blob: f93f717b5d8bbca4a8389a942ad7a17194edbe79 [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -050018
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
Christoffer Dallad361f02012-11-01 17:14:45 +010022#include <linux/hugetlb.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050023#include <trace/events/kvm.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050024#include <asm/pgalloc.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050025#include <asm/cacheflush.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050026#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050028#include <asm/kvm_mmio.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050029#include <asm/kvm_asm.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050030#include <asm/kvm_emulate.h>
Marc Zyngier1e947ba2015-01-29 11:59:54 +000031#include <asm/virt.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050032
33#include "trace.h"
Christoffer Dall342cd0a2013-01-20 18:28:06 -050034
35extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
36
Marc Zyngier5a677ce2013-04-12 19:12:06 +010037static pgd_t *boot_hyp_pgd;
Marc Zyngier2fb41052013-04-12 19:12:03 +010038static pgd_t *hyp_pgd;
Ard Biesheuvele4c5a682015-03-19 16:42:28 +000039static pgd_t *merged_hyp_pgd;
Christoffer Dall342cd0a2013-01-20 18:28:06 -050040static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
Marc Zyngier5a677ce2013-04-12 19:12:06 +010042static unsigned long hyp_idmap_start;
43static unsigned long hyp_idmap_end;
44static phys_addr_t hyp_idmap_vector;
45
Christoffer Dall38f791a2014-10-10 12:14:28 +020046#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
Mark Salter5d4e08c2014-03-28 14:25:19 +000047
Mario Smarduch15a49a42015-01-15 15:58:58 -080048#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
49#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
50
51static bool memslot_is_logging(struct kvm_memory_slot *memslot)
52{
Mario Smarduch15a49a42015-01-15 15:58:58 -080053 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
Mario Smarduch72760302015-01-15 15:59:01 -080054}
55
56/**
57 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
58 * @kvm: pointer to kvm structure.
59 *
60 * Interface to HYP function to flush all VM TLB entries
61 */
62void kvm_flush_remote_tlbs(struct kvm *kvm)
63{
64 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
Mario Smarduch15a49a42015-01-15 15:58:58 -080065}
Christoffer Dallad361f02012-11-01 17:14:45 +010066
Marc Zyngier48762762013-01-28 15:27:00 +000067static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
Christoffer Dalld5d81842013-01-20 18:28:07 -050068{
Marc Zyngierd4cb9df52013-05-14 12:11:34 +010069 /*
70 * This function also gets called when dealing with HYP page
71 * tables. As HYP doesn't have an associated struct kvm (and
72 * the HYP page tables are fairly static), we don't do
73 * anything there.
74 */
75 if (kvm)
76 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
Christoffer Dalld5d81842013-01-20 18:28:07 -050077}
78
Marc Zyngier363ef892014-12-19 16:48:06 +000079/*
80 * D-Cache management functions. They take the page table entries by
81 * value, as they are flushing the cache using the kernel mapping (or
82 * kmap on 32bit).
83 */
84static void kvm_flush_dcache_pte(pte_t pte)
85{
86 __kvm_flush_dcache_pte(pte);
87}
88
89static void kvm_flush_dcache_pmd(pmd_t pmd)
90{
91 __kvm_flush_dcache_pmd(pmd);
92}
93
94static void kvm_flush_dcache_pud(pud_t pud)
95{
96 __kvm_flush_dcache_pud(pud);
97}
98
Ard Biesheuvele6fab542015-11-10 15:11:20 +010099static bool kvm_is_device_pfn(unsigned long pfn)
100{
101 return !pfn_valid(pfn);
102}
103
Mario Smarduch15a49a42015-01-15 15:58:58 -0800104/**
105 * stage2_dissolve_pmd() - clear and flush huge PMD entry
106 * @kvm: pointer to kvm structure.
107 * @addr: IPA
108 * @pmd: pmd pointer for IPA
109 *
110 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
111 * pages in the range dirty.
112 */
113static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
114{
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000115 if (!pmd_thp_or_huge(*pmd))
Mario Smarduch15a49a42015-01-15 15:58:58 -0800116 return;
117
118 pmd_clear(pmd);
119 kvm_tlb_flush_vmid_ipa(kvm, addr);
120 put_page(virt_to_page(pmd));
121}
122
Christoffer Dalld5d81842013-01-20 18:28:07 -0500123static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
124 int min, int max)
125{
126 void *page;
127
128 BUG_ON(max > KVM_NR_MEM_OBJS);
129 if (cache->nobjs >= min)
130 return 0;
131 while (cache->nobjs < max) {
132 page = (void *)__get_free_page(PGALLOC_GFP);
133 if (!page)
134 return -ENOMEM;
135 cache->objects[cache->nobjs++] = page;
136 }
137 return 0;
138}
139
140static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
141{
142 while (mc->nobjs)
143 free_page((unsigned long)mc->objects[--mc->nobjs]);
144}
145
146static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
147{
148 void *p;
149
150 BUG_ON(!mc || !mc->nobjs);
151 p = mc->objects[--mc->nobjs];
152 return p;
153}
154
Christoffer Dall4f853a72014-05-09 23:31:31 +0200155static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
Marc Zyngier979acd52013-08-06 13:05:48 +0100156{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200157 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
158 pgd_clear(pgd);
159 kvm_tlb_flush_vmid_ipa(kvm, addr);
160 pud_free(NULL, pud_table);
161 put_page(virt_to_page(pgd));
Marc Zyngier979acd52013-08-06 13:05:48 +0100162}
163
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100164static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500165{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200166 pmd_t *pmd_table = pmd_offset(pud, 0);
167 VM_BUG_ON(pud_huge(*pud));
168 pud_clear(pud);
169 kvm_tlb_flush_vmid_ipa(kvm, addr);
170 pmd_free(NULL, pmd_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100171 put_page(virt_to_page(pud));
172}
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500173
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100174static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
Marc Zyngier4f728272013-04-12 19:12:05 +0100175{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200176 pte_t *pte_table = pte_offset_kernel(pmd, 0);
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000177 VM_BUG_ON(pmd_thp_or_huge(*pmd));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200178 pmd_clear(pmd);
179 kvm_tlb_flush_vmid_ipa(kvm, addr);
180 pte_free_kernel(NULL, pte_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100181 put_page(virt_to_page(pmd));
182}
183
Marc Zyngier363ef892014-12-19 16:48:06 +0000184/*
185 * Unmapping vs dcache management:
186 *
187 * If a guest maps certain memory pages as uncached, all writes will
188 * bypass the data cache and go directly to RAM. However, the CPUs
189 * can still speculate reads (not writes) and fill cache lines with
190 * data.
191 *
192 * Those cache lines will be *clean* cache lines though, so a
193 * clean+invalidate operation is equivalent to an invalidate
194 * operation, because no cache lines are marked dirty.
195 *
196 * Those clean cache lines could be filled prior to an uncached write
197 * by the guest, and the cache coherent IO subsystem would therefore
198 * end up writing old data to disk.
199 *
200 * This is why right after unmapping a page/section and invalidating
201 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
202 * the IO subsystem will never hit in the cache.
