blob: 09d35044bd889291e3cacb3f8c4f3aa2b9619e5f [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001// SPDX-License-Identifier: GPL-2.0
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002/*
3 * Scheduler topology setup/handling methods
4 */
Ingo Molnarf2cb1362017-02-01 13:10:18 +01005#include "sched.h"
6
7DEFINE_MUTEX(sched_domains_mutex);
8
9/* Protected by sched_domains_mutex: */
zhong jiangace80312018-08-03 20:37:32 +080010static cpumask_var_t sched_domains_tmpmask;
11static cpumask_var_t sched_domains_tmpmask2;
Ingo Molnarf2cb1362017-02-01 13:10:18 +010012
13#ifdef CONFIG_SCHED_DEBUG
14
Ingo Molnarf2cb1362017-02-01 13:10:18 +010015static int __init sched_debug_setup(char *str)
16{
Peter Zijlstra9469eb02017-09-07 17:03:53 +020017 sched_debug_enabled = true;
Ingo Molnarf2cb1362017-02-01 13:10:18 +010018
19 return 0;
20}
21early_param("sched_debug", sched_debug_setup);
22
23static inline bool sched_debug(void)
24{
25 return sched_debug_enabled;
26}
27
Valentin Schneider848785d2020-09-08 19:49:56 +010028#define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
29const struct sd_flag_debug sd_flag_debug[] = {
30#include <linux/sched/sd_flags.h>
31};
32#undef SD_FLAG
33
Ingo Molnarf2cb1362017-02-01 13:10:18 +010034static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
35 struct cpumask *groupmask)
36{
37 struct sched_group *group = sd->groups;
Valentin Schneider65c5e252020-08-17 12:29:51 +010038 unsigned long flags = sd->flags;
39 unsigned int idx;
Ingo Molnarf2cb1362017-02-01 13:10:18 +010040
41 cpumask_clear(groupmask);
42
Peter Zijlstra005f8742017-04-26 17:35:35 +020043 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
Peter Zijlstra005f8742017-04-26 17:35:35 +020044 printk(KERN_CONT "span=%*pbl level=%s\n",
Ingo Molnarf2cb1362017-02-01 13:10:18 +010045 cpumask_pr_args(sched_domain_span(sd)), sd->name);
46
47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
Ingo Molnar97fb7a02018-03-03 14:01:12 +010048 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +010049 }
Yi Wang6cd0c582018-07-23 12:19:07 +080050 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
Ingo Molnar97fb7a02018-03-03 14:01:12 +010051 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +010052 }
53
Valentin Schneider65c5e252020-08-17 12:29:51 +010054 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
55 unsigned int flag = BIT(idx);
56 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
57
58 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
59 !(sd->child->flags & flag))
60 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
61 sd_flag_debug[idx].name);
62
63 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
64 !(sd->parent->flags & flag))
65 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
66 sd_flag_debug[idx].name);
67 }
68
Ingo Molnarf2cb1362017-02-01 13:10:18 +010069 printk(KERN_DEBUG "%*s groups:", level + 1, "");
70 do {
71 if (!group) {
72 printk("\n");
73 printk(KERN_ERR "ERROR: group is NULL\n");
74 break;
75 }
76
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020077 if (!cpumask_weight(sched_group_span(group))) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +010078 printk(KERN_CONT "\n");
79 printk(KERN_ERR "ERROR: empty group\n");
80 break;
81 }
82
83 if (!(sd->flags & SD_OVERLAP) &&
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020084 cpumask_intersects(groupmask, sched_group_span(group))) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +010085 printk(KERN_CONT "\n");
86 printk(KERN_ERR "ERROR: repeated CPUs\n");
87 break;
88 }
89
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020090 cpumask_or(groupmask, groupmask, sched_group_span(group));
Ingo Molnarf2cb1362017-02-01 13:10:18 +010091
Peter Zijlstra005f8742017-04-26 17:35:35 +020092 printk(KERN_CONT " %d:{ span=%*pbl",
93 group->sgc->id,
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020094 cpumask_pr_args(sched_group_span(group)));
Peter Zijlstrab0151c22017-04-14 17:29:16 +020095
Peter Zijlstraaf218122017-05-01 08:51:05 +020096 if ((sd->flags & SD_OVERLAP) &&
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020097 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
Peter Zijlstra005f8742017-04-26 17:35:35 +020098 printk(KERN_CONT " mask=%*pbl",
Peter Zijlstrae5c14b12017-05-01 10:47:02 +020099 cpumask_pr_args(group_balance_mask(group)));
Peter Zijlstrab0151c22017-04-14 17:29:16 +0200100 }
101
Peter Zijlstra005f8742017-04-26 17:35:35 +0200102 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
103 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100104
Peter Zijlstraa420b062017-04-14 18:20:48 +0200105 if (group == sd->groups && sd->child &&
106 !cpumask_equal(sched_domain_span(sd->child),
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200107 sched_group_span(group))) {
Peter Zijlstraa420b062017-04-14 18:20:48 +0200108 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
109 }
110
Peter Zijlstra005f8742017-04-26 17:35:35 +0200111 printk(KERN_CONT " }");
112
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100113 group = group->next;
Peter Zijlstrab0151c22017-04-14 17:29:16 +0200114
115 if (group != sd->groups)
116 printk(KERN_CONT ",");
117
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100118 } while (group != sd->groups);
119 printk(KERN_CONT "\n");
120
121 if (!cpumask_equal(sched_domain_span(sd), groupmask))
122 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
123
124 if (sd->parent &&
125 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
Ingo Molnar97fb7a02018-03-03 14:01:12 +0100126 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100127 return 0;
128}
129
130static void sched_domain_debug(struct sched_domain *sd, int cpu)
131{
132 int level = 0;
133
134 if (!sched_debug_enabled)
135 return;
136
137 if (!sd) {
138 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
139 return;
140 }
141
Peter Zijlstra005f8742017-04-26 17:35:35 +0200142 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100143
144 for (;;) {
145 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
146 break;
147 level++;
148 sd = sd->parent;
149 if (!sd)
150 break;
151 }
152}
153#else /* !CONFIG_SCHED_DEBUG */
154
155# define sched_debug_enabled 0
156# define sched_domain_debug(sd, cpu) do { } while (0)
157static inline bool sched_debug(void)
158{
159 return false;
160}
161#endif /* CONFIG_SCHED_DEBUG */
162
Valentin Schneider4fc472f2020-08-25 14:32:16 +0100163/* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
164#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
165static const unsigned int SD_DEGENERATE_GROUPS_MASK =
166#include <linux/sched/sd_flags.h>
1670;
168#undef SD_FLAG
169
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100170static int sd_degenerate(struct sched_domain *sd)
171{
172 if (cpumask_weight(sched_domain_span(sd)) == 1)
173 return 1;
174
175 /* Following flags need at least 2 groups */
Valentin Schneider6f349812020-08-17 12:29:54 +0100176 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
177 (sd->groups != sd->groups->next))
178 return 0;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100179
180 /* Following flags don't use groups */
181 if (sd->flags & (SD_WAKE_AFFINE))
182 return 0;
183
184 return 1;
185}
186
187static int
188sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
189{
190 unsigned long cflags = sd->flags, pflags = parent->flags;
191
192 if (sd_degenerate(parent))
193 return 1;
194
195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
196 return 0;
197
198 /* Flags needing groups don't count if only 1 group in parent */
Valentin Schneiderab65afb2020-08-17 12:29:55 +0100199 if (parent->groups == parent->groups->next)
Valentin Schneider3a6712c2020-08-17 12:29:57 +0100200 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
Valentin Schneiderab65afb2020-08-17 12:29:55 +0100201
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100202 if (~cflags & pflags)
203 return 0;
204
205 return 1;
206}
207
Quentin Perret531b5c92018-12-03 09:56:21 +0000208#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
Peter Zijlstraf8a696f2018-12-05 11:23:56 +0100209DEFINE_STATIC_KEY_FALSE(sched_energy_present);
Quentin Perret8d5d0cf2018-12-03 09:56:23 +0000210unsigned int sysctl_sched_energy_aware = 1;
Quentin Perret531b5c92018-12-03 09:56:21 +0000211DEFINE_MUTEX(sched_energy_mutex);
212bool sched_energy_update;
213
Ionela Voinescu31f6a8c2020-10-27 18:07:11 +0000214void rebuild_sched_domains_energy(void)
215{
216 mutex_lock(&sched_energy_mutex);
217 sched_energy_update = true;
218 rebuild_sched_domains();
219 sched_energy_update = false;
220 mutex_unlock(&sched_energy_mutex);
221}
222
Quentin Perret8d5d0cf2018-12-03 09:56:23 +0000223#ifdef CONFIG_PROC_SYSCTL
224int sched_energy_aware_handler(struct ctl_table *table, int write,
Christoph Hellwig32927392020-04-24 08:43:38 +0200225 void *buffer, size_t *lenp, loff_t *ppos)
Quentin Perret8d5d0cf2018-12-03 09:56:23 +0000226{
227 int ret, state;
228
229 if (write && !capable(CAP_SYS_ADMIN))
230 return -EPERM;
231
232 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
233 if (!ret && write) {
234 state = static_branch_unlikely(&sched_energy_present);
Ionela Voinescu31f6a8c2020-10-27 18:07:11 +0000235 if (state != sysctl_sched_energy_aware)
236 rebuild_sched_domains_energy();
Quentin Perret8d5d0cf2018-12-03 09:56:23 +0000237 }
238
239 return ret;
240}
241#endif
242
Quentin Perret6aa140f2018-12-03 09:56:18 +0000243static void free_pd(struct perf_domain *pd)
244{
245 struct perf_domain *tmp;
246
247 while (pd) {
248 tmp = pd->next;
249 kfree(pd);
250 pd = tmp;
251 }
252}
253
254static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
255{
256 while (pd) {
257 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
258 return pd;
259 pd = pd->next;
260 }
261
262 return NULL;
263}
264
265static struct perf_domain *pd_init(int cpu)
266{
267 struct em_perf_domain *obj = em_cpu_get(cpu);
268 struct perf_domain *pd;
269
270 if (!obj) {
271 if (sched_debug())
272 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
273 return NULL;
274 }
275
276 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
277 if (!pd)
278 return NULL;
279 pd->em_pd = obj;
280
281 return pd;
282}
283
284static void perf_domain_debug(const struct cpumask *cpu_map,
285 struct perf_domain *pd)
286{
287 if (!sched_debug() || !pd)
288 return;
289
290 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
291
292 while (pd) {
Lukasz Luba521b5122020-05-27 10:58:47 +0100293 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
Quentin Perret6aa140f2018-12-03 09:56:18 +0000294 cpumask_first(perf_domain_span(pd)),
295 cpumask_pr_args(perf_domain_span(pd)),
Lukasz Luba521b5122020-05-27 10:58:47 +0100296 em_pd_nr_perf_states(pd->em_pd));
Quentin Perret6aa140f2018-12-03 09:56:18 +0000297 pd = pd->next;
298 }
299
300 printk(KERN_CONT "\n");
301}
302
303static void destroy_perf_domain_rcu(struct rcu_head *rp)
304{
305 struct perf_domain *pd;
306
307 pd = container_of(rp, struct perf_domain, rcu);
308 free_pd(pd);
309}
310
Quentin Perret1f74de82018-12-03 09:56:22 +0000311static void sched_energy_set(bool has_eas)
312{
313 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
314 if (sched_debug())
315 pr_info("%s: stopping EAS\n", __func__);
316 static_branch_disable_cpuslocked(&sched_energy_present);
317 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
318 if (sched_debug())
319 pr_info("%s: starting EAS\n", __func__);
320 static_branch_enable_cpuslocked(&sched_energy_present);
321 }
322}
323
Quentin Perretb68a4c02018-12-03 09:56:20 +0000324/*
325 * EAS can be used on a root domain if it meets all the following conditions:
326 * 1. an Energy Model (EM) is available;
327 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
Valentin Schneider38502ab2020-02-27 19:14:32 +0000328 * 3. no SMT is detected.
