Quentin Perret | 27871f7 | 2018-12-03 09:56:16 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Energy Model of CPUs |
| 4 | * |
| 5 | * Copyright (c) 2018, Arm ltd. |
| 6 | * Written by: Quentin Perret, Arm ltd. |
| 7 | */ |
| 8 | |
| 9 | #define pr_fmt(fmt) "energy_model: " fmt |
| 10 | |
| 11 | #include <linux/cpu.h> |
| 12 | #include <linux/cpumask.h> |
Quentin Perret | 9cac42d | 2019-01-22 16:42:47 +0000 | [diff] [blame] | 13 | #include <linux/debugfs.h> |
Quentin Perret | 27871f7 | 2018-12-03 09:56:16 +0000 | [diff] [blame] | 14 | #include <linux/energy_model.h> |
| 15 | #include <linux/sched/topology.h> |
| 16 | #include <linux/slab.h> |
| 17 | |
| 18 | /* Mapping of each CPU to the performance domain to which it belongs. */ |
| 19 | static DEFINE_PER_CPU(struct em_perf_domain *, em_data); |
| 20 | |
| 21 | /* |
| 22 | * Mutex serializing the registrations of performance domains and letting |
| 23 | * callbacks defined by drivers sleep. |
| 24 | */ |
| 25 | static DEFINE_MUTEX(em_pd_mutex); |
| 26 | |
Quentin Perret | 9cac42d | 2019-01-22 16:42:47 +0000 | [diff] [blame] | 27 | #ifdef CONFIG_DEBUG_FS |
| 28 | static struct dentry *rootdir; |
| 29 | |
| 30 | static void em_debug_create_cs(struct em_cap_state *cs, struct dentry *pd) |
| 31 | { |
| 32 | struct dentry *d; |
| 33 | char name[24]; |
| 34 | |
| 35 | snprintf(name, sizeof(name), "cs:%lu", cs->frequency); |
| 36 | |
| 37 | /* Create per-cs directory */ |
| 38 | d = debugfs_create_dir(name, pd); |
| 39 | debugfs_create_ulong("frequency", 0444, d, &cs->frequency); |
| 40 | debugfs_create_ulong("power", 0444, d, &cs->power); |
| 41 | debugfs_create_ulong("cost", 0444, d, &cs->cost); |
| 42 | } |
| 43 | |
| 44 | static int em_debug_cpus_show(struct seq_file *s, void *unused) |
| 45 | { |
| 46 | seq_printf(s, "%*pbl\n", cpumask_pr_args(to_cpumask(s->private))); |
| 47 | |
| 48 | return 0; |
| 49 | } |
| 50 | DEFINE_SHOW_ATTRIBUTE(em_debug_cpus); |
| 51 | |
| 52 | static void em_debug_create_pd(struct em_perf_domain *pd, int cpu) |
| 53 | { |
| 54 | struct dentry *d; |
| 55 | char name[8]; |
| 56 | int i; |
| 57 | |
| 58 | snprintf(name, sizeof(name), "pd%d", cpu); |
| 59 | |
| 60 | /* Create the directory of the performance domain */ |
| 61 | d = debugfs_create_dir(name, rootdir); |
| 62 | |
| 63 | debugfs_create_file("cpus", 0444, d, pd->cpus, &em_debug_cpus_fops); |
| 64 | |
| 65 | /* Create a sub-directory for each capacity state */ |
| 66 | for (i = 0; i < pd->nr_cap_states; i++) |
| 67 | em_debug_create_cs(&pd->table[i], d); |
| 68 | } |
| 69 | |
| 70 | static int __init em_debug_init(void) |
| 71 | { |
| 72 | /* Create /sys/kernel/debug/energy_model directory */ |
| 73 | rootdir = debugfs_create_dir("energy_model", NULL); |
| 74 | |
| 75 | return 0; |
| 76 | } |
| 77 | core_initcall(em_debug_init); |
| 78 | #else /* CONFIG_DEBUG_FS */ |
| 79 | static void em_debug_create_pd(struct em_perf_domain *pd, int cpu) {} |
| 80 | #endif |
Quentin Perret | 27871f7 | 2018-12-03 09:56:16 +0000 | [diff] [blame] | 81 | static struct em_perf_domain *em_create_pd(cpumask_t *span, int nr_states, |
