Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/fs/jffs2/wbuf.c b/fs/jffs2/wbuf.c
new file mode 100644
index 0000000..c812806
--- /dev/null
+++ b/fs/jffs2/wbuf.c
@@ -0,0 +1,1184 @@
+/*
+ * JFFS2 -- Journalling Flash File System, Version 2.
+ *
+ * Copyright (C) 2001-2003 Red Hat, Inc.
+ * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
+ *
+ * Created by David Woodhouse <dwmw2@infradead.org>
+ * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
+ *
+ * For licensing information, see the file 'LICENCE' in this directory.
+ *
+ * $Id: wbuf.c,v 1.82 2004/11/20 22:08:31 dwmw2 Exp $
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/crc32.h>
+#include <linux/mtd/nand.h>
+#include "nodelist.h"
+
+/* For testing write failures */
+#undef BREAKME
+#undef BREAKMEHEADER
+
+#ifdef BREAKME
+static unsigned char *brokenbuf;
+#endif
+
+/* max. erase failures before we mark a block bad */
+#define MAX_ERASE_FAILURES 	2
+
+/* two seconds timeout for timed wbuf-flushing */
+#define WBUF_FLUSH_TIMEOUT	2 * HZ
+
+struct jffs2_inodirty {
+	uint32_t ino;
+	struct jffs2_inodirty *next;
+};
+
+static struct jffs2_inodirty inodirty_nomem;
+
+static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
+{
+	struct jffs2_inodirty *this = c->wbuf_inodes;
+
+	/* If a malloc failed, consider _everything_ dirty */
+	if (this == &inodirty_nomem)
+		return 1;
+
+	/* If ino == 0, _any_ non-GC writes mean 'yes' */
+	if (this && !ino)
+		return 1;
+
+	/* Look to see if the inode in question is pending in the wbuf */
+	while (this) {
+		if (this->ino == ino)
+			return 1;
+		this = this->next;
+	}
+	return 0;
+}
+
+static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
+{
+	struct jffs2_inodirty *this;
+
+	this = c->wbuf_inodes;
+
+	if (this != &inodirty_nomem) {
+		while (this) {
+			struct jffs2_inodirty *next = this->next;
+			kfree(this);
+			this = next;
+		}
+	}
+	c->wbuf_inodes = NULL;
+}
+
+static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
+{
+	struct jffs2_inodirty *new;
+
+	/* Mark the superblock dirty so that kupdated will flush... */
+	OFNI_BS_2SFFJ(c)->s_dirt = 1;
+
+	if (jffs2_wbuf_pending_for_ino(c, ino))
+		return;
+
+	new = kmalloc(sizeof(*new), GFP_KERNEL);
+	if (!new) {
+		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
+		jffs2_clear_wbuf_ino_list(c);
+		c->wbuf_inodes = &inodirty_nomem;
+		return;
+	}
+	new->ino = ino;
+	new->next = c->wbuf_inodes;
+	c->wbuf_inodes = new;
+	return;
+}
+
+static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
+{
+	struct list_head *this, *next;
+	static int n;
+
+	if (list_empty(&c->erasable_pending_wbuf_list))
+		return;
+
+	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
+		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
+
+		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
+		list_del(this);
+		if ((jiffies + (n++)) & 127) {
+			/* Most of the time, we just erase it immediately. Otherwise we
+			   spend ages scanning it on mount, etc. */
+			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
+			list_add_tail(&jeb->list, &c->erase_pending_list);
+			c->nr_erasing_blocks++;
+			jffs2_erase_pending_trigger(c);
+		} else {
+			/* Sometimes, however, we leave it elsewhere so it doesn't get
+			   immediately reused, and we spread the load a bit. */
+			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
+			list_add_tail(&jeb->list, &c->erasable_list);
+		}
+	}
+}
+
+static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
+{
+	D1(printk("About to refile bad block at %08x\n", jeb->offset));
+
+	D2(jffs2_dump_block_lists(c));
+	/* File the existing block on the bad_used_list.... */
+	if (c->nextblock == jeb)
+		c->nextblock = NULL;
+	else /* Not sure this should ever happen... need more coffee */
+		list_del(&jeb->list);
+	if (jeb->first_node) {
+		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
+		list_add(&jeb->list, &c->bad_used_list);
+	} else {
+		BUG();
+		/* It has to have had some nodes or we couldn't be here */
+		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
