blob: 32cad7540d78b2411793c53f2d1d5ed594232453 [file] [log] [blame]
Aneesh V7ec94452012-04-27 17:54:05 +05301/*
2 * EMIF driver
3 *
4 * Copyright (C) 2012 Texas Instruments, Inc.
5 *
6 * Aneesh V <aneesh@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
Thierry Reding06303c22013-01-21 11:09:08 +010013#include <linux/err.h>
Aneesh V7ec94452012-04-27 17:54:05 +053014#include <linux/kernel.h>
15#include <linux/reboot.h>
16#include <linux/platform_data/emif_plat.h>
17#include <linux/io.h>
18#include <linux/device.h>
19#include <linux/platform_device.h>
20#include <linux/interrupt.h>
21#include <linux/slab.h>
Aneesh Ve6b42eb2012-08-17 14:05:15 +053022#include <linux/of.h>
Aneesh Vaac10aa2012-04-27 17:54:09 +053023#include <linux/debugfs.h>
Aneesh V7ec94452012-04-27 17:54:05 +053024#include <linux/seq_file.h>
25#include <linux/module.h>
26#include <linux/list.h>
Aneesh Va93de282012-04-27 17:54:06 +053027#include <linux/spinlock.h>
Nishanth Menon2553e322013-03-16 11:46:45 +053028#include <linux/pm.h>
Masahiro Yamada5ec47cd2019-06-03 17:12:33 +090029
Aneesh V7ec94452012-04-27 17:54:05 +053030#include "emif.h"
Masahiro Yamada5ec47cd2019-06-03 17:12:33 +090031#include "jedec_ddr.h"
Aneesh Ve6b42eb2012-08-17 14:05:15 +053032#include "of_memory.h"
Aneesh V7ec94452012-04-27 17:54:05 +053033
34/**
35 * struct emif_data - Per device static data for driver's use
36 * @duplicate: Whether the DDR devices attached to this EMIF
37 * instance are exactly same as that on EMIF1. In
38 * this case we can save some memory and processing
39 * @temperature_level: Maximum temperature of LPDDR2 devices attached
40 * to this EMIF - read from MR4 register. If there
41 * are two devices attached to this EMIF, this
42 * value is the maximum of the two temperature
43 * levels.
44 * @node: node in the device list
45 * @base: base address of memory-mapped IO registers.
46 * @dev: device pointer.
Aneesh Va93de282012-04-27 17:54:06 +053047 * @addressing table with addressing information from the spec
48 * @regs_cache: An array of 'struct emif_regs' that stores
49 * calculated register values for different
50 * frequencies, to avoid re-calculating them on
51 * each DVFS transition.
52 * @curr_regs: The set of register values used in the last
53 * frequency change (i.e. corresponding to the
54 * frequency in effect at the moment)
Aneesh V7ec94452012-04-27 17:54:05 +053055 * @plat_data: Pointer to saved platform data.
Aneesh Vaac10aa2012-04-27 17:54:09 +053056 * @debugfs_root: dentry to the root folder for EMIF in debugfs
Aneesh Ve6b42eb2012-08-17 14:05:15 +053057 * @np_ddr: Pointer to ddr device tree node
Aneesh V7ec94452012-04-27 17:54:05 +053058 */
59struct emif_data {
60 u8 duplicate;
61 u8 temperature_level;
Aneesh Va93de282012-04-27 17:54:06 +053062 u8 lpmode;
Aneesh V7ec94452012-04-27 17:54:05 +053063 struct list_head node;
Aneesh Va93de282012-04-27 17:54:06 +053064 unsigned long irq_state;
Aneesh V7ec94452012-04-27 17:54:05 +053065 void __iomem *base;
66 struct device *dev;
Aneesh Va93de282012-04-27 17:54:06 +053067 const struct lpddr2_addressing *addressing;
68 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
69 struct emif_regs *curr_regs;
Aneesh V7ec94452012-04-27 17:54:05 +053070 struct emif_platform_data *plat_data;
Aneesh Vaac10aa2012-04-27 17:54:09 +053071 struct dentry *debugfs_root;
Aneesh Ve6b42eb2012-08-17 14:05:15 +053072 struct device_node *np_ddr;
Aneesh V7ec94452012-04-27 17:54:05 +053073};
74
75static struct emif_data *emif1;
Aneesh Va93de282012-04-27 17:54:06 +053076static spinlock_t emif_lock;
77static unsigned long irq_state;
78static u32 t_ck; /* DDR clock period in ps */
Aneesh V7ec94452012-04-27 17:54:05 +053079static LIST_HEAD(device_list);
80
Axel Line5445ee2012-09-25 11:54:36 +080081#ifdef CONFIG_DEBUG_FS
Aneesh Vaac10aa2012-04-27 17:54:09 +053082static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
83 struct emif_regs *regs)
84{
85 u32 type = emif->plat_data->device_info->type;
86 u32 ip_rev = emif->plat_data->ip_rev;
87
88 seq_printf(s, "EMIF register cache dump for %dMHz\n",
89 regs->freq/1000000);
90
91 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
92 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
93 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
94 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
95
96 if (ip_rev == EMIF_4D) {
97 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
98 regs->read_idle_ctrl_shdw_normal);
99 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
100 regs->read_idle_ctrl_shdw_volt_ramp);
101 } else if (ip_rev == EMIF_4D5) {
102 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
103 regs->dll_calib_ctrl_shdw_normal);
104 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
105 regs->dll_calib_ctrl_shdw_volt_ramp);
106 }
107
108 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
109 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
110 regs->ref_ctrl_shdw_derated);
111 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
112 regs->sdram_tim1_shdw_derated);
113 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
114 regs->sdram_tim3_shdw_derated);
115 }
116}
117
118static int emif_regdump_show(struct seq_file *s, void *unused)
119{
120 struct emif_data *emif = s->private;
121 struct emif_regs **regs_cache;
122 int i;
123
124 if (emif->duplicate)
125 regs_cache = emif1->regs_cache;
126 else
127 regs_cache = emif->regs_cache;
128
129 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
130 do_emif_regdump_show(s, emif, regs_cache[i]);
SF Markus Elfringd363a882018-03-05 16:21:26 -0800131 seq_putc(s, '\n');
Aneesh Vaac10aa2012-04-27 17:54:09 +0530132 }
133
134 return 0;
135}
136
137static int emif_regdump_open(struct inode *inode, struct file *file)
138{
139 return single_open(file, emif_regdump_show, inode->i_private);
140}
141
142static const struct file_operations emif_regdump_fops = {
143 .open = emif_regdump_open,
144 .read = seq_read,
145 .release = single_release,
146};
147
148static int emif_mr4_show(struct seq_file *s, void *unused)
149{
150 struct emif_data *emif = s->private;
151
152 seq_printf(s, "MR4=%d\n", emif->temperature_level);
153 return 0;
154}
155
156static int emif_mr4_open(struct inode *inode, struct file *file)
157{
158 return single_open(file, emif_mr4_show, inode->i_private);
159}
160
161static const struct file_operations emif_mr4_fops = {
162 .open = emif_mr4_open,
163 .read = seq_read,
164 .release = single_release,
165};
166
167static int __init_or_module emif_debugfs_init(struct emif_data *emif)
168{
169 struct dentry *dentry;
170 int ret;
171
172 dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
Axel Line5445ee2012-09-25 11:54:36 +0800173 if (!dentry) {
174 ret = -ENOMEM;
Aneesh Vaac10aa2012-04-27 17:54:09 +0530175 goto err0;
176 }
177 emif->debugfs_root = dentry;
178
179 dentry = debugfs_create_file("regcache_dump", S_IRUGO,
180 emif->debugfs_root, emif, &emif_regdump_fops);
Axel Line5445ee2012-09-25 11:54:36 +0800181 if (!dentry) {
182 ret = -ENOMEM;
Aneesh Vaac10aa2012-04-27 17:54:09 +0530183 goto err1;
184 }
185
186 dentry = debugfs_create_file("mr4", S_IRUGO,
187 emif->debugfs_root, emif, &emif_mr4_fops);
Axel Line5445ee2012-09-25 11:54:36 +0800188 if (!dentry) {
189 ret = -ENOMEM;
Aneesh Vaac10aa2012-04-27 17:54:09 +0530190 goto err1;
191 }
192
193 return 0;
194err1:
195 debugfs_remove_recursive(emif->debugfs_root);
196err0:
197 return ret;
198}
199
200static void __exit emif_debugfs_exit(struct emif_data *emif)
201{
202 debugfs_remove_recursive(emif->debugfs_root);
203 emif->debugfs_root = NULL;
204}
Axel Line5445ee2012-09-25 11:54:36 +0800205#else
206static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
207{
208 return 0;
209}
210
211static inline void __exit emif_debugfs_exit(struct emif_data *emif)
212{
213}
214#endif
Aneesh Vaac10aa2012-04-27 17:54:09 +0530215
Aneesh Va93de282012-04-27 17:54:06 +0530216/*
217 * Calculate the period of DDR clock from frequency value
218 */
219static void set_ddr_clk_period(u32 freq)
220{
221 /* Divide 10^12 by frequency to get period in ps */
222 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
223}
224
225/*
Aneesh V98231c4f2012-04-27 17:54:08 +0530226 * Get bus width used by EMIF. Note that this may be different from the
