blob: 2f12e4056408e93c43976bd24d6a4109ac27753b [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -050018
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050022#include <trace/events/kvm.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050023#include <asm/pgalloc.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050024#include <asm/cacheflush.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050025#include <asm/kvm_arm.h>
26#include <asm/kvm_mmu.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050027#include <asm/kvm_mmio.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050028#include <asm/kvm_asm.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050029#include <asm/kvm_emulate.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050030
31#include "trace.h"
Christoffer Dall342cd0a2013-01-20 18:28:06 -050032
33extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
34
35static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
36
Marc Zyngier48762762013-01-28 15:27:00 +000037static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
Christoffer Dalld5d81842013-01-20 18:28:07 -050038{
Marc Zyngier48762762013-01-28 15:27:00 +000039 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
Christoffer Dalld5d81842013-01-20 18:28:07 -050040}
41
Christoffer Dalld5d81842013-01-20 18:28:07 -050042static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
43 int min, int max)
44{
45 void *page;
46
47 BUG_ON(max > KVM_NR_MEM_OBJS);
48 if (cache->nobjs >= min)
49 return 0;
50 while (cache->nobjs < max) {
51 page = (void *)__get_free_page(PGALLOC_GFP);
52 if (!page)
53 return -ENOMEM;
54 cache->objects[cache->nobjs++] = page;
55 }
56 return 0;
57}
58
59static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
60{
61 while (mc->nobjs)
62 free_page((unsigned long)mc->objects[--mc->nobjs]);
63}
64
65static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
66{
67 void *p;
68
69 BUG_ON(!mc || !mc->nobjs);
70 p = mc->objects[--mc->nobjs];
71 return p;
72}
73
Christoffer Dall342cd0a2013-01-20 18:28:06 -050074static void free_ptes(pmd_t *pmd, unsigned long addr)
75{
76 pte_t *pte;
77 unsigned int i;
78
79 for (i = 0; i < PTRS_PER_PMD; i++, addr += PMD_SIZE) {
80 if (!pmd_none(*pmd) && pmd_table(*pmd)) {
81 pte = pte_offset_kernel(pmd, addr);
82 pte_free_kernel(NULL, pte);
83 }
84 pmd++;
85 }
86}
87
Marc Zyngier000d3992013-03-05 02:43:17 +000088static void free_hyp_pgd_entry(unsigned long addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -050089{
90 pgd_t *pgd;
91 pud_t *pud;
92 pmd_t *pmd;
Marc Zyngier000d3992013-03-05 02:43:17 +000093 unsigned long hyp_addr = KERN_TO_HYP(addr);
94
95 pgd = hyp_pgd + pgd_index(hyp_addr);
96 pud = pud_offset(pgd, hyp_addr);
97
98 if (pud_none(*pud))
99 return;
100 BUG_ON(pud_bad(*pud));
101
102 pmd = pmd_offset(pud, hyp_addr);
103 free_ptes(pmd, addr);
104 pmd_free(NULL, pmd);
105 pud_clear(pud);
106}
107
108/**
109 * free_hyp_pmds - free a Hyp-mode level-2 tables and child level-3 tables
110 *
111 * Assumes this is a page table used strictly in Hyp-mode and therefore contains
112 * either mappings in the kernel memory area (above PAGE_OFFSET), or
113 * device mappings in the vmalloc range (from VMALLOC_START to VMALLOC_END).
