blob: e50450c2fed8ebd3c913424a2ab97beacf6573db [file] [log] [blame]
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001/*
2 * Scheduler topology setup/handling methods
3 */
4#include <linux/sched.h>
5#include <linux/mutex.h>
6
7#include "sched.h"
8
9DEFINE_MUTEX(sched_domains_mutex);
10
11/* Protected by sched_domains_mutex: */
12cpumask_var_t sched_domains_tmpmask;
Peter Zijlstra16763302017-04-25 14:31:11 +020013cpumask_var_t sched_domains_tmpmask2;
Ingo Molnarf2cb1362017-02-01 13:10:18 +010014
15#ifdef CONFIG_SCHED_DEBUG
16
Ingo Molnarf2cb1362017-02-01 13:10:18 +010017static int __init sched_debug_setup(char *str)
18{
Peter Zijlstra9469eb02017-09-07 17:03:53 +020019 sched_debug_enabled = true;
Ingo Molnarf2cb1362017-02-01 13:10:18 +010020
21 return 0;
22}
23early_param("sched_debug", sched_debug_setup);
24
25static inline bool sched_debug(void)
26{
27 return sched_debug_enabled;
28}
29
30static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
31 struct cpumask *groupmask)
32{
33 struct sched_group *group = sd->groups;
34
35 cpumask_clear(groupmask);
36
Peter Zijlstra005f8742017-04-26 17:35:35 +020037 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
Ingo Molnarf2cb1362017-02-01 13:10:18 +010038
39 if (!(sd->flags & SD_LOAD_BALANCE)) {
40 printk("does not load-balance\n");
41 if (sd->parent)
42 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
43 " has parent");
44 return -1;
45 }
46
Peter Zijlstra005f8742017-04-26 17:35:35 +020047 printk(KERN_CONT "span=%*pbl level=%s\n",
Ingo Molnarf2cb1362017-02-01 13:10:18 +010048 cpumask_pr_args(sched_domain_span(sd)), sd->name);
49
50 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
51 printk(KERN_ERR "ERROR: domain->span does not contain "
52 "CPU%d\n", cpu);
53 }
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020054 if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +010055 printk(KERN_ERR "ERROR: domain->groups does not contain"
56 " CPU%d\n", cpu);
57 }
58
59 printk(KERN_DEBUG "%*s groups:", level + 1, "");
60 do {
61 if (!group) {
62 printk("\n");
63 printk(KERN_ERR "ERROR: group is NULL\n");
64 break;
65 }
66
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020067 if (!cpumask_weight(sched_group_span(group))) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +010068 printk(KERN_CONT "\n");
69 printk(KERN_ERR "ERROR: empty group\n");
70 break;
71 }
72
73 if (!(sd->flags & SD_OVERLAP) &&
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020074 cpumask_intersects(groupmask, sched_group_span(group))) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +010075 printk(KERN_CONT "\n");
76 printk(KERN_ERR "ERROR: repeated CPUs\n");
77 break;
78 }
79
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020080 cpumask_or(groupmask, groupmask, sched_group_span(group));
Ingo Molnarf2cb1362017-02-01 13:10:18 +010081
Peter Zijlstra005f8742017-04-26 17:35:35 +020082 printk(KERN_CONT " %d:{ span=%*pbl",
83 group->sgc->id,
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020084 cpumask_pr_args(sched_group_span(group)));
Peter Zijlstrab0151c22017-04-14 17:29:16 +020085
Peter Zijlstraaf218122017-05-01 08:51:05 +020086 if ((sd->flags & SD_OVERLAP) &&
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020087 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
Peter Zijlstra005f8742017-04-26 17:35:35 +020088 printk(KERN_CONT " mask=%*pbl",
Peter Zijlstrae5c14b12017-05-01 10:47:02 +020089 cpumask_pr_args(group_balance_mask(group)));
Peter Zijlstrab0151c22017-04-14 17:29:16 +020090 }
91
Peter Zijlstra005f8742017-04-26 17:35:35 +020092 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
93 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
Ingo Molnarf2cb1362017-02-01 13:10:18 +010094
Peter Zijlstraa420b062017-04-14 18:20:48 +020095 if (group == sd->groups && sd->child &&
96 !cpumask_equal(sched_domain_span(sd->child),
Peter Zijlstraae4df9d2017-05-01 11:03:12 +020097 sched_group_span(group))) {
Peter Zijlstraa420b062017-04-14 18:20:48 +020098 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
99 }
100
Peter Zijlstra005f8742017-04-26 17:35:35 +0200101 printk(KERN_CONT " }");
102
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100103 group = group->next;
Peter Zijlstrab0151c22017-04-14 17:29:16 +0200104
105 if (group != sd->groups)
106 printk(KERN_CONT ",");
107
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100108 } while (group != sd->groups);
109 printk(KERN_CONT "\n");
110
111 if (!cpumask_equal(sched_domain_span(sd), groupmask))
112 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
113
114 if (sd->parent &&
115 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
116 printk(KERN_ERR "ERROR: parent span is not a superset "
117 "of domain->span\n");
118 return 0;
119}
120
121static void sched_domain_debug(struct sched_domain *sd, int cpu)
122{
123 int level = 0;
124
125 if (!sched_debug_enabled)
126 return;
127
128 if (!sd) {
129 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
130 return;
131 }
132
Peter Zijlstra005f8742017-04-26 17:35:35 +0200133 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100134
135 for (;;) {
136 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
137 break;
138 level++;
139 sd = sd->parent;
140 if (!sd)
141 break;
142 }
143}
144#else /* !CONFIG_SCHED_DEBUG */
145
146# define sched_debug_enabled 0
147# define sched_domain_debug(sd, cpu) do { } while (0)
148static inline bool sched_debug(void)
149{
150 return false;
151}
152#endif /* CONFIG_SCHED_DEBUG */
153
154static int sd_degenerate(struct sched_domain *sd)
155{
156 if (cpumask_weight(sched_domain_span(sd)) == 1)
157 return 1;
158
159 /* Following flags need at least 2 groups */
160 if (sd->flags & (SD_LOAD_BALANCE |
161 SD_BALANCE_NEWIDLE |
162 SD_BALANCE_FORK |
163 SD_BALANCE_EXEC |
164 SD_SHARE_CPUCAPACITY |
165 SD_ASYM_CPUCAPACITY |
166 SD_SHARE_PKG_RESOURCES |
167 SD_SHARE_POWERDOMAIN)) {
168 if (sd->groups != sd->groups->next)
169 return 0;
170 }
171
172 /* Following flags don't use groups */
173 if (sd->flags & (SD_WAKE_AFFINE))
174 return 0;
175
176 return 1;
177}
178
179static int
180sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
181{
182 unsigned long cflags = sd->flags, pflags = parent->flags;
183
184 if (sd_degenerate(parent))
185 return 1;
186
187 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
188 return 0;
189
190 /* Flags needing groups don't count if only 1 group in parent */
191 if (parent->groups == parent->groups->next) {
192 pflags &= ~(SD_LOAD_BALANCE |
193 SD_BALANCE_NEWIDLE |
194 SD_BALANCE_FORK |
195 SD_BALANCE_EXEC |
196 SD_ASYM_CPUCAPACITY |
197 SD_SHARE_CPUCAPACITY |
198 SD_SHARE_PKG_RESOURCES |
199 SD_PREFER_SIBLING |
200 SD_SHARE_POWERDOMAIN);
201 if (nr_node_ids == 1)
202 pflags &= ~SD_SERIALIZE;
203 }
204 if (~cflags & pflags)
205 return 0;
206
207 return 1;
208}
209
210static void free_rootdomain(struct rcu_head *rcu)
211{
212 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
213
214 cpupri_cleanup(&rd->cpupri);
215 cpudl_cleanup(&rd->cpudl);
216 free_cpumask_var(rd->dlo_mask);
217 free_cpumask_var(rd->rto_mask);
218 free_cpumask_var(rd->online);
219 free_cpumask_var(rd->span);
220 kfree(rd);
221}
222
223void rq_attach_root(struct rq *rq, struct root_domain *rd)
224{
225 struct root_domain *old_rd = NULL;
226 unsigned long flags;
227
228 raw_spin_lock_irqsave(&rq->lock, flags);
229
230 if (rq->rd) {
231 old_rd = rq->rd;
232
233 if (cpumask_test_cpu(rq->cpu, old_rd->online))
234 set_rq_offline(rq);
235
236 cpumask_clear_cpu(rq->cpu, old_rd->span);
237
238 /*
239 * If we dont want to free the old_rd yet then