227 * bus width of the DDR devices used. For instance two 16-bit DDR devices
228 * may be connected to a given CS of EMIF. In this case bus width as far
229 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
230 */
231static u32 get_emif_bus_width(struct emif_data *emif)
232{
233 u32 width;
234 void __iomem *base = emif->base;
235
236 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
237 >> NARROW_MODE_SHIFT;
238 width = width == 0 ? 32 : 16;
239
240 return width;
241}
242
243/*
Aneesh Va93de282012-04-27 17:54:06 +0530244 * Get the CL from SDRAM_CONFIG register
245 */
246static u32 get_cl(struct emif_data *emif)
247{
248 u32 cl;
249 void __iomem *base = emif->base;
250
251 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
252
253 return cl;
254}
255
256static void set_lpmode(struct emif_data *emif, u8 lpmode)
257{
258 u32 temp;
259 void __iomem *base = emif->base;
260
Grygorii Strashkof02503b2013-03-16 11:46:47 +0530261 /*
262 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
263 * Efficient
264 *
265 * i743 DESCRIPTION:
266 * The EMIF supports power-down state for low power. The EMIF
267 * automatically puts the SDRAM into power-down after the memory is
268 * not accessed for a defined number of cycles and the
269 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
270 * As the EMIF supports automatic output impedance calibration, a ZQ
271 * calibration long command is issued every time it exits active
272 * power-down and precharge power-down modes. The EMIF waits and
273 * blocks any other command during this calibration.
274 * The EMIF does not allow selective disabling of ZQ calibration upon
275 * exit of power-down mode. Due to very short periods of power-down
276 * cycles, ZQ calibration overhead creates bandwidth issues and
277 * increases overall system power consumption. On the other hand,
278 * issuing ZQ calibration long commands when exiting self-refresh is
279 * still required.
280 *
281 * WORKAROUND
282 * Because there is no power consumption benefit of the power-down due
283 * to the calibration and there is a performance risk, the guideline
284 * is to not allow power-down state and, therefore, to not have set
285 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
286 */
287 if ((emif->plat_data->ip_rev == EMIF_4D) &&
288 (EMIF_LP_MODE_PWR_DN == lpmode)) {
289 WARN_ONCE(1,
290 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
291 "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
292 /* rollback LP_MODE to Self-refresh mode */
293 lpmode = EMIF_LP_MODE_SELF_REFRESH;
294 }
295
Aneesh Va93de282012-04-27 17:54:06 +0530296 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
297 temp &= ~LP_MODE_MASK;
298 temp |= (lpmode << LP_MODE_SHIFT);
299 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
300}
301
302static void do_freq_update(void)
303{
304 struct emif_data *emif;
305
306 /*
307 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
308 *
309 * i728 DESCRIPTION:
310 * The EMIF automatically puts the SDRAM into self-refresh mode
311 * after the EMIF has not performed accesses during
312 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
313 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
314 * to 0x2. If during a small window the following three events
315 * occur:
316 * - The SR_TIMING counter expires
317 * - And frequency change is requested
318 * - And OCP access is requested
319 * Then it causes instable clock on the DDR interface.
320 *
321 * WORKAROUND
322 * To avoid the occurrence of the three events, the workaround
323 * is to disable the self-refresh when requesting a frequency
324 * change. Before requesting a frequency change the software must
325 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
326 * frequency change has been done, the software can reprogram
327 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
328 */
329 list_for_each_entry(emif, &device_list, node) {
330 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
331 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
332 }
333
334 /*
335 * TODO: Do FREQ_UPDATE here when an API
336 * is available for this as part of the new
337 * clock framework
338 */
339
340 list_for_each_entry(emif, &device_list, node) {
341 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
342 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
343 }
344}
345
346/* Find addressing table entry based on the device's type and density */
347static const struct lpddr2_addressing *get_addressing_table(
348 const struct ddr_device_info *device_info)
349{
350 u32 index, type, density;
351
352 type = device_info->type;
353 density = device_info->density;
354
355 switch (type) {
356 case DDR_TYPE_LPDDR2_S4:
357 index = density - 1;
358 break;
359 case DDR_TYPE_LPDDR2_S2:
360 switch (density) {
361 case DDR_DENSITY_1Gb:
362 case DDR_DENSITY_2Gb:
363 index = density + 3;
364 break;
365 default:
366 index = density - 1;
367 }
368 break;
369 default:
370 return NULL;
371 }
372
373 return &lpddr2_jedec_addressing_table[index];
374}
375
376/*
377 * Find the the right timing table from the array of timing
378 * tables of the device using DDR clock frequency
379 */
380static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
381 u32 freq)
382{
383 u32 i, min, max, freq_nearest;
384 const struct lpddr2_timings *timings = NULL;
385 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
386 struct device *dev = emif->dev;
387
388 /* Start with a very high frequency - 1GHz */
389 freq_nearest = 1000000000;
390
391 /*
392 * Find the timings table such that:
393 * 1. the frequency range covers the required frequency(safe) AND
394 * 2. the max_freq is closest to the required frequency(optimal)
395 */
396 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
397 max = timings_arr[i].max_freq;
398 min = timings_arr[i].min_freq;
399 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
400 freq_nearest = max;
401 timings = &timings_arr[i];
402 }
403 }
404
405 if (!timings)
406 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
407 __func__, freq);
408
409 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
410 __func__, freq, freq_nearest);
411
412 return timings;
413}
414
415static u32 get_sdram_ref_ctrl_shdw(u32 freq,
416 const struct lpddr2_addressing *addressing)
417{
418 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
419
420 /* Scale down frequency and t_refi to avoid overflow */
421 freq_khz = freq / 1000;
422 t_refi = addressing->tREFI_ns / 100;
423
424 /*
425 * refresh rate to be set is 'tREFI(in us) * freq in MHz
426 * division by 10000 to account for change in units
427 */
428 val = t_refi * freq_khz / 10000;
429 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
430
431 return ref_ctrl_shdw;
432}
433
434static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
435 const struct lpddr2_min_tck *min_tck,
436 const struct lpddr2_addressing *addressing)
437{
438 u32 tim1 = 0, val = 0;
439
440 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
441 tim1 |= val << T_WTR_SHIFT;
442
443 if (addressing->num_banks == B8)
444 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
445 else
446 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
447 tim1 |= (val - 1) << T_RRD_SHIFT;
448
449 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
450 tim1 |= val << T_RC_SHIFT;
451
452 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
453 tim1 |= (val - 1) << T_RAS_SHIFT;
454
455 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
456 tim1 |= val << T_WR_SHIFT;
457
458 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
459 tim1 |= val << T_RCD_SHIFT;
460
461 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
462 tim1 |= val << T_RP_SHIFT;
463
464 return tim1;
465}
466
467static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
468 const struct lpddr2_min_tck *min_tck,
469 const struct lpddr2_addressing *addressing)
470{
471 u32 tim1 = 0, val = 0;
472
473 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
474 tim1 = val << T_WTR_SHIFT;
475
476 /*
477 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
478 * to tFAW for de-rating
479 */
480 if (addressing->num_banks == B8) {
481 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
482 } else {
483 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