114 */
115void free_hyp_pmds(void)
116{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500117 unsigned long addr;
118
119 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier000d3992013-03-05 02:43:17 +0000120 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
121 free_hyp_pgd_entry(addr);
122 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
123 free_hyp_pgd_entry(addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500124 mutex_unlock(&kvm_hyp_pgd_mutex);
125}
126
127static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
128 unsigned long end)
129{
130 pte_t *pte;
131 unsigned long addr;
132 struct page *page;
133
134 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100135 unsigned long hyp_addr = KERN_TO_HYP(addr);
136
137 pte = pte_offset_kernel(pmd, hyp_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500138 BUG_ON(!virt_addr_valid(addr));
139 page = virt_to_page(addr);
140 kvm_set_pte(pte, mk_pte(page, PAGE_HYP));
141 }
142}
143
144static void create_hyp_io_pte_mappings(pmd_t *pmd, unsigned long start,
145 unsigned long end,
146 unsigned long *pfn_base)
147{
148 pte_t *pte;
149 unsigned long addr;
150
151 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100152 unsigned long hyp_addr = KERN_TO_HYP(addr);
153
154 pte = pte_offset_kernel(pmd, hyp_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500155 BUG_ON(pfn_valid(*pfn_base));
156 kvm_set_pte(pte, pfn_pte(*pfn_base, PAGE_HYP_DEVICE));
157 (*pfn_base)++;
158 }
159}
160
161static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
162 unsigned long end, unsigned long *pfn_base)
163{
164 pmd_t *pmd;
165 pte_t *pte;
166 unsigned long addr, next;
167
168 for (addr = start; addr < end; addr = next) {
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100169 unsigned long hyp_addr = KERN_TO_HYP(addr);
170 pmd = pmd_offset(pud, hyp_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500171
172 BUG_ON(pmd_sect(*pmd));
173
174 if (pmd_none(*pmd)) {
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100175 pte = pte_alloc_one_kernel(NULL, hyp_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500176 if (!pte) {
177 kvm_err("Cannot allocate Hyp pte\n");
178 return -ENOMEM;
179 }
180 pmd_populate_kernel(NULL, pmd, pte);
181 }
182
183 next = pmd_addr_end(addr, end);
184
185 /*
186 * If pfn_base is NULL, we map kernel pages into HYP with the
187 * virtual address. Otherwise, this is considered an I/O
188 * mapping and we map the physical region starting at
189 * *pfn_base to [start, end[.
190 */
191 if (!pfn_base)
192 create_hyp_pte_mappings(pmd, addr, next);
193 else
194 create_hyp_io_pte_mappings(pmd, addr, next, pfn_base);
195 }
196
197 return 0;
198}
199
200static int __create_hyp_mappings(void *from, void *to, unsigned long *pfn_base)
201{
202 unsigned long start = (unsigned long)from;
203 unsigned long end = (unsigned long)to;
204 pgd_t *pgd;
205 pud_t *pud;
206 pmd_t *pmd;
207 unsigned long addr, next;
208 int err = 0;
209
Marc Zyngierb4034bd2012-10-28 11:52:57 +0000210 if (start >= end)
211 return -EINVAL;
212 /* Check for a valid kernel memory mapping */
213 if (!pfn_base && (!virt_addr_valid(from) || !virt_addr_valid(to - 1)))
214 return -EINVAL;
215 /* Check for a valid kernel IO mapping */
216 if (pfn_base && (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1)))
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500217 return -EINVAL;
218
219 mutex_lock(&kvm_hyp_pgd_mutex);
220 for (addr = start; addr < end; addr = next) {
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100221 unsigned long hyp_addr = KERN_TO_HYP(addr);
222 pgd = hyp_pgd + pgd_index(hyp_addr);
223 pud = pud_offset(pgd, hyp_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500224
225 if (pud_none_or_clear_bad(pud)) {
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100226 pmd = pmd_alloc_one(NULL, hyp_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500227 if (!pmd) {
228 kvm_err("Cannot allocate Hyp pmd\n");
229 err = -ENOMEM;
230 goto out;
231 }
232 pud_populate(NULL, pud, pmd);
233 }
234
235 next = pgd_addr_end(addr, end);
236 err = create_hyp_pmd_mappings(pud, addr, next, pfn_base);
237 if (err)
238 goto out;
239 }
240out:
241 mutex_unlock(&kvm_hyp_pgd_mutex);
242 return err;
243}
244
245/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100246 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500247 * @from: The virtual kernel start address of the range
248 * @to: The virtual kernel end address of the range (exclusive)
249 *
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100250 * The same virtual address as the kernel virtual address is also used
251 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
252 * physical pages.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500253 *
254 * Note: Wrapping around zero in the "to" address is not supported.