240 * set old_rd to NULL to skip the freeing later
241 * in this function:
242 */
243 if (!atomic_dec_and_test(&old_rd->refcount))
244 old_rd = NULL;
245 }
246
247 atomic_inc(&rd->refcount);
248 rq->rd = rd;
249
250 cpumask_set_cpu(rq->cpu, rd->span);
251 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
252 set_rq_online(rq);
253
254 raw_spin_unlock_irqrestore(&rq->lock, flags);
255
256 if (old_rd)
257 call_rcu_sched(&old_rd->rcu, free_rootdomain);
258}
259
260static int init_rootdomain(struct root_domain *rd)
261{
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100262 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
263 goto out;
264 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
265 goto free_span;
266 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
267 goto free_online;
268 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
269 goto free_dlo_mask;
270
Steven Rostedt (Red Hat)4bdced52017-10-06 14:05:04 -0400271#ifdef HAVE_RT_PUSH_IPI
272 rd->rto_cpu = -1;
273 raw_spin_lock_init(&rd->rto_lock);
274 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
275#endif
276
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100277 init_dl_bw(&rd->dl_bw);
278 if (cpudl_init(&rd->cpudl) != 0)
279 goto free_rto_mask;
280
281 if (cpupri_init(&rd->cpupri) != 0)
282 goto free_cpudl;
283 return 0;
284
285free_cpudl:
286 cpudl_cleanup(&rd->cpudl);
287free_rto_mask:
288 free_cpumask_var(rd->rto_mask);
289free_dlo_mask:
290 free_cpumask_var(rd->dlo_mask);
291free_online:
292 free_cpumask_var(rd->online);
293free_span:
294 free_cpumask_var(rd->span);
295out:
296 return -ENOMEM;
297}
298
299/*
300 * By default the system creates a single root-domain with all CPUs as
301 * members (mimicking the global state we have today).
302 */
303struct root_domain def_root_domain;
304
305void init_defrootdomain(void)
306{
307 init_rootdomain(&def_root_domain);
308
309 atomic_set(&def_root_domain.refcount, 1);
310}
311
312static struct root_domain *alloc_rootdomain(void)
313{
314 struct root_domain *rd;
315
Viresh Kumar4d13a062017-04-13 14:45:48 +0530316 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100317 if (!rd)
318 return NULL;
319
320 if (init_rootdomain(rd) != 0) {
321 kfree(rd);
322 return NULL;
323 }
324
325 return rd;
326}
327
328static void free_sched_groups(struct sched_group *sg, int free_sgc)
329{
330 struct sched_group *tmp, *first;
331
332 if (!sg)
333 return;
334
335 first = sg;
336 do {
337 tmp = sg->next;
338
339 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
340 kfree(sg->sgc);
341
Shu Wang213c5a42017-08-10 15:52:16 +0800342 if (atomic_dec_and_test(&sg->ref))
343 kfree(sg);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100344 sg = tmp;
345 } while (sg != first);
346}
347
348static void destroy_sched_domain(struct sched_domain *sd)
349{
350 /*
Peter Zijlstraa090c4f2017-08-21 15:42:52 +0200351 * A normal sched domain may have multiple group references, an
352 * overlapping domain, having private groups, only one. Iterate,
353 * dropping group/capacity references, freeing where none remain.
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100354 */
Shu Wang213c5a42017-08-10 15:52:16 +0800355 free_sched_groups(sd->groups, 1);
356
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100357 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
358 kfree(sd->shared);
359 kfree(sd);
360}
361
362static void destroy_sched_domains_rcu(struct rcu_head *rcu)
363{
364 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
365
366 while (sd) {
367 struct sched_domain *parent = sd->parent;
368 destroy_sched_domain(sd);
369 sd = parent;
370 }
371}
372
373static void destroy_sched_domains(struct sched_domain *sd)
374{
375 if (sd)
376 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
377}
378
379/*
380 * Keep a special pointer to the highest sched_domain that has
381 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
382 * allows us to avoid some pointer chasing select_idle_sibling().
383 *
384 * Also keep a unique ID per domain (we use the first CPU number in
385 * the cpumask of the domain), this allows us to quickly tell if
386 * two CPUs are in the same cache domain, see cpus_share_cache().
387 */
388DEFINE_PER_CPU(struct sched_domain *, sd_llc);
389DEFINE_PER_CPU(int, sd_llc_size);
390DEFINE_PER_CPU(int, sd_llc_id);
391DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
392DEFINE_PER_CPU(struct sched_domain *, sd_numa);
393DEFINE_PER_CPU(struct sched_domain *, sd_asym);
394
395static void update_top_cache_domain(int cpu)
396{
397 struct sched_domain_shared *sds = NULL;
398 struct sched_domain *sd;
399 int id = cpu;
400 int size = 1;
401
402 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
403 if (sd) {
404 id = cpumask_first(sched_domain_span(sd));
405 size = cpumask_weight(sched_domain_span(sd));
406 sds = sd->shared;
407 }
408
409 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
410 per_cpu(sd_llc_size, cpu) = size;
411 per_cpu(sd_llc_id, cpu) = id;
412 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
413
414 sd = lowest_flag_domain(cpu, SD_NUMA);
415 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
416
417 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
418 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
419}
420
421/*
422 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
423 * hold the hotplug lock.
424 */
425static void
426cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
427{
428 struct rq *rq = cpu_rq(cpu);
429 struct sched_domain *tmp;
430
431 /* Remove the sched domains which do not contribute to scheduling. */
432 for (tmp = sd; tmp; ) {
433 struct sched_domain *parent = tmp->parent;
434 if (!parent)
435 break;
436
437 if (sd_parent_degenerate(tmp, parent)) {
438 tmp->parent = parent->parent;
439 if (parent->parent)
440 parent->parent->child = tmp;
441 /*
442 * Transfer SD_PREFER_SIBLING down in case of a
443 * degenerate parent; the spans match for this
444 * so the property transfers.
445 */
446 if (parent->flags & SD_PREFER_SIBLING)
447 tmp->flags |= SD_PREFER_SIBLING;
448 destroy_sched_domain(parent);
449 } else
450 tmp = tmp->parent;
451 }
452
453 if (sd && sd_degenerate(sd)) {
454 tmp = sd;
455 sd = sd->parent;
456 destroy_sched_domain(tmp);
457 if (sd)
458 sd->child = NULL;
459 }
460
461 sched_domain_debug(sd, cpu);
462
463 rq_attach_root(rq, rd);
464 tmp = rq->sd;
465 rcu_assign_pointer(rq->sd, sd);
Peter Zijlstrabbdacdf2017-08-10 17:10:26 +0200466 dirty_sched_domain_sysctl(cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100467 destroy_sched_domains(tmp);
468
469 update_top_cache_domain(cpu);
470}
471
472/* Setup the mask of CPUs configured for isolated domains */
473static int __init isolated_cpu_setup(char *str)
474{
475 int ret;
476
477 alloc_bootmem_cpumask_var(&cpu_isolated_map);
478 ret = cpulist_parse(str, cpu_isolated_map);
479 if (ret) {
Alexey Dobriyan9b130ad2017-09-08 16:14:18 -0700480 pr_err("sched: Error, all isolcpus= values must be between 0 and %u\n", nr_cpu_ids);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100481 return 0;
482 }
483 return 1;
484}
485__setup("isolcpus=", isolated_cpu_setup);
486
487struct s_data {
488 struct sched_domain ** __percpu sd;
489 struct root_domain *rd;
490};
491
492enum s_alloc {
493 sa_rootdomain,
494 sa_sd,
495 sa_sd_storage,
496 sa_none,
497};
498
499/*
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200500 * Return the canonical balance CPU for this group, this is the first CPU
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200501 * of this group that's also in the balance mask.