484 val = max(min_tck->tRRD, val) - 1;
485 }
486 tim1 |= val << T_RRD_SHIFT;
487
488 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
489 tim1 |= (val - 1) << T_RC_SHIFT;
490
491 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
492 val = max(min_tck->tRASmin, val) - 1;
493 tim1 |= val << T_RAS_SHIFT;
494
495 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
496 tim1 |= val << T_WR_SHIFT;
497
498 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
499 tim1 |= (val - 1) << T_RCD_SHIFT;
500
501 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
502 tim1 |= (val - 1) << T_RP_SHIFT;
503
504 return tim1;
505}
506
507static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
508 const struct lpddr2_min_tck *min_tck,
509 const struct lpddr2_addressing *addressing,
510 u32 type)
511{
512 u32 tim2 = 0, val = 0;
513
514 val = min_tck->tCKE - 1;
515 tim2 |= val << T_CKE_SHIFT;
516
517 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
518 tim2 |= val << T_RTP_SHIFT;
519
520 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
521 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
522 tim2 |= val << T_XSNR_SHIFT;
523
524 /* XSRD same as XSNR for LPDDR2 */
525 tim2 |= val << T_XSRD_SHIFT;
526
527 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
528 tim2 |= val << T_XP_SHIFT;
529
530 return tim2;
531}
532
533static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
534 const struct lpddr2_min_tck *min_tck,
535 const struct lpddr2_addressing *addressing,
536 u32 type, u32 ip_rev, u32 derated)
537{
538 u32 tim3 = 0, val = 0, t_dqsck;
539
540 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
541 val = val > 0xF ? 0xF : val;
542 tim3 |= val << T_RAS_MAX_SHIFT;
543
544 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
545 tim3 |= val << T_RFC_SHIFT;
546
547 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
548 timings->tDQSCK_max_derated : timings->tDQSCK_max;
549 if (ip_rev == EMIF_4D5)
550 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
551 else
552 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
553
554 tim3 |= val << T_TDQSCKMAX_SHIFT;
555
556 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
557 tim3 |= val << ZQ_ZQCS_SHIFT;
558
559 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
560 val = max(min_tck->tCKESR, val) - 1;
561 tim3 |= val << T_CKESR_SHIFT;
562
563 if (ip_rev == EMIF_4D5) {
564 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
565
566 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
567 tim3 |= val << T_PDLL_UL_SHIFT;
568 }
569
570 return tim3;
571}
572
Aneesh V98231c4f2012-04-27 17:54:08 +0530573static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
574 bool cs1_used, bool cal_resistors_per_cs)
575{
576 u32 zq = 0, val = 0;
577
578 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
579 zq |= val << ZQ_REFINTERVAL_SHIFT;
580
581 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
582 zq |= val << ZQ_ZQCL_MULT_SHIFT;
583
584 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
585 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
586
587 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
588
589 if (cal_resistors_per_cs)
590 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
591 else
592 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
593
594 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
595
596 val = cs1_used ? 1 : 0;
597 zq |= val << ZQ_CS1EN_SHIFT;
598
599 return zq;
600}
601
602static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
603 const struct emif_custom_configs *custom_configs, bool cs1_used,
604 u32 sdram_io_width, u32 emif_bus_width)
605{
606 u32 alert = 0, interval, devcnt;
607
608 if (custom_configs && (custom_configs->mask &
609 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
610 interval = custom_configs->temp_alert_poll_interval_ms;
611 else
612 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
613
614 interval *= 1000000; /* Convert to ns */
615 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
616 alert |= (interval << TA_REFINTERVAL_SHIFT);
617
618 /*
619 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
620 * also to this form and subtract to get TA_DEVCNT, which is
621 * in log2(x) form.
622 */
623 emif_bus_width = __fls(emif_bus_width) - 1;
624 devcnt = emif_bus_width - sdram_io_width;
625 alert |= devcnt << TA_DEVCNT_SHIFT;
626
627 /* DEVWDT is in 'log2(x) - 3' form */
628 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
629
630 alert |= 1 << TA_SFEXITEN_SHIFT;
631 alert |= 1 << TA_CS0EN_SHIFT;
632 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
633
634 return alert;
635}
636
Aneesh Va93de282012-04-27 17:54:06 +0530637static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
638{
639 u32 idle = 0, val = 0;
640
641 /*
642 * Maximum value in normal conditions and increased frequency
643 * when voltage is ramping
644 */
645 if (volt_ramp)
646 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
647 else
648 val = 0x1FF;
649
650 /*
651 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
652 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
653 */
654 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
655 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
656
657 return idle;
658}
659
660static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
661{
662 u32 calib = 0, val = 0;
663
664 if (volt_ramp == DDR_VOLTAGE_RAMPING)
665 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
666 else
667 val = 0; /* Disabled when voltage is stable */
668
669 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
670 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
671
672 return calib;
673}
674
675static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
676 u32 freq, u8 RL)
677{
678 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
679
680 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
681 phy |= val << READ_LATENCY_SHIFT_4D;
682
683 if (freq <= 100000000)
684 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
685 else if (freq <= 200000000)
686 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
687 else
688 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
689
690 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
691
692 return phy;
693}
694
695static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
696{
697 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
698
699 /*
700 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
701 * half-delay is not needed else set half-delay
702 */
703 if (freq >= 265000000 && freq < 267000000)
704 half_delay = 0;
705 else
706 half_delay = 1;
707
708 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
709 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
710 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
711
712 return phy;
713}
714
715static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
716{
717 u32 fifo_we_slave_ratio;
718
719 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
720 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
721
722 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
723 fifo_we_slave_ratio << 22;
724}
725
726static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
727{
728 u32 fifo_we_slave_ratio;
729
730 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
731 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
732
733 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
734 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
735}
736
737static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
738{
739 u32 fifo_we_slave_ratio;
740
741 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
742 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
743
744 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
745 fifo_we_slave_ratio << 13;
746}
747
748static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
749{
750 u32 pwr_mgmt_ctrl = 0, timeout;
751 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
752 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
753 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
754 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
Nishanth Menon25aaacd2013-03-16 11:46:43 +0530755 u32 mask;
756 u8 shift;
Aneesh Va93de282012-04-27 17:54:06 +0530757
