Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 1 | /* |
| 2 | * EMIF driver |
| 3 | * |
| 4 | * Copyright (C) 2012 Texas Instruments, Inc. |
| 5 | * |
| 6 | * Aneesh V <aneesh@ti.com> |
| 7 | * Santosh Shilimkar <santosh.shilimkar@ti.com> |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License version 2 as |
| 11 | * published by the Free Software Foundation. |
| 12 | */ |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/reboot.h> |
| 15 | #include <linux/platform_data/emif_plat.h> |
| 16 | #include <linux/io.h> |
| 17 | #include <linux/device.h> |
| 18 | #include <linux/platform_device.h> |
| 19 | #include <linux/interrupt.h> |
| 20 | #include <linux/slab.h> |
| 21 | #include <linux/seq_file.h> |
| 22 | #include <linux/module.h> |
| 23 | #include <linux/list.h> |
Aneesh V | a93de28 | 2012-04-27 17:54:06 +0530 | [diff] [blame^] | 24 | #include <linux/spinlock.h> |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 25 | #include <memory/jedec_ddr.h> |
| 26 | #include "emif.h" |
| 27 | |
| 28 | /** |
| 29 | * struct emif_data - Per device static data for driver's use |
| 30 | * @duplicate: Whether the DDR devices attached to this EMIF |
| 31 | * instance are exactly same as that on EMIF1. In |
| 32 | * this case we can save some memory and processing |
| 33 | * @temperature_level: Maximum temperature of LPDDR2 devices attached |
| 34 | * to this EMIF - read from MR4 register. If there |
| 35 | * are two devices attached to this EMIF, this |
| 36 | * value is the maximum of the two temperature |
| 37 | * levels. |
| 38 | * @node: node in the device list |
| 39 | * @base: base address of memory-mapped IO registers. |
| 40 | * @dev: device pointer. |
Aneesh V | a93de28 | 2012-04-27 17:54:06 +0530 | [diff] [blame^] | 41 | * @addressing table with addressing information from the spec |
| 42 | * @regs_cache: An array of 'struct emif_regs' that stores |
| 43 | * calculated register values for different |
| 44 | * frequencies, to avoid re-calculating them on |
| 45 | * each DVFS transition. |
| 46 | * @curr_regs: The set of register values used in the last |
| 47 | * frequency change (i.e. corresponding to the |
| 48 | * frequency in effect at the moment) |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 49 | * @plat_data: Pointer to saved platform data. |
| 50 | */ |
| 51 | struct emif_data { |
| 52 | u8 duplicate; |
| 53 | u8 temperature_level; |
Aneesh V | a93de28 | 2012-04-27 17:54:06 +0530 | [diff] [blame^] | 54 | u8 lpmode; |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 55 | struct list_head node; |
Aneesh V | a93de28 | 2012-04-27 17:54:06 +0530 | [diff] [blame^] | 56 | unsigned long irq_state; |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 57 | void __iomem *base; |
| 58 | struct device *dev; |
Aneesh V | a93de28 | 2012-04-27 17:54:06 +0530 | [diff] [blame^] | 59 | const struct lpddr2_addressing *addressing; |
| 60 | struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; |
| 61 | struct emif_regs *curr_regs; |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 62 | struct emif_platform_data *plat_data; |
| 63 | }; |
| 64 | |
| 65 | static struct emif_data *emif1; |
Aneesh V | a93de28 | 2012-04-27 17:54:06 +0530 | [diff] [blame^] | 66 | static spinlock_t emif_lock; |
| 67 | static unsigned long irq_state; |
| 68 | static u32 t_ck; /* DDR clock period in ps */ |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 69 | static LIST_HEAD(device_list); |
| 70 | |
Aneesh V | a93de28 | 2012-04-27 17:54:06 +0530 | [diff] [blame^] | 71 | /* |
| 72 | * Calculate the period of DDR clock from frequency value |
| 73 | */ |
| 74 | static void set_ddr_clk_period(u32 freq) |
| 75 | { |
| 76 | /* Divide 10^12 by frequency to get period in ps */ |
| 77 | t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); |
| 78 | } |
| 79 | |
| 80 | /* |
| 81 | * Get the CL from SDRAM_CONFIG register |
| 82 | */ |
| 83 | static u32 get_cl(struct emif_data *emif) |
| 84 | { |
| 85 | u32 cl; |
| 86 | void __iomem *base = emif->base; |
| 87 | |
| 88 | cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; |
| 89 | |
| 90 | return cl; |
| 91 | } |
| 92 | |
| 93 | static void set_lpmode(struct emif_data *emif, u8 lpmode) |