329 * 4. the EM complexity is low enough to keep scheduling overheads low;
330 * 5. schedutil is driving the frequency of all CPUs of the rd;
Ionela Voinescufa50e2b2020-10-27 18:07:13 +0000331 * 6. frequency invariance support is present;
Quentin Perretb68a4c02018-12-03 09:56:20 +0000332 *
333 * The complexity of the Energy Model is defined as:
334 *
Lukasz Luba521b5122020-05-27 10:58:47 +0100335 * C = nr_pd * (nr_cpus + nr_ps)
Quentin Perretb68a4c02018-12-03 09:56:20 +0000336 *
337 * with parameters defined as:
338 * - nr_pd: the number of performance domains
339 * - nr_cpus: the number of CPUs
Lukasz Luba521b5122020-05-27 10:58:47 +0100340 * - nr_ps: the sum of the number of performance states of all performance
Quentin Perretb68a4c02018-12-03 09:56:20 +0000341 * domains (for example, on a system with 2 performance domains,
Lukasz Luba521b5122020-05-27 10:58:47 +0100342 * with 10 performance states each, nr_ps = 2 * 10 = 20).
Quentin Perretb68a4c02018-12-03 09:56:20 +0000343 *
344 * It is generally not a good idea to use such a model in the wake-up path on
345 * very complex platforms because of the associated scheduling overheads. The
346 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
Lukasz Luba521b5122020-05-27 10:58:47 +0100347 * with per-CPU DVFS and less than 8 performance states each, for example.
Quentin Perretb68a4c02018-12-03 09:56:20 +0000348 */
349#define EM_MAX_COMPLEXITY 2048
350
Quentin Perret531b5c92018-12-03 09:56:21 +0000351extern struct cpufreq_governor schedutil_gov;
Quentin Perret1f74de82018-12-03 09:56:22 +0000352static bool build_perf_domains(const struct cpumask *cpu_map)
Quentin Perret6aa140f2018-12-03 09:56:18 +0000353{
Lukasz Luba521b5122020-05-27 10:58:47 +0100354 int i, nr_pd = 0, nr_ps = 0, nr_cpus = cpumask_weight(cpu_map);
Quentin Perret6aa140f2018-12-03 09:56:18 +0000355 struct perf_domain *pd = NULL, *tmp;
356 int cpu = cpumask_first(cpu_map);
357 struct root_domain *rd = cpu_rq(cpu)->rd;
Quentin Perret531b5c92018-12-03 09:56:21 +0000358 struct cpufreq_policy *policy;
359 struct cpufreq_governor *gov;
Quentin Perretb68a4c02018-12-03 09:56:20 +0000360
Quentin Perret8d5d0cf2018-12-03 09:56:23 +0000361 if (!sysctl_sched_energy_aware)
362 goto free;
363
Quentin Perretb68a4c02018-12-03 09:56:20 +0000364 /* EAS is enabled for asymmetric CPU capacity topologies. */
365 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
366 if (sched_debug()) {
367 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
368 cpumask_pr_args(cpu_map));
369 }
370 goto free;
371 }
Quentin Perret6aa140f2018-12-03 09:56:18 +0000372
Valentin Schneider38502ab2020-02-27 19:14:32 +0000373 /* EAS definitely does *not* handle SMT */
374 if (sched_smt_active()) {
375 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
376 cpumask_pr_args(cpu_map));
377 goto free;
378 }
379
Ionela Voinescufa50e2b2020-10-27 18:07:13 +0000380 if (!arch_scale_freq_invariant()) {
381 if (sched_debug()) {
382 pr_warn("rd %*pbl: Disabling EAS: frequency-invariant load tracking not yet supported",
383 cpumask_pr_args(cpu_map));
384 }
385 goto free;
386 }
387
Quentin Perret6aa140f2018-12-03 09:56:18 +0000388 for_each_cpu(i, cpu_map) {
389 /* Skip already covered CPUs. */
390 if (find_pd(pd, i))
391 continue;
392
Quentin Perret531b5c92018-12-03 09:56:21 +0000393 /* Do not attempt EAS if schedutil is not being used. */
394 policy = cpufreq_cpu_get(i);
395 if (!policy)
396 goto free;
397 gov = policy->governor;
398 cpufreq_cpu_put(policy);
399 if (gov != &schedutil_gov) {
400 if (rd->pd)
401 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
402 cpumask_pr_args(cpu_map));
403 goto free;
404 }
405
Quentin Perret6aa140f2018-12-03 09:56:18 +0000406 /* Create the new pd and add it to the local list. */
407 tmp = pd_init(i);
408 if (!tmp)
409 goto free;
410 tmp->next = pd;
411 pd = tmp;
Quentin Perretb68a4c02018-12-03 09:56:20 +0000412
413 /*
Lukasz Luba521b5122020-05-27 10:58:47 +0100414 * Count performance domains and performance states for the
Quentin Perretb68a4c02018-12-03 09:56:20 +0000415 * complexity check.
416 */
417 nr_pd++;
Lukasz Luba521b5122020-05-27 10:58:47 +0100418 nr_ps += em_pd_nr_perf_states(pd->em_pd);
Quentin Perretb68a4c02018-12-03 09:56:20 +0000419 }
420
421 /* Bail out if the Energy Model complexity is too high. */
Lukasz Luba521b5122020-05-27 10:58:47 +0100422 if (nr_pd * (nr_ps + nr_cpus) > EM_MAX_COMPLEXITY) {
Quentin Perretb68a4c02018-12-03 09:56:20 +0000423 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
424 cpumask_pr_args(cpu_map));
425 goto free;
Quentin Perret6aa140f2018-12-03 09:56:18 +0000426 }
427
428 perf_domain_debug(cpu_map, pd);
429
430 /* Attach the new list of performance domains to the root domain. */
431 tmp = rd->pd;
432 rcu_assign_pointer(rd->pd, pd);
433 if (tmp)
434 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
435
Quentin Perret1f74de82018-12-03 09:56:22 +0000436 return !!pd;
Quentin Perret6aa140f2018-12-03 09:56:18 +0000437
438free:
439 free_pd(pd);
440 tmp = rd->pd;
441 rcu_assign_pointer(rd->pd, NULL);
442 if (tmp)
443 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
Quentin Perret1f74de82018-12-03 09:56:22 +0000444
445 return false;
Quentin Perret6aa140f2018-12-03 09:56:18 +0000446}
447#else
448static void free_pd(struct perf_domain *pd) { }
Quentin Perret531b5c92018-12-03 09:56:21 +0000449#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
Quentin Perret6aa140f2018-12-03 09:56:18 +0000450
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100451static void free_rootdomain(struct rcu_head *rcu)
452{
453 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
454
455 cpupri_cleanup(&rd->cpupri);
456 cpudl_cleanup(&rd->cpudl);
457 free_cpumask_var(rd->dlo_mask);
458 free_cpumask_var(rd->rto_mask);
459 free_cpumask_var(rd->online);
460 free_cpumask_var(rd->span);
Quentin Perret6aa140f2018-12-03 09:56:18 +0000461 free_pd(rd->pd);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100462 kfree(rd);
463}
464
465void rq_attach_root(struct rq *rq, struct root_domain *rd)
466{
467 struct root_domain *old_rd = NULL;
468 unsigned long flags;
469
470 raw_spin_lock_irqsave(&rq->lock, flags);
471
472 if (rq->rd) {
473 old_rd = rq->rd;
474
475 if (cpumask_test_cpu(rq->cpu, old_rd->online))
476 set_rq_offline(rq);
477
478 cpumask_clear_cpu(rq->cpu, old_rd->span);
479
480 /*
481 * If we dont want to free the old_rd yet then
482 * set old_rd to NULL to skip the freeing later
483 * in this function:
484 */
485 if (!atomic_dec_and_test(&old_rd->refcount))
486 old_rd = NULL;
487 }
488
489 atomic_inc(&rd->refcount);
490 rq->rd = rd;
491
492 cpumask_set_cpu(rq->cpu, rd->span);
493 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
494 set_rq_online(rq);
495
496 raw_spin_unlock_irqrestore(&rq->lock, flags);
497
498 if (old_rd)
Paul E. McKenney337e9b02018-11-06 19:10:53 -0800499 call_rcu(&old_rd->rcu, free_rootdomain);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100500}
501
Steven Rostedt (VMware)364f5662018-01-23 20:45:38 -0500502void sched_get_rd(struct root_domain *rd)
503{
504 atomic_inc(&rd->refcount);
505}
506
507void sched_put_rd(struct root_domain *rd)
508{
509 if (!atomic_dec_and_test(&rd->refcount))
510 return;
511
Paul E. McKenney337e9b02018-11-06 19:10:53 -0800512 call_rcu(&rd->rcu, free_rootdomain);
Steven Rostedt (VMware)364f5662018-01-23 20:45:38 -0500513}
514
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100515static int init_rootdomain(struct root_domain *rd)
516{
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100517 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
518 goto out;
519 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
520 goto free_span;
521 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
522 goto free_online;
523 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
524 goto free_dlo_mask;
525
Steven Rostedt (Red Hat)4bdced52017-10-06 14:05:04 -0400526#ifdef HAVE_RT_PUSH_IPI
527 rd->rto_cpu = -1;
528 raw_spin_lock_init(&rd->rto_lock);
529 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
530#endif
531
Peng Liu26762422020-10-08 23:48:46 +0800532 rd->visit_gen = 0;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100533 init_dl_bw(&rd->dl_bw);
534 if (cpudl_init(&rd->cpudl) != 0)
535 goto free_rto_mask;
536
537 if (cpupri_init(&rd->cpupri) != 0)
538 goto free_cpudl;
539 return 0;
540
541free_cpudl:
542 cpudl_cleanup(&rd->cpudl);
543free_rto_mask:
544 free_cpumask_var(rd->rto_mask);
545free_dlo_mask:
546 free_cpumask_var(rd->dlo_mask);
547free_online:
548 free_cpumask_var(rd->online);
549free_span:
550 free_cpumask_var(rd->span);
551out:
552 return -ENOMEM;
553}
554
555/*
556 * By default the system creates a single root-domain with all CPUs as
557 * members (mimicking the global state we have today).