255 */
256int create_hyp_mappings(void *from, void *to)
257{
258 return __create_hyp_mappings(from, to, NULL);
259}
260
261/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100262 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
263 * @from: The kernel start VA of the range
264 * @to: The kernel end VA of the range (exclusive)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500265 * @addr: The physical start address which gets mapped
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100266 *
267 * The resulting HYP VA is the same as the kernel VA, modulo
268 * HYP_PAGE_OFFSET.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500269 */
270int create_hyp_io_mappings(void *from, void *to, phys_addr_t addr)
271{
272 unsigned long pfn = __phys_to_pfn(addr);
273 return __create_hyp_mappings(from, to, &pfn);
274}
275
Christoffer Dalld5d81842013-01-20 18:28:07 -0500276/**
277 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
278 * @kvm: The KVM struct pointer for the VM.
279 *
280 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
281 * support either full 40-bit input addresses or limited to 32-bit input
282 * addresses). Clears the allocated pages.
283 *
284 * Note we don't need locking here as this is only called when the VM is
285 * created, which can only be done once.
286 */
287int kvm_alloc_stage2_pgd(struct kvm *kvm)
288{
289 pgd_t *pgd;
290
291 if (kvm->arch.pgd != NULL) {
292 kvm_err("kvm_arch already initialized?\n");
293 return -EINVAL;
294 }
295
296 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
297 if (!pgd)
298 return -ENOMEM;
299
300 /* stage-2 pgd must be aligned to its size */
301 VM_BUG_ON((unsigned long)pgd & (S2_PGD_SIZE - 1));
302
303 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100304 kvm_clean_pgd(pgd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500305 kvm->arch.pgd = pgd;
306
307 return 0;
308}
309
310static void clear_pud_entry(pud_t *pud)
311{
312 pmd_t *pmd_table = pmd_offset(pud, 0);
313 pud_clear(pud);
314 pmd_free(NULL, pmd_table);
315 put_page(virt_to_page(pud));
316}
317
318static void clear_pmd_entry(pmd_t *pmd)
319{
320 pte_t *pte_table = pte_offset_kernel(pmd, 0);
321 pmd_clear(pmd);
322 pte_free_kernel(NULL, pte_table);
323 put_page(virt_to_page(pmd));
324}
325
326static bool pmd_empty(pmd_t *pmd)
327{
328 struct page *pmd_page = virt_to_page(pmd);
329 return page_count(pmd_page) == 1;
330}
331
332static void clear_pte_entry(pte_t *pte)
333{
334 if (pte_present(*pte)) {
335 kvm_set_pte(pte, __pte(0));
336 put_page(virt_to_page(pte));
337 }
338}
339
340static bool pte_empty(pte_t *pte)
341{
342 struct page *pte_page = virt_to_page(pte);
343 return page_count(pte_page) == 1;
344}
345
346/**
347 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
348 * @kvm: The VM pointer
349 * @start: The intermediate physical base address of the range to unmap
350 * @size: The size of the area to unmap
351 *
352 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
353 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
354 * destroying the VM), otherwise another faulting VCPU may come in and mess
355 * with things behind our backs.
356 */
357static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
358{
359 pgd_t *pgd;
360 pud_t *pud;
361 pmd_t *pmd;
362 pte_t *pte;
363 phys_addr_t addr = start, end = start + size;
364 u64 range;
365
366 while (addr < end) {
367 pgd = kvm->arch.pgd + pgd_index(addr);
368 pud = pud_offset(pgd, addr);
369 if (pud_none(*pud)) {
370 addr += PUD_SIZE;
371 continue;
372 }
373
374 pmd = pmd_offset(pud, addr);
375 if (pmd_none(*pmd)) {
376 addr += PMD_SIZE;
377 continue;
378 }
379
380 pte = pte_offset_kernel(pmd, addr);
381 clear_pte_entry(pte);
382 range = PAGE_SIZE;
383
384 /* If we emptied the pte, walk back up the ladder */
385 if (pte_empty(pte)) {
386 clear_pmd_entry(pmd);
387 range = PMD_SIZE;
388 if (pmd_empty(pmd)) {
389 clear_pud_entry(pud);
390 range = PUD_SIZE;
391 }
392 }
393
394 addr += range;
395 }
396}
397
398/**
399 * kvm_free_stage2_pgd - free all stage-2 tables
400 * @kvm: The KVM struct pointer for the VM.