758 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
759
760 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
761 lpmode = cust_cfgs->lpmode;
762 timeout_perf = cust_cfgs->lpmode_timeout_performance;
763 timeout_pwr = cust_cfgs->lpmode_timeout_power;
764 freq_threshold = cust_cfgs->lpmode_freq_threshold;
765 }
766
767 /* Timeout based on DDR frequency */
768 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
769
Lokesh Vutla0a5f19c2013-03-16 11:46:41 +0530770 /*
771 * The value to be set in register is "log2(timeout) - 3"
772 * if timeout < 16 load 0 in register
773 * if timeout is not a power of 2, round to next highest power of 2
774 */
Aneesh Va93de282012-04-27 17:54:06 +0530775 if (timeout < 16) {
776 timeout = 0;
777 } else {
Aneesh Va93de282012-04-27 17:54:06 +0530778 if (timeout & (timeout - 1))
Lokesh Vutla0a5f19c2013-03-16 11:46:41 +0530779 timeout <<= 1;
780 timeout = __fls(timeout) - 3;
Aneesh Va93de282012-04-27 17:54:06 +0530781 }
782
783 switch (lpmode) {
784 case EMIF_LP_MODE_CLOCK_STOP:
Nishanth Menon25aaacd2013-03-16 11:46:43 +0530785 shift = CS_TIM_SHIFT;
786 mask = CS_TIM_MASK;
Aneesh Va93de282012-04-27 17:54:06 +0530787 break;
788 case EMIF_LP_MODE_SELF_REFRESH:
789 /* Workaround for errata i735 */
790 if (timeout < 6)
791 timeout = 6;
792
Nishanth Menon25aaacd2013-03-16 11:46:43 +0530793 shift = SR_TIM_SHIFT;
794 mask = SR_TIM_MASK;
Aneesh Va93de282012-04-27 17:54:06 +0530795 break;
796 case EMIF_LP_MODE_PWR_DN:
Nishanth Menon25aaacd2013-03-16 11:46:43 +0530797 shift = PD_TIM_SHIFT;
798 mask = PD_TIM_MASK;
Aneesh Va93de282012-04-27 17:54:06 +0530799 break;
800 case EMIF_LP_MODE_DISABLE:
801 default:
Nishanth Menon25aaacd2013-03-16 11:46:43 +0530802 mask = 0;
803 shift = 0;
804 break;
Aneesh Va93de282012-04-27 17:54:06 +0530805 }
Nishanth Menon25aaacd2013-03-16 11:46:43 +0530806 /* Round to maximum in case of overflow, BUT warn! */
807 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
808 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
809 lpmode,
810 timeout_perf,
811 timeout_pwr,
812 freq_threshold);
813 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
814 timeout, mask >> shift);
815 timeout = mask >> shift;
816 }
817
818 /* Setup required timing */
819 pwr_mgmt_ctrl = (timeout << shift) & mask;
820 /* setup a default mask for rest of the modes */
821 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
822 ~mask;
Aneesh Va93de282012-04-27 17:54:06 +0530823
824 /* No CS_TIM in EMIF_4D5 */
825 if (ip_rev == EMIF_4D5)
826 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
827
828 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
829
830 return pwr_mgmt_ctrl;
831}
832
833/*
Aneesh V68b4aee2012-04-27 17:54:07 +0530834 * Get the temperature level of the EMIF instance:
835 * Reads the MR4 register of attached SDRAM parts to find out the temperature
836 * level. If there are two parts attached(one on each CS), then the temperature
837 * level for the EMIF instance is the higher of the two temperatures.
838 */
839static void get_temperature_level(struct emif_data *emif)
840{
841 u32 temp, temperature_level;
842 void __iomem *base;
843
844 base = emif->base;
845
846 /* Read mode register 4 */
847 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
848 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
849 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
850 MR4_SDRAM_REF_RATE_SHIFT;
851
852 if (emif->plat_data->device_info->cs1_used) {
853 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
854 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
855 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
856 >> MR4_SDRAM_REF_RATE_SHIFT;
857 temperature_level = max(temp, temperature_level);
858 }
859
860 /* treat everything less than nominal(3) in MR4 as nominal */
861 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
862 temperature_level = SDRAM_TEMP_NOMINAL;
863
864 /* if we get reserved value in MR4 persist with the existing value */
865 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
866 emif->temperature_level = temperature_level;
867}
868
869/*
Aneesh Va93de282012-04-27 17:54:06 +0530870 * Program EMIF shadow registers that are not dependent on temperature
871 * or voltage
872 */
873static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
874{
875 void __iomem *base = emif->base;
876
877 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
878 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
Ambresh K9ea03de2013-03-16 11:46:42 +0530879 writel(regs->pwr_mgmt_ctrl_shdw,
880 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
Aneesh Va93de282012-04-27 17:54:06 +0530881
882 /* Settings specific for EMIF4D5 */
883 if (emif->plat_data->ip_rev != EMIF_4D5)
884 return;
885 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
886 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
887 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
888}
889
890/*
891 * When voltage ramps dll calibration and forced read idle should
892 * happen more often
893 */
894static void setup_volt_sensitive_regs(struct emif_data *emif,
895 struct emif_regs *regs, u32 volt_state)
896{
897 u32 calib_ctrl;
898 void __iomem *base = emif->base;
899
900 /*
901 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
902 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
903 * is an alias of the respective read_idle_ctrl_shdw_* (members of
904 * a union). So, the below code takes care of both cases
905 */
906 if (volt_state == DDR_VOLTAGE_RAMPING)
907 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
908 else
909 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
910
911 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
912}
913
914/*
915 * setup_temperature_sensitive_regs() - set the timings for temperature
916 * sensitive registers. This happens once at initialisation time based
917 * on the temperature at boot time and subsequently based on the temperature
918 * alert interrupt. Temperature alert can happen when the temperature
919 * increases or drops. So this function can have the effect of either
920 * derating the timings or going back to nominal values.
921 */
922static void setup_temperature_sensitive_regs(struct emif_data *emif,
923 struct emif_regs *regs)
924{
925 u32 tim1, tim3, ref_ctrl, type;
926 void __iomem *base = emif->base;
927 u32 temperature;
928
929 type = emif->plat_data->device_info->type;
930
931 tim1 = regs->sdram_tim1_shdw;
932 tim3 = regs->sdram_tim3_shdw;
933 ref_ctrl = regs->ref_ctrl_shdw;
934
935 /* No de-rating for non-lpddr2 devices */
936 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
937 goto out;
938
939 temperature = emif->temperature_level;
940 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
941 ref_ctrl = regs->ref_ctrl_shdw_derated;
942 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
943 tim1 = regs->sdram_tim1_shdw_derated;
944 tim3 = regs->sdram_tim3_shdw_derated;
945 ref_ctrl = regs->ref_ctrl_shdw_derated;
946 }
947
948out:
949 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
950 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
951 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
952}
953
Aneesh V68b4aee2012-04-27 17:54:07 +0530954static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
955{
956 u32 old_temp_level;
957 irqreturn_t ret = IRQ_HANDLED;
Nishanth Menonf91a5952013-03-16 11:46:44 +0530958 struct emif_custom_configs *custom_configs;
Aneesh V68b4aee2012-04-27 17:54:07 +0530959
960 spin_lock_irqsave(&emif_lock, irq_state);
961 old_temp_level = emif->temperature_level;
962 get_temperature_level(emif);
963
964 if (unlikely(emif->temperature_level == old_temp_level)) {
965 goto out;
966 } else if (!emif->curr_regs) {
967 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
968 goto out;
969 }
970
Nishanth Menonf91a5952013-03-16 11:46:44 +0530971 custom_configs = emif->plat_data->custom_configs;
972
973 /*
974 * IF we detect higher than "nominal rating" from DDR sensor
975 * on an unsupported DDR part, shutdown system
976 */
977 if (custom_configs && !(custom_configs->mask &
978 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
979 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
980 dev_err(emif->dev,
981 "%s:NOT Extended temperature capable memory."