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200502 *
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200503 * The balance mask are all those CPUs that could actually end up at this
504 * group. See build_balance_mask().
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200505 *
506 * Also see should_we_balance().
507 */
508int group_balance_cpu(struct sched_group *sg)
509{
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200510 return cpumask_first(group_balance_mask(sg));
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200511}
512
513
514/*
515 * NUMA topology (first read the regular topology blurb below)
516 *
517 * Given a node-distance table, for example:
518 *
519 * node 0 1 2 3
520 * 0: 10 20 30 20
521 * 1: 20 10 20 30
522 * 2: 30 20 10 20
523 * 3: 20 30 20 10
524 *
525 * which represents a 4 node ring topology like:
526 *
527 * 0 ----- 1
528 * | |
529 * | |
530 * | |
531 * 3 ----- 2
532 *
533 * We want to construct domains and groups to represent this. The way we go
534 * about doing this is to build the domains on 'hops'. For each NUMA level we
535 * construct the mask of all nodes reachable in @level hops.
536 *
537 * For the above NUMA topology that gives 3 levels:
538 *
539 * NUMA-2 0-3 0-3 0-3 0-3
540 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
541 *
542 * NUMA-1 0-1,3 0-2 1-3 0,2-3
543 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
544 *
545 * NUMA-0 0 1 2 3
546 *
547 *
548 * As can be seen; things don't nicely line up as with the regular topology.
549 * When we iterate a domain in child domain chunks some nodes can be
550 * represented multiple times -- hence the "overlap" naming for this part of
551 * the topology.
552 *
553 * In order to minimize this overlap, we only build enough groups to cover the
554 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
555 *
556 * Because:
557 *
558 * - the first group of each domain is its child domain; this
559 * gets us the first 0-1,3
560 * - the only uncovered node is 2, who's child domain is 1-3.
561 *
562 * However, because of the overlap, computing a unique CPU for each group is
563 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
564 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
565 * end up at those groups (they would end up in group: 0-1,3).
566 *
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200567 * To correct this we have to introduce the group balance mask. This mask
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200568 * will contain those CPUs in the group that can reach this group given the
569 * (child) domain tree.
570 *
571 * With this we can once again compute balance_cpu and sched_group_capacity
572 * relations.
573 *
574 * XXX include words on how balance_cpu is unique and therefore can be
575 * used for sched_group_capacity links.
576 *
577 *
578 * Another 'interesting' topology is:
579 *
580 * node 0 1 2 3
581 * 0: 10 20 20 30
582 * 1: 20 10 20 20
583 * 2: 20 20 10 20
584 * 3: 30 20 20 10
585 *
586 * Which looks a little like:
587 *
588 * 0 ----- 1
589 * | / |
590 * | / |
591 * | / |
592 * 2 ----- 3
593 *
594 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
595 * are not.
596 *
597 * This leads to a few particularly weird cases where the sched_domain's are
598 * not of the same number for each cpu. Consider:
599 *
600 * NUMA-2 0-3 0-3
601 * groups: {0-2},{1-3} {1-3},{0-2}
602 *
603 * NUMA-1 0-2 0-3 0-3 1-3
604 *
605 * NUMA-0 0 1 2 3
606 *
607 */
608
609
610/*
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200611 * Build the balance mask; it contains only those CPUs that can arrive at this
612 * group and should be considered to continue balancing.
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200613 *
614 * We do this during the group creation pass, therefore the group information
615 * isn't complete yet, however since each group represents a (child) domain we
616 * can fully construct this using the sched_domain bits (which are already
617 * complete).
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100618 */
Peter Zijlstra16763302017-04-25 14:31:11 +0200619static void
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200620build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100621{
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200622 const struct cpumask *sg_span = sched_group_span(sg);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100623 struct sd_data *sdd = sd->private;
624 struct sched_domain *sibling;
625 int i;
626
Peter Zijlstra16763302017-04-25 14:31:11 +0200627 cpumask_clear(mask);
628
Lauro Ramos Venanciof32d7822017-04-20 16:51:40 -0300629 for_each_cpu(i, sg_span) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100630 sibling = *per_cpu_ptr(sdd->sd, i);
Peter Zijlstra73bb0592017-04-25 14:00:49 +0200631
632 /*
633 * Can happen in the asymmetric case, where these siblings are
634 * unused. The mask will not be empty because those CPUs that
635 * do have the top domain _should_ span the domain.
636 */
637 if (!sibling->child)
638 continue;
639
640 /* If we would not end up here, we can't continue from here */
641 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100642 continue;
643
Peter Zijlstra16763302017-04-25 14:31:11 +0200644 cpumask_set_cpu(i, mask);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100645 }
Peter Zijlstra73bb0592017-04-25 14:00:49 +0200646
647 /* We must not have empty masks here */
Peter Zijlstra16763302017-04-25 14:31:11 +0200648 WARN_ON_ONCE(cpumask_empty(mask));
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100649}
650
651/*
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200652 * XXX: This creates per-node group entries; since the load-balancer will
653 * immediately access remote memory to construct this group's load-balance
654 * statistics having the groups node local is of dubious benefit.
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100655 */
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300656static struct sched_group *
657build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
658{
659 struct sched_group *sg;
660 struct cpumask *sg_span;
661
662 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
663 GFP_KERNEL, cpu_to_node(cpu));
664
665 if (!sg)
666 return NULL;
667
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200668 sg_span = sched_group_span(sg);
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300669 if (sd->child)
670 cpumask_copy(sg_span, sched_domain_span(sd->child));
671 else
672 cpumask_copy(sg_span, sched_domain_span(sd));
673
Shu Wang213c5a42017-08-10 15:52:16 +0800674 atomic_inc(&sg->ref);
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300675 return sg;
676}
677
678static void init_overlap_sched_group(struct sched_domain *sd,
Peter Zijlstra16763302017-04-25 14:31:11 +0200679 struct sched_group *sg)
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300680{
Peter Zijlstra16763302017-04-25 14:31:11 +0200681 struct cpumask *mask = sched_domains_tmpmask2;
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300682 struct sd_data *sdd = sd->private;
683 struct cpumask *sg_span;
Peter Zijlstra16763302017-04-25 14:31:11 +0200684 int cpu;
685
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200686 build_balance_mask(sd, sg, mask);
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200687 cpu = cpumask_first_and(sched_group_span(sg), mask);
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300688
689 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
690 if (atomic_inc_return(&sg->sgc->ref) == 1)
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200691 cpumask_copy(group_balance_mask(sg), mask);
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200692 else
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200693 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300694
695 /*
696 * Initialize sgc->capacity such that even if we mess up the
697 * domains and no possible iteration will get us here, we won't
698 * die on a /0 trap.