+		list_add(&jeb->list, &c->erase_pending_list);
+		c->nr_erasing_blocks++;
+		jffs2_erase_pending_trigger(c);
+	}
+	D2(jffs2_dump_block_lists(c));
+
+	/* Adjust its size counts accordingly */
+	c->wasted_size += jeb->free_size;
+	c->free_size -= jeb->free_size;
+	jeb->wasted_size += jeb->free_size;
+	jeb->free_size = 0;
+
+	ACCT_SANITY_CHECK(c,jeb);
+	D1(ACCT_PARANOIA_CHECK(jeb));
+}
+
+/* Recover from failure to write wbuf. Recover the nodes up to the
+ * wbuf, not the one which we were starting to try to write. */
+
+static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
+{
+	struct jffs2_eraseblock *jeb, *new_jeb;
+	struct jffs2_raw_node_ref **first_raw, **raw;
+	size_t retlen;
+	int ret;
+	unsigned char *buf;
+	uint32_t start, end, ofs, len;
+
+	spin_lock(&c->erase_completion_lock);
+
+	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
+
+	jffs2_block_refile(c, jeb);
+
+	/* Find the first node to be recovered, by skipping over every
+	   node which ends before the wbuf starts, or which is obsolete. */
+	first_raw = &jeb->first_node;
+	while (*first_raw && 
+	       (ref_obsolete(*first_raw) ||
+		(ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
+		D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
+			  ref_offset(*first_raw), ref_flags(*first_raw),
+			  (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
+			  c->wbuf_ofs));
+		first_raw = &(*first_raw)->next_phys;
+	}
+
+	if (!*first_raw) {
+		/* All nodes were obsolete. Nothing to recover. */
+		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
+		spin_unlock(&c->erase_completion_lock);
+		return;
+	}
+
+	start = ref_offset(*first_raw);
+	end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);
+
+	/* Find the last node to be recovered */
+	raw = first_raw;
+	while ((*raw)) {
+		if (!ref_obsolete(*raw))
+			end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);
+
+		raw = &(*raw)->next_phys;
+	}
+	spin_unlock(&c->erase_completion_lock);
+
+	D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));
+
+	buf = NULL;
+	if (start < c->wbuf_ofs) {
+		/* First affected node was already partially written.
+		 * Attempt to reread the old data into our buffer. */
+
+		buf = kmalloc(end - start, GFP_KERNEL);
+		if (!buf) {
+			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
+
+			goto read_failed;
+		}
+
+		/* Do the read... */
+		if (jffs2_cleanmarker_oob(c))
+			ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
+		else
+			ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
+		
+		if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
+			/* ECC recovered */
+			ret = 0;
+		}
+		if (ret || retlen != c->wbuf_ofs - start) {
+			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
+
+			kfree(buf);
+			buf = NULL;
+		read_failed:
+			first_raw = &(*first_raw)->next_phys;
+			/* If this was the only node to be recovered, give up */
+			if (!(*first_raw))
+				return;
+
+			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
+			start = ref_offset(*first_raw);
+		} else {
+			/* Read succeeded. Copy the remaining data from the wbuf */
+			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
+		}
+	}
+	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
+	   Either 'buf' contains the data, or we find it in the wbuf */
+
+
+	/* ... and get an allocation of space from a shiny new block instead */
+	ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len);
+	if (ret) {
+		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
+		if (buf)
+			kfree(buf);
+		return;
+	}
+	if (end-start >= c->wbuf_pagesize) {
+		/* Need to do another write immediately. This, btw,
+		 means that we'll be writing from 'buf' and not from
+		 the wbuf. Since if we're writing from the wbuf there
+		 won't be more than a wbuf full of data, now will
+		 there? :) */
+
+		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
+
+		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
+			  towrite, ofs));
+	  
+#ifdef BREAKMEHEADER
+		static int breakme;