401 *
402 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
403 * underlying level-2 and level-3 tables before freeing the actual level-1 table
404 * and setting the struct pointer to NULL.
405 *
406 * Note we don't need locking here as this is only called when the VM is
407 * destroyed, which can only be done once.
408 */
409void kvm_free_stage2_pgd(struct kvm *kvm)
410{
411 if (kvm->arch.pgd == NULL)
412 return;
413
414 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
415 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
416 kvm->arch.pgd = NULL;
417}
418
419
420static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
421 phys_addr_t addr, const pte_t *new_pte, bool iomap)
422{
423 pgd_t *pgd;
424 pud_t *pud;
425 pmd_t *pmd;
426 pte_t *pte, old_pte;
427
428 /* Create 2nd stage page table mapping - Level 1 */
429 pgd = kvm->arch.pgd + pgd_index(addr);
430 pud = pud_offset(pgd, addr);
431 if (pud_none(*pud)) {
432 if (!cache)
433 return 0; /* ignore calls from kvm_set_spte_hva */
434 pmd = mmu_memory_cache_alloc(cache);
435 pud_populate(NULL, pud, pmd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500436 get_page(virt_to_page(pud));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100437 }
438
439 pmd = pmd_offset(pud, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500440
441 /* Create 2nd stage page table mapping - Level 2 */
442 if (pmd_none(*pmd)) {
443 if (!cache)
444 return 0; /* ignore calls from kvm_set_spte_hva */
445 pte = mmu_memory_cache_alloc(cache);
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100446 kvm_clean_pte(pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500447 pmd_populate_kernel(NULL, pmd, pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500448 get_page(virt_to_page(pmd));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100449 }
450
451 pte = pte_offset_kernel(pmd, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500452
453 if (iomap && pte_present(*pte))
454 return -EFAULT;
455
456 /* Create 2nd stage page table mapping - Level 3 */
457 old_pte = *pte;
458 kvm_set_pte(pte, *new_pte);
459 if (pte_present(old_pte))
Marc Zyngier48762762013-01-28 15:27:00 +0000460 kvm_tlb_flush_vmid_ipa(kvm, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500461 else
462 get_page(virt_to_page(pte));
463
464 return 0;
465}
466
467/**
468 * kvm_phys_addr_ioremap - map a device range to guest IPA
469 *
470 * @kvm: The KVM pointer
471 * @guest_ipa: The IPA at which to insert the mapping
472 * @pa: The physical address of the device
473 * @size: The size of the mapping
474 */
475int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
476 phys_addr_t pa, unsigned long size)
477{
478 phys_addr_t addr, end;
479 int ret = 0;
480 unsigned long pfn;
481 struct kvm_mmu_memory_cache cache = { 0, };
482
483 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
484 pfn = __phys_to_pfn(pa);
485
486 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100487 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
488 kvm_set_s2pte_writable(&pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500489
490 ret = mmu_topup_memory_cache(&cache, 2, 2);
491 if (ret)
492 goto out;
493 spin_lock(&kvm->mmu_lock);
494 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
495 spin_unlock(&kvm->mmu_lock);
496 if (ret)
497 goto out;
498
499 pfn++;
500 }
501
502out:
503 mmu_free_memory_cache(&cache);
504 return ret;
505}
506
Christoffer Dall94f8e642013-01-20 18:28:12 -0500507static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
508 gfn_t gfn, struct kvm_memory_slot *memslot,
509 unsigned long fault_status)
510{
511 pte_t new_pte;
512 pfn_t pfn;
513 int ret;
514 bool write_fault, writable;
515 unsigned long mmu_seq;
516 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
517
Marc Zyngier7393b592012-09-17 19:27:09 +0100518 write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -0500519 if (fault_status == FSC_PERM && !write_fault) {
520 kvm_err("Unexpected L2 read permission error\n");
521 return -EFAULT;
522 }
523
524 /* We need minimum second+third level pages */
525 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
526 if (ret)
527 return ret;
528
529 mmu_seq = vcpu->kvm->mmu_notifier_seq;
530 /*
531 * Ensure the read of mmu_notifier_seq happens before we call
532 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
533 * the page we just got a reference to gets unmapped before we have a
534 * chance to grab the mmu_lock, which ensure that if the page gets
535 * unmapped afterwards, the call to kvm_unmap_hva will take it away
536 * from us again properly. This smp_rmb() interacts with the smp_wmb()
537 * in kvm_mmu_notifier_invalidate_<page|range_end>.