699 */
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200700 sg_span = sched_group_span(sg);
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300701 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
702 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
703}
704
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100705static int
706build_overlap_sched_groups(struct sched_domain *sd, int cpu)
707{
Peter Zijlstra91eaed02017-04-14 17:32:07 +0200708 struct sched_group *first = NULL, *last = NULL, *sg;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100709 const struct cpumask *span = sched_domain_span(sd);
710 struct cpumask *covered = sched_domains_tmpmask;
711 struct sd_data *sdd = sd->private;
712 struct sched_domain *sibling;
713 int i;
714
715 cpumask_clear(covered);
716
Peter Zijlstra0372dd22017-04-14 17:24:02 +0200717 for_each_cpu_wrap(i, span, cpu) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100718 struct cpumask *sg_span;
719
720 if (cpumask_test_cpu(i, covered))
721 continue;
722
723 sibling = *per_cpu_ptr(sdd->sd, i);
724
Lauro Ramos Venancioc20e1ea2017-04-20 16:51:42 -0300725 /*
726 * Asymmetric node setups can result in situations where the
727 * domain tree is of unequal depth, make sure to skip domains
728 * that already cover the entire range.
729 *
730 * In that case build_sched_domains() will have terminated the
731 * iteration early and our sibling sd spans will be empty.
732 * Domains should always include the CPU they're built on, so
733 * check that.
734 */
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100735 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
736 continue;
737
Lauro Ramos Venancio8c033462017-04-13 10:56:07 -0300738 sg = build_group_from_child_sched_domain(sibling, cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100739 if (!sg)
740 goto fail;
741
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200742 sg_span = sched_group_span(sg);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100743 cpumask_or(covered, covered, sg_span);
744
Peter Zijlstra16763302017-04-25 14:31:11 +0200745 init_overlap_sched_group(sd, sg);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100746
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100747 if (!first)
748 first = sg;
749 if (last)
750 last->next = sg;
751 last = sg;
752 last->next = first;
753 }
Peter Zijlstra91eaed02017-04-14 17:32:07 +0200754 sd->groups = first;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100755
756 return 0;
757
758fail:
759 free_sched_groups(first, 0);
760
761 return -ENOMEM;
762}
763
Peter Zijlstra35a566e2017-04-28 10:54:26 +0200764
765/*
766 * Package topology (also see the load-balance blurb in fair.c)
767 *
768 * The scheduler builds a tree structure to represent a number of important
769 * topology features. By default (default_topology[]) these include:
770 *
771 * - Simultaneous multithreading (SMT)
772 * - Multi-Core Cache (MC)
773 * - Package (DIE)
774 *
775 * Where the last one more or less denotes everything up to a NUMA node.
776 *
777 * The tree consists of 3 primary data structures:
778 *
779 * sched_domain -> sched_group -> sched_group_capacity
780 * ^ ^ ^ ^
781 * `-' `-'
782 *
783 * The sched_domains are per-cpu and have a two way link (parent & child) and
784 * denote the ever growing mask of CPUs belonging to that level of topology.
785 *
786 * Each sched_domain has a circular (double) linked list of sched_group's, each
787 * denoting the domains of the level below (or individual CPUs in case of the
788 * first domain level). The sched_group linked by a sched_domain includes the
789 * CPU of that sched_domain [*].
790 *
791 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
792 *
793 * CPU 0 1 2 3 4 5 6 7
794 *
795 * DIE [ ]
796 * MC [ ] [ ]
797 * SMT [ ] [ ] [ ] [ ]
798 *
799 * - or -
800 *
801 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
802 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
803 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
804 *
805 * CPU 0 1 2 3 4 5 6 7
806 *
807 * One way to think about it is: sched_domain moves you up and down among these
808 * topology levels, while sched_group moves you sideways through it, at child
809 * domain granularity.
810 *
811 * sched_group_capacity ensures each unique sched_group has shared storage.
812 *
813 * There are two related construction problems, both require a CPU that
814 * uniquely identify each group (for a given domain):
815 *
816 * - The first is the balance_cpu (see should_we_balance() and the
817 * load-balance blub in fair.c); for each group we only want 1 CPU to
818 * continue balancing at a higher domain.
819 *
820 * - The second is the sched_group_capacity; we want all identical groups
821 * to share a single sched_group_capacity.
822 *
823 * Since these topologies are exclusive by construction. That is, its
824 * impossible for an SMT thread to belong to multiple cores, and cores to
825 * be part of multiple caches. There is a very clear and unique location
826 * for each CPU in the hierarchy.
827 *
828 * Therefore computing a unique CPU for each group is trivial (the iteration
829 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
830 * group), we can simply pick the first CPU in each group.
831 *
832 *
833 * [*] in other words, the first group of each domain is its child domain.
834 */
835
Peter Zijlstra0c0e7762017-05-03 14:18:06 +0200836static struct sched_group *get_group(int cpu, struct sd_data *sdd)
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100837{
838 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
839 struct sched_domain *child = sd->child;
Peter Zijlstra0c0e7762017-05-03 14:18:06 +0200840 struct sched_group *sg;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100841
842 if (child)
843 cpu = cpumask_first(sched_domain_span(child));
844
Peter Zijlstra0c0e7762017-05-03 14:18:06 +0200845 sg = *per_cpu_ptr(sdd->sg, cpu);
846 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100847
Peter Zijlstra0c0e7762017-05-03 14:18:06 +0200848 /* For claim_allocations: */
849 atomic_inc(&sg->ref);
850 atomic_inc(&sg->sgc->ref);
851
852 if (child) {
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200853 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
854 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
Peter Zijlstra0c0e7762017-05-03 14:18:06 +0200855 } else {
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200856 cpumask_set_cpu(cpu, sched_group_span(sg));
Peter Zijlstrae5c14b12017-05-01 10:47:02 +0200857 cpumask_set_cpu(cpu, group_balance_mask(sg));
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100858 }
859
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200860 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
Peter Zijlstra0c0e7762017-05-03 14:18:06 +0200861 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
862
863 return sg;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100864}
865
866/*
867 * build_sched_groups will build a circular linked list of the groups
868 * covered by the given span, and will set each group's ->cpumask correctly,
869 * and ->cpu_capacity to 0.
870 *
871 * Assumes the sched_domain tree is fully constructed
872 */
873static int
874build_sched_groups(struct sched_domain *sd, int cpu)
875{
876 struct sched_group *first = NULL, *last = NULL;
877 struct sd_data *sdd = sd->private;
878 const struct cpumask *span = sched_domain_span(sd);
879 struct cpumask *covered;
880 int i;
881
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100882 lockdep_assert_held(&sched_domains_mutex);
883 covered = sched_domains_tmpmask;
884
885 cpumask_clear(covered);
886
Peter Zijlstra0c0e7762017-05-03 14:18:06 +0200887 for_each_cpu_wrap(i, span, cpu) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100888 struct sched_group *sg;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100889
890 if (cpumask_test_cpu(i, covered))
891 continue;
892
Peter Zijlstra0c0e7762017-05-03 14:18:06 +0200893 sg = get_group(i, sdd);
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100894
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200895 cpumask_or(covered, covered, sched_group_span(sg));
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100896
897 if (!first)
898 first = sg;
899 if (last)
900 last->next = sg;
901 last = sg;
902 }
903 last->next = first;
Peter Zijlstra0c0e7762017-05-03 14:18:06 +0200904 sd->groups = first;
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100905
906 return 0;
907}
908
909/*
910 * Initialize sched groups cpu_capacity.
911 *
912 * cpu_capacity indicates the capacity of sched group, which is used while
913 * distributing the load between different sched groups in a sched domain.
914 * Typically cpu_capacity for all the groups in a sched domain will be same
915 * unless there are asymmetries in the topology. If there are asymmetries,
916 * group having more cpu_capacity will pickup more load compared to the
917 * group having less cpu_capacity.