203 */
Christoffer Dall4f853a72014-05-09 23:31:31 +0200204static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
205 phys_addr_t addr, phys_addr_t end)
Marc Zyngier4f728272013-04-12 19:12:05 +0100206{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200207 phys_addr_t start_addr = addr;
208 pte_t *pte, *start_pte;
209
210 start_pte = pte = pte_offset_kernel(pmd, addr);
211 do {
212 if (!pte_none(*pte)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000213 pte_t old_pte = *pte;
214
Christoffer Dall4f853a72014-05-09 23:31:31 +0200215 kvm_set_pte(pte, __pte(0));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200216 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000217
218 /* No need to invalidate the cache for device mappings */
Ard Biesheuvel0de58f82015-12-03 09:25:22 +0100219 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000220 kvm_flush_dcache_pte(old_pte);
221
222 put_page(virt_to_page(pte));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200223 }
224 } while (pte++, addr += PAGE_SIZE, addr != end);
225
Christoffer Dall38f791a2014-10-10 12:14:28 +0200226 if (kvm_pte_table_empty(kvm, start_pte))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200227 clear_pmd_entry(kvm, pmd, start_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500228}
229
Christoffer Dall4f853a72014-05-09 23:31:31 +0200230static void unmap_pmds(struct kvm *kvm, pud_t *pud,
231 phys_addr_t addr, phys_addr_t end)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500232{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200233 phys_addr_t next, start_addr = addr;
234 pmd_t *pmd, *start_pmd;
Marc Zyngier000d3992013-03-05 02:43:17 +0000235
Christoffer Dall4f853a72014-05-09 23:31:31 +0200236 start_pmd = pmd = pmd_offset(pud, addr);
237 do {
238 next = kvm_pmd_addr_end(addr, end);
239 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000240 if (pmd_thp_or_huge(*pmd)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000241 pmd_t old_pmd = *pmd;
242
Christoffer Dall4f853a72014-05-09 23:31:31 +0200243 pmd_clear(pmd);
244 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000245
246 kvm_flush_dcache_pmd(old_pmd);
247
Christoffer Dall4f853a72014-05-09 23:31:31 +0200248 put_page(virt_to_page(pmd));
249 } else {
250 unmap_ptes(kvm, pmd, addr, next);
Marc Zyngier4f728272013-04-12 19:12:05 +0100251 }
252 }
Christoffer Dall4f853a72014-05-09 23:31:31 +0200253 } while (pmd++, addr = next, addr != end);
Marc Zyngier4f728272013-04-12 19:12:05 +0100254
Christoffer Dall38f791a2014-10-10 12:14:28 +0200255 if (kvm_pmd_table_empty(kvm, start_pmd))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200256 clear_pud_entry(kvm, pud, start_addr);
257}
258
259static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
260 phys_addr_t addr, phys_addr_t end)
261{
262 phys_addr_t next, start_addr = addr;
263 pud_t *pud, *start_pud;
264
265 start_pud = pud = pud_offset(pgd, addr);
266 do {
267 next = kvm_pud_addr_end(addr, end);
268 if (!pud_none(*pud)) {
269 if (pud_huge(*pud)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000270 pud_t old_pud = *pud;
271
Christoffer Dall4f853a72014-05-09 23:31:31 +0200272 pud_clear(pud);
273 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000274
275 kvm_flush_dcache_pud(old_pud);
276
Christoffer Dall4f853a72014-05-09 23:31:31 +0200277 put_page(virt_to_page(pud));
278 } else {
279 unmap_pmds(kvm, pud, addr, next);
280 }
281 }
282 } while (pud++, addr = next, addr != end);
283
Christoffer Dall38f791a2014-10-10 12:14:28 +0200284 if (kvm_pud_table_empty(kvm, start_pud))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200285 clear_pgd_entry(kvm, pgd, start_addr);
286}
287
288
289static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
290 phys_addr_t start, u64 size)
291{
292 pgd_t *pgd;
293 phys_addr_t addr = start, end = start + size;
294 phys_addr_t next;
295
Marc Zyngier04b8dc82015-03-10 19:07:00 +0000296 pgd = pgdp + kvm_pgd_index(addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200297 do {
298 next = kvm_pgd_addr_end(addr, end);
Mark Rutland7cbb87d2014-10-28 19:36:45 +0000299 if (!pgd_none(*pgd))
300 unmap_puds(kvm, pgd, addr, next);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200301 } while (pgd++, addr = next, addr != end);
Marc Zyngier000d3992013-03-05 02:43:17 +0000302}
303
Marc Zyngier9d218a12014-01-15 12:50:23 +0000304static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
305 phys_addr_t addr, phys_addr_t end)
306{
307 pte_t *pte;
308
309 pte = pte_offset_kernel(pmd, addr);
310 do {
Ard Biesheuvel0de58f82015-12-03 09:25:22 +0100311 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000312 kvm_flush_dcache_pte(*pte);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000313 } while (pte++, addr += PAGE_SIZE, addr != end);
314}
315
316static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
317 phys_addr_t addr, phys_addr_t end)
318{
319 pmd_t *pmd;
320 phys_addr_t next;
321
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000322 pmd = stage2_pmd_offset(pud, addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000323 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000324 next = stage2_pmd_addr_end(addr, end);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000325 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +0000326 if (pmd_thp_or_huge(*pmd))
Marc Zyngier363ef892014-12-19 16:48:06 +0000327 kvm_flush_dcache_pmd(*pmd);
328 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000329 stage2_flush_ptes(kvm, pmd, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000330 }
331 } while (pmd++, addr = next, addr != end);
332}
333
334static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
335 phys_addr_t addr, phys_addr_t end)
336{
337 pud_t *pud;
338 phys_addr_t next;
339
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000340 pud = stage2_pud_offset(pgd, addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000341 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000342 next = stage2_pud_addr_end(addr, end);
343 if (!stage2_pud_none(*pud)) {
344 if (stage2_pud_huge(*pud))
Marc Zyngier363ef892014-12-19 16:48:06 +0000345 kvm_flush_dcache_pud(*pud);
346 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000347 stage2_flush_pmds(kvm, pud, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000348 }
349 } while (pud++, addr = next, addr != end);
350}
351
352static void stage2_flush_memslot(struct kvm *kvm,
353 struct kvm_memory_slot *memslot)
354{
355 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
356 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
357 phys_addr_t next;
358 pgd_t *pgd;
359
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000360 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000361 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000362 next = stage2_pgd_addr_end(addr, end);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000363 stage2_flush_puds(kvm, pgd, addr, next);
364 } while (pgd++, addr = next, addr != end);
365}
366
367/**
368 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
369 * @kvm: The struct kvm pointer
370 *
371 * Go through the stage 2 page tables and invalidate any cache lines
372 * backing memory already mapped to the VM.
373 */
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000374static void stage2_flush_vm(struct kvm *kvm)
Marc Zyngier9d218a12014-01-15 12:50:23 +0000375{
376 struct kvm_memslots *slots;
377 struct kvm_memory_slot *memslot;
378 int idx;
379
380 idx = srcu_read_lock(&kvm->srcu);
381 spin_lock(&kvm->mmu_lock);
382
383 slots = kvm_memslots(kvm);
384 kvm_for_each_memslot(memslot, slots)
385 stage2_flush_memslot(kvm, memslot);
386
387 spin_unlock(&kvm->mmu_lock);
388 srcu_read_unlock(&kvm->srcu, idx);
389}
390
Marc Zyngier000d3992013-03-05 02:43:17 +0000391/**
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100392 * free_boot_hyp_pgd - free HYP boot page tables
393 *
394 * Free the HYP boot page tables. The bounce page is also freed.
395 */
396void free_boot_hyp_pgd(void)
397{
398 mutex_lock(&kvm_hyp_pgd_mutex);
399
400 if (boot_hyp_pgd) {
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100401 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
402 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200403 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100404 boot_hyp_pgd = NULL;
405 }
406
407 if (hyp_pgd)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100408 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100409
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100410 mutex_unlock(&kvm_hyp_pgd_mutex);
411}
412
413/**
Marc Zyngier4f728272013-04-12 19:12:05 +0100414 * free_hyp_pgds - free Hyp-mode page tables
Marc Zyngier000d3992013-03-05 02:43:17 +0000415 *
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100416 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
417 * therefore contains either mappings in the kernel memory area (above
418 * PAGE_OFFSET), or device mappings in the vmalloc range (from
419 * VMALLOC_START to VMALLOC_END).
420 *
421 * boot_hyp_pgd should only map two pages for the init code.