558 */
559struct root_domain def_root_domain;
560
561void init_defrootdomain(void)
562{
563 init_rootdomain(&def_root_domain);
564
565 atomic_set(&def_root_domain.refcount, 1);
566}
567
568static struct root_domain *alloc_rootdomain(void)
569{
570 struct root_domain *rd;
571
Viresh Kumar4d13a062017-04-13 14:45:48 +0530572 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100573 if (!rd)
574 return NULL;
575
576 if (init_rootdomain(rd) != 0) {
577 kfree(rd);
578 return NULL;
579 }
580
581 return rd;
582}
583
584static void free_sched_groups(struct sched_group *sg, int free_sgc)
585{
586 struct sched_group *tmp, *first;
587
588 if (!sg)
589 return;
590
591 first = sg;
592 do {
593 tmp = sg->next;
594
595 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
596 kfree(sg->sgc);
597
Shu Wang213c5a42017-08-10 15:52:16 +0800598 if (atomic_dec_and_test(&sg->ref))
599 kfree(sg);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100600 sg = tmp;
601 } while (sg != first);
602}
603
604static void destroy_sched_domain(struct sched_domain *sd)
605{
606 /*
Peter Zijlstraa090c4f2017-08-21 15:42:52 +0200607 * A normal sched domain may have multiple group references, an
608 * overlapping domain, having private groups, only one. Iterate,
609 * dropping group/capacity references, freeing where none remain.
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100610 */
Shu Wang213c5a42017-08-10 15:52:16 +0800611 free_sched_groups(sd->groups, 1);
612
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100613 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
614 kfree(sd->shared);
615 kfree(sd);
616}
617
618static void destroy_sched_domains_rcu(struct rcu_head *rcu)
619{
620 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
621
622 while (sd) {
623 struct sched_domain *parent = sd->parent;
624 destroy_sched_domain(sd);
625 sd = parent;
626 }
627}
628
629static void destroy_sched_domains(struct sched_domain *sd)
630{
631 if (sd)
632 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
633}
634
635/*
636 * Keep a special pointer to the highest sched_domain that has
637 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
638 * allows us to avoid some pointer chasing select_idle_sibling().
639 *
640 * Also keep a unique ID per domain (we use the first CPU number in
641 * the cpumask of the domain), this allows us to quickly tell if
642 * two CPUs are in the same cache domain, see cpus_share_cache().
643 */
Joel Fernandes (Google)994aeb72019-03-20 20:34:24 -0400644DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100645DEFINE_PER_CPU(int, sd_llc_size);
646DEFINE_PER_CPU(int, sd_llc_id);
Joel Fernandes (Google)994aeb72019-03-20 20:34:24 -0400647DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
648DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
649DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
650DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
Morten Rasmussendf054e82018-07-04 11:17:39 +0100651DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100652
653static void update_top_cache_domain(int cpu)
654{
655 struct sched_domain_shared *sds = NULL;
656 struct sched_domain *sd;
657 int id = cpu;
658 int size = 1;
659
660 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
661 if (sd) {
662 id = cpumask_first(sched_domain_span(sd));
663 size = cpumask_weight(sched_domain_span(sd));
664 sds = sd->shared;
665 }
666
667 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
668 per_cpu(sd_llc_size, cpu) = size;
669 per_cpu(sd_llc_id, cpu) = id;
670 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
671
672 sd = lowest_flag_domain(cpu, SD_NUMA);
673 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
674
675 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
Quentin Perret011b27b2018-12-03 09:56:19 +0000676 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
677
678 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
679 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100680}
681
682/*
683 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
684 * hold the hotplug lock.
685 */
686static void
687cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
688{
689 struct rq *rq = cpu_rq(cpu);
690 struct sched_domain *tmp;
Valentin Schneiderb5b21732020-11-10 18:43:00 +0000691 int numa_distance = 0;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100692
693 /* Remove the sched domains which do not contribute to scheduling. */
694 for (tmp = sd; tmp; ) {
695 struct sched_domain *parent = tmp->parent;
696 if (!parent)
697 break;
698
699 if (sd_parent_degenerate(tmp, parent)) {
700 tmp->parent = parent->parent;
701 if (parent->parent)
702 parent->parent->child = tmp;
703 /*
704 * Transfer SD_PREFER_SIBLING down in case of a
705 * degenerate parent; the spans match for this
706 * so the property transfers.
707 */
708 if (parent->flags & SD_PREFER_SIBLING)
709 tmp->flags |= SD_PREFER_SIBLING;
710 destroy_sched_domain(parent);
711 } else
712 tmp = tmp->parent;
713 }
714
715 if (sd && sd_degenerate(sd)) {
716 tmp = sd;
717 sd = sd->parent;
718 destroy_sched_domain(tmp);
719 if (sd)
720 sd->child = NULL;
721 }
722
Valentin Schneiderb5b21732020-11-10 18:43:00 +0000723 for (tmp = sd; tmp; tmp = tmp->parent)
724 numa_distance += !!(tmp->flags & SD_NUMA);
725
726 /*
727 * FIXME: Diameter >=3 is misrepresented.
728 *
729 * Smallest diameter=3 topology is:
730 *
731 * node 0 1 2 3
732 * 0: 10 20 30 40
733 * 1: 20 10 20 30
734 * 2: 30 20 10 20
735 * 3: 40 30 20 10
736 *
737 * 0 --- 1 --- 2 --- 3
738 *
739 * NUMA-3 0-3 N/A N/A 0-3
740 * groups: {0-2},{1-3} {1-3},{0-2}
741 *
742 * NUMA-2 0-2 0-3 0-3 1-3
743 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
744 *
745 * NUMA-1 0-1 0-2 1-3 2-3
746 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
747 *
748 * NUMA-0 0 1 2 3
749 *
750 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
751 * group span isn't a subset of the domain span.
752 */
753 WARN_ONCE(numa_distance > 2, "Shortest NUMA path spans too many nodes\n");
754
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100755 sched_domain_debug(sd, cpu);
756
757 rq_attach_root(rq, rd);
758 tmp = rq->sd;
759 rcu_assign_pointer(rq->sd, sd);
Peter Zijlstrabbdacdf2017-08-10 17:10:26 +0200760 dirty_sched_domain_sysctl(cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100761 destroy_sched_domains(tmp);
762
763 update_top_cache_domain(cpu);
764}
765
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100766struct s_data {
Luc Van Oostenryck99687cd2019-01-18 15:49:36 +0100767 struct sched_domain * __percpu *sd;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100768 struct root_domain *rd;
769};
770
771enum s_alloc {
772 sa_rootdomain,
773 sa_sd,
774 sa_sd_storage,
775 sa_none,
776};
777
778/*
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200779 * Return the canonical balance CPU for this group, this is the first CPU
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200780 * of this group that's also in the balance mask.
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200781 *
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200782 * The balance mask are all those CPUs that could actually end up at this
783 * group. See build_balance_mask().
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200784 *
785 * Also see should_we_balance().
786 */
787int group_balance_cpu(struct sched_group *sg)
788{
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200789 return cpumask_first(group_balance_mask(sg));
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200790}
791
792
793/*
794 * NUMA topology (first read the regular topology blurb below)
795 *
796 * Given a node-distance table, for example:
797 *
798 * node 0 1 2 3
799 * 0: 10 20 30 20
800 * 1: 20 10 20 30
801 * 2: 30 20 10 20
802 * 3: 20 30 20 10
803 *
804 * which represents a 4 node ring topology like:
805 *
806 * 0 ----- 1
807 * | |
808 * | |
809 * | |
810 * 3 ----- 2
811 *
812 * We want to construct domains and groups to represent this. The way we go
813 * about doing this is to build the domains on 'hops'. For each NUMA level we
814 * construct the mask of all nodes reachable in @level hops.
815 *
816 * For the above NUMA topology that gives 3 levels:
817 *
818 * NUMA-2 0-3 0-3 0-3 0-3
819 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
820 *
821 * NUMA-1 0-1,3 0-2 1-3 0,2-3
822 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
823 *
824 * NUMA-0 0 1 2 3
825 *
826 *
827 * As can be seen; things don't nicely line up as with the regular topology.
828 * When we iterate a domain in child domain chunks some nodes can be
829 * represented multiple times -- hence the "overlap" naming for this part of
830 * the topology.
831 *
832 * In order to minimize this overlap, we only build enough groups to cover the
833 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
834 *
835 * Because:
836 *
837 * - the first group of each domain is its child domain; this
838 * gets us the first 0-1,3
839 * - the only uncovered node is 2, who's child domain is 1-3.
840 *
841 * However, because of the overlap, computing a unique CPU for each group is
842 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
843 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
844 * end up at those groups (they would end up in group: 0-1,3).
845 *
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200846 * To correct this we have to introduce the group balance mask. This mask
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200847 * will contain those CPUs in the group that can reach this group given the
848 * (child) domain tree.
849 *
850 * With this we can once again compute balance_cpu and sched_group_capacity
851 * relations.
852 *
853 * XXX include words on how balance_cpu is unique and therefore can be
854 * used for sched_group_capacity links.
855 *
856 *
857 * Another 'interesting' topology is:
858 *
859 * node 0 1 2 3
860 * 0: 10 20 20 30
861 * 1: 20 10 20 20
862 * 2: 20 20 10 20
863 * 3: 30 20 20 10
864 *
865 * Which looks a little like:
866 *
867 * 0 ----- 1
868 * | / |
869 * | / |
870 * | / |
871 * 2 ----- 3
872 *
873 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
874 * are not.
875 *
876 * This leads to a few particularly weird cases where the sched_domain's are
Ingo Molnar97fb7a02018-03-03 14:01:12 +0100877 * not of the same number for each CPU. Consider:
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200878 *
879 * NUMA-2 0-3 0-3
880 * groups: {0-2},{1-3} {1-3},{0-2}
881 *
882 * NUMA-1 0-2 0-3 0-3 1-3
883 *
884 * NUMA-0 0 1 2 3
885 *
886 */
887
888
889/*
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200890 * Build the balance mask; it contains only those CPUs that can arrive at this
891 * group and should be considered to continue balancing.