918 */
919static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
920{
921 struct sched_group *sg = sd->groups;
922
923 WARN_ON(!sg);
924
925 do {
926 int cpu, max_cpu = -1;
927
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200928 sg->group_weight = cpumask_weight(sched_group_span(sg));
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100929
930 if (!(sd->flags & SD_ASYM_PACKING))
931 goto next;
932
Peter Zijlstraae4df9d2017-05-01 11:03:12 +0200933 for_each_cpu(cpu, sched_group_span(sg)) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +0100934 if (max_cpu < 0)
935 max_cpu = cpu;
936 else if (sched_asym_prefer(cpu, max_cpu))
937 max_cpu = cpu;
938 }
939 sg->asym_prefer_cpu = max_cpu;
940
941next:
942 sg = sg->next;
943 } while (sg != sd->groups);
944
945 if (cpu != group_balance_cpu(sg))
946 return;
947
948 update_group_capacity(sd, cpu);
949}
950
951/*
952 * Initializers for schedule domains
953 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
954 */
955
956static int default_relax_domain_level = -1;
957int sched_domain_level_max;
958
959static int __init setup_relax_domain_level(char *str)
960{
961 if (kstrtoint(str, 0, &default_relax_domain_level))
962 pr_warn("Unable to set relax_domain_level\n");
963
964 return 1;
965}
966__setup("relax_domain_level=", setup_relax_domain_level);
967
968static void set_domain_attribute(struct sched_domain *sd,
969 struct sched_domain_attr *attr)
970{
971 int request;
972
973 if (!attr || attr->relax_domain_level < 0) {
974 if (default_relax_domain_level < 0)
975 return;
976 else
977 request = default_relax_domain_level;
978 } else
979 request = attr->relax_domain_level;
980 if (request < sd->level) {
981 /* Turn off idle balance on this domain: */
982 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
983 } else {
984 /* Turn on idle balance on this domain: */
985 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
986 }
987}
988
989static void __sdt_free(const struct cpumask *cpu_map);
990static int __sdt_alloc(const struct cpumask *cpu_map);
991
992static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
993 const struct cpumask *cpu_map)
994{
995 switch (what) {
996 case sa_rootdomain:
997 if (!atomic_read(&d->rd->refcount))
998 free_rootdomain(&d->rd->rcu);
999 /* Fall through */
1000 case sa_sd:
1001 free_percpu(d->sd);
1002 /* Fall through */
1003 case sa_sd_storage:
1004 __sdt_free(cpu_map);
1005 /* Fall through */
1006 case sa_none:
1007 break;
1008 }
1009}
1010
1011static enum s_alloc
1012__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1013{
1014 memset(d, 0, sizeof(*d));
1015
1016 if (__sdt_alloc(cpu_map))
1017 return sa_sd_storage;
1018 d->sd = alloc_percpu(struct sched_domain *);
1019 if (!d->sd)
1020 return sa_sd_storage;
1021 d->rd = alloc_rootdomain();
1022 if (!d->rd)
1023 return sa_sd;
1024 return sa_rootdomain;
1025}
1026
1027/*
1028 * NULL the sd_data elements we've used to build the sched_domain and
1029 * sched_group structure so that the subsequent __free_domain_allocs()
1030 * will not free the data we're using.
1031 */
1032static void claim_allocations(int cpu, struct sched_domain *sd)
1033{
1034 struct sd_data *sdd = sd->private;
1035
1036 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1037 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1038
1039 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1040 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1041
1042 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1043 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1044
1045 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1046 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1047}
1048
1049#ifdef CONFIG_NUMA
1050static int sched_domains_numa_levels;
1051enum numa_topology_type sched_numa_topology_type;
1052static int *sched_domains_numa_distance;
1053int sched_max_numa_distance;
1054static struct cpumask ***sched_domains_numa_masks;
1055static int sched_domains_curr_level;
1056#endif
1057
1058/*
1059 * SD_flags allowed in topology descriptions.
1060 *
1061 * These flags are purely descriptive of the topology and do not prescribe
1062 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1063 * function:
1064 *
1065 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1066 * SD_SHARE_PKG_RESOURCES - describes shared caches
1067 * SD_NUMA - describes NUMA topologies
1068 * SD_SHARE_POWERDOMAIN - describes shared power domain
1069 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
1070 *
1071 * Odd one out, which beside describing the topology has a quirk also
1072 * prescribes the desired behaviour that goes along with it:
1073 *
1074 * SD_ASYM_PACKING - describes SMT quirks
1075 */
1076#define TOPOLOGY_SD_FLAGS \
1077 (SD_SHARE_CPUCAPACITY | \
1078 SD_SHARE_PKG_RESOURCES | \
1079 SD_NUMA | \
1080 SD_ASYM_PACKING | \
1081 SD_ASYM_CPUCAPACITY | \
1082 SD_SHARE_POWERDOMAIN)
1083
1084static struct sched_domain *
1085sd_init(struct sched_domain_topology_level *tl,
1086 const struct cpumask *cpu_map,
1087 struct sched_domain *child, int cpu)
1088{
1089 struct sd_data *sdd = &tl->data;
1090 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1091 int sd_id, sd_weight, sd_flags = 0;
1092
1093#ifdef CONFIG_NUMA
1094 /*
1095 * Ugly hack to pass state to sd_numa_mask()...
1096 */
1097 sched_domains_curr_level = tl->numa_level;
1098#endif
1099
1100 sd_weight = cpumask_weight(tl->mask(cpu));
1101
1102 if (tl->sd_flags)
1103 sd_flags = (*tl->sd_flags)();
1104 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1105 "wrong sd_flags in topology description\n"))
1106 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1107
1108 *sd = (struct sched_domain){
1109 .min_interval = sd_weight,
1110 .max_interval = 2*sd_weight,
1111 .busy_factor = 32,
1112 .imbalance_pct = 125,
1113
1114 .cache_nice_tries = 0,
1115 .busy_idx = 0,
1116 .idle_idx = 0,
1117 .newidle_idx = 0,
1118 .wake_idx = 0,
1119 .forkexec_idx = 0,
1120
1121 .flags = 1*SD_LOAD_BALANCE
1122 | 1*SD_BALANCE_NEWIDLE
1123 | 1*SD_BALANCE_EXEC
1124 | 1*SD_BALANCE_FORK
1125 | 0*SD_BALANCE_WAKE
1126 | 1*SD_WAKE_AFFINE
1127 | 0*SD_SHARE_CPUCAPACITY
1128 | 0*SD_SHARE_PKG_RESOURCES
1129 | 0*SD_SERIALIZE
1130 | 0*SD_PREFER_SIBLING
1131 | 0*SD_NUMA
1132 | sd_flags
1133 ,
1134
1135 .last_balance = jiffies,
1136 .balance_interval = sd_weight,
1137 .smt_gain = 0,
1138 .max_newidle_lb_cost = 0,
1139 .next_decay_max_lb_cost = jiffies,
1140 .child = child,
1141#ifdef CONFIG_SCHED_DEBUG
1142 .name = tl->name,
1143#endif
1144 };
1145
1146 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1147 sd_id = cpumask_first(sched_domain_span(sd));
1148
1149 /*
1150 * Convert topological properties into behaviour.
1151 */
1152
1153 if (sd->flags & SD_ASYM_CPUCAPACITY) {
1154 struct sched_domain *t = sd;
1155
1156 for_each_lower_domain(t)
1157 t->flags |= SD_BALANCE_WAKE;
1158 }
1159
1160 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1161 sd->flags |= SD_PREFER_SIBLING;
1162 sd->imbalance_pct = 110;
1163 sd->smt_gain = 1178; /* ~15% */
1164
1165 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
Peter Zijlstraed4ad1c2017-10-02 14:50:33 +02001166 sd->flags |= SD_PREFER_SIBLING;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001167 sd->imbalance_pct = 117;
1168 sd->cache_nice_tries = 1;
1169 sd->busy_idx = 2;
1170
1171#ifdef CONFIG_NUMA
1172 } else if (sd->flags & SD_NUMA) {
1173 sd->cache_nice_tries = 2;
1174 sd->busy_idx = 3;
1175 sd->idle_idx = 2;
1176
1177 sd->flags |= SD_SERIALIZE;
1178 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1179 sd->flags &= ~(SD_BALANCE_EXEC |
1180 SD_BALANCE_FORK |
1181 SD_WAKE_AFFINE);
1182 }
1183
1184#endif
1185 } else {
1186 sd->flags |= SD_PREFER_SIBLING;
1187 sd->cache_nice_tries = 1;
1188 sd->busy_idx = 2;
1189 sd->idle_idx = 1;
1190 }
1191
1192 /*
1193 * For all levels sharing cache; connect a sched_domain_shared
1194 * instance.