Marc Zyngier000d3992013-03-05 02:43:17 +0000422 */
Marc Zyngier4f728272013-04-12 19:12:05 +0100423void free_hyp_pgds(void)
Marc Zyngier000d3992013-03-05 02:43:17 +0000424{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500425 unsigned long addr;
426
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100427 free_boot_hyp_pgd();
Marc Zyngier4f728272013-04-12 19:12:05 +0100428
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100429 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100430
Marc Zyngier4f728272013-04-12 19:12:05 +0100431 if (hyp_pgd) {
432 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100433 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
Marc Zyngier4f728272013-04-12 19:12:05 +0100434 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100435 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
436
Christoffer Dall38f791a2014-10-10 12:14:28 +0200437 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100438 hyp_pgd = NULL;
Marc Zyngier4f728272013-04-12 19:12:05 +0100439 }
Ard Biesheuvele4c5a682015-03-19 16:42:28 +0000440 if (merged_hyp_pgd) {
441 clear_page(merged_hyp_pgd);
442 free_page((unsigned long)merged_hyp_pgd);
443 merged_hyp_pgd = NULL;
444 }
Marc Zyngier4f728272013-04-12 19:12:05 +0100445
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500446 mutex_unlock(&kvm_hyp_pgd_mutex);
447}
448
449static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100450 unsigned long end, unsigned long pfn,
451 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500452{
453 pte_t *pte;
454 unsigned long addr;
455
Marc Zyngier3562c762013-04-12 19:12:02 +0100456 addr = start;
457 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100458 pte = pte_offset_kernel(pmd, addr);
459 kvm_set_pte(pte, pfn_pte(pfn, prot));
Marc Zyngier4f728272013-04-12 19:12:05 +0100460 get_page(virt_to_page(pte));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100461 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
Marc Zyngier6060df82013-04-12 19:12:01 +0100462 pfn++;
Marc Zyngier3562c762013-04-12 19:12:02 +0100463 } while (addr += PAGE_SIZE, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500464}
465
466static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100467 unsigned long end, unsigned long pfn,
468 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500469{
470 pmd_t *pmd;
471 pte_t *pte;
472 unsigned long addr, next;
473
Marc Zyngier3562c762013-04-12 19:12:02 +0100474 addr = start;
475 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100476 pmd = pmd_offset(pud, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500477
478 BUG_ON(pmd_sect(*pmd));
479
480 if (pmd_none(*pmd)) {
Marc Zyngier6060df82013-04-12 19:12:01 +0100481 pte = pte_alloc_one_kernel(NULL, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500482 if (!pte) {
483 kvm_err("Cannot allocate Hyp pte\n");
484 return -ENOMEM;
485 }
486 pmd_populate_kernel(NULL, pmd, pte);
Marc Zyngier4f728272013-04-12 19:12:05 +0100487 get_page(virt_to_page(pmd));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100488 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500489 }
490
491 next = pmd_addr_end(addr, end);
492
Marc Zyngier6060df82013-04-12 19:12:01 +0100493 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
494 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100495 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500496
497 return 0;
498}
499
Christoffer Dall38f791a2014-10-10 12:14:28 +0200500static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
501 unsigned long end, unsigned long pfn,
502 pgprot_t prot)
503{
504 pud_t *pud;
505 pmd_t *pmd;
506 unsigned long addr, next;
507 int ret;
508
509 addr = start;
510 do {
511 pud = pud_offset(pgd, addr);
512
513 if (pud_none_or_clear_bad(pud)) {
514 pmd = pmd_alloc_one(NULL, addr);
515 if (!pmd) {
516 kvm_err("Cannot allocate Hyp pmd\n");
517 return -ENOMEM;
518 }
519 pud_populate(NULL, pud, pmd);
520 get_page(virt_to_page(pud));
521 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
522 }
523
524 next = pud_addr_end(addr, end);
525 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
526 if (ret)
527 return ret;
528 pfn += (next - addr) >> PAGE_SHIFT;
529 } while (addr = next, addr != end);
530
531 return 0;
532}
533
Marc Zyngier6060df82013-04-12 19:12:01 +0100534static int __create_hyp_mappings(pgd_t *pgdp,
535 unsigned long start, unsigned long end,
536 unsigned long pfn, pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500537{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500538 pgd_t *pgd;
539 pud_t *pud;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500540 unsigned long addr, next;
541 int err = 0;
542
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500543 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier3562c762013-04-12 19:12:02 +0100544 addr = start & PAGE_MASK;
545 end = PAGE_ALIGN(end);
546 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100547 pgd = pgdp + pgd_index(addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500548
Christoffer Dall38f791a2014-10-10 12:14:28 +0200549 if (pgd_none(*pgd)) {
550 pud = pud_alloc_one(NULL, addr);
551 if (!pud) {
552 kvm_err("Cannot allocate Hyp pud\n");
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500553 err = -ENOMEM;
554 goto out;
555 }
Christoffer Dall38f791a2014-10-10 12:14:28 +0200556 pgd_populate(NULL, pgd, pud);
557 get_page(virt_to_page(pgd));
558 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500559 }
560
561 next = pgd_addr_end(addr, end);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200562 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500563 if (err)
564 goto out;
Marc Zyngier6060df82013-04-12 19:12:01 +0100565 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100566 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500567out:
568 mutex_unlock(&kvm_hyp_pgd_mutex);
569 return err;
570}
571
Christoffer Dall40c27292013-11-15 13:14:12 -0800572static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
573{
574 if (!is_vmalloc_addr(kaddr)) {
575 BUG_ON(!virt_addr_valid(kaddr));
576 return __pa(kaddr);
577 } else {
578 return page_to_phys(vmalloc_to_page(kaddr)) +
579 offset_in_page(kaddr);
580 }
581}
582
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500583/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100584 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500585 * @from: The virtual kernel start address of the range
586 * @to: The virtual kernel end address of the range (exclusive)
587 *
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100588 * The same virtual address as the kernel virtual address is also used
589 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
590 * physical pages.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500591 */
592int create_hyp_mappings(void *from, void *to)
593{
Christoffer Dall40c27292013-11-15 13:14:12 -0800594 phys_addr_t phys_addr;
595 unsigned long virt_addr;
Marc Zyngier6060df82013-04-12 19:12:01 +0100596 unsigned long start = KERN_TO_HYP((unsigned long)from);
597 unsigned long end = KERN_TO_HYP((unsigned long)to);
598
Marc Zyngier1e947ba2015-01-29 11:59:54 +0000599 if (is_kernel_in_hyp_mode())
600 return 0;
601
Christoffer Dall40c27292013-11-15 13:14:12 -0800602 start = start & PAGE_MASK;
603 end = PAGE_ALIGN(end);
Marc Zyngier6060df82013-04-12 19:12:01 +0100604
Christoffer Dall40c27292013-11-15 13:14:12 -0800605 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
606 int err;
607
608 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
609 err = __create_hyp_mappings(hyp_pgd, virt_addr,
610 virt_addr + PAGE_SIZE,
611 __phys_to_pfn(phys_addr),
612 PAGE_HYP);
613 if (err)
614 return err;
615 }
616
617 return 0;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500618}
619
620/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100621 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
622 * @from: The kernel start VA of the range
623 * @to: The kernel end VA of the range (exclusive)
Marc Zyngier6060df82013-04-12 19:12:01 +0100624 * @phys_addr: The physical start address which gets mapped
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100625 *
626 * The resulting HYP VA is the same as the kernel VA, modulo
627 * HYP_PAGE_OFFSET.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500628 */
Marc Zyngier6060df82013-04-12 19:12:01 +0100629int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500630{
Marc Zyngier6060df82013-04-12 19:12:01 +0100631 unsigned long start = KERN_TO_HYP((unsigned long)from);
632 unsigned long end = KERN_TO_HYP((unsigned long)to);
633
Marc Zyngier1e947ba2015-01-29 11:59:54 +0000634 if (is_kernel_in_hyp_mode())
635 return 0;
636
Marc Zyngier6060df82013-04-12 19:12:01 +0100637 /* Check for a valid kernel IO mapping */
638 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
639 return -EINVAL;
640
641 return __create_hyp_mappings(hyp_pgd, start, end,
642 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500643}
644
Marc Zyngiera9873702015-03-10 19:06:59 +0000645/* Free the HW pgd, one page at a time */
646static void kvm_free_hwpgd(void *hwpgd)
647{
648 free_pages_exact(hwpgd, kvm_get_hwpgd_size());
649}
650
651/* Allocate the HW PGD, making sure that each page gets its own refcount */
652static void *kvm_alloc_hwpgd(void)
653{
654 unsigned int size = kvm_get_hwpgd_size();
655
656 return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
657}
658
Christoffer Dalld5d81842013-01-20 18:28:07 -0500659/**
660 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
661 * @kvm: The KVM struct pointer for the VM.
662 *
Vladimir Murzin9d4dc6882015-11-16 11:28:16 +0000663 * Allocates only the stage-2 HW PGD level table(s) (can support either full
664 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
665 * allocated pages.
Christoffer Dalld5d81842013-01-20 18:28:07 -0500666 *
667 * Note we don't need locking here as this is only called when the VM is
668 * created, which can only be done once.
669 */
670int kvm_alloc_stage2_pgd(struct kvm *kvm)
671{
672 pgd_t *pgd;
Marc Zyngiera9873702015-03-10 19:06:59 +0000673 void *hwpgd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500674
675 if (kvm->arch.pgd != NULL) {
676 kvm_err("kvm_arch already initialized?\n");
677 return -EINVAL;
678 }
679
Marc Zyngiera9873702015-03-10 19:06:59 +0000680 hwpgd = kvm_alloc_hwpgd();
681 if (!hwpgd)
682 return -ENOMEM;
683
Suzuki K Poulose120f0772016-03-01 10:03:06 +0000684 /*
685 * When the kernel uses more levels of page tables than the
Marc Zyngiera9873702015-03-10 19:06:59 +0000686 * guest, we allocate a fake PGD and pre-populate it to point
687 * to the next-level page table, which will be the real
688 * initial page table pointed to by the VTTBR.
Marc Zyngiera9873702015-03-10 19:06:59 +0000689 */
Suzuki K Poulose120f0772016-03-01 10:03:06 +0000690 pgd = kvm_setup_fake_pgd(hwpgd);
691 if (IS_ERR(pgd)) {
692 kvm_free_hwpgd(hwpgd);
693 return PTR_ERR(pgd);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200694 }
695
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100696 kvm_clean_pgd(pgd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500697 kvm->arch.pgd = pgd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500698 return 0;
699}
700
Christoffer Dalld5d81842013-01-20 18:28:07 -0500701/**
702 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
703 * @kvm: The VM pointer
704 * @start: The intermediate physical base address of the range to unmap
705 * @size: The size of the area to unmap
706 *
707 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
708 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
709 * destroying the VM), otherwise another faulting VCPU may come in and mess
710 * with things behind our backs.