| 82 | struct em_data_callback *cb) |
| 83 | { |
| 84 | unsigned long opp_eff, prev_opp_eff = ULONG_MAX; |
| 85 | unsigned long power, freq, prev_freq = 0; |
| 86 | int i, ret, cpu = cpumask_first(span); |
| 87 | struct em_cap_state *table; |
| 88 | struct em_perf_domain *pd; |
| 89 | u64 fmax; |
| 90 | |
| 91 | if (!cb->active_power) |
| 92 | return NULL; |
| 93 | |
| 94 | pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL); |
| 95 | if (!pd) |
| 96 | return NULL; |
| 97 | |
| 98 | table = kcalloc(nr_states, sizeof(*table), GFP_KERNEL); |
| 99 | if (!table) |
| 100 | goto free_pd; |
| 101 | |
| 102 | /* Build the list of capacity states for this performance domain */ |
| 103 | for (i = 0, freq = 0; i < nr_states; i++, freq++) { |
| 104 | /* |
| 105 | * active_power() is a driver callback which ceils 'freq' to |
| 106 | * lowest capacity state of 'cpu' above 'freq' and updates |
| 107 | * 'power' and 'freq' accordingly. |
| 108 | */ |
| 109 | ret = cb->active_power(&power, &freq, cpu); |
| 110 | if (ret) { |
| 111 | pr_err("pd%d: invalid cap. state: %d\n", cpu, ret); |
| 112 | goto free_cs_table; |
| 113 | } |
| 114 | |
| 115 | /* |
| 116 | * We expect the driver callback to increase the frequency for |
| 117 | * higher capacity states. |
| 118 | */ |
| 119 | if (freq <= prev_freq) { |
| 120 | pr_err("pd%d: non-increasing freq: %lu\n", cpu, freq); |
| 121 | goto free_cs_table; |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | * The power returned by active_state() is expected to be |
| 126 | * positive, in milli-watts and to fit into 16 bits. |
| 127 | */ |
| 128 | if (!power || power > EM_CPU_MAX_POWER) { |
| 129 | pr_err("pd%d: invalid power: %lu\n", cpu, power); |
| 130 | goto free_cs_table; |
| 131 | } |
| 132 | |
| 133 | table[i].power = power; |
| 134 | table[i].frequency = prev_freq = freq; |
| 135 | |
| 136 | /* |
| 137 | * The hertz/watts efficiency ratio should decrease as the |
| 138 | * frequency grows on sane platforms. But this isn't always |
| 139 | * true in practice so warn the user if a higher OPP is more |
| 140 | * power efficient than a lower one. |
| 141 | */ |
| 142 | opp_eff = freq / power; |
| 143 | if (opp_eff >= prev_opp_eff) |
| 144 | pr_warn("pd%d: hertz/watts ratio non-monotonically decreasing: em_cap_state %d >= em_cap_state%d\n", |
| 145 | cpu, i, i - 1); |
| 146 | prev_opp_eff = opp_eff; |
| 147 | } |
| 148 | |
| 149 | /* Compute the cost of each capacity_state. */ |
| 150 | fmax = (u64) table[nr_states - 1].frequency; |
| 151 | for (i = 0; i < nr_states; i++) { |
| 152 | table[i].cost = div64_u64(fmax * table[i].power, |
| 153 | table[i].frequency); |
| 154 | } |
| 155 | |
| 156 | pd->table = table; |
| 157 | pd->nr_cap_states = nr_states; |
| 158 | cpumask_copy(to_cpumask(pd->cpus), span); |
| 159 | |
Quentin Perret | 9cac42d | 2019-01-22 16:42:47 +0000 | [diff] [blame] | 160 | em_debug_create_pd(pd, cpu); |
| 161 | |
Quentin Perret | 27871f7 | 2018-12-03 09:56:16 +0000 | [diff] [blame] | 162 | return pd; |
| 163 | |
| 164 | free_cs_table: |
| 165 | kfree(table); |
| 166 | free_pd: |
| 167 | kfree(pd); |
| 168 | |
| 169 | return NULL; |
