Quentin Perret | 27871f7 | 2018-12-03 09:56:16 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Energy Model of CPUs |
| 4 | * |
| 5 | * Copyright (c) 2018, Arm ltd. |
| 6 | * Written by: Quentin Perret, Arm ltd. |
| 7 | */ |
| 8 | |
| 9 | #define pr_fmt(fmt) "energy_model: " fmt |
| 10 | |
| 11 | #include <linux/cpu.h> |
| 12 | #include <linux/cpumask.h> |
| 13 | #include <linux/energy_model.h> |
| 14 | #include <linux/sched/topology.h> |
| 15 | #include <linux/slab.h> |
| 16 | |
| 17 | /* Mapping of each CPU to the performance domain to which it belongs. */ |
| 18 | static DEFINE_PER_CPU(struct em_perf_domain *, em_data); |
| 19 | |
| 20 | /* |
| 21 | * Mutex serializing the registrations of performance domains and letting |
| 22 | * callbacks defined by drivers sleep. |
| 23 | */ |
| 24 | static DEFINE_MUTEX(em_pd_mutex); |
| 25 | |
| 26 | static struct em_perf_domain *em_create_pd(cpumask_t *span, int nr_states, |
| 27 | struct em_data_callback *cb) |
| 28 | { |
| 29 | unsigned long opp_eff, prev_opp_eff = ULONG_MAX; |
| 30 | unsigned long power, freq, prev_freq = 0; |
| 31 | int i, ret, cpu = cpumask_first(span); |
| 32 | struct em_cap_state *table; |
| 33 | struct em_perf_domain *pd; |
| 34 | u64 fmax; |
| 35 | |
| 36 | if (!cb->active_power) |
| 37 | return NULL; |
| 38 | |
| 39 | pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL); |
| 40 | if (!pd) |
| 41 | return NULL; |
| 42 | |
| 43 | table = kcalloc(nr_states, sizeof(*table), GFP_KERNEL); |
| 44 | if (!table) |
| 45 | goto free_pd; |
| 46 | |
| 47 | /* Build the list of capacity states for this performance domain */ |
| 48 | for (i = 0, freq = 0; i < nr_states; i++, freq++) { |
| 49 | /* |
| 50 | * active_power() is a driver callback which ceils 'freq' to |
| 51 | * lowest capacity state of 'cpu' above 'freq' and updates |
| 52 | * 'power' and 'freq' accordingly. |
| 53 | */ |
| 54 | ret = cb->active_power(&power, &freq, cpu); |
| 55 | if (ret) { |
| 56 | pr_err("pd%d: invalid cap. state: %d\n", cpu, ret); |
| 57 | goto free_cs_table; |
| 58 | } |
| 59 | |
| 60 | /* |
| 61 | * We expect the driver callback to increase the frequency for |
| 62 | * higher capacity states. |
| 63 | */ |
| 64 | if (freq <= prev_freq) { |
| 65 | pr_err("pd%d: non-increasing freq: %lu\n", cpu, freq); |
| 66 | goto free_cs_table; |
| 67 | } |
| 68 | |
| 69 | /* |
| 70 | * The power returned by active_state() is expected to be |
| 71 | * positive, in milli-watts and to fit into 16 bits. |
| 72 | */ |
| 73 | if (!power || power > EM_CPU_MAX_POWER) { |
| 74 | pr_err("pd%d: invalid power: %lu\n", cpu, power); |
| 75 | goto free_cs_table; |
| 76 | } |
| 77 | |
| 78 | table[i].power = power; |
| 79 | table[i].frequency = prev_freq = freq; |
| 80 | |
| 81 | /* |
| 82 | * The hertz/watts efficiency ratio should decrease as the |
| 83 | * frequency grows on sane platforms. But this isn't always |
| 84 | * true in practice so warn the user if a higher OPP is more |
| 85 | * power efficient than a lower one. |
| 86 | */ |
| 87 | opp_eff = freq / power; |
| 88 | if (opp_eff >= prev_opp_eff) |
| 89 | pr_warn("pd%d: hertz/watts ratio non-monotonically decreasing: em_cap_state %d >= em_cap_state%d\n", |
| 90 | cpu, i, i - 1); |
| 91 | prev_opp_eff = opp_eff; |
| 92 | } |
| 93 | |
| 94 | /* Compute the cost of each capacity_state. */ |
| 95 | fmax = (u64) table[nr_states - 1].frequency; |
| 96 | for (i = 0; i < nr_states; i++) { |
| 97 | table[i].cost = div64_u64(fmax * table[i].power, |