+		if (breakme++ == 20) {
+			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
+			breakme = 0;
+			c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
+					  brokenbuf, NULL, c->oobinfo);
+			ret = -EIO;
+		} else
+#endif
+		if (jffs2_cleanmarker_oob(c))
+			ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
+						buf, NULL, c->oobinfo);
+		else
+			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, buf);
+
+		if (ret || retlen != towrite) {
+			/* Argh. We tried. Really we did. */
+			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
+			kfree(buf);
+
+			if (retlen) {
+				struct jffs2_raw_node_ref *raw2;
+
+				raw2 = jffs2_alloc_raw_node_ref();
+				if (!raw2)
+					return;
+
+				raw2->flash_offset = ofs | REF_OBSOLETE;
+				raw2->__totlen = ref_totlen(c, jeb, *first_raw);
+				raw2->next_phys = NULL;
+				raw2->next_in_ino = NULL;
+
+				jffs2_add_physical_node_ref(c, raw2);
+			}
+			return;
+		}
+		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
+
+		c->wbuf_len = (end - start) - towrite;
+		c->wbuf_ofs = ofs + towrite;
+		memcpy(c->wbuf, buf + towrite, c->wbuf_len);
+		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
+
+		kfree(buf);
+	} else {
+		/* OK, now we're left with the dregs in whichever buffer we're using */
+		if (buf) {
+			memcpy(c->wbuf, buf, end-start);
+			kfree(buf);
+		} else {
+			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
+		}
+		c->wbuf_ofs = ofs;
+		c->wbuf_len = end - start;
+	}
+
+	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
+	new_jeb = &c->blocks[ofs / c->sector_size];
+
+	spin_lock(&c->erase_completion_lock);
+	if (new_jeb->first_node) {
+		/* Odd, but possible with ST flash later maybe */
+		new_jeb->last_node->next_phys = *first_raw;
+	} else {
+		new_jeb->first_node = *first_raw;
+	}
+
+	raw = first_raw;
+	while (*raw) {
+		uint32_t rawlen = ref_totlen(c, jeb, *raw);
+
+		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
+			  rawlen, ref_offset(*raw), ref_flags(*raw), ofs));
+
+		if (ref_obsolete(*raw)) {
+			/* Shouldn't really happen much */
+			new_jeb->dirty_size += rawlen;
+			new_jeb->free_size -= rawlen;
+			c->dirty_size += rawlen;
+		} else {
+			new_jeb->used_size += rawlen;
+			new_jeb->free_size -= rawlen;
+			jeb->dirty_size += rawlen;
+			jeb->used_size  -= rawlen;
+			c->dirty_size += rawlen;
+		}
+		c->free_size -= rawlen;
+		(*raw)->flash_offset = ofs | ref_flags(*raw);
+		ofs += rawlen;
+		new_jeb->last_node = *raw;
+
+		raw = &(*raw)->next_phys;
+	}
+
+	/* Fix up the original jeb now it's on the bad_list */
+	*first_raw = NULL;
+	if (first_raw == &jeb->first_node) {
+		jeb->last_node = NULL;
+		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
+		list_del(&jeb->list);
+		list_add(&jeb->list, &c->erase_pending_list);
+		c->nr_erasing_blocks++;
+		jffs2_erase_pending_trigger(c);
+	}
+	else
+		jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);
+
+	ACCT_SANITY_CHECK(c,jeb);
+        D1(ACCT_PARANOIA_CHECK(jeb));
+
+	ACCT_SANITY_CHECK(c,new_jeb);
+        D1(ACCT_PARANOIA_CHECK(new_jeb));
+
+	spin_unlock(&c->erase_completion_lock);
+
+	D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
+}
+
+/* Meaning of pad argument:
+   0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
+   1: Pad, do not adjust nextblock free_size
+   2: Pad, adjust nextblock free_size
+*/
+#define NOPAD		0
+#define PAD_NOACCOUNT	1
+#define PAD_ACCOUNTING	2
+
+static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
+{
+	int ret;
+	size_t retlen;
+
+	/* Nothing to do if not NAND flash. In particular, we shouldn't
+	   del_timer() the timer we never initialised. */
+	if (jffs2_can_mark_obsolete(c))
+		return 0;
+
+	if (!down_trylock(&c->alloc_sem)) {
+		up(&c->alloc_sem);
+		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
+		BUG();
+	}
+
+	if(!c->wbuf || !c->wbuf_len)
+		return 0;
+
+	/* claim remaining space on the page
+	   this happens, if we have a change to a new block,
+	   or if fsync forces us to flush the writebuffer.