| 94 | { |
| 95 | u32 temp; |
| 96 | void __iomem *base = emif->base; |
| 97 | |
| 98 | temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); |
| 99 | temp &= ~LP_MODE_MASK; |
| 100 | temp |= (lpmode << LP_MODE_SHIFT); |
| 101 | writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); |
| 102 | } |
| 103 | |
| 104 | static void do_freq_update(void) |
| 105 | { |
| 106 | struct emif_data *emif; |
| 107 | |
| 108 | /* |
| 109 | * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE |
| 110 | * |
| 111 | * i728 DESCRIPTION: |
| 112 | * The EMIF automatically puts the SDRAM into self-refresh mode |
| 113 | * after the EMIF has not performed accesses during |
| 114 | * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles |
| 115 | * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set |
| 116 | * to 0x2. If during a small window the following three events |
| 117 | * occur: |
| 118 | * - The SR_TIMING counter expires |
| 119 | * - And frequency change is requested |
| 120 | * - And OCP access is requested |
| 121 | * Then it causes instable clock on the DDR interface. |
| 122 | * |
| 123 | * WORKAROUND |
| 124 | * To avoid the occurrence of the three events, the workaround |
| 125 | * is to disable the self-refresh when requesting a frequency |
| 126 | * change. Before requesting a frequency change the software must |
| 127 | * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the |
| 128 | * frequency change has been done, the software can reprogram |
| 129 | * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 |
| 130 | */ |
| 131 | list_for_each_entry(emif, &device_list, node) { |
| 132 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| 133 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | * TODO: Do FREQ_UPDATE here when an API |
| 138 | * is available for this as part of the new |
| 139 | * clock framework |
| 140 | */ |
| 141 | |
| 142 | list_for_each_entry(emif, &device_list, node) { |
| 143 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| 144 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | /* Find addressing table entry based on the device's type and density */ |
| 149 | static const struct lpddr2_addressing *get_addressing_table( |
| 150 | const struct ddr_device_info *device_info) |
| 151 | { |
| 152 | u32 index, type, density; |
| 153 | |
| 154 | type = device_info->type; |
| 155 | density = device_info->density; |
| 156 | |
| 157 | switch (type) { |
| 158 | case DDR_TYPE_LPDDR2_S4: |
| 159 | index = density - 1; |
| 160 | break; |
| 161 | case DDR_TYPE_LPDDR2_S2: |
| 162 | switch (density) { |
| 163 | case DDR_DENSITY_1Gb: |
| 164 | case DDR_DENSITY_2Gb: |
| 165 | index = density + 3; |
| 166 | break; |
| 167 | default: |
| 168 | index = density - 1; |
| 169 | } |
| 170 | break; |
| 171 | default: |
| 172 | return NULL; |
| 173 | } |
| 174 | |
| 175 | return &lpddr2_jedec_addressing_table[index]; |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * Find the the right timing table from the array of timing |
| 180 | * tables of the device using DDR clock frequency |
| 181 | */ |
| 182 | static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, |
| 183 | u32 freq) |
| 184 | { |
| 185 | u32 i, min, max, freq_nearest; |
| 186 | const struct lpddr2_timings *timings = NULL; |
| 187 | const struct lpddr2_timings *timings_arr = emif->plat_data->timings; |
| 188 | struct device *dev = emif->dev; |
| 189 | |
| 190 | /* Start with a very high frequency - 1GHz */ |
| 191 | freq_nearest = 1000000000; |
| 192 | |
| 193 | /* |
| 194 | * Find the timings table such that: |
| 195 | * 1. the frequency range covers the required frequency(safe) AND |
| 196 | * 2. the max_freq is closest to the required frequency(optimal) |
| 197 | */ |
| 198 | for (i = 0; i < emif->plat_data->timings_arr_size; i++) { |
| 199 | max = timings_arr[i].max_freq; |
| 200 | min = timings_arr[i].min_freq; |
| 201 | if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { |
| 202 | freq_nearest = max; |
| 203 | timings = &timings_arr[i]; |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | if (!timings) |
| 208 | dev_err(dev, "%s: couldn't find timings for - %dHz\n", |
| 209 | __func__, freq); |
| 210 | |