538 */
539 smp_rmb();
540
541 pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
542 if (is_error_pfn(pfn))
543 return -EFAULT;
544
545 new_pte = pfn_pte(pfn, PAGE_S2);
546 coherent_icache_guest_page(vcpu->kvm, gfn);
547
548 spin_lock(&vcpu->kvm->mmu_lock);
549 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
550 goto out_unlock;
551 if (writable) {
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100552 kvm_set_s2pte_writable(&new_pte);
Christoffer Dall94f8e642013-01-20 18:28:12 -0500553 kvm_set_pfn_dirty(pfn);
554 }
555 stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);
556
557out_unlock:
558 spin_unlock(&vcpu->kvm->mmu_lock);
559 kvm_release_pfn_clean(pfn);
560 return 0;
561}
562
563/**
564 * kvm_handle_guest_abort - handles all 2nd stage aborts
565 * @vcpu: the VCPU pointer
566 * @run: the kvm_run structure
567 *
568 * Any abort that gets to the host is almost guaranteed to be caused by a
569 * missing second stage translation table entry, which can mean that either the
570 * guest simply needs more memory and we must allocate an appropriate page or it
571 * can mean that the guest tried to access I/O memory, which is emulated by user
572 * space. The distinction is based on the IPA causing the fault and whether this
573 * memory region has been registered as standard RAM by user space.
574 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500575int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
576{
Christoffer Dall94f8e642013-01-20 18:28:12 -0500577 unsigned long fault_status;
578 phys_addr_t fault_ipa;
579 struct kvm_memory_slot *memslot;
580 bool is_iabt;
581 gfn_t gfn;
582 int ret, idx;
583
Marc Zyngier52d1dba2012-10-15 10:33:38 +0100584 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
Marc Zyngier7393b592012-09-17 19:27:09 +0100585 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -0500586
Marc Zyngier7393b592012-09-17 19:27:09 +0100587 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
588 kvm_vcpu_get_hfar(vcpu), fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -0500589
590 /* Check the stage-2 fault is trans. fault or write fault */
Marc Zyngier1cc287d2012-09-18 14:14:35 +0100591 fault_status = kvm_vcpu_trap_get_fault(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -0500592 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
Marc Zyngier52d1dba2012-10-15 10:33:38 +0100593 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
594 kvm_vcpu_trap_get_class(vcpu), fault_status);
Christoffer Dall94f8e642013-01-20 18:28:12 -0500595 return -EFAULT;
596 }
597
598 idx = srcu_read_lock(&vcpu->kvm->srcu);
599
600 gfn = fault_ipa >> PAGE_SHIFT;
601 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
602 if (is_iabt) {
603 /* Prefetch Abort on I/O address */
Marc Zyngier7393b592012-09-17 19:27:09 +0100604 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -0500605 ret = 1;
606 goto out_unlock;
607 }
608
609 if (fault_status != FSC_FAULT) {
610 kvm_err("Unsupported fault status on io memory: %#lx\n",
611 fault_status);
612 ret = -EFAULT;
613 goto out_unlock;
614 }
615
Marc Zyngiercfe39502012-12-12 14:42:09 +0000616 /*
617 * The IPA is reported as [MAX:12], so we need to
618 * complement it with the bottom 12 bits from the
619 * faulting VA. This is always 12 bits, irrespective
620 * of the page size.