+	   if we have a switch to next page, we will not have
+	   enough remaining space for this. 
+	*/
+	if (pad) {
+		c->wbuf_len = PAD(c->wbuf_len);
+
+		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
+		   with 8 byte page size */
+		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
+		
+		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
+			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
+			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
+			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
+			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
+			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
+		}
+	}
+	/* else jffs2_flash_writev has actually filled in the rest of the
+	   buffer for us, and will deal with the node refs etc. later. */
+	
+#ifdef BREAKME
+	static int breakme;
+	if (breakme++ == 20) {
+		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
+		breakme = 0;
+		c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
+					&retlen, brokenbuf, NULL, c->oobinfo);
+		ret = -EIO;
+	} else 
+#endif
+	
+	if (jffs2_cleanmarker_oob(c))
+		ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
+	else
+		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
+
+	if (ret || retlen != c->wbuf_pagesize) {
+		if (ret)
+			printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
+		else {
+			printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
+				retlen, c->wbuf_pagesize);
+			ret = -EIO;
+		}
+
+		jffs2_wbuf_recover(c);
+
+		return ret;
+	}
+
+	spin_lock(&c->erase_completion_lock);
+
+	/* Adjust free size of the block if we padded. */
+	if (pad) {
+		struct jffs2_eraseblock *jeb;
+
+		jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
+
+		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
+			  (jeb==c->nextblock)?"next":"", jeb->offset));
+
+		/* wbuf_pagesize - wbuf_len is the amount of space that's to be 
+		   padded. If there is less free space in the block than that,
+		   something screwed up */
+		if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
+			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
+			       c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
+			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
+			       jeb->offset, jeb->free_size);
+			BUG();
+		}
+		jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
+		c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
+		jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
+		c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
+	}
+
+	/* Stick any now-obsoleted blocks on the erase_pending_list */
+	jffs2_refile_wbuf_blocks(c);
+	jffs2_clear_wbuf_ino_list(c);
+	spin_unlock(&c->erase_completion_lock);
+
+	memset(c->wbuf,0xff,c->wbuf_pagesize);
+	/* adjust write buffer offset, else we get a non contiguous write bug */
+	c->wbuf_ofs += c->wbuf_pagesize;
+	c->wbuf_len = 0;
+	return 0;
+}
+
+/* Trigger garbage collection to flush the write-buffer. 
+   If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
+   outstanding. If ino arg non-zero, do it only if a write for the 
+   given inode is outstanding. */
+int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
+{
+	uint32_t old_wbuf_ofs;
+	uint32_t old_wbuf_len;
+	int ret = 0;
+
+	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
+
+	down(&c->alloc_sem);
+	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
+		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
+		up(&c->alloc_sem);
+		return 0;
+	}
+
+	old_wbuf_ofs = c->wbuf_ofs;
+	old_wbuf_len = c->wbuf_len;
+
+	if (c->unchecked_size) {
+		/* GC won't make any progress for a while */
+		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
+		down_write(&c->wbuf_sem);
+		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
+		up_write(&c->wbuf_sem);
+	} else while (old_wbuf_len &&
+		      old_wbuf_ofs == c->wbuf_ofs) {
+
+		up(&c->alloc_sem);
+
+		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
+
+		ret = jffs2_garbage_collect_pass(c);
+		if (ret) {
+			/* GC failed. Flush it with padding instead */
+			down(&c->alloc_sem);
+			down_write(&c->wbuf_sem);