1195 */
1196 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1197 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1198 atomic_inc(&sd->shared->ref);
1199 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1200 }
1201
1202 sd->private = sdd;
1203
1204 return sd;
1205}
1206
1207/*
1208 * Topology list, bottom-up.
1209 */
1210static struct sched_domain_topology_level default_topology[] = {
1211#ifdef CONFIG_SCHED_SMT
1212 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1213#endif
1214#ifdef CONFIG_SCHED_MC
1215 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1216#endif
1217 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1218 { NULL, },
1219};
1220
1221static struct sched_domain_topology_level *sched_domain_topology =
1222 default_topology;
1223
1224#define for_each_sd_topology(tl) \
1225 for (tl = sched_domain_topology; tl->mask; tl++)
1226
1227void set_sched_topology(struct sched_domain_topology_level *tl)
1228{
1229 if (WARN_ON_ONCE(sched_smp_initialized))
1230 return;
1231
1232 sched_domain_topology = tl;
1233}
1234
1235#ifdef CONFIG_NUMA
1236
1237static const struct cpumask *sd_numa_mask(int cpu)
1238{
1239 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1240}
1241
1242static void sched_numa_warn(const char *str)
1243{
1244 static int done = false;
1245 int i,j;
1246
1247 if (done)
1248 return;
1249
1250 done = true;
1251
1252 printk(KERN_WARNING "ERROR: %s\n\n", str);
1253
1254 for (i = 0; i < nr_node_ids; i++) {
1255 printk(KERN_WARNING " ");
1256 for (j = 0; j < nr_node_ids; j++)
1257 printk(KERN_CONT "%02d ", node_distance(i,j));
1258 printk(KERN_CONT "\n");
1259 }
1260 printk(KERN_WARNING "\n");
1261}
1262
1263bool find_numa_distance(int distance)
1264{
1265 int i;
1266
1267 if (distance == node_distance(0, 0))
1268 return true;
1269
1270 for (i = 0; i < sched_domains_numa_levels; i++) {
1271 if (sched_domains_numa_distance[i] == distance)
1272 return true;
1273 }
1274
1275 return false;
1276}
1277
1278/*
1279 * A system can have three types of NUMA topology:
1280 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1281 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1282 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1283 *
1284 * The difference between a glueless mesh topology and a backplane
1285 * topology lies in whether communication between not directly
1286 * connected nodes goes through intermediary nodes (where programs
1287 * could run), or through backplane controllers. This affects
1288 * placement of programs.
1289 *
1290 * The type of topology can be discerned with the following tests:
1291 * - If the maximum distance between any nodes is 1 hop, the system
1292 * is directly connected.
1293 * - If for two nodes A and B, located N > 1 hops away from each other,
1294 * there is an intermediary node C, which is < N hops away from both
1295 * nodes A and B, the system is a glueless mesh.
1296 */
1297static void init_numa_topology_type(void)
1298{
1299 int a, b, c, n;
1300
1301 n = sched_max_numa_distance;
1302
1303 if (sched_domains_numa_levels <= 1) {
1304 sched_numa_topology_type = NUMA_DIRECT;
1305 return;
1306 }
1307
1308 for_each_online_node(a) {
1309 for_each_online_node(b) {
1310 /* Find two nodes furthest removed from each other. */
1311 if (node_distance(a, b) < n)
1312 continue;
1313
1314 /* Is there an intermediary node between a and b? */
1315 for_each_online_node(c) {
1316 if (node_distance(a, c) < n &&
1317 node_distance(b, c) < n) {
1318 sched_numa_topology_type =
1319 NUMA_GLUELESS_MESH;
1320 return;
1321 }
1322 }
1323
1324 sched_numa_topology_type = NUMA_BACKPLANE;
1325 return;
1326 }
1327 }
1328}
1329
1330void sched_init_numa(void)
1331{
1332 int next_distance, curr_distance = node_distance(0, 0);
1333 struct sched_domain_topology_level *tl;
1334 int level = 0;
1335 int i, j, k;
1336
1337 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1338 if (!sched_domains_numa_distance)
1339 return;
1340
Suravee Suthikulpanit051f3ca2017-09-07 02:20:05 -05001341 /* Includes NUMA identity node at level 0. */
1342 sched_domains_numa_distance[level++] = curr_distance;
1343 sched_domains_numa_levels = level;
1344
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001345 /*
1346 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1347 * unique distances in the node_distance() table.
1348 *
1349 * Assumes node_distance(0,j) includes all distances in
1350 * node_distance(i,j) in order to avoid cubic time.
1351 */
1352 next_distance = curr_distance;
1353 for (i = 0; i < nr_node_ids; i++) {
1354 for (j = 0; j < nr_node_ids; j++) {
1355 for (k = 0; k < nr_node_ids; k++) {
1356 int distance = node_distance(i, k);
1357
1358 if (distance > curr_distance &&
1359 (distance < next_distance ||
1360 next_distance == curr_distance))
1361 next_distance = distance;
1362
1363 /*
1364 * While not a strong assumption it would be nice to know
1365 * about cases where if node A is connected to B, B is not
1366 * equally connected to A.
1367 */
1368 if (sched_debug() && node_distance(k, i) != distance)
1369 sched_numa_warn("Node-distance not symmetric");
1370
1371 if (sched_debug() && i && !find_numa_distance(distance))
1372 sched_numa_warn("Node-0 not representative");
1373 }
1374 if (next_distance != curr_distance) {
1375 sched_domains_numa_distance[level++] = next_distance;
1376 sched_domains_numa_levels = level;
1377 curr_distance = next_distance;
1378 } else break;
1379 }
1380
1381 /*
1382 * In case of sched_debug() we verify the above assumption.
1383 */
1384 if (!sched_debug())
1385 break;
1386 }
1387
1388 if (!level)
1389 return;
1390
1391 /*
Suravee Suthikulpanit051f3ca2017-09-07 02:20:05 -05001392 * 'level' contains the number of unique distances
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001393 *
1394 * The sched_domains_numa_distance[] array includes the actual distance
1395 * numbers.
1396 */
1397
1398 /*
1399 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1400 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1401 * the array will contain less then 'level' members. This could be
1402 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1403 * in other functions.
1404 *
1405 * We reset it to 'level' at the end of this function.
1406 */
1407 sched_domains_numa_levels = 0;
1408
1409 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1410 if (!sched_domains_numa_masks)
1411 return;
1412
1413 /*
1414 * Now for each level, construct a mask per node which contains all
1415 * CPUs of nodes that are that many hops away from us.
1416 */
1417 for (i = 0; i < level; i++) {
1418 sched_domains_numa_masks[i] =
1419 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1420 if (!sched_domains_numa_masks[i])
1421 return;
1422
1423 for (j = 0; j < nr_node_ids; j++) {
1424 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1425 if (!mask)
1426 return;
1427
1428 sched_domains_numa_masks[i][j] = mask;
1429
1430 for_each_node(k) {
1431 if (node_distance(j, k) > sched_domains_numa_distance[i])
1432 continue;
1433
1434 cpumask_or(mask, mask, cpumask_of_node(k));
1435 }
1436 }
1437 }
1438
1439 /* Compute default topology size */
1440 for (i = 0; sched_domain_topology[i].mask; i++);
1441
1442 tl = kzalloc((i + level + 1) *
1443 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1444 if (!tl)
1445 return;
1446
1447 /*
1448 * Copy the default topology bits..