| 211 | dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", |
| 212 | __func__, freq, freq_nearest); |
| 213 | |
| 214 | return timings; |
| 215 | } |
| 216 | |
| 217 | static u32 get_sdram_ref_ctrl_shdw(u32 freq, |
| 218 | const struct lpddr2_addressing *addressing) |
| 219 | { |
| 220 | u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; |
| 221 | |
| 222 | /* Scale down frequency and t_refi to avoid overflow */ |
| 223 | freq_khz = freq / 1000; |
| 224 | t_refi = addressing->tREFI_ns / 100; |
| 225 | |
| 226 | /* |
| 227 | * refresh rate to be set is 'tREFI(in us) * freq in MHz |
| 228 | * division by 10000 to account for change in units |
| 229 | */ |
| 230 | val = t_refi * freq_khz / 10000; |
| 231 | ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; |
| 232 | |
| 233 | return ref_ctrl_shdw; |
| 234 | } |
| 235 | |
| 236 | static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, |
| 237 | const struct lpddr2_min_tck *min_tck, |
| 238 | const struct lpddr2_addressing *addressing) |
| 239 | { |
| 240 | u32 tim1 = 0, val = 0; |
| 241 | |
| 242 | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; |
| 243 | tim1 |= val << T_WTR_SHIFT; |
| 244 | |
| 245 | if (addressing->num_banks == B8) |
| 246 | val = DIV_ROUND_UP(timings->tFAW, t_ck*4); |
| 247 | else |
| 248 | val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); |
| 249 | tim1 |= (val - 1) << T_RRD_SHIFT; |
| 250 | |
| 251 | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; |
| 252 | tim1 |= val << T_RC_SHIFT; |
| 253 | |
| 254 | val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); |
| 255 | tim1 |= (val - 1) << T_RAS_SHIFT; |
| 256 | |
| 257 | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; |
| 258 | tim1 |= val << T_WR_SHIFT; |
| 259 | |
| 260 | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; |
| 261 | tim1 |= val << T_RCD_SHIFT; |
| 262 | |
| 263 | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; |
| 264 | tim1 |= val << T_RP_SHIFT; |
| 265 | |
| 266 | return tim1; |
| 267 | } |
| 268 | |
| 269 | static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, |
| 270 | const struct lpddr2_min_tck *min_tck, |
| 271 | const struct lpddr2_addressing *addressing) |
| 272 | { |
| 273 | u32 tim1 = 0, val = 0; |
| 274 | |
| 275 | val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; |
| 276 | tim1 = val << T_WTR_SHIFT; |
| 277 | |
| 278 | /* |
| 279 | * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps |
| 280 | * to tFAW for de-rating |
| 281 | */ |
| 282 | if (addressing->num_banks == B8) { |
| 283 | val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; |
| 284 | } else { |
| 285 | val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); |
| 286 | val = max(min_tck->tRRD, val) - 1; |
| 287 | } |
| 288 | tim1 |= val << T_RRD_SHIFT; |
| 289 | |
| 290 | val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); |
| 291 | tim1 |= (val - 1) << T_RC_SHIFT; |
| 292 | |
| 293 | val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); |
| 294 | val = max(min_tck->tRASmin, val) - 1; |
| 295 | tim1 |= val << T_RAS_SHIFT; |
| 296 | |
| 297 | val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; |
| 298 | tim1 |= val << T_WR_SHIFT; |
| 299 | |
| 300 | val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); |
| 301 | tim1 |= (val - 1) << T_RCD_SHIFT; |
| 302 | |
| 303 | val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); |
| 304 | tim1 |= (val - 1) << T_RP_SHIFT; |
| 305 | |
| 306 | return tim1; |
| 307 | } |
| 308 | |
| 309 | static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, |
| 310 | const struct lpddr2_min_tck *min_tck, |
| 311 | const struct lpddr2_addressing *addressing, |
| 312 | u32 type) |
| 313 | { |
| 314 | u32 tim2 = 0, val = 0; |
| 315 | |
| 316 | val = min_tck->tCKE - 1; |
| 317 | tim2 |= val << T_CKE_SHIFT; |
| 318 | |
| 319 | val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; |
| 320 | tim2 |= val << T_RTP_SHIFT; |
| 321 | |
| 322 | /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ |
| 323 | val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; |
| 324 | tim2 |= val << T_XSNR_SHIFT; |
| 325 | |
| 326 | /* XSRD same as XSNR for LPDDR2 */ |
| 327 | tim2 |= val << T_XSRD_SHIFT; |