+			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
+			up_write(&c->wbuf_sem);
+			break;
+		}
+		down(&c->alloc_sem);
+	}
+
+	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
+
+	up(&c->alloc_sem);
+	return ret;
+}
+
+/* Pad write-buffer to end and write it, wasting space. */
+int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
+{
+	int ret;
+
+	down_write(&c->wbuf_sem);
+	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
+	up_write(&c->wbuf_sem);
+
+	return ret;
+}
+
+#define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) )
+#define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) )
+int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
+{
+	struct kvec outvecs[3];
+	uint32_t totlen = 0;
+	uint32_t split_ofs = 0;
+	uint32_t old_totlen;
+	int ret, splitvec = -1;
+	int invec, outvec;
+	size_t wbuf_retlen;
+	unsigned char *wbuf_ptr;
+	size_t donelen = 0;
+	uint32_t outvec_to = to;
+
+	/* If not NAND flash, don't bother */
+	if (!c->wbuf)
+		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
+	
+	down_write(&c->wbuf_sem);
+
+	/* If wbuf_ofs is not initialized, set it to target address */
+	if (c->wbuf_ofs == 0xFFFFFFFF) {
+		c->wbuf_ofs = PAGE_DIV(to);
+		c->wbuf_len = PAGE_MOD(to);			
+		memset(c->wbuf,0xff,c->wbuf_pagesize);
+	}
+
+	/* Fixup the wbuf if we are moving to a new eraseblock.  The checks below
+	   fail for ECC'd NOR because cleanmarker == 16, so a block starts at
+	   xxx0010.  */
+	if (jffs2_nor_ecc(c)) {
+		if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
+			c->wbuf_ofs = PAGE_DIV(to);
+			c->wbuf_len = PAGE_MOD(to);
+			memset(c->wbuf,0xff,c->wbuf_pagesize);
+		}
+	}
+	
+	/* Sanity checks on target address. 
+	   It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs), 
+	   and it's permitted to write at the beginning of a new 
+	   erase block. Anything else, and you die.
+	   New block starts at xxx000c (0-b = block header)
+	*/
+	if ( (to & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) {
+		/* It's a write to a new block */
+		if (c->wbuf_len) {
+			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
+			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
+			if (ret) {
+				/* the underlying layer has to check wbuf_len to do the cleanup */
+				D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
+				*retlen = 0;
+				goto exit;
+			}
+		}
+		/* set pointer to new block */
+		c->wbuf_ofs = PAGE_DIV(to);
+		c->wbuf_len = PAGE_MOD(to);			
+	} 
+
+	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
+		/* We're not writing immediately after the writebuffer. Bad. */
+		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
+		if (c->wbuf_len)
+			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
+					  c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
+		BUG();
+	}
+
+	/* Note outvecs[3] above. We know count is never greater than 2 */
+	if (count > 2) {
+		printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
+		BUG();
+	}
+
+	invec = 0;
+	outvec = 0;
+
+	/* Fill writebuffer first, if already in use */	
+	if (c->wbuf_len) {
+		uint32_t invec_ofs = 0;
+
+		/* adjust alignment offset */ 
+		if (c->wbuf_len != PAGE_MOD(to)) {
+			c->wbuf_len = PAGE_MOD(to);
+			/* take care of alignment to next page */
+			if (!c->wbuf_len)
+				c->wbuf_len = c->wbuf_pagesize;
+		}
+		
+		while(c->wbuf_len < c->wbuf_pagesize) {
+			uint32_t thislen;
+			
+			if (invec == count)
+				goto alldone;
+
+			thislen = c->wbuf_pagesize - c->wbuf_len;
+
+			if (thislen >= invecs[invec].iov_len)
+				thislen = invecs[invec].iov_len;
+	
+			invec_ofs = thislen;
+
+			memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
+			c->wbuf_len += thislen;
+			donelen += thislen;
+			/* Get next invec, if actual did not fill the buffer */
+			if (c->wbuf_len < c->wbuf_pagesize) 
+				invec++;
+		}			
+		
+		/* write buffer is full, flush buffer */
+		ret = __jffs2_flush_wbuf(c, NOPAD);
+		if (ret) {
+			/* the underlying layer has to check wbuf_len to do the cleanup */
+			D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
+			/* Retlen zero to make sure our caller doesn't mark the space dirty.