| 98 | table[i].frequency); |
| 99 | } |
| 100 | |
| 101 | pd->table = table; |
| 102 | pd->nr_cap_states = nr_states; |
| 103 | cpumask_copy(to_cpumask(pd->cpus), span); |
| 104 | |
| 105 | return pd; |
| 106 | |
| 107 | free_cs_table: |
| 108 | kfree(table); |
| 109 | free_pd: |
| 110 | kfree(pd); |
| 111 | |
| 112 | return NULL; |
| 113 | } |
| 114 | |
| 115 | /** |
| 116 | * em_cpu_get() - Return the performance domain for a CPU |
| 117 | * @cpu : CPU to find the performance domain for |
| 118 | * |
| 119 | * Return: the performance domain to which 'cpu' belongs, or NULL if it doesn't |
| 120 | * exist. |
| 121 | */ |
| 122 | struct em_perf_domain *em_cpu_get(int cpu) |
| 123 | { |
| 124 | return READ_ONCE(per_cpu(em_data, cpu)); |
| 125 | } |
| 126 | EXPORT_SYMBOL_GPL(em_cpu_get); |
| 127 | |
| 128 | /** |
| 129 | * em_register_perf_domain() - Register the Energy Model of a performance domain |
| 130 | * @span : Mask of CPUs in the performance domain |
| 131 | * @nr_states : Number of capacity states to register |
| 132 | * @cb : Callback functions providing the data of the Energy Model |
| 133 | * |
| 134 | * Create Energy Model tables for a performance domain using the callbacks |
| 135 | * defined in cb. |
| 136 | * |
| 137 | * If multiple clients register the same performance domain, all but the first |
| 138 | * registration will be ignored. |
| 139 | * |
| 140 | * Return 0 on success |
| 141 | */ |
| 142 | int em_register_perf_domain(cpumask_t *span, unsigned int nr_states, |
| 143 | struct em_data_callback *cb) |
| 144 | { |
| 145 | unsigned long cap, prev_cap = 0; |
| 146 | struct em_perf_domain *pd; |
| 147 | int cpu, ret = 0; |
| 148 | |
| 149 | if (!span || !nr_states || !cb) |
| 150 | return -EINVAL; |
| 151 | |
| 152 | /* |
| 153 | * Use a mutex to serialize the registration of performance domains and |
| 154 | * let the driver-defined callback functions sleep. |
| 155 | */ |
| 156 | mutex_lock(&em_pd_mutex); |
| 157 | |
| 158 | for_each_cpu(cpu, span) { |
| 159 | /* Make sure we don't register again an existing domain. */ |
| 160 | if (READ_ONCE(per_cpu(em_data, cpu))) { |
| 161 | ret = -EEXIST; |
| 162 | goto unlock; |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * All CPUs of a domain must have the same micro-architecture |
| 167 | * since they all share the same table. |
| 168 | */ |
| 169 | cap = arch_scale_cpu_capacity(NULL, cpu); |
| 170 | if (prev_cap && prev_cap != cap) { |
| 171 | pr_err("CPUs of %*pbl must have the same capacity\n", |
| 172 | cpumask_pr_args(span)); |
| 173 | ret = -EINVAL; |
| 174 | goto unlock; |
| 175 | } |
| 176 | prev_cap = cap; |
| 177 | } |
| 178 | |
| 179 | /* Create the performance domain and add it to the Energy Model. */ |
| 180 | pd = em_create_pd(span, nr_states, cb); |
| 181 | if (!pd) { |
| 182 | ret = -EINVAL; |
| 183 | goto unlock; |
| 184 | } |
| 185 | |
| 186 | for_each_cpu(cpu, span) { |
| 187 | /* |
| 188 | * The per-cpu array can be read concurrently from em_cpu_get(). |
| 189 | * The barrier enforces the ordering needed to make sure readers |
| 190 | * can only access well formed em_perf_domain structs. |
| 191 | */ |
| 192 | smp_store_release(per_cpu_ptr(&em_data, cpu), pd); |
| 193 | } |
| 194 | |
| 195 | pr_debug("Created perf domain %*pbl\n", cpumask_pr_args(span)); |
| 196 | unlock: |
| 197 | mutex_unlock(&em_pd_mutex); |
| 198 | |
| 199 | return ret; |
| 200 | } |
| 201 | EXPORT_SYMBOL_GPL(em_register_perf_domain); |