711 */
712static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
713{
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100714 unmap_range(kvm, kvm->arch.pgd, start, size);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500715}
716
Christoffer Dall957db102014-11-27 10:35:03 +0100717static void stage2_unmap_memslot(struct kvm *kvm,
718 struct kvm_memory_slot *memslot)
719{
720 hva_t hva = memslot->userspace_addr;
721 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
722 phys_addr_t size = PAGE_SIZE * memslot->npages;
723 hva_t reg_end = hva + size;
724
725 /*
726 * A memory region could potentially cover multiple VMAs, and any holes
727 * between them, so iterate over all of them to find out if we should
728 * unmap any of them.
729 *
730 * +--------------------------------------------+
731 * +---------------+----------------+ +----------------+
732 * | : VMA 1 | VMA 2 | | VMA 3 : |
733 * +---------------+----------------+ +----------------+
734 * | memory region |
735 * +--------------------------------------------+
736 */
737 do {
738 struct vm_area_struct *vma = find_vma(current->mm, hva);
739 hva_t vm_start, vm_end;
740
741 if (!vma || vma->vm_start >= reg_end)
742 break;
743
744 /*
745 * Take the intersection of this VMA with the memory region
746 */
747 vm_start = max(hva, vma->vm_start);
748 vm_end = min(reg_end, vma->vm_end);
749
750 if (!(vma->vm_flags & VM_PFNMAP)) {
751 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
752 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
753 }
754 hva = vm_end;
755 } while (hva < reg_end);
756}
757
758/**
759 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
760 * @kvm: The struct kvm pointer
761 *
762 * Go through the memregions and unmap any reguler RAM
763 * backing memory already mapped to the VM.
764 */
765void stage2_unmap_vm(struct kvm *kvm)
766{
767 struct kvm_memslots *slots;
768 struct kvm_memory_slot *memslot;
769 int idx;
770
771 idx = srcu_read_lock(&kvm->srcu);
772 spin_lock(&kvm->mmu_lock);
773
774 slots = kvm_memslots(kvm);
775 kvm_for_each_memslot(memslot, slots)
776 stage2_unmap_memslot(kvm, memslot);
777
778 spin_unlock(&kvm->mmu_lock);
779 srcu_read_unlock(&kvm->srcu, idx);
780}
781
Christoffer Dalld5d81842013-01-20 18:28:07 -0500782/**
783 * kvm_free_stage2_pgd - free all stage-2 tables
784 * @kvm: The KVM struct pointer for the VM.
785 *
786 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
787 * underlying level-2 and level-3 tables before freeing the actual level-1 table
788 * and setting the struct pointer to NULL.
789 *
790 * Note we don't need locking here as this is only called when the VM is
791 * destroyed, which can only be done once.
792 */
793void kvm_free_stage2_pgd(struct kvm *kvm)
794{
795 if (kvm->arch.pgd == NULL)
796 return;
797
798 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
Marc Zyngiera9873702015-03-10 19:06:59 +0000799 kvm_free_hwpgd(kvm_get_hwpgd(kvm));
Suzuki K Poulose120f0772016-03-01 10:03:06 +0000800 kvm_free_fake_pgd(kvm->arch.pgd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500801 kvm->arch.pgd = NULL;
802}
803
Christoffer Dall38f791a2014-10-10 12:14:28 +0200804static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
805 phys_addr_t addr)
806{
807 pgd_t *pgd;
808 pud_t *pud;
809
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000810 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
811 if (WARN_ON(stage2_pgd_none(*pgd))) {
Christoffer Dall38f791a2014-10-10 12:14:28 +0200812 if (!cache)
813 return NULL;
814 pud = mmu_memory_cache_alloc(cache);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000815 stage2_pgd_populate(pgd, pud);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200816 get_page(virt_to_page(pgd));
817 }
818
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000819 return stage2_pud_offset(pgd, addr);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200820}
821
Christoffer Dallad361f02012-11-01 17:14:45 +0100822static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
823 phys_addr_t addr)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500824{
Christoffer Dalld5d81842013-01-20 18:28:07 -0500825 pud_t *pud;
826 pmd_t *pmd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500827
Christoffer Dall38f791a2014-10-10 12:14:28 +0200828 pud = stage2_get_pud(kvm, cache, addr);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000829 if (stage2_pud_none(*pud)) {
Christoffer Dalld5d81842013-01-20 18:28:07 -0500830 if (!cache)
Christoffer Dallad361f02012-11-01 17:14:45 +0100831 return NULL;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500832 pmd = mmu_memory_cache_alloc(cache);
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000833 stage2_pud_populate(pud, pmd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500834 get_page(virt_to_page(pud));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100835 }
836
Suzuki K Poulose70fd1902016-03-22 18:33:45 +0000837 return stage2_pmd_offset(pud, addr);
Christoffer Dallad361f02012-11-01 17:14:45 +0100838}
Christoffer Dalld5d81842013-01-20 18:28:07 -0500839
Christoffer Dallad361f02012-11-01 17:14:45 +0100840static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
841 *cache, phys_addr_t addr, const pmd_t *new_pmd)
842{
843 pmd_t *pmd, old_pmd;
844
845 pmd = stage2_get_pmd(kvm, cache, addr);
846 VM_BUG_ON(!pmd);
847
848 /*
849 * Mapping in huge pages should only happen through a fault. If a
850 * page is merged into a transparent huge page, the individual
851 * subpages of that huge page should be unmapped through MMU
852 * notifiers before we get here.
853 *
854 * Merging of CompoundPages is not supported; they should become
855 * splitting first, unmapped, merged, and mapped back in on-demand.
856 */
857 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
858
859 old_pmd = *pmd;
860 kvm_set_pmd(pmd, *new_pmd);
861 if (pmd_present(old_pmd))
862 kvm_tlb_flush_vmid_ipa(kvm, addr);
863 else
864 get_page(virt_to_page(pmd));
865 return 0;
866}
867
868static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
Mario Smarduch15a49a42015-01-15 15:58:58 -0800869 phys_addr_t addr, const pte_t *new_pte,
870 unsigned long flags)
Christoffer Dallad361f02012-11-01 17:14:45 +0100871{
872 pmd_t *pmd;
873 pte_t *pte, old_pte;
Mario Smarduch15a49a42015-01-15 15:58:58 -0800874 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
875 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
876
877 VM_BUG_ON(logging_active && !cache);
Christoffer Dallad361f02012-11-01 17:14:45 +0100878
Christoffer Dall38f791a2014-10-10 12:14:28 +0200879 /* Create stage-2 page table mapping - Levels 0 and 1 */
Christoffer Dallad361f02012-11-01 17:14:45 +0100880 pmd = stage2_get_pmd(kvm, cache, addr);
881 if (!pmd) {
882 /*
883 * Ignore calls from kvm_set_spte_hva for unallocated
884 * address ranges.
885 */
886 return 0;
887 }
888
Mario Smarduch15a49a42015-01-15 15:58:58 -0800889 /*
890 * While dirty page logging - dissolve huge PMD, then continue on to
891 * allocate page.
892 */
893 if (logging_active)
894 stage2_dissolve_pmd(kvm, addr, pmd);
895
Christoffer Dallad361f02012-11-01 17:14:45 +0100896 /* Create stage-2 page mappings - Level 2 */
Christoffer Dalld5d81842013-01-20 18:28:07 -0500897 if (pmd_none(*pmd)) {
898 if (!cache)
899 return 0; /* ignore calls from kvm_set_spte_hva */
900 pte = mmu_memory_cache_alloc(cache);
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100901 kvm_clean_pte(pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500902 pmd_populate_kernel(NULL, pmd, pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500903 get_page(virt_to_page(pmd));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100904 }
905
906 pte = pte_offset_kernel(pmd, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500907
908 if (iomap && pte_present(*pte))
909 return -EFAULT;
910
911 /* Create 2nd stage page table mapping - Level 3 */
912 old_pte = *pte;
913 kvm_set_pte(pte, *new_pte);
914 if (pte_present(old_pte))
Marc Zyngier48762762013-01-28 15:27:00 +0000915 kvm_tlb_flush_vmid_ipa(kvm, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500916 else
917 get_page(virt_to_page(pte));
918
919 return 0;
920}
921
922/**
923 * kvm_phys_addr_ioremap - map a device range to guest IPA
924 *
925 * @kvm: The KVM pointer
926 * @guest_ipa: The IPA at which to insert the mapping
927 * @pa: The physical address of the device
928 * @size: The size of the mapping
929 */
930int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700931 phys_addr_t pa, unsigned long size, bool writable)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500932{
933 phys_addr_t addr, end;
934 int ret = 0;
935 unsigned long pfn;
936 struct kvm_mmu_memory_cache cache = { 0, };
937
938 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
939 pfn = __phys_to_pfn(pa);
940
941 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100942 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500943
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700944 if (writable)
945 kvm_set_s2pte_writable(&pte);
946
Christoffer Dall38f791a2014-10-10 12:14:28 +0200947 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
948 KVM_NR_MEM_OBJS);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500949 if (ret)
950 goto out;
951 spin_lock(&kvm->mmu_lock);
Mario Smarduch15a49a42015-01-15 15:58:58 -0800952 ret = stage2_set_pte(kvm, &cache, addr, &pte,
953 KVM_S2PTE_FLAG_IS_IOMAP);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500954 spin_unlock(&kvm->mmu_lock);
955 if (ret)
956 goto out;
957
958 pfn++;
959 }
960
961out:
962 mmu_free_memory_cache(&cache);
963 return ret;
964}
965
Dan Williamsba049e92016-01-15 16:56:11 -0800966static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
Christoffer Dall9b5fdb92013-10-02 15:32:01 -0700967{
Dan Williamsba049e92016-01-15 16:56:11 -0800968 kvm_pfn_t pfn = *pfnp;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -0700969 gfn_t gfn = *ipap >> PAGE_SHIFT;
970
971 if (PageTransCompound(pfn_to_page(pfn))) {
972 unsigned long mask;
973 /*
974 * The address we faulted on is backed by a transparent huge
975 * page. However, because we map the compound huge page and
976 * not the individual tail page, we need to transfer the
977 * refcount to the head page. We have to be careful that the
978 * THP doesn't start to split while we are adjusting the
979 * refcounts.