+			   We've already done everything that's necessary */
+			*retlen = 0;
+			goto exit;
+		}
+		outvec_to += donelen;
+		c->wbuf_ofs = outvec_to;
+
+		/* All invecs done ? */
+		if (invec == count)
+			goto alldone;
+
+		/* Set up the first outvec, containing the remainder of the
+		   invec we partially used */
+		if (invecs[invec].iov_len > invec_ofs) {
+			outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
+			totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
+			if (totlen > c->wbuf_pagesize) {
+				splitvec = outvec;
+				split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
+			}
+			outvec++;
+		}
+		invec++;
+	}
+
+	/* OK, now we've flushed the wbuf and the start of the bits
+	   we have been asked to write, now to write the rest.... */
+
+	/* totlen holds the amount of data still to be written */
+	old_totlen = totlen;
+	for ( ; invec < count; invec++,outvec++ ) {
+		outvecs[outvec].iov_base = invecs[invec].iov_base;
+		totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
+		if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
+			splitvec = outvec;
+			split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
+			old_totlen = totlen;
+		}
+	}
+
+	/* Now the outvecs array holds all the remaining data to write */
+	/* Up to splitvec,split_ofs is to be written immediately. The rest
+	   goes into the (now-empty) wbuf */
+
+	if (splitvec != -1) {
+		uint32_t remainder;
+
+		remainder = outvecs[splitvec].iov_len - split_ofs;
+		outvecs[splitvec].iov_len = split_ofs;
+
+		/* We did cross a page boundary, so we write some now */
+		if (jffs2_cleanmarker_oob(c))
+			ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo); 
+		else
+			ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
+		
+		if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
+			/* At this point we have no problem,
+			   c->wbuf is empty. 
+			*/
+			*retlen = donelen;
+			goto exit;
+		}
+		
+		donelen += wbuf_retlen;
+		c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
+
+		if (remainder) {
+			outvecs[splitvec].iov_base += split_ofs;
+			outvecs[splitvec].iov_len = remainder;
+		} else {
+			splitvec++;
+		}
+
+	} else {
+		splitvec = 0;
+	}
+
+	/* Now splitvec points to the start of the bits we have to copy
+	   into the wbuf */
+	wbuf_ptr = c->wbuf;
+
+	for ( ; splitvec < outvec; splitvec++) {
+		/* Don't copy the wbuf into itself */
+		if (outvecs[splitvec].iov_base == c->wbuf)
+			continue;
+		memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
+		wbuf_ptr += outvecs[splitvec].iov_len;
+		donelen += outvecs[splitvec].iov_len;
+	}
+	c->wbuf_len = wbuf_ptr - c->wbuf;
+
+	/* If there's a remainder in the wbuf and it's a non-GC write,
+	   remember that the wbuf affects this ino */
+alldone:
+	*retlen = donelen;
+
+	if (c->wbuf_len && ino)
+		jffs2_wbuf_dirties_inode(c, ino);
+
+	ret = 0;
+	
+exit:
+	up_write(&c->wbuf_sem);
+	return ret;
+}
+
+/*
+ *	This is the entry for flash write.
+ *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
+*/
+int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
+{
+	struct kvec vecs[1];
+
+	if (jffs2_can_mark_obsolete(c))
+		return c->mtd->write(c->mtd, ofs, len, retlen, buf);
+
+	vecs[0].iov_base = (unsigned char *) buf;
+	vecs[0].iov_len = len;
+	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
+}
+
+/*
+	Handle readback from writebuffer and ECC failure return
+*/
+int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
+{
+	loff_t	orbf = 0, owbf = 0, lwbf = 0;
+	int	ret;
+
+	/* Read flash */
+	if (!jffs2_can_mark_obsolete(c)) {
+		down_read(&c->wbuf_sem);
+
+		if (jffs2_cleanmarker_oob(c))
+			ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
+		else
+			ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
+
+		if ( (ret == -EBADMSG) && (*retlen == len) ) {
+			printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
+			       len, ofs);
+			/* 
+			 * We have the raw data without ECC correction in the buffer, maybe 
+			 * we are lucky and all data or parts are correct. We check the node.
+			 * If data are corrupted node check will sort it out.
+			 * We keep this block, it will fail on write or erase and the we
+			 * mark it bad. Or should we do that now? But we should give him a chance.
+			 * Maybe we had a system crash or power loss before the ecc write or  
+			 * a erase was completed.