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200892 *
893 * We do this during the group creation pass, therefore the group information
894 * isn't complete yet, however since each group represents a (child) domain we
895 * can fully construct this using the sched_domain bits (which are already
896 * complete).
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100897 */
Peter Zijlstra16763302017-04-25 14:31:11 +0200898static void
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200899build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100900{
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200901 const struct cpumask *sg_span = sched_group_span(sg);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100902 struct sd_data *sdd = sd->private;
903 struct sched_domain *sibling;
904 int i;
905
Peter Zijlstra16763302017-04-25 14:31:11 +0200906 cpumask_clear(mask);
907
Lauro Ramos Venanciof32d7822017-04-20 16:51:40 -0300908 for_each_cpu(i, sg_span) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100909 sibling = *per_cpu_ptr(sdd->sd, i);
Peter Zijlstra73bb0592017-04-25 14:00:49 +0200910
911 /*
912 * Can happen in the asymmetric case, where these siblings are
913 * unused. The mask will not be empty because those CPUs that
914 * do have the top domain _should_ span the domain.
915 */
916 if (!sibling->child)
917 continue;
918
919 /* If we would not end up here, we can't continue from here */
920 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100921 continue;
922
Peter Zijlstra16763302017-04-25 14:31:11 +0200923 cpumask_set_cpu(i, mask);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100924 }
Peter Zijlstra73bb0592017-04-25 14:00:49 +0200925
926 /* We must not have empty masks here */
Peter Zijlstra16763302017-04-25 14:31:11 +0200927 WARN_ON_ONCE(cpumask_empty(mask));
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100928}
929
930/*
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200931 * XXX: This creates per-node group entries; since the load-balancer will
932 * immediately access remote memory to construct this group's load-balance
933 * statistics having the groups node local is of dubious benefit.
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100934 */
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300935static struct sched_group *
936build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
937{
938 struct sched_group *sg;
939 struct cpumask *sg_span;
940
941 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
942 GFP_KERNEL, cpu_to_node(cpu));
943
944 if (!sg)
945 return NULL;
946
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200947 sg_span = sched_group_span(sg);
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300948 if (sd->child)
949 cpumask_copy(sg_span, sched_domain_span(sd->child));
950 else
951 cpumask_copy(sg_span, sched_domain_span(sd));
952
Shu Wang213c5a42017-08-10 15:52:16 +0800953 atomic_inc(&sg->ref);
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300954 return sg;
955}
956
957static void init_overlap_sched_group(struct sched_domain *sd,
Peter Zijlstra16763302017-04-25 14:31:11 +0200958 struct sched_group *sg)
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300959{
Peter Zijlstra16763302017-04-25 14:31:11 +0200960 struct cpumask *mask = sched_domains_tmpmask2;
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300961 struct sd_data *sdd = sd->private;
962 struct cpumask *sg_span;
Peter Zijlstra16763302017-04-25 14:31:11 +0200963 int cpu;
964
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200965 build_balance_mask(sd, sg, mask);
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200966 cpu = cpumask_first_and(sched_group_span(sg), mask);
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300967
968 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
969 if (atomic_inc_return(&sg->sgc->ref) == 1)
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200970 cpumask_copy(group_balance_mask(sg), mask);
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200971 else
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200972 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300973
974 /*
975 * Initialize sgc->capacity such that even if we mess up the
976 * domains and no possible iteration will get us here, we won't
977 * die on a /0 trap.
978 */
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200979 sg_span = sched_group_span(sg);
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300980 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
981 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
Morten Rasmussene3d6d0c2018-07-04 11:17:41 +0100982 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300983}
984
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100985static int
986build_overlap_sched_groups(struct sched_domain *sd, int cpu)
987{
Peter Zijlstra91eaed02017-04-14 17:32:07 +0200988 struct sched_group *first = NULL, *last = NULL, *sg;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100989 const struct cpumask *span = sched_domain_span(sd);
990 struct cpumask *covered = sched_domains_tmpmask;
991 struct sd_data *sdd = sd->private;
992 struct sched_domain *sibling;
993 int i;
994
995 cpumask_clear(covered);
996
Peter Zijlstra0372dd22017-04-14 17:24:02 +0200997 for_each_cpu_wrap(i, span, cpu) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100998 struct cpumask *sg_span;
999
1000 if (cpumask_test_cpu(i, covered))
1001 continue;
1002
1003 sibling = *per_cpu_ptr(sdd->sd, i);
1004
Lauro Ramos Venancioc20e1ea2017-04-20 16:51:42 -03001005 /*
1006 * Asymmetric node setups can result in situations where the
1007 * domain tree is of unequal depth, make sure to skip domains
1008 * that already cover the entire range.
1009 *
1010 * In that case build_sched_domains() will have terminated the
1011 * iteration early and our sibling sd spans will be empty.
1012 * Domains should always include the CPU they're built on, so
1013 * check that.
1014 */
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001015 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1016 continue;
1017
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -03001018 sg = build_group_from_child_sched_domain(sibling, cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001019 if (!sg)
1020 goto fail;
1021
Peter Zijlstraae4df9d2017-05-01 11:03:12 +02001022 sg_span = sched_group_span(sg);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001023 cpumask_or(covered, covered, sg_span);
1024
Peter Zijlstra16763302017-04-25 14:31:11 +02001025 init_overlap_sched_group(sd, sg);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001026
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001027 if (!first)
1028 first = sg;
1029 if (last)
1030 last->next = sg;
1031 last = sg;
1032 last->next = first;
1033 }
Peter Zijlstra91eaed02017-04-14 17:32:07 +02001034 sd->groups = first;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001035
1036 return 0;
1037
1038fail:
1039 free_sched_groups(first, 0);
1040
1041 return -ENOMEM;
1042}
1043
Peter Zijlstra35a566e2017-04-28 10:54:26 +02001044
1045/*
1046 * Package topology (also see the load-balance blurb in fair.c)
1047 *
1048 * The scheduler builds a tree structure to represent a number of important
1049 * topology features. By default (default_topology[]) these include:
1050 *
1051 * - Simultaneous multithreading (SMT)
1052 * - Multi-Core Cache (MC)
1053 * - Package (DIE)
1054 *
1055 * Where the last one more or less denotes everything up to a NUMA node.
1056 *
1057 * The tree consists of 3 primary data structures:
1058 *
1059 * sched_domain -> sched_group -> sched_group_capacity
1060 * ^ ^ ^ ^
1061 * `-' `-'
1062 *
Ingo Molnar97fb7a02018-03-03 14:01:12 +01001063 * The sched_domains are per-CPU and have a two way link (parent & child) and
Peter Zijlstra35a566e2017-04-28 10:54:26 +02001064 * denote the ever growing mask of CPUs belonging to that level of topology.
1065 *
1066 * Each sched_domain has a circular (double) linked list of sched_group's, each
1067 * denoting the domains of the level below (or individual CPUs in case of the
1068 * first domain level). The sched_group linked by a sched_domain includes the
1069 * CPU of that sched_domain [*].
1070 *
1071 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1072 *
1073 * CPU 0 1 2 3 4 5 6 7
1074 *
1075 * DIE [ ]
1076 * MC [ ] [ ]
1077 * SMT [ ] [ ] [ ] [ ]
1078 *
1079 * - or -
1080 *
1081 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1082 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1083 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1084 *
1085 * CPU 0 1 2 3 4 5 6 7
1086 *
1087 * One way to think about it is: sched_domain moves you up and down among these
1088 * topology levels, while sched_group moves you sideways through it, at child
1089 * domain granularity.
1090 *
1091 * sched_group_capacity ensures each unique sched_group has shared storage.
1092 *
1093 * There are two related construction problems, both require a CPU that
1094 * uniquely identify each group (for a given domain):
1095 *
1096 * - The first is the balance_cpu (see should_we_balance() and the
1097 * load-balance blub in fair.c); for each group we only want 1 CPU to
1098 * continue balancing at a higher domain.
1099 *
1100 * - The second is the sched_group_capacity; we want all identical groups
1101 * to share a single sched_group_capacity.
1102 *
1103 * Since these topologies are exclusive by construction. That is, its
1104 * impossible for an SMT thread to belong to multiple cores, and cores to
1105 * be part of multiple caches. There is a very clear and unique location
1106 * for each CPU in the hierarchy.
1107 *
1108 * Therefore computing a unique CPU for each group is trivial (the iteration
1109 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1110 * group), we can simply pick the first CPU in each group.
1111 *
1112 *
1113 * [*] in other words, the first group of each domain is its child domain.
1114 */
1115
Peter Zijlstra0c0e7762017-05-03 14:18:06 +02001116static struct sched_group *get_group(int cpu, struct sd_data *sdd)
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001117{
1118 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1119 struct sched_domain *child = sd->child;
Peter Zijlstra0c0e7762017-05-03 14:18:06 +02001120 struct sched_group *sg;
Valentin Schneider67d4f6f2019-04-09 18:35:45 +01001121 bool already_visited;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001122
1123 if (child)
1124 cpu = cpumask_first(sched_domain_span(child));
1125
Peter Zijlstra0c0e7762017-05-03 14:18:06 +02001126 sg = *per_cpu_ptr(sdd->sg, cpu);
1127 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001128
Valentin Schneider67d4f6f2019-04-09 18:35:45 +01001129 /* Increase refcounts for claim_allocations: */
1130 already_visited = atomic_inc_return(&sg->ref) > 1;
1131 /* sgc visits should follow a similar trend as sg */
1132 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1133
1134 /* If we have already visited that group, it's already initialized. */
1135 if (already_visited)
1136 return sg;
Peter Zijlstra0c0e7762017-05-03 14:18:06 +02001137
1138 if (child) {
Peter Zijlstraae4df9d2017-05-01 11:03:12 +02001139 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1140 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
Peter Zijlstra0c0e7762017-05-03 14:18:06 +02001141 } else {
Peter Zijlstraae4df9d2017-05-01 11:03:12 +02001142 cpumask_set_cpu(cpu, sched_group_span(sg));
Peter Zijlstrae5c14b12017-05-01 10:47:02 +02001143 cpumask_set_cpu(cpu, group_balance_mask(sg));
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001144 }
1145
Peter Zijlstraae4df9d2017-05-01 11:03:12 +02001146 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
Peter Zijlstra0c0e7762017-05-03 14:18:06 +02001147 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
Morten Rasmussene3d6d0c2018-07-04 11:17:41 +01001148 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
Peter Zijlstra0c0e7762017-05-03 14:18:06 +02001149
1150 return sg;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001151}
1152
1153/*
1154 * build_sched_groups will build a circular linked list of the groups
Valentin Schneiderd8743232019-04-09 18:35:46 +01001155 * covered by the given span, will set each group's ->cpumask correctly,
1156 * and will initialize their ->sgc.