621 */
622 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
Christoffer Dall45e96ea2013-01-20 18:43:58 -0500623 ret = io_mem_abort(vcpu, run, fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -0500624 goto out_unlock;
625 }
626
627 memslot = gfn_to_memslot(vcpu->kvm, gfn);
Christoffer Dall94f8e642013-01-20 18:28:12 -0500628
629 ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
630 if (ret == 0)
631 ret = 1;
632out_unlock:
633 srcu_read_unlock(&vcpu->kvm->srcu, idx);
634 return ret;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500635}
636
Christoffer Dalld5d81842013-01-20 18:28:07 -0500637static void handle_hva_to_gpa(struct kvm *kvm,
638 unsigned long start,
639 unsigned long end,
640 void (*handler)(struct kvm *kvm,
641 gpa_t gpa, void *data),
642 void *data)
643{
644 struct kvm_memslots *slots;
645 struct kvm_memory_slot *memslot;
646
647 slots = kvm_memslots(kvm);
648
649 /* we only care about the pages that the guest sees */
650 kvm_for_each_memslot(memslot, slots) {
651 unsigned long hva_start, hva_end;
652 gfn_t gfn, gfn_end;
653
654 hva_start = max(start, memslot->userspace_addr);
655 hva_end = min(end, memslot->userspace_addr +
656 (memslot->npages << PAGE_SHIFT));
657 if (hva_start >= hva_end)
658 continue;
659
660 /*
661 * {gfn(page) | page intersects with [hva_start, hva_end)} =
662 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
663 */
664 gfn = hva_to_gfn_memslot(hva_start, memslot);
665 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
666
667 for (; gfn < gfn_end; ++gfn) {
668 gpa_t gpa = gfn << PAGE_SHIFT;
669 handler(kvm, gpa, data);
670 }
671 }
672}
673
674static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
675{
676 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
Marc Zyngier48762762013-01-28 15:27:00 +0000677 kvm_tlb_flush_vmid_ipa(kvm, gpa);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500678}
679
680int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
681{
682 unsigned long end = hva + PAGE_SIZE;
683
684 if (!kvm->arch.pgd)
685 return 0;
686
687 trace_kvm_unmap_hva(hva);
688 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
689 return 0;
690}
691
692int kvm_unmap_hva_range(struct kvm *kvm,
693 unsigned long start, unsigned long end)
694{
695 if (!kvm->arch.pgd)
696 return 0;
697
698 trace_kvm_unmap_hva_range(start, end);
699 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
700 return 0;
701}
702
703static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
704{
705 pte_t *pte = (pte_t *)data;
706
707 stage2_set_pte(kvm, NULL, gpa, pte, false);
708}
709
710
711void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
712{
713 unsigned long end = hva + PAGE_SIZE;
714 pte_t stage2_pte;
715
716 if (!kvm->arch.pgd)
717 return;
718
719 trace_kvm_set_spte_hva(hva);
720 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
721 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
722}
723
724void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
725{
726 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
727}
728
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500729phys_addr_t kvm_mmu_get_httbr(void)
730{
731 VM_BUG_ON(!virt_addr_valid(hyp_pgd));
732 return virt_to_phys(hyp_pgd);
733}
734
735int kvm_mmu_init(void)
736{
Christoffer Dalld5d81842013-01-20 18:28:07 -0500737 if (!hyp_pgd) {
738 kvm_err("Hyp mode PGD not allocated\n");
739 return -ENOMEM;
740 }
741
742 return 0;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500743}
744
745/**
746 * kvm_clear_idmap - remove all idmaps from the hyp pgd
747 *
748 * Free the underlying pmds for all pgds in range and clear the pgds (but
749 * don't free them) afterwards.
750 */
751void kvm_clear_hyp_idmap(void)
752{
753 unsigned long addr, end;
754 unsigned long next;
755 pgd_t *pgd = hyp_pgd;
756 pud_t *pud;
757 pmd_t *pmd;
758
759 addr = virt_to_phys(__hyp_idmap_text_start);
760 end = virt_to_phys(__hyp_idmap_text_end);
761
762 pgd += pgd_index(addr);
763 do {
764 next = pgd_addr_end(addr, end);
765 if (pgd_none_or_clear_bad(pgd))
766 continue;
767 pud = pud_offset(pgd, addr);
768 pmd = pmd_offset(pud, addr);
769
770 pud_clear(pud);
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100771 kvm_clean_pmd_entry(pmd);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500772 pmd_free(NULL, (pmd_t *)((unsigned long)pmd & PAGE_MASK));
773 } while (pgd++, addr = next, addr < end);
774}