980 *
981 * We are sure this doesn't happen, because mmu_notifier_retry
982 * was successful and we are holding the mmu_lock, so if this
983 * THP is trying to split, it will be blocked in the mmu
984 * notifier before touching any of the pages, specifically
985 * before being able to call __split_huge_page_refcount().
986 *
987 * We can therefore safely transfer the refcount from PG_tail
988 * to PG_head and switch the pfn from a tail page to the head
989 * page accordingly.
990 */
991 mask = PTRS_PER_PMD - 1;
992 VM_BUG_ON((gfn & mask) != (pfn & mask));
993 if (pfn & mask) {
994 *ipap &= PMD_MASK;
995 kvm_release_pfn_clean(pfn);
996 pfn &= ~mask;
997 kvm_get_pfn(pfn);
998 *pfnp = pfn;
999 }
1000
1001 return true;
1002 }
1003
1004 return false;
1005}
1006
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001007static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1008{
1009 if (kvm_vcpu_trap_is_iabt(vcpu))
1010 return false;
1011
1012 return kvm_vcpu_dabt_iswrite(vcpu);
1013}
1014
Mario Smarduchc6473552015-01-15 15:58:56 -08001015/**
1016 * stage2_wp_ptes - write protect PMD range
1017 * @pmd: pointer to pmd entry
1018 * @addr: range start address
1019 * @end: range end address
1020 */
1021static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1022{
1023 pte_t *pte;
1024
1025 pte = pte_offset_kernel(pmd, addr);
1026 do {
1027 if (!pte_none(*pte)) {
1028 if (!kvm_s2pte_readonly(pte))
1029 kvm_set_s2pte_readonly(pte);
1030 }
1031 } while (pte++, addr += PAGE_SIZE, addr != end);
1032}
1033
1034/**
1035 * stage2_wp_pmds - write protect PUD range
1036 * @pud: pointer to pud entry
1037 * @addr: range start address
1038 * @end: range end address
1039 */
1040static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1041{
1042 pmd_t *pmd;
1043 phys_addr_t next;
1044
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001045 pmd = stage2_pmd_offset(pud, addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001046
1047 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001048 next = stage2_pmd_addr_end(addr, end);
Mario Smarduchc6473552015-01-15 15:58:56 -08001049 if (!pmd_none(*pmd)) {
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001050 if (pmd_thp_or_huge(*pmd)) {
Mario Smarduchc6473552015-01-15 15:58:56 -08001051 if (!kvm_s2pmd_readonly(pmd))
1052 kvm_set_s2pmd_readonly(pmd);
1053 } else {
1054 stage2_wp_ptes(pmd, addr, next);
1055 }
1056 }
1057 } while (pmd++, addr = next, addr != end);
1058}
1059
1060/**
1061 * stage2_wp_puds - write protect PGD range
1062 * @pgd: pointer to pgd entry
1063 * @addr: range start address
1064 * @end: range end address
1065 *
1066 * Process PUD entries, for a huge PUD we cause a panic.
1067 */
1068static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1069{
1070 pud_t *pud;
1071 phys_addr_t next;
1072
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001073 pud = stage2_pud_offset(pgd, addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001074 do {
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001075 next = stage2_pud_addr_end(addr, end);
1076 if (!stage2_pud_none(*pud)) {
Mario Smarduchc6473552015-01-15 15:58:56 -08001077 /* TODO:PUD not supported, revisit later if supported */
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001078 BUG_ON(stage2_pud_huge(*pud));
Mario Smarduchc6473552015-01-15 15:58:56 -08001079 stage2_wp_pmds(pud, addr, next);
1080 }
1081 } while (pud++, addr = next, addr != end);
1082}
1083
1084/**
1085 * stage2_wp_range() - write protect stage2 memory region range
1086 * @kvm: The KVM pointer
1087 * @addr: Start address of range
1088 * @end: End address of range
1089 */
1090static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1091{
1092 pgd_t *pgd;
1093 phys_addr_t next;
1094
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001095 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001096 do {
1097 /*
1098 * Release kvm_mmu_lock periodically if the memory region is
1099 * large. Otherwise, we may see kernel panics with
Christoffer Dall227ea812015-01-23 10:49:31 +01001100 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1101 * CONFIG_LOCKDEP. Additionally, holding the lock too long
Mario Smarduchc6473552015-01-15 15:58:56 -08001102 * will also starve other vCPUs.
1103 */
1104 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1105 cond_resched_lock(&kvm->mmu_lock);
1106
Suzuki K Poulose70fd1902016-03-22 18:33:45 +00001107 next = stage2_pgd_addr_end(addr, end);
1108 if (stage2_pgd_present(*pgd))
Mario Smarduchc6473552015-01-15 15:58:56 -08001109 stage2_wp_puds(pgd, addr, next);
1110 } while (pgd++, addr = next, addr != end);
1111}
1112
1113/**
1114 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1115 * @kvm: The KVM pointer
1116 * @slot: The memory slot to write protect
1117 *
1118 * Called to start logging dirty pages after memory region
1119 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1120 * all present PMD and PTEs are write protected in the memory region.
1121 * Afterwards read of dirty page log can be called.
1122 *
1123 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1124 * serializing operations for VM memory regions.
1125 */
1126void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1127{
Paolo Bonzini9f6b8022015-05-17 16:20:07 +02001128 struct kvm_memslots *slots = kvm_memslots(kvm);
1129 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
Mario Smarduchc6473552015-01-15 15:58:56 -08001130 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1131 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1132
1133 spin_lock(&kvm->mmu_lock);
1134 stage2_wp_range(kvm, start, end);
1135 spin_unlock(&kvm->mmu_lock);
1136 kvm_flush_remote_tlbs(kvm);
1137}
Mario Smarduch53c810c2015-01-15 15:58:57 -08001138
1139/**
Kai Huang3b0f1d02015-01-28 10:54:23 +08001140 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
Mario Smarduch53c810c2015-01-15 15:58:57 -08001141 * @kvm: The KVM pointer
1142 * @slot: The memory slot associated with mask
1143 * @gfn_offset: The gfn offset in memory slot
1144 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1145 * slot to be write protected
1146 *
1147 * Walks bits set in mask write protects the associated pte's. Caller must
1148 * acquire kvm_mmu_lock.
1149 */
Kai Huang3b0f1d02015-01-28 10:54:23 +08001150static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
Mario Smarduch53c810c2015-01-15 15:58:57 -08001151 struct kvm_memory_slot *slot,
1152 gfn_t gfn_offset, unsigned long mask)
1153{
1154 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1155 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1156 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1157
1158 stage2_wp_range(kvm, start, end);
1159}
Mario Smarduchc6473552015-01-15 15:58:56 -08001160
Kai Huang3b0f1d02015-01-28 10:54:23 +08001161/*
1162 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1163 * dirty pages.
1164 *
1165 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1166 * enable dirty logging for them.