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001157 *
1158 * Assumes the sched_domain tree is fully constructed
1159 */
1160static int
1161build_sched_groups(struct sched_domain *sd, int cpu)
1162{
1163 struct sched_group *first = NULL, *last = NULL;
1164 struct sd_data *sdd = sd->private;
1165 const struct cpumask *span = sched_domain_span(sd);
1166 struct cpumask *covered;
1167 int i;
1168
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001169 lockdep_assert_held(&sched_domains_mutex);
1170 covered = sched_domains_tmpmask;
1171
1172 cpumask_clear(covered);
1173
Peter Zijlstra0c0e7762017-05-03 14:18:06 +02001174 for_each_cpu_wrap(i, span, cpu) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001175 struct sched_group *sg;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001176
1177 if (cpumask_test_cpu(i, covered))
1178 continue;
1179
Peter Zijlstra0c0e7762017-05-03 14:18:06 +02001180 sg = get_group(i, sdd);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001181
Peter Zijlstraae4df9d2017-05-01 11:03:12 +02001182 cpumask_or(covered, covered, sched_group_span(sg));
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001183
1184 if (!first)
1185 first = sg;
1186 if (last)
1187 last->next = sg;
1188 last = sg;
1189 }
1190 last->next = first;
Peter Zijlstra0c0e7762017-05-03 14:18:06 +02001191 sd->groups = first;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001192
1193 return 0;
1194}
1195
1196/*
1197 * Initialize sched groups cpu_capacity.
1198 *
1199 * cpu_capacity indicates the capacity of sched group, which is used while
1200 * distributing the load between different sched groups in a sched domain.
1201 * Typically cpu_capacity for all the groups in a sched domain will be same
1202 * unless there are asymmetries in the topology. If there are asymmetries,
1203 * group having more cpu_capacity will pickup more load compared to the
1204 * group having less cpu_capacity.
1205 */
1206static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1207{
1208 struct sched_group *sg = sd->groups;
1209
1210 WARN_ON(!sg);
1211
1212 do {
1213 int cpu, max_cpu = -1;
1214
Peter Zijlstraae4df9d2017-05-01 11:03:12 +02001215 sg->group_weight = cpumask_weight(sched_group_span(sg));
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001216
1217 if (!(sd->flags & SD_ASYM_PACKING))
1218 goto next;
1219
Peter Zijlstraae4df9d2017-05-01 11:03:12 +02001220 for_each_cpu(cpu, sched_group_span(sg)) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001221 if (max_cpu < 0)
1222 max_cpu = cpu;
1223 else if (sched_asym_prefer(cpu, max_cpu))
1224 max_cpu = cpu;
1225 }
1226 sg->asym_prefer_cpu = max_cpu;
1227
1228next:
1229 sg = sg->next;
1230 } while (sg != sd->groups);
1231
1232 if (cpu != group_balance_cpu(sg))
1233 return;
1234
1235 update_group_capacity(sd, cpu);
1236}
1237
1238/*
1239 * Initializers for schedule domains
1240 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1241 */
1242
1243static int default_relax_domain_level = -1;
1244int sched_domain_level_max;
1245
1246static int __init setup_relax_domain_level(char *str)
1247{
1248 if (kstrtoint(str, 0, &default_relax_domain_level))
1249 pr_warn("Unable to set relax_domain_level\n");
1250
1251 return 1;
1252}
1253__setup("relax_domain_level=", setup_relax_domain_level);
1254
1255static void set_domain_attribute(struct sched_domain *sd,
1256 struct sched_domain_attr *attr)
1257{
1258 int request;
1259
1260 if (!attr || attr->relax_domain_level < 0) {
1261 if (default_relax_domain_level < 0)
1262 return;
Valentin Schneider9ae7ab22019-10-14 17:44:08 +01001263 request = default_relax_domain_level;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001264 } else
1265 request = attr->relax_domain_level;
Valentin Schneider9ae7ab22019-10-14 17:44:08 +01001266
1267 if (sd->level > request) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001268 /* Turn off idle balance on this domain: */
1269 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001270 }
1271}
1272
1273static void __sdt_free(const struct cpumask *cpu_map);
1274static int __sdt_alloc(const struct cpumask *cpu_map);
1275
1276static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1277 const struct cpumask *cpu_map)
1278{
1279 switch (what) {
1280 case sa_rootdomain:
1281 if (!atomic_read(&d->rd->refcount))
1282 free_rootdomain(&d->rd->rcu);
Gustavo A. R. Silvadf561f662020-08-23 17:36:59 -05001283 fallthrough;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001284 case sa_sd:
1285 free_percpu(d->sd);
Gustavo A. R. Silvadf561f662020-08-23 17:36:59 -05001286 fallthrough;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001287 case sa_sd_storage:
1288 __sdt_free(cpu_map);
Gustavo A. R. Silvadf561f662020-08-23 17:36:59 -05001289 fallthrough;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001290 case sa_none:
1291 break;
1292 }
1293}
1294
1295static enum s_alloc
1296__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1297{
1298 memset(d, 0, sizeof(*d));
1299
1300 if (__sdt_alloc(cpu_map))
1301 return sa_sd_storage;
1302 d->sd = alloc_percpu(struct sched_domain *);
1303 if (!d->sd)
1304 return sa_sd_storage;
1305 d->rd = alloc_rootdomain();
1306 if (!d->rd)
1307 return sa_sd;
Ingo Molnar97fb7a02018-03-03 14:01:12 +01001308
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001309 return sa_rootdomain;
1310}
1311
1312/*
1313 * NULL the sd_data elements we've used to build the sched_domain and
1314 * sched_group structure so that the subsequent __free_domain_allocs()
1315 * will not free the data we're using.
1316 */
1317static void claim_allocations(int cpu, struct sched_domain *sd)
1318{
1319 struct sd_data *sdd = sd->private;
1320
1321 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1322 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1323
1324 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1325 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1326
1327 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1328 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1329
1330 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1331 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1332}
1333
1334#ifdef CONFIG_NUMA
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001335enum numa_topology_type sched_numa_topology_type;
Ingo Molnar97fb7a02018-03-03 14:01:12 +01001336
1337static int sched_domains_numa_levels;
1338static int sched_domains_curr_level;
1339
1340int sched_max_numa_distance;
1341static int *sched_domains_numa_distance;
1342static struct cpumask ***sched_domains_numa_masks;
Matt Fleminga55c7452019-08-08 20:53:01 +01001343int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001344#endif
1345
1346/*
1347 * SD_flags allowed in topology descriptions.
1348 *
1349 * These flags are purely descriptive of the topology and do not prescribe
1350 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1351 * function:
1352 *
1353 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1354 * SD_SHARE_PKG_RESOURCES - describes shared caches
1355 * SD_NUMA - describes NUMA topologies
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001356 *
1357 * Odd one out, which beside describing the topology has a quirk also
1358 * prescribes the desired behaviour that goes along with it:
1359 *
1360 * SD_ASYM_PACKING - describes SMT quirks
1361 */
1362#define TOPOLOGY_SD_FLAGS \
Ingo Molnar97fb7a02018-03-03 14:01:12 +01001363 (SD_SHARE_CPUCAPACITY | \
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001364 SD_SHARE_PKG_RESOURCES | \
Ingo Molnar97fb7a02018-03-03 14:01:12 +01001365 SD_NUMA | \
Valentin Schneidercfe7ddc2020-08-17 12:29:47 +01001366 SD_ASYM_PACKING)
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001367
1368static struct sched_domain *
1369sd_init(struct sched_domain_topology_level *tl,
1370 const struct cpumask *cpu_map,
Morten Rasmussen05484e02018-07-20 14:32:31 +01001371 struct sched_domain *child, int dflags, int cpu)
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001372{
1373 struct sd_data *sdd = &tl->data;
1374 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1375 int sd_id, sd_weight, sd_flags = 0;
1376
1377#ifdef CONFIG_NUMA
1378 /*
1379 * Ugly hack to pass state to sd_numa_mask()...
1380 */
1381 sched_domains_curr_level = tl->numa_level;
1382#endif
1383
1384 sd_weight = cpumask_weight(tl->mask(cpu));
1385
1386 if (tl->sd_flags)
1387 sd_flags = (*tl->sd_flags)();
1388 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1389 "wrong sd_flags in topology description\n"))
Peng Liu9b1b2342020-06-09 23:09:36 +08001390 sd_flags &= TOPOLOGY_SD_FLAGS;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001391
Morten Rasmussen05484e02018-07-20 14:32:31 +01001392 /* Apply detected topology flags */
1393 sd_flags |= dflags;
1394
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001395 *sd = (struct sched_domain){
1396 .min_interval = sd_weight,
1397 .max_interval = 2*sd_weight,
Vincent Guittot6e749912020-09-21 09:24:24 +02001398 .busy_factor = 16,
Vincent Guittot2208cda2020-09-21 09:24:22 +02001399 .imbalance_pct = 117,
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001400
1401 .cache_nice_tries = 0,
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001402
Valentin Schneider36c5bdc2020-04-15 22:05:07 +01001403 .flags = 1*SD_BALANCE_NEWIDLE
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001404 | 1*SD_BALANCE_EXEC
1405 | 1*SD_BALANCE_FORK
1406 | 0*SD_BALANCE_WAKE
1407 | 1*SD_WAKE_AFFINE
1408 | 0*SD_SHARE_CPUCAPACITY
1409 | 0*SD_SHARE_PKG_RESOURCES
1410 | 0*SD_SERIALIZE
Morten Rasmussen9c63e842018-07-04 11:17:50 +01001411 | 1*SD_PREFER_SIBLING
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001412 | 0*SD_NUMA
1413 | sd_flags
1414 ,
1415
1416 .last_balance = jiffies,
1417 .balance_interval = sd_weight,
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001418 .max_newidle_lb_cost = 0,
1419 .next_decay_max_lb_cost = jiffies,
1420 .child = child,
1421#ifdef CONFIG_SCHED_DEBUG
1422 .name = tl->name,
1423#endif
1424 };
1425
1426 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1427 sd_id = cpumask_first(sched_domain_span(sd));
1428
1429 /*
1430 * Convert topological properties into behaviour.
1431 */
1432
Morten Rasmussena526d462020-02-06 19:19:55 +00001433 /* Don't attempt to spread across CPUs of different capacities. */
1434 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1435 sd->child->flags &= ~SD_PREFER_SIBLING;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001436
1437 if (sd->flags & SD_SHARE_CPUCAPACITY) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001438 sd->imbalance_pct = 110;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001439
1440 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1441 sd->imbalance_pct = 117;
1442 sd->cache_nice_tries = 1;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001443
1444#ifdef CONFIG_NUMA
1445 } else if (sd->flags & SD_NUMA) {
1446 sd->cache_nice_tries = 2;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001447
Morten Rasmussen9c63e842018-07-04 11:17:50 +01001448 sd->flags &= ~SD_PREFER_SIBLING;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001449 sd->flags |= SD_SERIALIZE;
Matt Fleminga55c7452019-08-08 20:53:01 +01001450 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001451 sd->flags &= ~(SD_BALANCE_EXEC |
1452 SD_BALANCE_FORK |
1453 SD_WAKE_AFFINE);
1454 }
1455
1456#endif
1457 } else {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001458 sd->cache_nice_tries = 1;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001459 }
1460
1461 /*
1462 * For all levels sharing cache; connect a sched_domain_shared
1463 * instance.