| 170 | } |
| 171 | |
| 172 | /** |
| 173 | * em_cpu_get() - Return the performance domain for a CPU |
| 174 | * @cpu : CPU to find the performance domain for |
| 175 | * |
| 176 | * Return: the performance domain to which 'cpu' belongs, or NULL if it doesn't |
| 177 | * exist. |
| 178 | */ |
| 179 | struct em_perf_domain *em_cpu_get(int cpu) |
| 180 | { |
| 181 | return READ_ONCE(per_cpu(em_data, cpu)); |
| 182 | } |
| 183 | EXPORT_SYMBOL_GPL(em_cpu_get); |
| 184 | |
| 185 | /** |
| 186 | * em_register_perf_domain() - Register the Energy Model of a performance domain |
| 187 | * @span : Mask of CPUs in the performance domain |
| 188 | * @nr_states : Number of capacity states to register |
| 189 | * @cb : Callback functions providing the data of the Energy Model |
| 190 | * |
| 191 | * Create Energy Model tables for a performance domain using the callbacks |
| 192 | * defined in cb. |
| 193 | * |
| 194 | * If multiple clients register the same performance domain, all but the first |
| 195 | * registration will be ignored. |
| 196 | * |
| 197 | * Return 0 on success |
| 198 | */ |
| 199 | int em_register_perf_domain(cpumask_t *span, unsigned int nr_states, |
| 200 | struct em_data_callback *cb) |
| 201 | { |
| 202 | unsigned long cap, prev_cap = 0; |
| 203 | struct em_perf_domain *pd; |
| 204 | int cpu, ret = 0; |
| 205 | |
| 206 | if (!span || !nr_states || !cb) |
| 207 | return -EINVAL; |
| 208 | |
| 209 | /* |
| 210 | * Use a mutex to serialize the registration of performance domains and |
| 211 | * let the driver-defined callback functions sleep. |
| 212 | */ |
| 213 | mutex_lock(&em_pd_mutex); |
| 214 | |
| 215 | for_each_cpu(cpu, span) { |
| 216 | /* Make sure we don't register again an existing domain. */ |
| 217 | if (READ_ONCE(per_cpu(em_data, cpu))) { |
| 218 | ret = -EEXIST; |
| 219 | goto unlock; |
| 220 | } |
| 221 | |
| 222 | /* |
| 223 | * All CPUs of a domain must have the same micro-architecture |
| 224 | * since they all share the same table. |
| 225 | */ |
| 226 | cap = arch_scale_cpu_capacity(NULL, cpu); |
| 227 | if (prev_cap && prev_cap != cap) { |
| 228 | pr_err("CPUs of %*pbl must have the same capacity\n", |
| 229 | cpumask_pr_args(span)); |
| 230 | ret = -EINVAL; |
| 231 | goto unlock; |
| 232 | } |
| 233 | prev_cap = cap; |
| 234 | } |
| 235 | |
| 236 | /* Create the performance domain and add it to the Energy Model. */ |
| 237 | pd = em_create_pd(span, nr_states, cb); |
| 238 | if (!pd) { |
| 239 | ret = -EINVAL; |
| 240 | goto unlock; |
| 241 | } |
| 242 | |
| 243 | for_each_cpu(cpu, span) { |
| 244 | /* |
| 245 | * The per-cpu array can be read concurrently from em_cpu_get(). |
| 246 | * The barrier enforces the ordering needed to make sure readers |
| 247 | * can only access well formed em_perf_domain structs. |
| 248 | */ |
| 249 | smp_store_release(per_cpu_ptr(&em_data, cpu), pd); |
| 250 | } |
| 251 | |
| 252 | pr_debug("Created perf domain %*pbl\n", cpumask_pr_args(span)); |
| 253 | unlock: |
| 254 | mutex_unlock(&em_pd_mutex); |
| 255 | |
| 256 | return ret; |
| 257 | } |
| 258 | EXPORT_SYMBOL_GPL(em_register_perf_domain); |