+			 * So we return success. :)
+			 */
+		 	ret = 0;
+		 }	
+	} else
+		return c->mtd->read(c->mtd, ofs, len, retlen, buf);
+
+	/* if no writebuffer available or write buffer empty, return */
+	if (!c->wbuf_pagesize || !c->wbuf_len)
+		goto exit;
+
+	/* if we read in a different block, return */
+	if ( (ofs & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) 
+		goto exit;
+
+	if (ofs >= c->wbuf_ofs) {
+		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
+		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
+			goto exit;
+		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
+		if (lwbf > len)	
+			lwbf = len;
+	} else {	
+		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
+		if (orbf > len)			/* is write beyond write buffer ? */
+			goto exit;
+		lwbf = len - orbf; 		/* number of bytes to copy */
+		if (lwbf > c->wbuf_len)	
+			lwbf = c->wbuf_len;
+	}	
+	if (lwbf > 0)
+		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
+
+exit:
+	up_read(&c->wbuf_sem);
+	return ret;
+}
+
+/*
+ *	Check, if the out of band area is empty
+ */
+int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
+{
+	unsigned char *buf;
+	int 	ret = 0;
+	int	i,len,page;
+	size_t  retlen;
+	int	oob_size;
+
+	/* allocate a buffer for all oob data in this sector */
+	oob_size = c->mtd->oobsize;
+	len = 4 * oob_size;
+	buf = kmalloc(len, GFP_KERNEL);
+	if (!buf) {
+		printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
+		return -ENOMEM;
+	}
+	/* 
+	 * if mode = 0, we scan for a total empty oob area, else we have
+	 * to take care of the cleanmarker in the first page of the block
+	*/
+	ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
+	if (ret) {
+		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
+		goto out;
+	}
+	
+	if (retlen < len) {
+		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
+			  "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
+		ret = -EIO;
+		goto out;
+	}
+	
+	/* Special check for first page */
+	for(i = 0; i < oob_size ; i++) {
+		/* Yeah, we know about the cleanmarker. */
+		if (mode && i >= c->fsdata_pos && 
+		    i < c->fsdata_pos + c->fsdata_len)
+			continue;
+
+		if (buf[i] != 0xFF) {
+			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
+				  buf[page+i], page+i, jeb->offset));
+			ret = 1; 
+			goto out;
+		}
+	}
+
+	/* we know, we are aligned :) */	
+	for (page = oob_size; page < len; page += sizeof(long)) {
+		unsigned long dat = *(unsigned long *)(&buf[page]);
+		if(dat != -1) {
+			ret = 1; 
+			goto out;
+		}
+	}
+
+out:
+	kfree(buf);	
+	
+	return ret;
+}
+
+/*
+*	Scan for a valid cleanmarker and for bad blocks
+*	For virtual blocks (concatenated physical blocks) check the cleanmarker
+*	only in the first page of the first physical block, but scan for bad blocks in all
+*	physical blocks
+*/
+int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
+{
+	struct jffs2_unknown_node n;
+	unsigned char buf[2 * NAND_MAX_OOBSIZE];
+	unsigned char *p;
+	int ret, i, cnt, retval = 0;
+	size_t retlen, offset;
+	int oob_size;
+
+	offset = jeb->offset;
+	oob_size = c->mtd->oobsize;
+
+	/* Loop through the physical blocks */
+	for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
+		/* Check first if the block is bad. */
+		if (c->mtd->block_isbad (c->mtd, offset)) {
+			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
+			return 2;
+		}
+		/*
+		   *    We read oob data from page 0 and 1 of the block.
+		   *    page 0 contains cleanmarker and badblock info
+		   *    page 1 contains failure count of this block
+		 */
+		ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
+
+		if (ret) {
+			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
+			return ret;
+		}
+		if (retlen < (oob_size << 1)) {
+			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
+			return -EIO;
+		}
+
+		/* Check cleanmarker only on the first physical block */
+		if (!cnt) {
+			n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
+			n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
+			n.totlen = cpu_to_je32 (8);
+			p = (unsigned char *) &n;
+
+			for (i = 0; i < c->fsdata_len; i++) {
+				if (buf[c->fsdata_pos + i] != p[i]) {
+					retval = 1;
+				}
+			}
+			D1(if (retval == 1) {
+				printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
+				printk(KERN_WARNING "OOB at %08x was ", offset);
+				for (i=0; i < oob_size; i++) {
+					printk("%02x ", buf[i]);
+				}
+				printk("\n");
+			})
+		}
+		offset += c->mtd->erasesize;
+	}
+	return retval;
+}
+
+int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
+{
+	struct 	jffs2_unknown_node n;
+	int 	ret;
+	size_t 	retlen;
+
+	n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
+	n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
+	n.totlen = cpu_to_je32(8);
+
+	ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
+	
+	if (ret) {
+		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
+		return ret;
+	}
+	if (retlen != c->fsdata_len) {
+		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
+		return ret;
+	}
+	return 0;
+}
+
+/* 
+ * On NAND we try to mark this block bad. If the block was erased more
+ * than MAX_ERASE_FAILURES we mark it finaly bad.