1464 */
1465 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1466 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1467 atomic_inc(&sd->shared->ref);
1468 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1469 }
1470
1471 sd->private = sdd;
1472
1473 return sd;
1474}
1475
1476/*
1477 * Topology list, bottom-up.
1478 */
1479static struct sched_domain_topology_level default_topology[] = {
1480#ifdef CONFIG_SCHED_SMT
1481 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1482#endif
1483#ifdef CONFIG_SCHED_MC
1484 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1485#endif
1486 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1487 { NULL, },
1488};
1489
1490static struct sched_domain_topology_level *sched_domain_topology =
1491 default_topology;
1492
1493#define for_each_sd_topology(tl) \
1494 for (tl = sched_domain_topology; tl->mask; tl++)
1495
1496void set_sched_topology(struct sched_domain_topology_level *tl)
1497{
1498 if (WARN_ON_ONCE(sched_smp_initialized))
1499 return;
1500
1501 sched_domain_topology = tl;
1502}
1503
1504#ifdef CONFIG_NUMA
1505
1506static const struct cpumask *sd_numa_mask(int cpu)
1507{
1508 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1509}
1510
1511static void sched_numa_warn(const char *str)
1512{
1513 static int done = false;
1514 int i,j;
1515
1516 if (done)
1517 return;
1518
1519 done = true;
1520
1521 printk(KERN_WARNING "ERROR: %s\n\n", str);
1522
1523 for (i = 0; i < nr_node_ids; i++) {
1524 printk(KERN_WARNING " ");
1525 for (j = 0; j < nr_node_ids; j++)
1526 printk(KERN_CONT "%02d ", node_distance(i,j));
1527 printk(KERN_CONT "\n");
1528 }
1529 printk(KERN_WARNING "\n");
1530}
1531
1532bool find_numa_distance(int distance)
1533{
1534 int i;
1535
1536 if (distance == node_distance(0, 0))
1537 return true;
1538
1539 for (i = 0; i < sched_domains_numa_levels; i++) {
1540 if (sched_domains_numa_distance[i] == distance)
1541 return true;
1542 }
1543
1544 return false;
1545}
1546
1547/*
1548 * A system can have three types of NUMA topology:
1549 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1550 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1551 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1552 *
1553 * The difference between a glueless mesh topology and a backplane
1554 * topology lies in whether communication between not directly
1555 * connected nodes goes through intermediary nodes (where programs
1556 * could run), or through backplane controllers. This affects
1557 * placement of programs.
1558 *
1559 * The type of topology can be discerned with the following tests:
1560 * - If the maximum distance between any nodes is 1 hop, the system
1561 * is directly connected.
1562 * - If for two nodes A and B, located N > 1 hops away from each other,
1563 * there is an intermediary node C, which is < N hops away from both
1564 * nodes A and B, the system is a glueless mesh.
1565 */
1566static void init_numa_topology_type(void)
1567{
1568 int a, b, c, n;
1569
1570 n = sched_max_numa_distance;
1571
Srikar Dronamrajue5e96fa2018-08-10 22:30:18 +05301572 if (sched_domains_numa_levels <= 2) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001573 sched_numa_topology_type = NUMA_DIRECT;
1574 return;
1575 }
1576
1577 for_each_online_node(a) {
1578 for_each_online_node(b) {
1579 /* Find two nodes furthest removed from each other. */
1580 if (node_distance(a, b) < n)
1581 continue;
1582
1583 /* Is there an intermediary node between a and b? */
1584 for_each_online_node(c) {
1585 if (node_distance(a, c) < n &&
1586 node_distance(b, c) < n) {
1587 sched_numa_topology_type =
1588 NUMA_GLUELESS_MESH;
1589 return;
1590 }
1591 }
1592
1593 sched_numa_topology_type = NUMA_BACKPLANE;
1594 return;
1595 }
1596 }
1597}
1598
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001599
1600#define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1601
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001602void sched_init_numa(void)
1603{
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001604 struct sched_domain_topology_level *tl;
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001605 unsigned long *distance_map;
1606 int nr_levels = 0;
1607 int i, j;
Suravee Suthikulpanit051f3ca2017-09-07 02:20:05 -05001608
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001609 /*
1610 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1611 * unique distances in the node_distance() table.
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001612 */
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001613 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1614 if (!distance_map)
1615 return;
1616
1617 bitmap_zero(distance_map, NR_DISTANCE_VALUES);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001618 for (i = 0; i < nr_node_ids; i++) {
1619 for (j = 0; j < nr_node_ids; j++) {
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001620 int distance = node_distance(i, j);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001621
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001622 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1623 sched_numa_warn("Invalid distance value range");
1624 return;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001625 }
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001626
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001627 bitmap_set(distance_map, distance, 1);
1628 }
1629 }
1630 /*
1631 * We can now figure out how many unique distance values there are and
1632 * allocate memory accordingly.
1633 */
1634 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1635
1636 sched_domains_numa_distance = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1637 if (!sched_domains_numa_distance) {
1638 bitmap_free(distance_map);
1639 return;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001640 }
1641
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001642 for (i = 0, j = 0; i < nr_levels; i++, j++) {
1643 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1644 sched_domains_numa_distance[i] = j;
1645 }
1646
1647 bitmap_free(distance_map);
1648
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001649 /*
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001650 * 'nr_levels' contains the number of unique distances
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001651 *
1652 * The sched_domains_numa_distance[] array includes the actual distance
1653 * numbers.
1654 */
1655
1656 /*
1657 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1658 * If it fails to allocate memory for array sched_domains_numa_masks[][],
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001659 * the array will contain less then 'nr_levels' members. This could be
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001660 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1661 * in other functions.
1662 *
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001663 * We reset it to 'nr_levels' at the end of this function.
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001664 */
1665 sched_domains_numa_levels = 0;
1666
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001667 sched_domains_numa_masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001668 if (!sched_domains_numa_masks)
1669 return;
1670
1671 /*
1672 * Now for each level, construct a mask per node which contains all
1673 * CPUs of nodes that are that many hops away from us.
1674 */
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001675 for (i = 0; i < nr_levels; i++) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001676 sched_domains_numa_masks[i] =
1677 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1678 if (!sched_domains_numa_masks[i])
1679 return;
1680
1681 for (j = 0; j < nr_node_ids; j++) {
1682 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001683 int k;
1684
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001685 if (!mask)
1686 return;
1687
1688 sched_domains_numa_masks[i][j] = mask;
1689
1690 for_each_node(k) {
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001691 if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1692 sched_numa_warn("Node-distance not symmetric");
1693
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001694 if (node_distance(j, k) > sched_domains_numa_distance[i])
1695 continue;
1696
1697 cpumask_or(mask, mask, cpumask_of_node(k));
1698 }
1699 }
1700 }
1701
1702 /* Compute default topology size */
1703 for (i = 0; sched_domain_topology[i].mask; i++);
1704
Dietmar Eggemann71e5f662021-02-01 10:53:53 +01001705 tl = kzalloc((i + nr_levels + 1) *
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001706 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1707 if (!tl)
1708 return;
1709
1710 /*
1711 * Copy the default topology bits..
1712 */
1713 for (i = 0; sched_domain_topology[i].mask; i++)
1714 tl[i] = sched_domain_topology[i];
1715
1716 /*
Suravee Suthikulpanit051f3ca2017-09-07 02:20:05 -05001717 * Add the NUMA identity distance, aka single NODE.
1718 */
1719 tl[i++] = (struct sched_domain_topology_level){
1720 .mask = sd_numa_mask,
1721 .numa_level = 0,
1722 SD_INIT_NAME(NODE)
1723 };
1724
1725 /*
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001726 * .. and append 'j' levels of NUMA goodness.
1727 */
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001728 for (j = 1; j < nr_levels; i++, j++) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001729 tl[i] = (struct sched_domain_topology_level){
1730 .mask = sd_numa_mask,
1731 .sd_flags = cpu_numa_flags,
1732 .flags = SDTL_OVERLAP,
1733 .numa_level = j,
1734 SD_INIT_NAME(NUMA)
1735 };
1736 }
1737
1738 sched_domain_topology = tl;
1739
Valentin Schneider620a6dc2021-01-22 12:39:43 +00001740 sched_domains_numa_levels = nr_levels;
1741 sched_max_numa_distance = sched_domains_numa_distance[nr_levels - 1];
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001742
1743 init_numa_topology_type();
1744}
1745
1746void sched_domains_numa_masks_set(unsigned int cpu)
1747{
1748 int node = cpu_to_node(cpu);
1749 int i, j;
1750
1751 for (i = 0; i < sched_domains_numa_levels; i++) {
1752 for (j = 0; j < nr_node_ids; j++) {
1753 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1754 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1755 }
1756 }
1757}
1758
1759void sched_domains_numa_masks_clear(unsigned int cpu)
1760{
1761 int i, j;
1762
1763 for (i = 0; i < sched_domains_numa_levels; i++) {
1764 for (j = 0; j < nr_node_ids; j++)
1765 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1766 }
1767}
1768
Wanpeng Lie0e8d492019-06-28 16:51:41 +08001769/*
1770 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1771 * closest to @cpu from @cpumask.
1772 * cpumask: cpumask to find a cpu from
1773 * cpu: cpu to be close to
1774 *
1775 * returns: cpu, or nr_cpu_ids when nothing found.