982 "Converting MR4=0x%02x as shutdown event\n",
983 __func__, emif->temperature_level);
984 /*
985 * Temperature far too high - do kernel_power_off()
986 * from thread context
987 */
988 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
989 ret = IRQ_WAKE_THREAD;
990 goto out;
991 }
992 }
993
Aneesh V68b4aee2012-04-27 17:54:07 +0530994 if (emif->temperature_level < old_temp_level ||
995 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
996 /*
997 * Temperature coming down - defer handling to thread OR
998 * Temperature far too high - do kernel_power_off() from
999 * thread context
1000 */
1001 ret = IRQ_WAKE_THREAD;
1002 } else {
1003 /* Temperature is going up - handle immediately */
1004 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1005 do_freq_update();
1006 }
1007
1008out:
1009 spin_unlock_irqrestore(&emif_lock, irq_state);
1010 return ret;
1011}
1012
1013static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1014{
1015 u32 interrupts;
1016 struct emif_data *emif = dev_id;
1017 void __iomem *base = emif->base;
1018 struct device *dev = emif->dev;
1019 irqreturn_t ret = IRQ_HANDLED;
1020
1021 /* Save the status and clear it */
1022 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1023 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1024
1025 /*
1026 * Handle temperature alert
1027 * Temperature alert should be same for all ports
1028 * So, it's enough to process it only for one of the ports
1029 */
1030 if (interrupts & TA_SYS_MASK)
1031 ret = handle_temp_alert(base, emif);
1032
1033 if (interrupts & ERR_SYS_MASK)
1034 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1035
1036 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1037 /* Save the status and clear it */
1038 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1039 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1040
1041 if (interrupts & ERR_LL_MASK)
1042 dev_err(dev, "Access error from LL port - %x\n",
1043 interrupts);
1044 }
1045
1046 return ret;
1047}
1048
1049static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1050{
1051 struct emif_data *emif = dev_id;
1052
1053 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1054 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
Nishanth Menon2553e322013-03-16 11:46:45 +05301055
1056 /* If we have Power OFF ability, use it, else try restarting */
1057 if (pm_power_off) {
1058 kernel_power_off();
1059 } else {
1060 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1061 kernel_restart("SDRAM Over-temp Emergency restart");
1062 }
Aneesh V68b4aee2012-04-27 17:54:07 +05301063 return IRQ_HANDLED;
1064 }
1065
1066 spin_lock_irqsave(&emif_lock, irq_state);
1067
1068 if (emif->curr_regs) {
1069 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1070 do_freq_update();
1071 } else {
1072 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1073 }
1074
1075 spin_unlock_irqrestore(&emif_lock, irq_state);
1076
1077 return IRQ_HANDLED;
1078}
1079
1080static void clear_all_interrupts(struct emif_data *emif)
1081{
1082 void __iomem *base = emif->base;
1083
1084 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1085 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1086 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1087 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1088 base + EMIF_LL_OCP_INTERRUPT_STATUS);
1089}
1090
1091static void disable_and_clear_all_interrupts(struct emif_data *emif)
1092{
1093 void __iomem *base = emif->base;
1094
1095 /* Disable all interrupts */
1096 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1097 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1098 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1099 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1100 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1101
1102 /* Clear all interrupts */
1103 clear_all_interrupts(emif);
1104}
1105
1106static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1107{
1108 u32 interrupts, type;
1109 void __iomem *base = emif->base;
1110
1111 type = emif->plat_data->device_info->type;
1112
1113 clear_all_interrupts(emif);
1114
1115 /* Enable interrupts for SYS interface */
1116 interrupts = EN_ERR_SYS_MASK;
1117 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1118 interrupts |= EN_TA_SYS_MASK;
1119 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1120
1121 /* Enable interrupts for LL interface */
1122 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1123 /* TA need not be enabled for LL */
1124 interrupts = EN_ERR_LL_MASK;
1125 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1126 }
1127
1128 /* setup IRQ handlers */
1129 return devm_request_threaded_irq(emif->dev, irq,
1130 emif_interrupt_handler,
1131 emif_threaded_isr,
1132 0, dev_name(emif->dev),
1133 emif);
1134
1135}
1136
Aneesh V98231c4f2012-04-27 17:54:08 +05301137static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1138{
1139 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1140 void __iomem *base = emif->base;
1141 const struct lpddr2_addressing *addressing;
1142 const struct ddr_device_info *device_info;
1143
1144 device_info = emif->plat_data->device_info;
1145 addressing = get_addressing_table(device_info);
1146
1147 /*
1148 * Init power management settings
1149 * We don't know the frequency yet. Use a high frequency
1150 * value for a conservative timeout setting
1151 */
1152 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1153 emif->plat_data->ip_rev);
1154 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1155 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1156
1157 /* Init ZQ calibration settings */
1158 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1159 device_info->cal_resistors_per_cs);
1160 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1161
1162 /* Check temperature level temperature level*/
1163 get_temperature_level(emif);
1164 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1165 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1166
1167 /* Init temperature polling */
1168 temp_alert_cfg = get_temp_alert_config(addressing,
1169 emif->plat_data->custom_configs, device_info->cs1_used,
1170 device_info->io_width, get_emif_bus_width(emif));
1171 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1172
1173 /*
1174 * Program external PHY control registers that are not frequency
1175 * dependent
1176 */
1177 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1178 return;
1179 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1180 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1181 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1182 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1183 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1184 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1185 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1186 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1187 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1188 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1189 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1190 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1191 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1192 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1193 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1194 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1195 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1196 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1197 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1198 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1199 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1200}
1201
Aneesh V7ec94452012-04-27 17:54:05 +05301202static void get_default_timings(struct emif_data *emif)
1203{
1204 struct emif_platform_data *pd = emif->plat_data;
1205
1206 pd->timings = lpddr2_jedec_timings;
1207 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1208
1209 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1210}
1211
1212static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1213 u32 ip_rev, struct device *dev)
1214{
1215 int valid;
1216
1217 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1218 type == DDR_TYPE_LPDDR2_S2)