1449 */
1450 for (i = 0; sched_domain_topology[i].mask; i++)
1451 tl[i] = sched_domain_topology[i];
1452
1453 /*
Suravee Suthikulpanit051f3ca2017-09-07 02:20:05 -05001454 * Add the NUMA identity distance, aka single NODE.
1455 */
1456 tl[i++] = (struct sched_domain_topology_level){
1457 .mask = sd_numa_mask,
1458 .numa_level = 0,
1459 SD_INIT_NAME(NODE)
1460 };
1461
1462 /*
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001463 * .. and append 'j' levels of NUMA goodness.
1464 */
Suravee Suthikulpanit051f3ca2017-09-07 02:20:05 -05001465 for (j = 1; j < level; i++, j++) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001466 tl[i] = (struct sched_domain_topology_level){
1467 .mask = sd_numa_mask,
1468 .sd_flags = cpu_numa_flags,
1469 .flags = SDTL_OVERLAP,
1470 .numa_level = j,
1471 SD_INIT_NAME(NUMA)
1472 };
1473 }
1474
1475 sched_domain_topology = tl;
1476
1477 sched_domains_numa_levels = level;
1478 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1479
1480 init_numa_topology_type();
1481}
1482
1483void sched_domains_numa_masks_set(unsigned int cpu)
1484{
1485 int node = cpu_to_node(cpu);
1486 int i, j;
1487
1488 for (i = 0; i < sched_domains_numa_levels; i++) {
1489 for (j = 0; j < nr_node_ids; j++) {
1490 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1491 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1492 }
1493 }
1494}
1495
1496void sched_domains_numa_masks_clear(unsigned int cpu)
1497{
1498 int i, j;
1499
1500 for (i = 0; i < sched_domains_numa_levels; i++) {
1501 for (j = 0; j < nr_node_ids; j++)
1502 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1503 }
1504}
1505
1506#endif /* CONFIG_NUMA */
1507
1508static int __sdt_alloc(const struct cpumask *cpu_map)
1509{
1510 struct sched_domain_topology_level *tl;
1511 int j;
1512
1513 for_each_sd_topology(tl) {
1514 struct sd_data *sdd = &tl->data;
1515
1516 sdd->sd = alloc_percpu(struct sched_domain *);
1517 if (!sdd->sd)
1518 return -ENOMEM;
1519
1520 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1521 if (!sdd->sds)
1522 return -ENOMEM;
1523
1524 sdd->sg = alloc_percpu(struct sched_group *);
1525 if (!sdd->sg)
1526 return -ENOMEM;
1527
1528 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1529 if (!sdd->sgc)
1530 return -ENOMEM;
1531
1532 for_each_cpu(j, cpu_map) {
1533 struct sched_domain *sd;
1534 struct sched_domain_shared *sds;
1535 struct sched_group *sg;
1536 struct sched_group_capacity *sgc;
1537
1538 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1539 GFP_KERNEL, cpu_to_node(j));
1540 if (!sd)
1541 return -ENOMEM;
1542
1543 *per_cpu_ptr(sdd->sd, j) = sd;
1544
1545 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1546 GFP_KERNEL, cpu_to_node(j));
1547 if (!sds)
1548 return -ENOMEM;
1549
1550 *per_cpu_ptr(sdd->sds, j) = sds;
1551
1552 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1553 GFP_KERNEL, cpu_to_node(j));
1554 if (!sg)
1555 return -ENOMEM;
1556
1557 sg->next = sg;
1558
1559 *per_cpu_ptr(sdd->sg, j) = sg;
1560
1561 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1562 GFP_KERNEL, cpu_to_node(j));
1563 if (!sgc)
1564 return -ENOMEM;
1565
Peter Zijlstra005f8742017-04-26 17:35:35 +02001566#ifdef CONFIG_SCHED_DEBUG
1567 sgc->id = j;
1568#endif
1569
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001570 *per_cpu_ptr(sdd->sgc, j) = sgc;
1571 }
1572 }
1573
1574 return 0;
1575}
1576
1577static void __sdt_free(const struct cpumask *cpu_map)
1578{
1579 struct sched_domain_topology_level *tl;
1580 int j;
1581
1582 for_each_sd_topology(tl) {
1583 struct sd_data *sdd = &tl->data;
1584
1585 for_each_cpu(j, cpu_map) {
1586 struct sched_domain *sd;
1587
1588 if (sdd->sd) {
1589 sd = *per_cpu_ptr(sdd->sd, j);
1590 if (sd && (sd->flags & SD_OVERLAP))
1591 free_sched_groups(sd->groups, 0);
1592 kfree(*per_cpu_ptr(sdd->sd, j));
1593 }
1594
1595 if (sdd->sds)
1596 kfree(*per_cpu_ptr(sdd->sds, j));
1597 if (sdd->sg)
1598 kfree(*per_cpu_ptr(sdd->sg, j));
1599 if (sdd->sgc)
1600 kfree(*per_cpu_ptr(sdd->sgc, j));
1601 }
1602 free_percpu(sdd->sd);
1603 sdd->sd = NULL;
1604 free_percpu(sdd->sds);
1605 sdd->sds = NULL;
1606 free_percpu(sdd->sg);
1607 sdd->sg = NULL;
1608 free_percpu(sdd->sgc);
1609 sdd->sgc = NULL;
1610 }
1611}
1612
Viresh Kumar181a80d12017-04-27 13:58:59 +05301613static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001614 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1615 struct sched_domain *child, int cpu)
1616{
1617 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1618
1619 if (child) {
1620 sd->level = child->level + 1;
1621 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1622 child->parent = sd;
1623
1624 if (!cpumask_subset(sched_domain_span(child),
1625 sched_domain_span(sd))) {
1626 pr_err("BUG: arch topology borken\n");
1627#ifdef CONFIG_SCHED_DEBUG
1628 pr_err(" the %s domain not a subset of the %s domain\n",
1629 child->name, sd->name);
1630#endif
1631 /* Fixup, ensure @sd has at least @child cpus. */
1632 cpumask_or(sched_domain_span(sd),
1633 sched_domain_span(sd),
1634 sched_domain_span(child));
1635 }
1636
1637 }
1638 set_domain_attribute(sd, attr);
1639
1640 return sd;
1641}
1642
1643/*
1644 * Build sched domains for a given set of CPUs and attach the sched domains
1645 * to the individual CPUs
1646 */
1647static int
1648build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1649{
1650 enum s_alloc alloc_state;
1651 struct sched_domain *sd;
1652 struct s_data d;
1653 struct rq *rq = NULL;
1654 int i, ret = -ENOMEM;
1655
1656 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1657 if (alloc_state != sa_rootdomain)
1658 goto error;
1659
1660 /* Set up domains for CPUs specified by the cpu_map: */
1661 for_each_cpu(i, cpu_map) {
1662 struct sched_domain_topology_level *tl;
1663
1664 sd = NULL;
1665 for_each_sd_topology(tl) {
1666 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1667 if (tl == sched_domain_topology)
1668 *per_cpu_ptr(d.sd, i) = sd;
Peter Zijlstraaf855962017-04-26 17:36:41 +02001669 if (tl->flags & SDTL_OVERLAP)
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001670 sd->flags |= SD_OVERLAP;
1671 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1672 break;
1673 }
1674 }
1675
1676 /* Build the groups for the domains */
1677 for_each_cpu(i, cpu_map) {
1678 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1679 sd->span_weight = cpumask_weight(sched_domain_span(sd));
1680 if (sd->flags & SD_OVERLAP) {
1681 if (build_overlap_sched_groups(sd, i))
1682 goto error;
1683 } else {
1684 if (build_sched_groups(sd, i))
1685 goto error;
1686 }
1687 }
1688 }
1689
1690 /* Calculate CPU capacity for physical packages and nodes */
1691 for (i = nr_cpumask_bits-1; i >= 0; i--) {
1692 if (!cpumask_test_cpu(i, cpu_map))
1693 continue;
1694
1695 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1696 claim_allocations(i, sd);
1697 init_sched_groups_capacity(i, sd);
1698 }
1699 }
1700
1701 /* Attach the domains */
1702 rcu_read_lock();
1703 for_each_cpu(i, cpu_map) {
1704 rq = cpu_rq(i);
1705 sd = *per_cpu_ptr(d.sd, i);
1706
1707 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1708 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1709 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1710
1711 cpu_attach_domain(sd, d.rd, i);
1712 }
1713 rcu_read_unlock();
1714
1715 if (rq && sched_debug_enabled) {
1716 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1717 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1718 }
1719
1720 ret = 0;
1721error:
1722 __free_domain_allocs(&d, alloc_state, cpu_map);
1723 return ret;
1724}
1725
1726/* Current sched domains: */
1727static cpumask_var_t *doms_cur;
1728
1729/* Number of sched domains in 'doms_cur': */
1730static int ndoms_cur;
1731
1732/* Attribues of custom domains in 'doms_cur' */
1733static struct sched_domain_attr *dattr_cur;
1734
1735/*
1736 * Special case: If a kmalloc() of a doms_cur partition (array of
1737 * cpumask) fails, then fallback to a single sched domain,
1738 * as determined by the single cpumask fallback_doms.