1776 */
1777int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1778{
1779 int i, j = cpu_to_node(cpu);
1780
1781 for (i = 0; i < sched_domains_numa_levels; i++) {
1782 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1783 if (cpu < nr_cpu_ids)
1784 return cpu;
1785 }
1786 return nr_cpu_ids;
1787}
1788
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001789#endif /* CONFIG_NUMA */
1790
1791static int __sdt_alloc(const struct cpumask *cpu_map)
1792{
1793 struct sched_domain_topology_level *tl;
1794 int j;
1795
1796 for_each_sd_topology(tl) {
1797 struct sd_data *sdd = &tl->data;
1798
1799 sdd->sd = alloc_percpu(struct sched_domain *);
1800 if (!sdd->sd)
1801 return -ENOMEM;
1802
1803 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1804 if (!sdd->sds)
1805 return -ENOMEM;
1806
1807 sdd->sg = alloc_percpu(struct sched_group *);
1808 if (!sdd->sg)
1809 return -ENOMEM;
1810
1811 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1812 if (!sdd->sgc)
1813 return -ENOMEM;
1814
1815 for_each_cpu(j, cpu_map) {
1816 struct sched_domain *sd;
1817 struct sched_domain_shared *sds;
1818 struct sched_group *sg;
1819 struct sched_group_capacity *sgc;
1820
1821 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1822 GFP_KERNEL, cpu_to_node(j));
1823 if (!sd)
1824 return -ENOMEM;
1825
1826 *per_cpu_ptr(sdd->sd, j) = sd;
1827
1828 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1829 GFP_KERNEL, cpu_to_node(j));
1830 if (!sds)
1831 return -ENOMEM;
1832
1833 *per_cpu_ptr(sdd->sds, j) = sds;
1834
1835 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1836 GFP_KERNEL, cpu_to_node(j));
1837 if (!sg)
1838 return -ENOMEM;
1839
1840 sg->next = sg;
1841
1842 *per_cpu_ptr(sdd->sg, j) = sg;
1843
1844 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1845 GFP_KERNEL, cpu_to_node(j));
1846 if (!sgc)
1847 return -ENOMEM;
1848
Peter Zijlstra005f8742017-04-26 17:35:35 +02001849#ifdef CONFIG_SCHED_DEBUG
1850 sgc->id = j;
1851#endif
1852
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001853 *per_cpu_ptr(sdd->sgc, j) = sgc;
1854 }
1855 }
1856
1857 return 0;
1858}
1859
1860static void __sdt_free(const struct cpumask *cpu_map)
1861{
1862 struct sched_domain_topology_level *tl;
1863 int j;
1864
1865 for_each_sd_topology(tl) {
1866 struct sd_data *sdd = &tl->data;
1867
1868 for_each_cpu(j, cpu_map) {
1869 struct sched_domain *sd;
1870
1871 if (sdd->sd) {
1872 sd = *per_cpu_ptr(sdd->sd, j);
1873 if (sd && (sd->flags & SD_OVERLAP))
1874 free_sched_groups(sd->groups, 0);
1875 kfree(*per_cpu_ptr(sdd->sd, j));
1876 }
1877
1878 if (sdd->sds)
1879 kfree(*per_cpu_ptr(sdd->sds, j));
1880 if (sdd->sg)
1881 kfree(*per_cpu_ptr(sdd->sg, j));
1882 if (sdd->sgc)
1883 kfree(*per_cpu_ptr(sdd->sgc, j));
1884 }
1885 free_percpu(sdd->sd);
1886 sdd->sd = NULL;
1887 free_percpu(sdd->sds);
1888 sdd->sds = NULL;
1889 free_percpu(sdd->sg);
1890 sdd->sg = NULL;
1891 free_percpu(sdd->sgc);
1892 sdd->sgc = NULL;
1893 }
1894}
1895
Viresh Kumar181a80d12017-04-27 13:58:59 +05301896static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001897 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
Morten Rasmussen05484e02018-07-20 14:32:31 +01001898 struct sched_domain *child, int dflags, int cpu)
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001899{
Morten Rasmussen05484e02018-07-20 14:32:31 +01001900 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001901
1902 if (child) {
1903 sd->level = child->level + 1;
1904 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1905 child->parent = sd;
1906
1907 if (!cpumask_subset(sched_domain_span(child),
1908 sched_domain_span(sd))) {
1909 pr_err("BUG: arch topology borken\n");
1910#ifdef CONFIG_SCHED_DEBUG
1911 pr_err(" the %s domain not a subset of the %s domain\n",
1912 child->name, sd->name);
1913#endif
Ingo Molnar97fb7a02018-03-03 14:01:12 +01001914 /* Fixup, ensure @sd has at least @child CPUs. */
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001915 cpumask_or(sched_domain_span(sd),
1916 sched_domain_span(sd),
1917 sched_domain_span(child));
1918 }
1919
1920 }
1921 set_domain_attribute(sd, attr);
1922
1923 return sd;
1924}
1925
1926/*
Valentin Schneiderccf74122020-01-15 16:09:15 +00001927 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1928 * any two given CPUs at this (non-NUMA) topology level.
1929 */
1930static bool topology_span_sane(struct sched_domain_topology_level *tl,
1931 const struct cpumask *cpu_map, int cpu)
1932{
1933 int i;
1934
1935 /* NUMA levels are allowed to overlap */
1936 if (tl->flags & SDTL_OVERLAP)
1937 return true;
1938
1939 /*
1940 * Non-NUMA levels cannot partially overlap - they must be either
1941 * completely equal or completely disjoint. Otherwise we can end up
1942 * breaking the sched_group lists - i.e. a later get_group() pass
1943 * breaks the linking done for an earlier span.
1944 */
1945 for_each_cpu(i, cpu_map) {
1946 if (i == cpu)
1947 continue;
1948 /*
1949 * We should 'and' all those masks with 'cpu_map' to exactly
1950 * match the topology we're about to build, but that can only
1951 * remove CPUs, which only lessens our ability to detect
1952 * overlaps
1953 */
1954 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
1955 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
1956 return false;
1957 }
1958
1959 return true;
1960}
1961
1962/*
Morten Rasmussen05484e02018-07-20 14:32:31 +01001963 * Find the sched_domain_topology_level where all CPU capacities are visible
1964 * for all CPUs.
1965 */
1966static struct sched_domain_topology_level
1967*asym_cpu_capacity_level(const struct cpumask *cpu_map)
1968{
1969 int i, j, asym_level = 0;
1970 bool asym = false;
1971 struct sched_domain_topology_level *tl, *asym_tl = NULL;
1972 unsigned long cap;
1973
1974 /* Is there any asymmetry? */
Vincent Guittot8ec59c02019-06-17 17:00:17 +02001975 cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
Morten Rasmussen05484e02018-07-20 14:32:31 +01001976
1977 for_each_cpu(i, cpu_map) {
Vincent Guittot8ec59c02019-06-17 17:00:17 +02001978 if (arch_scale_cpu_capacity(i) != cap) {
Morten Rasmussen05484e02018-07-20 14:32:31 +01001979 asym = true;
1980 break;
1981 }
1982 }
1983
1984 if (!asym)
1985 return NULL;
1986
1987 /*
1988 * Examine topology from all CPU's point of views to detect the lowest
1989 * sched_domain_topology_level where a highest capacity CPU is visible
1990 * to everyone.
1991 */
1992 for_each_cpu(i, cpu_map) {
Vincent Guittot8ec59c02019-06-17 17:00:17 +02001993 unsigned long max_capacity = arch_scale_cpu_capacity(i);
Morten Rasmussen05484e02018-07-20 14:32:31 +01001994 int tl_id = 0;
1995
1996 for_each_sd_topology(tl) {
1997 if (tl_id < asym_level)
1998 goto next_level;
1999
2000 for_each_cpu_and(j, tl->mask(i), cpu_map) {
2001 unsigned long capacity;
2002
Vincent Guittot8ec59c02019-06-17 17:00:17 +02002003 capacity = arch_scale_cpu_capacity(j);
Morten Rasmussen05484e02018-07-20 14:32:31 +01002004
2005 if (capacity <= max_capacity)
2006 continue;
2007
2008 max_capacity = capacity;
2009 asym_level = tl_id;
2010 asym_tl = tl;
2011 }
2012next_level:
2013 tl_id++;
2014 }
2015 }
2016
2017 return asym_tl;
2018}
2019
2020
2021/*
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002022 * Build sched domains for a given set of CPUs and attach the sched domains
2023 * to the individual CPUs
2024 */
2025static int
2026build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2027{
Valentin Schneidercd1cb332019-10-23 16:37:44 +01002028 enum s_alloc alloc_state = sa_none;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002029 struct sched_domain *sd;
2030 struct s_data d;
2031 struct rq *rq = NULL;
2032 int i, ret = -ENOMEM;
Morten Rasmussen05484e02018-07-20 14:32:31 +01002033 struct sched_domain_topology_level *tl_asym;
Morten Rasmussendf054e82018-07-04 11:17:39 +01002034 bool has_asym = false;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002035
Valentin Schneidercd1cb332019-10-23 16:37:44 +01002036 if (WARN_ON(cpumask_empty(cpu_map)))
2037 goto error;
2038
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002039 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2040 if (alloc_state != sa_rootdomain)
2041 goto error;
2042
Morten Rasmussen05484e02018-07-20 14:32:31 +01002043 tl_asym = asym_cpu_capacity_level(cpu_map);
2044
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002045 /* Set up domains for CPUs specified by the cpu_map: */
2046 for_each_cpu(i, cpu_map) {
2047 struct sched_domain_topology_level *tl;
Valentin Schneiderc2001912020-08-17 12:29:56 +01002048 int dflags = 0;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002049
2050 sd = NULL;
2051 for_each_sd_topology(tl) {
Morten Rasmussendf054e82018-07-04 11:17:39 +01002052 if (tl == tl_asym) {
Morten Rasmussen05484e02018-07-20 14:32:31 +01002053 dflags |= SD_ASYM_CPUCAPACITY;
Morten Rasmussendf054e82018-07-04 11:17:39 +01002054 has_asym = true;
2055 }
Morten Rasmussen05484e02018-07-20 14:32:31 +01002056
Valentin Schneiderccf74122020-01-15 16:09:15 +00002057 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2058 goto error;
2059
Morten Rasmussen05484e02018-07-20 14:32:31 +01002060 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
2061
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002062 if (tl == sched_domain_topology)
2063 *per_cpu_ptr(d.sd, i) = sd;
Peter Zijlstraaf855962017-04-26 17:36:41 +02002064 if (tl->flags & SDTL_OVERLAP)
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002065 sd->flags |= SD_OVERLAP;
2066 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2067 break;
2068 }
2069 }
2070
2071 /* Build the groups for the domains */
2072 for_each_cpu(i, cpu_map) {
2073 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2074 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2075 if (sd->flags & SD_OVERLAP) {
2076 if (build_overlap_sched_groups(sd, i))
2077 goto error;
2078 } else {
2079 if (build_sched_groups(sd, i))
2080 goto error;
2081 }
2082 }
2083 }
2084
2085 /* Calculate CPU capacity for physical packages and nodes */
2086 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2087 if (!cpumask_test_cpu(i, cpu_map))
2088 continue;
2089
2090 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2091 claim_allocations(i, sd);
2092 init_sched_groups_capacity(i, sd);
2093 }
2094 }
2095
2096 /* Attach the domains */
2097 rcu_read_lock();
2098 for_each_cpu(i, cpu_map) {
2099 rq = cpu_rq(i);
2100 sd = *per_cpu_ptr(d.sd, i);
2101
2102 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2103 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2104 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2105
2106 cpu_attach_domain(sd, d.rd, i);
2107 }
2108 rcu_read_unlock();
2109
Morten Rasmussendf054e82018-07-04 11:17:39 +01002110 if (has_asym)
Valentin Schneidere284df72019-10-23 16:37:45 +01002111 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
Morten Rasmussendf054e82018-07-04 11:17:39 +01002112
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002113 if (rq && sched_debug_enabled) {
Juri Lellibf5015a2018-05-24 17:29:36 +02002114 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002115 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2116 }
2117
2118 ret = 0;
2119error:
2120 __free_domain_allocs(&d, alloc_state, cpu_map);
Ingo Molnar97fb7a02018-03-03 14:01:12 +01002121
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002122 return ret;
2123}
2124
2125/* Current sched domains: */
2126static cpumask_var_t *doms_cur;
2127
2128/* Number of sched domains in 'doms_cur': */
2129static int ndoms_cur;
2130
2131/* Attribues of custom domains in 'doms_cur' */
2132static struct sched_domain_attr *dattr_cur;
2133
2134/*
2135 * Special case: If a kmalloc() of a doms_cur partition (array of
2136 * cpumask) fails, then fallback to a single sched domain,
2137 * as determined by the single cpumask fallback_doms.