1167 */
1168void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1169 struct kvm_memory_slot *slot,
1170 gfn_t gfn_offset, unsigned long mask)
1171{
1172 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1173}
1174
Dan Williamsba049e92016-01-15 16:56:11 -08001175static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001176 unsigned long size, bool uncached)
1177{
1178 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1179}
1180
Christoffer Dall94f8e642013-01-20 18:28:12 -05001181static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
Christoffer Dall98047882014-08-19 12:18:04 +02001182 struct kvm_memory_slot *memslot, unsigned long hva,
Christoffer Dall94f8e642013-01-20 18:28:12 -05001183 unsigned long fault_status)
1184{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001185 int ret;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001186 bool write_fault, writable, hugetlb = false, force_pte = false;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001187 unsigned long mmu_seq;
Christoffer Dallad361f02012-11-01 17:14:45 +01001188 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dallad361f02012-11-01 17:14:45 +01001189 struct kvm *kvm = vcpu->kvm;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001190 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
Christoffer Dallad361f02012-11-01 17:14:45 +01001191 struct vm_area_struct *vma;
Dan Williamsba049e92016-01-15 16:56:11 -08001192 kvm_pfn_t pfn;
Kim Phillipsb8865762014-06-26 01:45:51 +01001193 pgprot_t mem_type = PAGE_S2;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001194 bool fault_ipa_uncached;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001195 bool logging_active = memslot_is_logging(memslot);
1196 unsigned long flags = 0;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001197
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001198 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001199 if (fault_status == FSC_PERM && !write_fault) {
1200 kvm_err("Unexpected L2 read permission error\n");
1201 return -EFAULT;
1202 }
1203
Christoffer Dallad361f02012-11-01 17:14:45 +01001204 /* Let's check if we will get back a huge page backed by hugetlbfs */
1205 down_read(&current->mm->mmap_sem);
1206 vma = find_vma_intersection(current->mm, hva, hva + 1);
Ard Biesheuvel37b54402014-09-17 14:56:17 -07001207 if (unlikely(!vma)) {
1208 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1209 up_read(&current->mm->mmap_sem);
1210 return -EFAULT;
1211 }
1212
Mario Smarduch15a49a42015-01-15 15:58:58 -08001213 if (is_vm_hugetlb_page(vma) && !logging_active) {
Christoffer Dallad361f02012-11-01 17:14:45 +01001214 hugetlb = true;
1215 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001216 } else {
1217 /*
Marc Zyngier136d7372013-12-13 16:56:06 +00001218 * Pages belonging to memslots that don't have the same
1219 * alignment for userspace and IPA cannot be mapped using
1220 * block descriptors even if the pages belong to a THP for
1221 * the process, because the stage-2 block descriptor will
1222 * cover more than a single THP and we loose atomicity for
1223 * unmapping, updates, and splits of the THP or other pages
1224 * in the stage-2 block range.
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001225 */
Marc Zyngier136d7372013-12-13 16:56:06 +00001226 if ((memslot->userspace_addr & ~PMD_MASK) !=
1227 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001228 force_pte = true;
Christoffer Dallad361f02012-11-01 17:14:45 +01001229 }
1230 up_read(&current->mm->mmap_sem);
1231
Christoffer Dall94f8e642013-01-20 18:28:12 -05001232 /* We need minimum second+third level pages */
Christoffer Dall38f791a2014-10-10 12:14:28 +02001233 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1234 KVM_NR_MEM_OBJS);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001235 if (ret)
1236 return ret;
1237
1238 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1239 /*
1240 * Ensure the read of mmu_notifier_seq happens before we call
1241 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1242 * the page we just got a reference to gets unmapped before we have a
1243 * chance to grab the mmu_lock, which ensure that if the page gets
1244 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1245 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1246 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1247 */
1248 smp_rmb();
1249
Christoffer Dallad361f02012-11-01 17:14:45 +01001250 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001251 if (is_error_pfn(pfn))
1252 return -EFAULT;
1253
Mario Smarduch15a49a42015-01-15 15:58:58 -08001254 if (kvm_is_device_pfn(pfn)) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001255 mem_type = PAGE_S2_DEVICE;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001256 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1257 } else if (logging_active) {
1258 /*
1259 * Faults on pages in a memslot with logging enabled
1260 * should not be mapped with huge pages (it introduces churn
1261 * and performance degradation), so force a pte mapping.
1262 */
1263 force_pte = true;
1264 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1265
1266 /*
1267 * Only actually map the page as writable if this was a write
1268 * fault.
1269 */
1270 if (!write_fault)
1271 writable = false;
1272 }
Kim Phillipsb8865762014-06-26 01:45:51 +01001273
Christoffer Dallad361f02012-11-01 17:14:45 +01001274 spin_lock(&kvm->mmu_lock);
1275 if (mmu_notifier_retry(kvm, mmu_seq))
Christoffer Dall94f8e642013-01-20 18:28:12 -05001276 goto out_unlock;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001277
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001278 if (!hugetlb && !force_pte)
1279 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
Christoffer Dallad361f02012-11-01 17:14:45 +01001280
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001281 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001282
Christoffer Dallad361f02012-11-01 17:14:45 +01001283 if (hugetlb) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001284 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
Christoffer Dallad361f02012-11-01 17:14:45 +01001285 new_pmd = pmd_mkhuge(new_pmd);
1286 if (writable) {
1287 kvm_set_s2pmd_writable(&new_pmd);
1288 kvm_set_pfn_dirty(pfn);
1289 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001290 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
Christoffer Dallad361f02012-11-01 17:14:45 +01001291 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1292 } else {
Kim Phillipsb8865762014-06-26 01:45:51 +01001293 pte_t new_pte = pfn_pte(pfn, mem_type);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001294
Christoffer Dallad361f02012-11-01 17:14:45 +01001295 if (writable) {
1296 kvm_set_s2pte_writable(&new_pte);
1297 kvm_set_pfn_dirty(pfn);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001298 mark_page_dirty(kvm, gfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001299 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001300 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001301 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001302 }
Christoffer Dallad361f02012-11-01 17:14:45 +01001303
Christoffer Dall94f8e642013-01-20 18:28:12 -05001304out_unlock:
Christoffer Dallad361f02012-11-01 17:14:45 +01001305 spin_unlock(&kvm->mmu_lock);
Marc Zyngier35307b92015-03-12 18:16:51 +00001306 kvm_set_pfn_accessed(pfn);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001307 kvm_release_pfn_clean(pfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001308 return ret;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001309}
1310
Marc Zyngieraeda9132015-03-12 18:16:52 +00001311/*
1312 * Resolve the access fault by making the page young again.
1313 * Note that because the faulting entry is guaranteed not to be
1314 * cached in the TLB, we don't need to invalidate anything.
1315 */
1316static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1317{
1318 pmd_t *pmd;
1319 pte_t *pte;
Dan Williamsba049e92016-01-15 16:56:11 -08001320 kvm_pfn_t pfn;
Marc Zyngieraeda9132015-03-12 18:16:52 +00001321 bool pfn_valid = false;
1322
1323 trace_kvm_access_fault(fault_ipa);
1324
1325 spin_lock(&vcpu->kvm->mmu_lock);
1326
1327 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1328 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1329 goto out;
1330
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001331 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
Marc Zyngieraeda9132015-03-12 18:16:52 +00001332 *pmd = pmd_mkyoung(*pmd);
1333 pfn = pmd_pfn(*pmd);
1334 pfn_valid = true;
1335 goto out;
1336 }
1337
1338 pte = pte_offset_kernel(pmd, fault_ipa);
1339 if (pte_none(*pte)) /* Nothing there either */
1340 goto out;
1341
1342 *pte = pte_mkyoung(*pte); /* Just a page... */
1343 pfn = pte_pfn(*pte);
1344 pfn_valid = true;
1345out:
1346 spin_unlock(&vcpu->kvm->mmu_lock);
1347 if (pfn_valid)
1348 kvm_set_pfn_accessed(pfn);
1349}
1350
Christoffer Dall94f8e642013-01-20 18:28:12 -05001351/**
1352 * kvm_handle_guest_abort - handles all 2nd stage aborts
1353 * @vcpu: the VCPU pointer
1354 * @run: the kvm_run structure
1355 *
1356 * Any abort that gets to the host is almost guaranteed to be caused by a
1357 * missing second stage translation table entry, which can mean that either the
1358 * guest simply needs more memory and we must allocate an appropriate page or it
1359 * can mean that the guest tried to access I/O memory, which is emulated by user
1360 * space. The distinction is based on the IPA causing the fault and whether this
1361 * memory region has been registered as standard RAM by user space.
1362 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001363int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1364{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001365 unsigned long fault_status;
1366 phys_addr_t fault_ipa;
1367 struct kvm_memory_slot *memslot;
Christoffer Dall98047882014-08-19 12:18:04 +02001368 unsigned long hva;
1369 bool is_iabt, write_fault, writable;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001370 gfn_t gfn;
1371 int ret, idx;
1372
Marc Zyngier52d1dba2012-10-15 10:33:38 +01001373 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
Marc Zyngier7393b592012-09-17 19:27:09 +01001374 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001375
Marc Zyngier7393b592012-09-17 19:27:09 +01001376 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1377 kvm_vcpu_get_hfar(vcpu), fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001378
1379 /* Check the stage-2 fault is trans. fault or write fault */
Christoffer Dall0496daa52014-09-26 12:29:34 +02001380 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
Marc Zyngier35307b92015-03-12 18:16:51 +00001381 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1382 fault_status != FSC_ACCESS) {
Christoffer Dall0496daa52014-09-26 12:29:34 +02001383 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1384 kvm_vcpu_trap_get_class(vcpu),
1385 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1386 (unsigned long)kvm_vcpu_get_hsr(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001387 return -EFAULT;
1388 }
1389
1390 idx = srcu_read_lock(&vcpu->kvm->srcu);
1391
1392 gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dall98047882014-08-19 12:18:04 +02001393 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1394 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001395 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall98047882014-08-19 12:18:04 +02001396 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
Christoffer Dall94f8e642013-01-20 18:28:12 -05001397 if (is_iabt) {
1398 /* Prefetch Abort on I/O address */
Marc Zyngier7393b592012-09-17 19:27:09 +01001399 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001400 ret = 1;
1401 goto out_unlock;
1402 }
1403
Marc Zyngiercfe39502012-12-12 14:42:09 +00001404 /*
Marc Zyngier57c841f2016-01-29 15:01:28 +00001405 * Check for a cache maintenance operation. Since we
1406 * ended-up here, we know it is outside of any memory
1407 * slot. But we can't find out if that is for a device,
1408 * or if the guest is just being stupid. The only thing
1409 * we know for sure is that this range cannot be cached.
