *jeb;
789
790 spin_lock(&c->erase_completion_lock);
791
792 jeb = &c->blocks[outvec_to / c->sector_size];
793 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
794
795 *retlen = 0;
796 spin_unlock(&c->erase_completion_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700797 goto exit;
798 }
799
800 donelen += wbuf_retlen;
801 c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
802
803 if (remainder) {
804 outvecs[splitvec].iov_base += split_ofs;
805 outvecs[splitvec].iov_len = remainder;
806 } else {
807 splitvec++;
808 }
809
810 } else {
811 splitvec = 0;
812 }
813
814 /* Now splitvec points to the start of the bits we have to copy
815 into the wbuf */
816 wbuf_ptr = c->wbuf;
817
818 for ( ; splitvec < outvec; splitvec++) {
819 /* Don't copy the wbuf into itself */
820 if (outvecs[splitvec].iov_base == c->wbuf)
821 continue;
822 memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
823 wbuf_ptr += outvecs[splitvec].iov_len;
824 donelen += outvecs[splitvec].iov_len;
825 }
826 c->wbuf_len = wbuf_ptr - c->wbuf;
827
828 /* If there's a remainder in the wbuf and it's a non-GC write,
829 remember that the wbuf affects this ino */
830alldone:
831 *retlen = donelen;
832
833 if (c->wbuf_len && ino)
834 jffs2_wbuf_dirties_inode(c, ino);
835
836 ret = 0;
837
838exit:
839 up_write(&c->wbuf_sem);
840 return ret;
841}
842
843/*
844 * This is the entry for flash write.
845 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
846*/
847int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
848{
849 struct kvec vecs[1];
850
851 if (jffs2_can_mark_obsolete(c))
852 return c->mtd->write(c->mtd, ofs, len, retlen, buf);
853
854 vecs[0].iov_base = (unsigned char *) buf;
855 vecs[0].iov_len = len;
856 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
857}
858
859/*
860 Handle readback from writebuffer and ECC failure return
861*/
862int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
863{
864 loff_t orbf = 0, owbf = 0, lwbf = 0;
865 int ret;
866
867 /* Read flash */
868 if (!jffs2_can_mark_obsolete(c)) {
869 down_read(&c->wbuf_sem);
870
871 if (jffs2_cleanmarker_oob(c))
872 ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
873 else
874 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
875
876 if ( (ret == -EBADMSG) && (*retlen == len) ) {
877 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
878 len, ofs);
879 /*
880 * We have the raw data without ECC correction in the buffer, maybe
881 * we are lucky and all data or parts are correct. We check the node.
882 * If data are corrupted node check will sort it out.
883 * We keep this block, it will fail on write or erase and the we
884 * mark it bad. Or should we do that now? But we should give him a chance.
885 * Maybe we had a system crash or power loss before the ecc write or
886 * a erase was completed.
887 * So we return success. :)
888 */
889 ret = 0;
890 }
891 } else
892 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
893
894 /* if no writebuffer available or write buffer empty, return */
895 if (!c->wbuf_pagesize || !c->wbuf_len)
896 goto exit;
897
898 /* if we read in a different block, return */
899 if ( (ofs & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) )
900 goto exit;
901
902 if (ofs >= c->wbuf_ofs) {
903 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
904 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
905 goto exit;
906 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
907 if (lwbf > len)
908 lwbf = len;
909 } else {
910 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
911 if (orbf > len) /* is write beyond write buffer ? */
912 goto exit;
913 lwbf = len - orbf; /* number of bytes to copy */
914 if (lwbf > c->wbuf_len)
915 lwbf = c->wbuf_len;
916 }
917 if (lwbf > 0)
918 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
919
920exit:
921 up_read(&c->wbuf_sem);
922 return ret;
923}
924
925/*
926 * Check, if the out of band area is empty
927 */
928int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
929{
930 unsigned char *buf;
931 int ret = 0;
932 int i,len,page;
933 size_t retlen;
934 int oob_size;
935
936 /* allocate a buffer for all oob data in this sector */
937 oob_size = c->mtd->oobsize;
938 len = 4 * oob_size;
939 buf = kmalloc(len, GFP_KERNEL);
940 if (!buf) {
941 printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
942 return -ENOMEM;
943 }
944 /*
945 * if mode = 0, we scan for a total empty oob area, else we have
946 * to take care of the cleanmarker in the first page of the block
947 */
948 ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
949 if (ret) {
950 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
951 goto out;
952 }
953
954 if (retlen < len) {
955 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
956 "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
957 ret = -EIO;
958 goto out;
959 }
960
961 /* Special check for first page */
962 for(i = 0; i < oob_size ; i++) {
963 /* Yeah, we know about the cleanmarker. */
964 if (mode && i >= c->fsdata_pos &&
965 i < c->fsdata_pos + c->fsdata_len)
966 continue;
967
968 if (buf[i] != 0xFF) {
969 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
970 buf[page+i], page+i, jeb->offset));
971 ret = 1;
972 goto out;
973 }
974 }
975
976 /* we know, we are aligned :) */
977 for (page = oob_size; page < len; page += sizeof(long)) {
978 unsigned long dat = *(unsigned long *)(&buf[page]);
979 if(dat != -1) {
980 ret = 1;
981 goto out;
982 }
983 }
984
985out:
986 kfree(buf);
987
988 return ret;
989}
990
991/*
992* Scan for a valid cleanmarker and for bad blocks
993* For virtual blocks (concatenated physical blocks) check the cleanmarker
994* only in the first page of the first physical block, but scan for bad blocks in all
995* physical blocks
996*/
997int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
998{
999 struct jffs2_unknown_node n;
1000 unsigned char buf[2 * NAND_MAX_OOBSIZE];
1001 unsigned char *p;
1002 int ret, i, cnt, retval = 0;
1003 size_t retlen, offset;
1004 int oob_size;
1005
1006 offset = jeb->offset;
1007 oob_size = c->mtd->oobsize;
1008
1009 /* Loop through the physical blocks */
1010 for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
1011 /* Check first if the block is bad. */
1012 if (c->mtd->block_isbad (c->mtd, offset)) {
1013 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
1014 return 2;
1015 }
1016 /*
1017 * We read oob data from page 0 and 1 of the block.