2138 */
Peter Zijlstra8d5dc512017-04-25 15:29:40 +02002139static cpumask_var_t fallback_doms;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002140
2141/*
2142 * arch_update_cpu_topology lets virtualized architectures update the
2143 * CPU core maps. It is supposed to return 1 if the topology changed
2144 * or 0 if it stayed the same.
2145 */
2146int __weak arch_update_cpu_topology(void)
2147{
2148 return 0;
2149}
2150
2151cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2152{
2153 int i;
2154 cpumask_var_t *doms;
2155
Kees Cook6da2ec52018-06-12 13:55:00 -07002156 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002157 if (!doms)
2158 return NULL;
2159 for (i = 0; i < ndoms; i++) {
2160 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2161 free_sched_domains(doms, i);
2162 return NULL;
2163 }
2164 }
2165 return doms;
2166}
2167
2168void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2169{
2170 unsigned int i;
2171 for (i = 0; i < ndoms; i++)
2172 free_cpumask_var(doms[i]);
2173 kfree(doms);
2174}
2175
2176/*
Juri Lellicb0c0412018-12-19 14:34:45 +01002177 * Set up scheduler domains and groups. For now this just excludes isolated
2178 * CPUs, but could be used to exclude other special cases in the future.
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002179 */
Peter Zijlstra8d5dc512017-04-25 15:29:40 +02002180int sched_init_domains(const struct cpumask *cpu_map)
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002181{
2182 int err;
2183
Peter Zijlstra8d5dc512017-04-25 15:29:40 +02002184 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
Peter Zijlstra16763302017-04-25 14:31:11 +02002185 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
Peter Zijlstra8d5dc512017-04-25 15:29:40 +02002186 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2187
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002188 arch_update_cpu_topology();
2189 ndoms_cur = 1;
2190 doms_cur = alloc_sched_domains(ndoms_cur);
2191 if (!doms_cur)
2192 doms_cur = &fallback_doms;
Frederic Weisbeckeredb93822017-10-27 04:42:37 +02002193 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002194 err = build_sched_domains(doms_cur[0], NULL);
2195 register_sched_domain_sysctl();
2196
2197 return err;
2198}
2199
2200/*
2201 * Detach sched domains from a group of CPUs specified in cpu_map
2202 * These CPUs will now be attached to the NULL domain
2203 */
2204static void detach_destroy_domains(const struct cpumask *cpu_map)
2205{
Valentin Schneidere284df72019-10-23 16:37:45 +01002206 unsigned int cpu = cpumask_any(cpu_map);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002207 int i;
2208
Valentin Schneidere284df72019-10-23 16:37:45 +01002209 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2210 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2211
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002212 rcu_read_lock();
2213 for_each_cpu(i, cpu_map)
2214 cpu_attach_domain(NULL, &def_root_domain, i);
2215 rcu_read_unlock();
2216}
2217
2218/* handle null as "default" */
2219static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2220 struct sched_domain_attr *new, int idx_new)
2221{
2222 struct sched_domain_attr tmp;
2223
2224 /* Fast path: */
2225 if (!new && !cur)
2226 return 1;
2227
2228 tmp = SD_ATTR_INIT;
Ingo Molnar97fb7a02018-03-03 14:01:12 +01002229
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002230 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2231 new ? (new + idx_new) : &tmp,
2232 sizeof(struct sched_domain_attr));
2233}
2234
2235/*
2236 * Partition sched domains as specified by the 'ndoms_new'
2237 * cpumasks in the array doms_new[] of cpumasks. This compares
2238 * doms_new[] to the current sched domain partitioning, doms_cur[].
2239 * It destroys each deleted domain and builds each new domain.
2240 *
2241 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2242 * The masks don't intersect (don't overlap.) We should setup one
2243 * sched domain for each mask. CPUs not in any of the cpumasks will
2244 * not be load balanced. If the same cpumask appears both in the
2245 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2246 * it as it is.
2247 *
2248 * The passed in 'doms_new' should be allocated using
2249 * alloc_sched_domains. This routine takes ownership of it and will
2250 * free_sched_domains it when done with it. If the caller failed the
2251 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2252 * and partition_sched_domains() will fallback to the single partition
2253 * 'fallback_doms', it also forces the domains to be rebuilt.
2254 *
2255 * If doms_new == NULL it will be replaced with cpu_online_mask.
2256 * ndoms_new == 0 is a special case for destroying existing domains,
2257 * and it will not create the default domain.
2258 *
Mathieu Poirierc22645f2019-07-19 15:59:53 +02002259 * Call with hotplug lock and sched_domains_mutex held
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002260 */
Mathieu Poirierc22645f2019-07-19 15:59:53 +02002261void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2262 struct sched_domain_attr *dattr_new)
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002263{
Quentin Perret1f74de82018-12-03 09:56:22 +00002264 bool __maybe_unused has_eas = false;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002265 int i, j, n;
2266 int new_topology;
2267
Mathieu Poirierc22645f2019-07-19 15:59:53 +02002268 lockdep_assert_held(&sched_domains_mutex);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002269
2270 /* Always unregister in case we don't destroy any domains: */
2271 unregister_sched_domain_sysctl();
2272
2273 /* Let the architecture update CPU core mappings: */
2274 new_topology = arch_update_cpu_topology();
2275
Peter Zijlstra09e0dd82017-08-08 12:16:24 +02002276 if (!doms_new) {
2277 WARN_ON_ONCE(dattr_new);
2278 n = 0;
2279 doms_new = alloc_sched_domains(1);
2280 if (doms_new) {
2281 n = 1;
Frederic Weisbeckeredb93822017-10-27 04:42:37 +02002282 cpumask_and(doms_new[0], cpu_active_mask,
2283 housekeeping_cpumask(HK_FLAG_DOMAIN));
Peter Zijlstra09e0dd82017-08-08 12:16:24 +02002284 }
2285 } else {
2286 n = ndoms_new;
2287 }
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002288
2289 /* Destroy deleted domains: */
2290 for (i = 0; i < ndoms_cur; i++) {
2291 for (j = 0; j < n && !new_topology; j++) {
Quentin Perret6aa140f2018-12-03 09:56:18 +00002292 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
Mathieu Poirierf9a25f72019-07-19 15:59:55 +02002293 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2294 struct root_domain *rd;
2295
2296 /*
2297 * This domain won't be destroyed and as such
2298 * its dl_bw->total_bw needs to be cleared. It
2299 * will be recomputed in function
2300 * update_tasks_root_domain().
2301 */
2302 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2303 dl_clear_root_domain(rd);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002304 goto match1;
Mathieu Poirierf9a25f72019-07-19 15:59:55 +02002305 }
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002306 }
2307 /* No match - a current sched domain not in new doms_new[] */
2308 detach_destroy_domains(doms_cur[i]);
2309match1:
2310 ;
2311 }
2312
2313 n = ndoms_cur;
Peter Zijlstra09e0dd82017-08-08 12:16:24 +02002314 if (!doms_new) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002315 n = 0;
2316 doms_new = &fallback_doms;
Frederic Weisbeckeredb93822017-10-27 04:42:37 +02002317 cpumask_and(doms_new[0], cpu_active_mask,
2318 housekeeping_cpumask(HK_FLAG_DOMAIN));
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002319 }
2320
2321 /* Build new domains: */
2322 for (i = 0; i < ndoms_new; i++) {
2323 for (j = 0; j < n && !new_topology; j++) {
Quentin Perret6aa140f2018-12-03 09:56:18 +00002324 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2325 dattrs_equal(dattr_new, i, dattr_cur, j))
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002326 goto match2;
2327 }
2328 /* No match - add a new doms_new */
2329 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2330match2:
2331 ;
2332 }
2333
Quentin Perret531b5c92018-12-03 09:56:21 +00002334#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
Quentin Perret6aa140f2018-12-03 09:56:18 +00002335 /* Build perf. domains: */
2336 for (i = 0; i < ndoms_new; i++) {
Quentin Perret531b5c92018-12-03 09:56:21 +00002337 for (j = 0; j < n && !sched_energy_update; j++) {
Quentin Perret6aa140f2018-12-03 09:56:18 +00002338 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
Quentin Perret1f74de82018-12-03 09:56:22 +00002339 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2340 has_eas = true;
Quentin Perret6aa140f2018-12-03 09:56:18 +00002341 goto match3;
Quentin Perret1f74de82018-12-03 09:56:22 +00002342 }
Quentin Perret6aa140f2018-12-03 09:56:18 +00002343 }
2344 /* No match - add perf. domains for a new rd */
Quentin Perret1f74de82018-12-03 09:56:22 +00002345 has_eas |= build_perf_domains(doms_new[i]);
Quentin Perret6aa140f2018-12-03 09:56:18 +00002346match3:
2347 ;
2348 }
Quentin Perret1f74de82018-12-03 09:56:22 +00002349 sched_energy_set(has_eas);
Quentin Perret6aa140f2018-12-03 09:56:18 +00002350#endif
2351
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002352 /* Remember the new sched domains: */
2353 if (doms_cur != &fallback_doms)
2354 free_sched_domains(doms_cur, ndoms_cur);
2355
2356 kfree(dattr_cur);
2357 doms_cur = doms_new;
2358 dattr_cur = dattr_new;
2359 ndoms_cur = ndoms_new;
2360
2361 register_sched_domain_sysctl();
Mathieu Poirierc22645f2019-07-19 15:59:53 +02002362}
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002363
Mathieu Poirierc22645f2019-07-19 15:59:53 +02002364/*
2365 * Call with hotplug lock held
2366 */
2367void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2368 struct sched_domain_attr *dattr_new)
2369{
2370 mutex_lock(&sched_domains_mutex);
2371 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01002372 mutex_unlock(&sched_domains_mutex);
2373}