1410 *
1411 * So let's assume that the guest is just being
1412 * cautious, and skip the instruction.
1413 */
1414 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1415 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1416 ret = 1;
1417 goto out_unlock;
1418 }
1419
1420 /*
Marc Zyngiercfe39502012-12-12 14:42:09 +00001421 * The IPA is reported as [MAX:12], so we need to
1422 * complement it with the bottom 12 bits from the
1423 * faulting VA. This is always 12 bits, irrespective
1424 * of the page size.
1425 */
1426 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
Christoffer Dall45e96ea2013-01-20 18:43:58 -05001427 ret = io_mem_abort(vcpu, run, fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001428 goto out_unlock;
1429 }
1430
Christoffer Dallc3058d52014-10-10 12:14:29 +02001431 /* Userspace should not be able to register out-of-bounds IPAs */
1432 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1433
Marc Zyngieraeda9132015-03-12 18:16:52 +00001434 if (fault_status == FSC_ACCESS) {
1435 handle_access_fault(vcpu, fault_ipa);
1436 ret = 1;
1437 goto out_unlock;
1438 }
1439
Christoffer Dall98047882014-08-19 12:18:04 +02001440 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001441 if (ret == 0)
1442 ret = 1;
1443out_unlock:
1444 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1445 return ret;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001446}
1447
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001448static int handle_hva_to_gpa(struct kvm *kvm,
1449 unsigned long start,
1450 unsigned long end,
1451 int (*handler)(struct kvm *kvm,
1452 gpa_t gpa, void *data),
1453 void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001454{
1455 struct kvm_memslots *slots;
1456 struct kvm_memory_slot *memslot;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001457 int ret = 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001458
1459 slots = kvm_memslots(kvm);
1460
1461 /* we only care about the pages that the guest sees */
1462 kvm_for_each_memslot(memslot, slots) {
1463 unsigned long hva_start, hva_end;
1464 gfn_t gfn, gfn_end;
1465
1466 hva_start = max(start, memslot->userspace_addr);
1467 hva_end = min(end, memslot->userspace_addr +
1468 (memslot->npages << PAGE_SHIFT));
1469 if (hva_start >= hva_end)
1470 continue;
1471
1472 /*
1473 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1474 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1475 */
1476 gfn = hva_to_gfn_memslot(hva_start, memslot);
1477 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1478
1479 for (; gfn < gfn_end; ++gfn) {
1480 gpa_t gpa = gfn << PAGE_SHIFT;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001481 ret |= handler(kvm, gpa, data);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001482 }
1483 }
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001484
1485 return ret;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001486}
1487
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001488static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001489{
1490 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001491 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001492}
1493
1494int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1495{
1496 unsigned long end = hva + PAGE_SIZE;
1497
1498 if (!kvm->arch.pgd)
1499 return 0;
1500
1501 trace_kvm_unmap_hva(hva);
1502 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1503 return 0;
1504}
1505
1506int kvm_unmap_hva_range(struct kvm *kvm,
1507 unsigned long start, unsigned long end)
1508{
1509 if (!kvm->arch.pgd)
1510 return 0;
1511
1512 trace_kvm_unmap_hva_range(start, end);
1513 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1514 return 0;
1515}
1516
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001517static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001518{
1519 pte_t *pte = (pte_t *)data;
1520
Mario Smarduch15a49a42015-01-15 15:58:58 -08001521 /*
1522 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1523 * flag clear because MMU notifiers will have unmapped a huge PMD before
1524 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1525 * therefore stage2_set_pte() never needs to clear out a huge PMD
1526 * through this calling path.
1527 */
1528 stage2_set_pte(kvm, NULL, gpa, pte, 0);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001529 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001530}
1531
1532
1533void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1534{
1535 unsigned long end = hva + PAGE_SIZE;
1536 pte_t stage2_pte;
1537
1538 if (!kvm->arch.pgd)
1539 return;
1540
1541 trace_kvm_set_spte_hva(hva);
1542 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1543 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1544}
1545
Marc Zyngier35307b92015-03-12 18:16:51 +00001546static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1547{
1548 pmd_t *pmd;
1549 pte_t *pte;
1550
1551 pmd = stage2_get_pmd(kvm, NULL, gpa);
1552 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1553 return 0;
1554
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001555 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
Marc Zyngier35307b92015-03-12 18:16:51 +00001556 if (pmd_young(*pmd)) {
1557 *pmd = pmd_mkold(*pmd);
1558 return 1;
1559 }
1560
1561 return 0;
1562 }
1563
1564 pte = pte_offset_kernel(pmd, gpa);
1565 if (pte_none(*pte))
1566 return 0;
1567
1568 if (pte_young(*pte)) {
1569 *pte = pte_mkold(*pte); /* Just a page... */
1570 return 1;
1571 }
1572
1573 return 0;
1574}
1575
1576static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1577{
1578 pmd_t *pmd;
1579 pte_t *pte;
1580
1581 pmd = stage2_get_pmd(kvm, NULL, gpa);
1582 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1583 return 0;
1584
Suzuki K Poulosebbb3b6b2016-03-01 12:00:39 +00001585 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
Marc Zyngier35307b92015-03-12 18:16:51 +00001586 return pmd_young(*pmd);
1587
1588 pte = pte_offset_kernel(pmd, gpa);
1589 if (!pte_none(*pte)) /* Just a page... */
1590 return pte_young(*pte);
1591
1592 return 0;
1593}
1594
1595int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1596{
1597 trace_kvm_age_hva(start, end);
1598 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1599}
1600
1601int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1602{
1603 trace_kvm_test_age_hva(hva);
1604 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1605}
1606
Christoffer Dalld5d81842013-01-20 18:28:07 -05001607void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1608{
1609 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1610}
1611
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001612phys_addr_t kvm_mmu_get_httbr(void)
1613{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001614 if (__kvm_cpu_uses_extended_idmap())
1615 return virt_to_phys(merged_hyp_pgd);
1616 else
1617 return virt_to_phys(hyp_pgd);
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001618}
1619
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001620phys_addr_t kvm_mmu_get_boot_httbr(void)
1621{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001622 if (__kvm_cpu_uses_extended_idmap())
1623 return virt_to_phys(merged_hyp_pgd);
1624 else
1625 return virt_to_phys(boot_hyp_pgd);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001626}
1627
1628phys_addr_t kvm_get_idmap_vector(void)
1629{
1630 return hyp_idmap_vector;
1631}
1632
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001633int kvm_mmu_init(void)
1634{
Marc Zyngier2fb41052013-04-12 19:12:03 +01001635 int err;
1636
Santosh Shilimkar4fda3422013-11-19 14:59:12 -05001637 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1638 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1639 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001640
Ard Biesheuvel06f75a12015-03-19 16:42:26 +00001641 /*
1642 * We rely on the linker script to ensure at build time that the HYP
1643 * init code does not cross a page boundary.