1219 && (density >= DDR_DENSITY_64Mb
1220 && density <= DDR_DENSITY_8Gb)
1221 && (io_width >= DDR_IO_WIDTH_8
1222 && io_width <= DDR_IO_WIDTH_32);
1223
1224 /* Combinations of EMIF and PHY revisions that we support today */
1225 switch (ip_rev) {
1226 case EMIF_4D:
1227 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1228 break;
1229 case EMIF_4D5:
1230 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1231 break;
1232 default:
1233 valid = 0;
1234 }
1235
1236 if (!valid)
1237 dev_err(dev, "%s: invalid DDR details\n", __func__);
1238 return valid;
1239}
1240
1241static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1242 struct device *dev)
1243{
1244 int valid = 1;
1245
1246 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1247 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1248 valid = cust_cfgs->lpmode_freq_threshold &&
1249 cust_cfgs->lpmode_timeout_performance &&
1250 cust_cfgs->lpmode_timeout_power;
1251
1252 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1253 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1254
1255 if (!valid)
1256 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1257
1258 return valid;
1259}
1260
Aneesh Ve6b42eb2012-08-17 14:05:15 +05301261#if defined(CONFIG_OF)
1262static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1263 struct emif_data *emif)
1264{
1265 struct emif_custom_configs *cust_cfgs = NULL;
1266 int len;
Lokesh Vutlaf57f27b2013-03-16 11:46:48 +05301267 const __be32 *lpmode, *poll_intvl;
Aneesh Ve6b42eb2012-08-17 14:05:15 +05301268
1269 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1270 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1271
1272 if (lpmode || poll_intvl)
1273 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1274 GFP_KERNEL);
1275
1276 if (!cust_cfgs)
1277 return;
1278
1279 if (lpmode) {
1280 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
Lokesh Vutlaf57f27b2013-03-16 11:46:48 +05301281 cust_cfgs->lpmode = be32_to_cpup(lpmode);
Aneesh Ve6b42eb2012-08-17 14:05:15 +05301282 of_property_read_u32(np_emif,
1283 "low-power-mode-timeout-performance",
1284 &cust_cfgs->lpmode_timeout_performance);
1285 of_property_read_u32(np_emif,
1286 "low-power-mode-timeout-power",
1287 &cust_cfgs->lpmode_timeout_power);
1288 of_property_read_u32(np_emif,
1289 "low-power-mode-freq-threshold",
1290 &cust_cfgs->lpmode_freq_threshold);
1291 }
1292
1293 if (poll_intvl) {
1294 cust_cfgs->mask |=
1295 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
Lokesh Vutlaf57f27b2013-03-16 11:46:48 +05301296 cust_cfgs->temp_alert_poll_interval_ms =
1297 be32_to_cpup(poll_intvl);
Aneesh Ve6b42eb2012-08-17 14:05:15 +05301298 }
1299
Nishanth Menonf91a5952013-03-16 11:46:44 +05301300 if (of_find_property(np_emif, "extended-temp-part", &len))
1301 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1302
Aneesh Ve6b42eb2012-08-17 14:05:15 +05301303 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1304 devm_kfree(emif->dev, cust_cfgs);
1305 return;
1306 }
1307
1308 emif->plat_data->custom_configs = cust_cfgs;
1309}
1310
1311static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1312 struct device_node *np_ddr,
1313 struct ddr_device_info *dev_info)
1314{
1315 u32 density = 0, io_width = 0;
1316 int len;
1317
1318 if (of_find_property(np_emif, "cs1-used", &len))
1319 dev_info->cs1_used = true;
1320
1321 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1322 dev_info->cal_resistors_per_cs = true;
1323
1324 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1325 dev_info->type = DDR_TYPE_LPDDR2_S4;
1326 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1327 dev_info->type = DDR_TYPE_LPDDR2_S2;
1328
1329 of_property_read_u32(np_ddr, "density", &density);
1330 of_property_read_u32(np_ddr, "io-width", &io_width);
1331
1332 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1333 if (density & (density - 1))
1334 dev_info->density = 0;
1335 else
1336 dev_info->density = __fls(density) - 5;
1337
1338 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1339 if (io_width & (io_width - 1))
1340 dev_info->io_width = 0;
1341 else
1342 dev_info->io_width = __fls(io_width) - 1;
1343}
1344
1345static struct emif_data * __init_or_module of_get_memory_device_details(
1346 struct device_node *np_emif, struct device *dev)
1347{
1348 struct emif_data *emif = NULL;
1349 struct ddr_device_info *dev_info = NULL;
1350 struct emif_platform_data *pd = NULL;
1351 struct device_node *np_ddr;
1352 int len;
1353
1354 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1355 if (!np_ddr)
1356 goto error;
1357 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1358 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1359 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1360
1361 if (!emif || !pd || !dev_info) {
1362 dev_err(dev, "%s: Out of memory!!\n",
1363 __func__);
1364 goto error;
1365 }
1366
1367 emif->plat_data = pd;
1368 pd->device_info = dev_info;
1369 emif->dev = dev;
1370 emif->np_ddr = np_ddr;
1371 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1372
1373 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1374 emif->plat_data->ip_rev = EMIF_4D;
1375 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1376 emif->plat_data->ip_rev = EMIF_4D5;
1377
1378 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1379
1380 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1381 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1382
1383 of_get_ddr_info(np_emif, np_ddr, dev_info);
1384 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1385 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1386 emif->dev)) {
1387 dev_err(dev, "%s: invalid device data!!\n", __func__);
1388 goto error;
1389 }
1390 /*
1391 * For EMIF instances other than EMIF1 see if the devices connected
1392 * are exactly same as on EMIF1(which is typically the case). If so,
1393 * mark it as a duplicate of EMIF1. This will save some memory and
1394 * computation.
1395 */
1396 if (emif1 && emif1->np_ddr == np_ddr) {
1397 emif->duplicate = true;
1398 goto out;
1399 } else if (emif1) {
1400 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1401 __func__);
1402 }
1403
1404 of_get_custom_configs(np_emif, emif);
1405 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1406 emif->plat_data->device_info->type,
1407 &emif->plat_data->timings_arr_size);
1408
1409 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1410 goto out;
1411
1412error:
1413 return NULL;
1414out:
1415 return emif;
1416}
1417
1418#else
1419
1420static struct emif_data * __init_or_module of_get_memory_device_details(
1421 struct device_node *np_emif, struct device *dev)
1422{
1423 return NULL;
1424}
1425#endif
1426
Aneesh V7ec94452012-04-27 17:54:05 +05301427static struct emif_data *__init_or_module get_device_details(
1428 struct platform_device *pdev)
1429{
1430 u32 size;
1431 struct emif_data *emif = NULL;
1432 struct ddr_device_info *dev_info;
1433 struct emif_custom_configs *cust_cfgs;
1434 struct emif_platform_data *pd;
1435 struct device *dev;
1436 void *temp;
1437
1438 pd = pdev->dev.platform_data;
1439 dev = &pdev->dev;
1440
1441 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1442 pd->device_info->density, pd->device_info->io_width,
1443 pd->phy_type, pd->ip_rev, dev))) {
1444 dev_err(dev, "%s: invalid device data\n", __func__);
1445 goto error;
1446 }
1447
1448 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1449 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1450 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1451
1452 if (!emif || !pd || !dev_info) {
1453 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1454 goto error;
1455 }
1456
1457 memcpy(temp, pd, sizeof(*pd));
1458 pd = temp;
1459 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1460
1461 pd->device_info = dev_info;
1462 emif->plat_data = pd;
1463 emif->dev = dev;
1464 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1465
1466 /*
1467 * For EMIF instances other than EMIF1 see if the devices connected
1468 * are exactly same as on EMIF1(which is typically the case). If so,
1469 * mark it as a duplicate of EMIF1 and skip copying timings data.
1470 * This will save some memory and some computation later.