+ * Don't care about failures. This block remains on the erase-pending
+ * or badblock list as long as nobody manipulates the flash with
+ * a bootloader or something like that.
+ */
+
+int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
+{
+	int 	ret;
+
+	/* if the count is < max, we try to write the counter to the 2nd page oob area */
+	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
+		return 0;
+
+	if (!c->mtd->block_markbad)
+		return 1; // What else can we do?
+
+	D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
+	ret = c->mtd->block_markbad(c->mtd, bad_offset);
+	
+	if (ret) {
+		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
+		return ret;
+	}
+	return 1;
+}
+
+#define NAND_JFFS2_OOB16_FSDALEN	8
+
+static struct nand_oobinfo jffs2_oobinfo_docecc = {
+	.useecc = MTD_NANDECC_PLACE,
+	.eccbytes = 6,
+	.eccpos = {0,1,2,3,4,5}
+};
+
+
+static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
+{
+	struct nand_oobinfo *oinfo = &c->mtd->oobinfo;
+
+	/* Do this only, if we have an oob buffer */
+	if (!c->mtd->oobsize)
+		return 0;
+	
+	/* Cleanmarker is out-of-band, so inline size zero */
+	c->cleanmarker_size = 0;
+
+	/* Should we use autoplacement ? */
+	if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
+		D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
+		/* Get the position of the free bytes */
+		if (!oinfo->oobfree[0][1]) {
+			printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
+			return -ENOSPC;
+		}
+		c->fsdata_pos = oinfo->oobfree[0][0];
+		c->fsdata_len = oinfo->oobfree[0][1];
+		if (c->fsdata_len > 8)
+			c->fsdata_len = 8;
+	} else {
+		/* This is just a legacy fallback and should go away soon */
+		switch(c->mtd->ecctype) {
+		case MTD_ECC_RS_DiskOnChip:
+			printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
+			c->oobinfo = &jffs2_oobinfo_docecc;
+			c->fsdata_pos = 6;
+			c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
+			c->badblock_pos = 15;
+			break;
+	
+		default:
+			D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
+			return -EINVAL;
+		}
+	}
+	return 0;
+}
+
+int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
+{
+	int res;
+
+	/* Initialise write buffer */
+	init_rwsem(&c->wbuf_sem);
+	c->wbuf_pagesize = c->mtd->oobblock;
+	c->wbuf_ofs = 0xFFFFFFFF;
+	
+	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
+	if (!c->wbuf)
+		return -ENOMEM;
+
+	res = jffs2_nand_set_oobinfo(c);
+
+#ifdef BREAKME
+	if (!brokenbuf)
+		brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
+	if (!brokenbuf) {
+		kfree(c->wbuf);
+		return -ENOMEM;
+	}
+	memset(brokenbuf, 0xdb, c->wbuf_pagesize);
+#endif
+	return res;
+}
+
+void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
+{
+	kfree(c->wbuf);
+}
+
+#ifdef CONFIG_JFFS2_FS_NOR_ECC
+int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
+	/* Cleanmarker is actually larger on the flashes */
+	c->cleanmarker_size = 16;
+
+	/* Initialize write buffer */
+	init_rwsem(&c->wbuf_sem);
+	c->wbuf_pagesize = c->mtd->eccsize;
+	c->wbuf_ofs = 0xFFFFFFFF;
+
+	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
+	if (!c->wbuf)
+		return -ENOMEM;
+
+	return 0;
+}
+
+void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
+	kfree(c->wbuf);
+}
+#endif