1644 */
1645 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001646
Christoffer Dall38f791a2014-10-10 12:14:28 +02001647 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1648 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
Mark Salter5d4e08c2014-03-28 14:25:19 +00001649
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001650 if (!hyp_pgd || !boot_hyp_pgd) {
Christoffer Dalld5d81842013-01-20 18:28:07 -05001651 kvm_err("Hyp mode PGD not allocated\n");
Marc Zyngier2fb41052013-04-12 19:12:03 +01001652 err = -ENOMEM;
1653 goto out;
1654 }
1655
1656 /* Create the idmap in the boot page tables */
1657 err = __create_hyp_mappings(boot_hyp_pgd,
1658 hyp_idmap_start, hyp_idmap_end,
1659 __phys_to_pfn(hyp_idmap_start),
1660 PAGE_HYP);
1661
1662 if (err) {
1663 kvm_err("Failed to idmap %lx-%lx\n",
1664 hyp_idmap_start, hyp_idmap_end);
1665 goto out;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001666 }
1667
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001668 if (__kvm_cpu_uses_extended_idmap()) {
1669 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1670 if (!merged_hyp_pgd) {
1671 kvm_err("Failed to allocate extra HYP pgd\n");
1672 goto out;
1673 }
1674 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1675 hyp_idmap_start);
1676 return 0;
1677 }
1678
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001679 /* Map the very same page at the trampoline VA */
1680 err = __create_hyp_mappings(boot_hyp_pgd,
1681 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1682 __phys_to_pfn(hyp_idmap_start),
1683 PAGE_HYP);
1684 if (err) {
1685 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1686 TRAMPOLINE_VA);
1687 goto out;
1688 }
1689
1690 /* Map the same page again into the runtime page tables */
1691 err = __create_hyp_mappings(hyp_pgd,
1692 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1693 __phys_to_pfn(hyp_idmap_start),
1694 PAGE_HYP);
1695 if (err) {
1696 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1697 TRAMPOLINE_VA);
1698 goto out;
1699 }
1700
Christoffer Dalld5d81842013-01-20 18:28:07 -05001701 return 0;
Marc Zyngier2fb41052013-04-12 19:12:03 +01001702out:
Marc Zyngier4f728272013-04-12 19:12:05 +01001703 free_hyp_pgds();
Marc Zyngier2fb41052013-04-12 19:12:03 +01001704 return err;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001705}
Eric Augerdf6ce242014-06-06 11:10:23 +02001706
1707void kvm_arch_commit_memory_region(struct kvm *kvm,
Paolo Bonzini09170a42015-05-18 13:59:39 +02001708 const struct kvm_userspace_memory_region *mem,
Eric Augerdf6ce242014-06-06 11:10:23 +02001709 const struct kvm_memory_slot *old,
Paolo Bonzinif36f3f22015-05-18 13:20:23 +02001710 const struct kvm_memory_slot *new,
Eric Augerdf6ce242014-06-06 11:10:23 +02001711 enum kvm_mr_change change)
1712{
Mario Smarduchc6473552015-01-15 15:58:56 -08001713 /*
1714 * At this point memslot has been committed and there is an
1715 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1716 * memory slot is write protected.
1717 */
1718 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1719 kvm_mmu_wp_memory_region(kvm, mem->slot);
Eric Augerdf6ce242014-06-06 11:10:23 +02001720}
1721
1722int kvm_arch_prepare_memory_region(struct kvm *kvm,
1723 struct kvm_memory_slot *memslot,
Paolo Bonzini09170a42015-05-18 13:59:39 +02001724 const struct kvm_userspace_memory_region *mem,
Eric Augerdf6ce242014-06-06 11:10:23 +02001725 enum kvm_mr_change change)
1726{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001727 hva_t hva = mem->userspace_addr;
1728 hva_t reg_end = hva + mem->memory_size;
1729 bool writable = !(mem->flags & KVM_MEM_READONLY);
1730 int ret = 0;
1731
Mario Smarduch15a49a42015-01-15 15:58:58 -08001732 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1733 change != KVM_MR_FLAGS_ONLY)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001734 return 0;
1735
1736 /*
Christoffer Dallc3058d52014-10-10 12:14:29 +02001737 * Prevent userspace from creating a memory region outside of the IPA
1738 * space addressable by the KVM guest IPA space.
1739 */
1740 if (memslot->base_gfn + memslot->npages >=
1741 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1742 return -EFAULT;
1743
1744 /*
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001745 * A memory region could potentially cover multiple VMAs, and any holes
1746 * between them, so iterate over all of them to find out if we can map
1747 * any of them right now.
1748 *
1749 * +--------------------------------------------+
1750 * +---------------+----------------+ +----------------+
1751 * | : VMA 1 | VMA 2 | | VMA 3 : |
1752 * +---------------+----------------+ +----------------+
1753 * | memory region |
1754 * +--------------------------------------------+
1755 */
1756 do {
1757 struct vm_area_struct *vma = find_vma(current->mm, hva);
1758 hva_t vm_start, vm_end;
1759
1760 if (!vma || vma->vm_start >= reg_end)
1761 break;
1762
1763 /*
1764 * Mapping a read-only VMA is only allowed if the
1765 * memory region is configured as read-only.
1766 */
1767 if (writable && !(vma->vm_flags & VM_WRITE)) {
1768 ret = -EPERM;
1769 break;
1770 }
1771
1772 /*
1773 * Take the intersection of this VMA with the memory region
1774 */
1775 vm_start = max(hva, vma->vm_start);
1776 vm_end = min(reg_end, vma->vm_end);
1777
1778 if (vma->vm_flags & VM_PFNMAP) {
1779 gpa_t gpa = mem->guest_phys_addr +
1780 (vm_start - mem->userspace_addr);
Marek Majtykaca09f022015-09-16 12:04:55 +02001781 phys_addr_t pa;
1782
1783 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1784 pa += vm_start - vma->vm_start;
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001785
Mario Smarduch15a49a42015-01-15 15:58:58 -08001786 /* IO region dirty page logging not allowed */
1787 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1788 return -EINVAL;
1789
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001790 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1791 vm_end - vm_start,
1792 writable);
1793 if (ret)
1794 break;
1795 }
1796 hva = vm_end;
1797 } while (hva < reg_end);
1798
Mario Smarduch15a49a42015-01-15 15:58:58 -08001799 if (change == KVM_MR_FLAGS_ONLY)
1800 return ret;
1801
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001802 spin_lock(&kvm->mmu_lock);
1803 if (ret)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001804 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001805 else
1806 stage2_flush_memslot(kvm, memslot);
1807 spin_unlock(&kvm->mmu_lock);
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001808 return ret;
Eric Augerdf6ce242014-06-06 11:10:23 +02001809}
1810
1811void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1812 struct kvm_memory_slot *dont)
1813{
1814}
1815
1816int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1817 unsigned long npages)
1818{
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001819 /*
1820 * Readonly memslots are not incoherent with the caches by definition,
1821 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1822 * that the guest may consider devices and hence map as uncached.
1823 * To prevent incoherency issues in these cases, tag all readonly
1824 * regions as incoherent.
1825 */
1826 if (slot->flags & KVM_MEM_READONLY)
1827 slot->flags |= KVM_MEMSLOT_INCOHERENT;
Eric Augerdf6ce242014-06-06 11:10:23 +02001828 return 0;
1829}
1830
Paolo Bonzini15f46012015-05-17 21:26:08 +02001831void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
Eric Augerdf6ce242014-06-06 11:10:23 +02001832{
1833}
1834
1835void kvm_arch_flush_shadow_all(struct kvm *kvm)
1836{
1837}
1838
1839void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1840 struct kvm_memory_slot *slot)
1841{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001842 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1843 phys_addr_t size = slot->npages << PAGE_SHIFT;
1844
1845 spin_lock(&kvm->mmu_lock);
1846 unmap_stage2_range(kvm, gpa, size);
1847 spin_unlock(&kvm->mmu_lock);
Eric Augerdf6ce242014-06-06 11:10:23 +02001848}
Marc Zyngier3c1e7162014-12-19 16:05:31 +00001849
1850/*
1851 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1852 *
1853 * Main problems:
1854 * - S/W ops are local to a CPU (not broadcast)
1855 * - We have line migration behind our back (speculation)
1856 * - System caches don't support S/W at all (damn!)
1857 *
1858 * In the face of the above, the best we can do is to try and convert
1859 * S/W ops to VA ops. Because the guest is not allowed to infer the
1860 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1861 * which is a rather good thing for us.
1862 *
1863 * Also, it is only used when turning caches on/off ("The expected
1864 * usage of the cache maintenance instructions that operate by set/way
1865 * is associated with the cache maintenance instructions associated
1866 * with the powerdown and powerup of caches, if this is required by
1867 * the implementation.").
1868 *
1869 * We use the following policy:
1870 *
1871 * - If we trap a S/W operation, we enable VM trapping to detect
1872 * caches being turned on/off, and do a full clean.
1873 *
1874 * - We flush the caches on both caches being turned on and off.
1875 *
1876 * - Once the caches are enabled, we stop trapping VM ops.
1877 */
1878void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1879{
1880 unsigned long hcr = vcpu_get_hcr(vcpu);
1881
1882 /*
1883 * If this is the first time we do a S/W operation
1884 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1885 * VM trapping.
1886 *
1887 * Otherwise, rely on the VM trapping to wait for the MMU +
1888 * Caches to be turned off. At that point, we'll be able to
1889 * clean the caches again.
1890 */
1891 if (!(hcr & HCR_TVM)) {
1892 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1893 vcpu_has_cache_enabled(vcpu));
1894 stage2_flush_vm(vcpu->kvm);
1895 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1896 }
1897}
1898
1899void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1900{
1901 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1902
1903 /*
1904 * If switching the MMU+caches on, need to invalidate the caches.
1905 * If switching it off, need to clean the caches.
1906 * Clean + invalidate does the trick always.
1907 */
1908 if (now_enabled != was_enabled)
1909 stage2_flush_vm(vcpu->kvm);
1910
1911 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1912 if (now_enabled)
1913 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1914
1915 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1916}