1471 */
1472 emif->duplicate = emif1 && (memcmp(dev_info,
1473 emif1->plat_data->device_info,
1474 sizeof(struct ddr_device_info)) == 0);
1475
1476 if (emif->duplicate) {
1477 pd->timings = NULL;
1478 pd->min_tck = NULL;
1479 goto out;
1480 } else if (emif1) {
1481 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1482 __func__);
1483 }
1484
1485 /*
1486 * Copy custom configs - ignore allocation error, if any, as
1487 * custom_configs is not very critical
1488 */
1489 cust_cfgs = pd->custom_configs;
1490 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1491 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1492 if (temp)
1493 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1494 else
1495 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1496 __LINE__);
1497 pd->custom_configs = temp;
1498 }
1499
1500 /*
1501 * Copy timings and min-tck values from platform data. If it is not
1502 * available or if memory allocation fails, use JEDEC defaults
1503 */
1504 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1505 if (pd->timings) {
1506 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1507 if (temp) {
Oleksandr Dmytryshyn36caf3e2013-03-16 11:46:46 +05301508 memcpy(temp, pd->timings, size);
Aneesh V7ec94452012-04-27 17:54:05 +05301509 pd->timings = temp;
1510 } else {
1511 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1512 __LINE__);
1513 get_default_timings(emif);
1514 }
1515 } else {
1516 get_default_timings(emif);
1517 }
1518
1519 if (pd->min_tck) {
1520 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1521 if (temp) {
1522 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1523 pd->min_tck = temp;
1524 } else {
1525 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1526 __LINE__);
1527 pd->min_tck = &lpddr2_jedec_min_tck;
1528 }
1529 } else {
1530 pd->min_tck = &lpddr2_jedec_min_tck;
1531 }
1532
1533out:
1534 return emif;
1535
1536error:
1537 return NULL;
1538}
1539
1540static int __init_or_module emif_probe(struct platform_device *pdev)
1541{
1542 struct emif_data *emif;
1543 struct resource *res;
Aneesh V68b4aee2012-04-27 17:54:07 +05301544 int irq;
Aneesh V7ec94452012-04-27 17:54:05 +05301545
Aneesh Ve6b42eb2012-08-17 14:05:15 +05301546 if (pdev->dev.of_node)
1547 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1548 else
1549 emif = get_device_details(pdev);
1550
Aneesh V7ec94452012-04-27 17:54:05 +05301551 if (!emif) {
1552 pr_err("%s: error getting device data\n", __func__);
1553 goto error;
1554 }
1555
Aneesh V7ec94452012-04-27 17:54:05 +05301556 list_add(&emif->node, &device_list);
Aneesh Va93de282012-04-27 17:54:06 +05301557 emif->addressing = get_addressing_table(emif->plat_data->device_info);
Aneesh V7ec94452012-04-27 17:54:05 +05301558
1559 /* Save pointers to each other in emif and device structures */
1560 emif->dev = &pdev->dev;
1561 platform_set_drvdata(pdev, emif);
1562
1563 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
Thierry Reding06303c22013-01-21 11:09:08 +01001564 emif->base = devm_ioremap_resource(emif->dev, res);
1565 if (IS_ERR(emif->base))
Aneesh V7ec94452012-04-27 17:54:05 +05301566 goto error;
Aneesh V7ec94452012-04-27 17:54:05 +05301567
Aneesh V68b4aee2012-04-27 17:54:07 +05301568 irq = platform_get_irq(pdev, 0);
1569 if (irq < 0) {
1570 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1571 __func__, irq);
1572 goto error;
1573 }
1574
Aneesh V98231c4f2012-04-27 17:54:08 +05301575 emif_onetime_settings(emif);
Aneesh Vaac10aa2012-04-27 17:54:09 +05301576 emif_debugfs_init(emif);
Aneesh V68b4aee2012-04-27 17:54:07 +05301577 disable_and_clear_all_interrupts(emif);
1578 setup_interrupts(emif, irq);
1579
Aneesh Va93de282012-04-27 17:54:06 +05301580 /* One-time actions taken on probing the first device */
1581 if (!emif1) {
1582 emif1 = emif;
1583 spin_lock_init(&emif_lock);
1584
1585 /*
1586 * TODO: register notifiers for frequency and voltage
1587 * change here once the respective frameworks are
1588 * available
1589 */
1590 }
1591
Aneesh V68b4aee2012-04-27 17:54:07 +05301592 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1593 __func__, emif->base, irq);
Aneesh V7ec94452012-04-27 17:54:05 +05301594
1595 return 0;
1596error:
1597 return -ENODEV;
1598}
1599
Aneesh Vaac10aa2012-04-27 17:54:09 +05301600static int __exit emif_remove(struct platform_device *pdev)
1601{
1602 struct emif_data *emif = platform_get_drvdata(pdev);
1603
1604 emif_debugfs_exit(emif);
1605
1606 return 0;
1607}
1608
Aneesh V68b4aee2012-04-27 17:54:07 +05301609static void emif_shutdown(struct platform_device *pdev)
1610{
1611 struct emif_data *emif = platform_get_drvdata(pdev);
1612
1613 disable_and_clear_all_interrupts(emif);
1614}
1615
Aneesh Va93de282012-04-27 17:54:06 +05301616static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1617 struct emif_regs *regs)
1618{
1619 u32 cs1_used, ip_rev, phy_type;
1620 u32 cl, type;
1621 const struct lpddr2_timings *timings;
1622 const struct lpddr2_min_tck *min_tck;
1623 const struct ddr_device_info *device_info;
1624 const struct lpddr2_addressing *addressing;
1625 struct emif_data *emif_for_calc;
1626 struct device *dev;
1627 const struct emif_custom_configs *custom_configs;
1628
1629 dev = emif->dev;
1630 /*
1631 * If the devices on this EMIF instance is duplicate of EMIF1,
1632 * use EMIF1 details for the calculation
1633 */
1634 emif_for_calc = emif->duplicate ? emif1 : emif;
1635 timings = get_timings_table(emif_for_calc, freq);
1636 addressing = emif_for_calc->addressing;
1637 if (!timings || !addressing) {
1638 dev_err(dev, "%s: not enough data available for %dHz",
1639 __func__, freq);
1640 return -1;
1641 }
1642
1643 device_info = emif_for_calc->plat_data->device_info;
1644 type = device_info->type;
1645 cs1_used = device_info->cs1_used;
1646 ip_rev = emif_for_calc->plat_data->ip_rev;
1647 phy_type = emif_for_calc->plat_data->phy_type;
1648
1649 min_tck = emif_for_calc->plat_data->min_tck;
1650 custom_configs = emif_for_calc->plat_data->custom_configs;
1651
1652 set_ddr_clk_period(freq);
1653
1654 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1655 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1656 addressing);
1657 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1658 addressing, type);
1659 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1660 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1661
1662 cl = get_cl(emif);
1663
1664 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1665 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1666 timings, freq, cl);
1667 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1668 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1669 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1670 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1671 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1672 } else {
1673 return -1;
1674 }
1675
1676 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1677 regs->pwr_mgmt_ctrl_shdw =
1678 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1679 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1680
1681 if (ip_rev & EMIF_4D) {
1682 regs->read_idle_ctrl_shdw_normal =
1683 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1684
1685 regs->read_idle_ctrl_shdw_volt_ramp =
1686 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1687 } else if (ip_rev & EMIF_4D5) {
1688 regs->dll_calib_ctrl_shdw_normal =
1689 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1690
1691 regs->dll_calib_ctrl_shdw_volt_ramp =
1692 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1693 }
1694
1695 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1696 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1697 addressing);
1698
1699 regs->sdram_tim1_shdw_derated =
1700 get_sdram_tim_1_shdw_derated(timings, min_tck,
1701 addressing);
1702
1703 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1704 min_tck, addressing, type, ip_rev,
1705 EMIF_DERATED_TIMINGS);
1706 }
1707
1708 regs->freq = freq;
1709
1710 return 0;
1711}
1712
1713/*
1714 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1715 * given frequency(freq):
1716 *
1717 * As an optimisation, every EMIF instance other than EMIF1 shares the
1718 * register cache with EMIF1 if the devices connected on this instance
1719 * are same as that on EMIF1(indicated by the duplicate flag)
1720 *
1721 * If we do not have an entry corresponding to the frequency given, we
1722 * allocate a new entry and calculate the values
1723 *
1724 * Upon finding the right reg dump, save it in curr_regs. It can be
1725 * directly used for thermal de-rating and voltage ramping changes.