1739 */
Peter Zijlstra8d5dc512017-04-25 15:29:40 +02001740static cpumask_var_t fallback_doms;
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001741
1742/*
1743 * arch_update_cpu_topology lets virtualized architectures update the
1744 * CPU core maps. It is supposed to return 1 if the topology changed
1745 * or 0 if it stayed the same.
1746 */
1747int __weak arch_update_cpu_topology(void)
1748{
1749 return 0;
1750}
1751
1752cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1753{
1754 int i;
1755 cpumask_var_t *doms;
1756
1757 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1758 if (!doms)
1759 return NULL;
1760 for (i = 0; i < ndoms; i++) {
1761 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1762 free_sched_domains(doms, i);
1763 return NULL;
1764 }
1765 }
1766 return doms;
1767}
1768
1769void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1770{
1771 unsigned int i;
1772 for (i = 0; i < ndoms; i++)
1773 free_cpumask_var(doms[i]);
1774 kfree(doms);
1775}
1776
1777/*
1778 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1779 * For now this just excludes isolated CPUs, but could be used to
1780 * exclude other special cases in the future.
1781 */
Peter Zijlstra8d5dc512017-04-25 15:29:40 +02001782int sched_init_domains(const struct cpumask *cpu_map)
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001783{
1784 int err;
1785
Peter Zijlstra8d5dc512017-04-25 15:29:40 +02001786 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
Peter Zijlstra16763302017-04-25 14:31:11 +02001787 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
Peter Zijlstra8d5dc512017-04-25 15:29:40 +02001788 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1789
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001790 arch_update_cpu_topology();
1791 ndoms_cur = 1;
1792 doms_cur = alloc_sched_domains(ndoms_cur);
1793 if (!doms_cur)
1794 doms_cur = &fallback_doms;
1795 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1796 err = build_sched_domains(doms_cur[0], NULL);
1797 register_sched_domain_sysctl();
1798
1799 return err;
1800}
1801
1802/*
1803 * Detach sched domains from a group of CPUs specified in cpu_map
1804 * These CPUs will now be attached to the NULL domain
1805 */
1806static void detach_destroy_domains(const struct cpumask *cpu_map)
1807{
1808 int i;
1809
1810 rcu_read_lock();
1811 for_each_cpu(i, cpu_map)
1812 cpu_attach_domain(NULL, &def_root_domain, i);
1813 rcu_read_unlock();
1814}
1815
1816/* handle null as "default" */
1817static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1818 struct sched_domain_attr *new, int idx_new)
1819{
1820 struct sched_domain_attr tmp;
1821
1822 /* Fast path: */
1823 if (!new && !cur)
1824 return 1;
1825
1826 tmp = SD_ATTR_INIT;
1827 return !memcmp(cur ? (cur + idx_cur) : &tmp,
1828 new ? (new + idx_new) : &tmp,
1829 sizeof(struct sched_domain_attr));
1830}
1831
1832/*
1833 * Partition sched domains as specified by the 'ndoms_new'
1834 * cpumasks in the array doms_new[] of cpumasks. This compares
1835 * doms_new[] to the current sched domain partitioning, doms_cur[].
1836 * It destroys each deleted domain and builds each new domain.
1837 *
1838 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1839 * The masks don't intersect (don't overlap.) We should setup one
1840 * sched domain for each mask. CPUs not in any of the cpumasks will
1841 * not be load balanced. If the same cpumask appears both in the
1842 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1843 * it as it is.
1844 *
1845 * The passed in 'doms_new' should be allocated using
1846 * alloc_sched_domains. This routine takes ownership of it and will
1847 * free_sched_domains it when done with it. If the caller failed the
1848 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1849 * and partition_sched_domains() will fallback to the single partition
1850 * 'fallback_doms', it also forces the domains to be rebuilt.
1851 *
1852 * If doms_new == NULL it will be replaced with cpu_online_mask.
1853 * ndoms_new == 0 is a special case for destroying existing domains,
1854 * and it will not create the default domain.
1855 *
1856 * Call with hotplug lock held
1857 */
1858void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1859 struct sched_domain_attr *dattr_new)
1860{
1861 int i, j, n;
1862 int new_topology;
1863
1864 mutex_lock(&sched_domains_mutex);
1865
1866 /* Always unregister in case we don't destroy any domains: */
1867 unregister_sched_domain_sysctl();
1868
1869 /* Let the architecture update CPU core mappings: */
1870 new_topology = arch_update_cpu_topology();
1871
Peter Zijlstra09e0dd82017-08-08 12:16:24 +02001872 if (!doms_new) {
1873 WARN_ON_ONCE(dattr_new);
1874 n = 0;
1875 doms_new = alloc_sched_domains(1);
1876 if (doms_new) {
1877 n = 1;
1878 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
1879 }
1880 } else {
1881 n = ndoms_new;
1882 }
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001883
1884 /* Destroy deleted domains: */
1885 for (i = 0; i < ndoms_cur; i++) {
1886 for (j = 0; j < n && !new_topology; j++) {
1887 if (cpumask_equal(doms_cur[i], doms_new[j])
1888 && dattrs_equal(dattr_cur, i, dattr_new, j))
1889 goto match1;
1890 }
1891 /* No match - a current sched domain not in new doms_new[] */
1892 detach_destroy_domains(doms_cur[i]);
1893match1:
1894 ;
1895 }
1896
1897 n = ndoms_cur;
Peter Zijlstra09e0dd82017-08-08 12:16:24 +02001898 if (!doms_new) {
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001899 n = 0;
1900 doms_new = &fallback_doms;
1901 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
Ingo Molnarf2cb1362017-02-01 13:10:18 +01001902 }
1903
1904 /* Build new domains: */
1905 for (i = 0; i < ndoms_new; i++) {
1906 for (j = 0; j < n && !new_topology; j++) {
1907 if (cpumask_equal(doms_new[i], doms_cur[j])
1908 && dattrs_equal(dattr_new, i, dattr_cur, j))
1909 goto match2;
1910 }
1911 /* No match - add a new doms_new */
1912 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1913match2:
1914 ;
1915 }
1916
1917 /* Remember the new sched domains: */
1918 if (doms_cur != &fallback_doms)
1919 free_sched_domains(doms_cur, ndoms_cur);
1920
1921 kfree(dattr_cur);
1922 doms_cur = doms_new;
1923 dattr_cur = dattr_new;
1924 ndoms_cur = ndoms_new;
1925
1926 register_sched_domain_sysctl();
1927
1928 mutex_unlock(&sched_domains_mutex);
1929}
1930