1018 * page 0 contains cleanmarker and badblock info
1019 * page 1 contains failure count of this block
1020 */
1021 ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
1022
1023 if (ret) {
1024 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
1025 return ret;
1026 }
1027 if (retlen < (oob_size << 1)) {
1028 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
1029 return -EIO;
1030 }
1031
1032 /* Check cleanmarker only on the first physical block */
1033 if (!cnt) {
1034 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1035 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1036 n.totlen = cpu_to_je32 (8);
1037 p = (unsigned char *) &n;
1038
1039 for (i = 0; i < c->fsdata_len; i++) {
1040 if (buf[c->fsdata_pos + i] != p[i]) {
1041 retval = 1;
1042 }
1043 }
1044 D1(if (retval == 1) {
1045 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
1046 printk(KERN_WARNING "OOB at %08x was ", offset);
1047 for (i=0; i < oob_size; i++) {
1048 printk("%02x ", buf[i]);
1049 }
1050 printk("\n");
1051 })
1052 }
1053 offset += c->mtd->erasesize;
1054 }
1055 return retval;
1056}
1057
1058int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1059{
1060 struct jffs2_unknown_node n;
1061 int ret;
1062 size_t retlen;
1063
1064 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1065 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1066 n.totlen = cpu_to_je32(8);
1067
1068 ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
1069
1070 if (ret) {
1071 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1072 return ret;
1073 }
1074 if (retlen != c->fsdata_len) {
1075 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
1076 return ret;
1077 }
1078 return 0;
1079}
1080
1081/*
1082 * On NAND we try to mark this block bad. If the block was erased more
1083 * than MAX_ERASE_FAILURES we mark it finaly bad.
1084 * Don't care about failures. This block remains on the erase-pending
1085 * or badblock list as long as nobody manipulates the flash with
1086 * a bootloader or something like that.
1087 */
1088
1089int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1090{
1091 int ret;
1092
1093 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1094 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1095 return 0;
1096
1097 if (!c->mtd->block_markbad)
1098 return 1; // What else can we do?
1099
1100 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1101 ret = c->mtd->block_markbad(c->mtd, bad_offset);
1102
1103 if (ret) {
1104 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1105 return ret;
1106 }
1107 return 1;
1108}
1109
1110#define NAND_JFFS2_OOB16_FSDALEN 8
1111
1112static struct nand_oobinfo jffs2_oobinfo_docecc = {
1113 .useecc = MTD_NANDECC_PLACE,
1114 .eccbytes = 6,
1115 .eccpos = {0,1,2,3,4,5}
1116};
1117
1118
1119static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1120{
1121 struct nand_oobinfo *oinfo = &c->mtd->oobinfo;
1122
1123 /* Do this only, if we have an oob buffer */
1124 if (!c->mtd->oobsize)
1125 return 0;
1126
1127 /* Cleanmarker is out-of-band, so inline size zero */
1128 c->cleanmarker_size = 0;
1129
1130 /* Should we use autoplacement ? */
1131 if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
1132 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1133 /* Get the position of the free bytes */
1134 if (!oinfo->oobfree[0][1]) {
1135 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
1136 return -ENOSPC;
1137 }
1138 c->fsdata_pos = oinfo->oobfree[0][0];
1139 c->fsdata_len = oinfo->oobfree[0][1];
1140 if (c->fsdata_len > 8)
1141 c->fsdata_len = 8;
1142 } else {
1143 /* This is just a legacy fallback and should go away soon */
1144 switch(c->mtd->ecctype) {
1145 case MTD_ECC_RS_DiskOnChip:
1146 printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
1147 c->oobinfo = &jffs2_oobinfo_docecc;
1148 c->fsdata_pos = 6;
1149 c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
1150 c->badblock_pos = 15;
1151 break;
1152
1153 default:
1154 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1155 return -EINVAL;
1156 }
1157 }
1158 return 0;
1159}
1160
1161int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1162{
1163 int res;
1164
1165 /* Initialise write buffer */
1166 init_rwsem(&c->wbuf_sem);
1167 c->wbuf_pagesize = c->mtd->oobblock;
1168 c->wbuf_ofs = 0xFFFFFFFF;
1169
1170 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1171 if (!c->wbuf)
1172 return -ENOMEM;
1173
1174 res = jffs2_nand_set_oobinfo(c);
1175
1176#ifdef BREAKME
1177 if (!brokenbuf)
1178 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1179 if (!brokenbuf) {
1180 kfree(c->wbuf);
1181 return -ENOMEM;
1182 }
1183 memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1184#endif
1185 return res;
1186}
1187
1188void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1189{
1190 kfree(c->wbuf);
1191}
1192
1193#ifdef CONFIG_JFFS2_FS_NOR_ECC
1194int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
1195 /* Cleanmarker is actually larger on the flashes */
1196 c->cleanmarker_size = 16;
1197
1198 /* Initialize write buffer */
1199 init_rwsem(&c->wbuf_sem);
1200 c->wbuf_pagesize = c->mtd->eccsize;
1201 c->wbuf_ofs = 0xFFFFFFFF;
1202
1203 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1204 if (!c->wbuf)
1205 return -ENOMEM;
1206
1207 return 0;
1208}
1209
1210void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
1211 kfree(c->wbuf);
1212}
1213#endif