1726 */
1727static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1728{
1729 int i;
1730 struct emif_regs **regs_cache;
1731 struct emif_regs *regs = NULL;
1732 struct device *dev;
1733
1734 dev = emif->dev;
1735 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1736 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1737 return emif->curr_regs;
1738 }
1739
1740 if (emif->duplicate)
1741 regs_cache = emif1->regs_cache;
1742 else
1743 regs_cache = emif->regs_cache;
1744
1745 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1746 if (regs_cache[i]->freq == freq) {
1747 regs = regs_cache[i];
1748 dev_dbg(dev,
1749 "%s: reg dump found in reg cache for %u Hz\n",
1750 __func__, freq);
1751 break;
1752 }
1753 }
1754
1755 /*
1756 * If we don't have an entry for this frequency in the cache create one
1757 * and calculate the values
1758 */
1759 if (!regs) {
1760 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1761 if (!regs)
1762 return NULL;
1763
1764 if (get_emif_reg_values(emif, freq, regs)) {
1765 devm_kfree(emif->dev, regs);
1766 return NULL;
1767 }
1768
1769 /*
1770 * Now look for an un-used entry in the cache and save the
1771 * newly created struct. If there are no free entries
1772 * over-write the last entry
1773 */
1774 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1775 ;
1776
1777 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1778 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1779 __func__);
1780 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1781 devm_kfree(emif->dev, regs_cache[i]);
1782 }
1783 regs_cache[i] = regs;
1784 }
1785
1786 return regs;
1787}
1788
1789static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1790{
1791 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1792 volt_state);
1793
1794 if (!emif->curr_regs) {
1795 dev_err(emif->dev,
1796 "%s: volt-notify before registers are ready: %d\n",
1797 __func__, volt_state);
1798 return;
1799 }
1800
1801 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1802}
1803
1804/*
1805 * TODO: voltage notify handling should be hooked up to
1806 * regulator framework as soon as the necessary support
1807 * is available in mainline kernel. This function is un-used
1808 * right now.
1809 */
1810static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1811{
1812 struct emif_data *emif;
1813
1814 spin_lock_irqsave(&emif_lock, irq_state);
1815
1816 list_for_each_entry(emif, &device_list, node)
1817 do_volt_notify_handling(emif, volt_state);
1818 do_freq_update();
1819
1820 spin_unlock_irqrestore(&emif_lock, irq_state);
1821}
1822
1823static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1824{
1825 struct emif_regs *regs;
1826
1827 regs = get_regs(emif, new_freq);
1828 if (!regs)
1829 return;
1830
1831 emif->curr_regs = regs;
1832
1833 /*
1834 * Update the shadow registers:
1835 * Temperature and voltage-ramp sensitive settings are also configured
1836 * in terms of DDR cycles. So, we need to update them too when there
1837 * is a freq change
1838 */
1839 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1840 __func__, new_freq);
1841 setup_registers(emif, regs);
1842 setup_temperature_sensitive_regs(emif, regs);
1843 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1844
1845 /*
1846 * Part of workaround for errata i728. See do_freq_update()
1847 * for more details
1848 */
1849 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1850 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1851}
1852
1853/*
1854 * TODO: frequency notify handling should be hooked up to
1855 * clock framework as soon as the necessary support is
1856 * available in mainline kernel. This function is un-used
1857 * right now.
1858 */
1859static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1860{
1861 struct emif_data *emif;
1862
1863 /*
1864 * NOTE: we are taking the spin-lock here and releases it
1865 * only in post-notifier. This doesn't look good and
1866 * Sparse complains about it, but this seems to be
1867 * un-avoidable. We need to lock a sequence of events
1868 * that is split between EMIF and clock framework.
1869 *
1870 * 1. EMIF driver updates EMIF timings in shadow registers in the
1871 * frequency pre-notify callback from clock framework
1872 * 2. clock framework sets up the registers for the new frequency
1873 * 3. clock framework initiates a hw-sequence that updates
1874 * the frequency EMIF timings synchronously.
1875 *
1876 * All these 3 steps should be performed as an atomic operation
1877 * vis-a-vis similar sequence in the EMIF interrupt handler
1878 * for temperature events. Otherwise, there could be race
1879 * conditions that could result in incorrect EMIF timings for
1880 * a given frequency
1881 */
1882 spin_lock_irqsave(&emif_lock, irq_state);
1883
1884 list_for_each_entry(emif, &device_list, node)
1885 do_freq_pre_notify_handling(emif, new_freq);
1886}
1887
1888static void do_freq_post_notify_handling(struct emif_data *emif)
1889{
1890 /*
1891 * Part of workaround for errata i728. See do_freq_update()
1892 * for more details
1893 */
1894 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1895 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1896}
1897
1898/*
1899 * TODO: frequency notify handling should be hooked up to
1900 * clock framework as soon as the necessary support is
1901 * available in mainline kernel. This function is un-used
1902 * right now.
1903 */
1904static void __attribute__((unused)) freq_post_notify_handling(void)
1905{
1906 struct emif_data *emif;
1907
1908 list_for_each_entry(emif, &device_list, node)
1909 do_freq_post_notify_handling(emif);
1910
1911 /*
1912 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1913 * for more details
1914 */
1915 spin_unlock_irqrestore(&emif_lock, irq_state);
1916}
1917
Aneesh Ve6b42eb2012-08-17 14:05:15 +05301918#if defined(CONFIG_OF)
1919static const struct of_device_id emif_of_match[] = {
1920 { .compatible = "ti,emif-4d" },
1921 { .compatible = "ti,emif-4d5" },
1922 {},
1923};
1924MODULE_DEVICE_TABLE(of, emif_of_match);
1925#endif
1926
Aneesh V7ec94452012-04-27 17:54:05 +05301927static struct platform_driver emif_driver = {
Aneesh Vaac10aa2012-04-27 17:54:09 +05301928 .remove = __exit_p(emif_remove),
Aneesh V68b4aee2012-04-27 17:54:07 +05301929 .shutdown = emif_shutdown,
Aneesh V7ec94452012-04-27 17:54:05 +05301930 .driver = {
1931 .name = "emif",
Aneesh Ve6b42eb2012-08-17 14:05:15 +05301932 .of_match_table = of_match_ptr(emif_of_match),
Aneesh V7ec94452012-04-27 17:54:05 +05301933 },
1934};
1935
Fabio Porcedda7a4541a2013-03-14 18:09:35 +01001936module_platform_driver_probe(emif_driver, emif_probe);
Aneesh V7ec94452012-04-27 17:54:05 +05301937
Aneesh V7ec94452012-04-27 17:54:05 +05301938MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1939MODULE_LICENSE("GPL");
1940MODULE_ALIAS("platform:emif");
1941MODULE_AUTHOR("Texas Instruments Inc");