| 328 | |
| 329 | val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; |
| 330 | tim2 |= val << T_XP_SHIFT; |
| 331 | |
| 332 | return tim2; |
| 333 | } |
| 334 | |
| 335 | static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, |
| 336 | const struct lpddr2_min_tck *min_tck, |
| 337 | const struct lpddr2_addressing *addressing, |
| 338 | u32 type, u32 ip_rev, u32 derated) |
| 339 | { |
| 340 | u32 tim3 = 0, val = 0, t_dqsck; |
| 341 | |
| 342 | val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; |
| 343 | val = val > 0xF ? 0xF : val; |
| 344 | tim3 |= val << T_RAS_MAX_SHIFT; |
| 345 | |
| 346 | val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; |
| 347 | tim3 |= val << T_RFC_SHIFT; |
| 348 | |
| 349 | t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? |
| 350 | timings->tDQSCK_max_derated : timings->tDQSCK_max; |
| 351 | if (ip_rev == EMIF_4D5) |
| 352 | val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; |
| 353 | else |
| 354 | val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; |
| 355 | |
| 356 | tim3 |= val << T_TDQSCKMAX_SHIFT; |
| 357 | |
| 358 | val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; |
| 359 | tim3 |= val << ZQ_ZQCS_SHIFT; |
| 360 | |
| 361 | val = DIV_ROUND_UP(timings->tCKESR, t_ck); |
| 362 | val = max(min_tck->tCKESR, val) - 1; |
| 363 | tim3 |= val << T_CKESR_SHIFT; |
| 364 | |
| 365 | if (ip_rev == EMIF_4D5) { |
| 366 | tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; |
| 367 | |
| 368 | val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; |
| 369 | tim3 |= val << T_PDLL_UL_SHIFT; |
| 370 | } |
| 371 | |
| 372 | return tim3; |
| 373 | } |
| 374 | |
| 375 | static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) |
| 376 | { |
| 377 | u32 idle = 0, val = 0; |
| 378 | |
| 379 | /* |
| 380 | * Maximum value in normal conditions and increased frequency |
| 381 | * when voltage is ramping |
| 382 | */ |
| 383 | if (volt_ramp) |
| 384 | val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; |
| 385 | else |
| 386 | val = 0x1FF; |
| 387 | |
| 388 | /* |
| 389 | * READ_IDLE_CTRL register in EMIF4D has same offset and fields |
| 390 | * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts |
| 391 | */ |
| 392 | idle |= val << DLL_CALIB_INTERVAL_SHIFT; |
| 393 | idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; |
| 394 | |
| 395 | return idle; |
| 396 | } |
| 397 | |
| 398 | static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) |
| 399 | { |
| 400 | u32 calib = 0, val = 0; |
| 401 | |
| 402 | if (volt_ramp == DDR_VOLTAGE_RAMPING) |
| 403 | val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; |
| 404 | else |
| 405 | val = 0; /* Disabled when voltage is stable */ |
| 406 | |
| 407 | calib |= val << DLL_CALIB_INTERVAL_SHIFT; |
| 408 | calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; |
| 409 | |
| 410 | return calib; |
| 411 | } |
| 412 | |
| 413 | static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, |
| 414 | u32 freq, u8 RL) |
| 415 | { |
| 416 | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; |
| 417 | |
| 418 | val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; |
| 419 | phy |= val << READ_LATENCY_SHIFT_4D; |
| 420 | |
| 421 | if (freq <= 100000000) |
| 422 | val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; |
| 423 | else if (freq <= 200000000) |
| 424 | val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; |
| 425 | else |
| 426 | val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; |
| 427 | |
| 428 | phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; |
| 429 | |
| 430 | return phy; |
| 431 | } |
| 432 | |
| 433 | static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) |
| 434 | { |
| 435 | u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; |
| 436 | |
| 437 | /* |
| 438 | * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, |
| 439 | * half-delay is not needed else set half-delay |
| 440 | */ |
| 441 | if (freq >= 265000000 && freq < 267000000) |
| 442 | half_delay = 0; |
| 443 | else |
| 444 | half_delay = 1; |
| 445 | |
| 446 | phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; |
| 447 | phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, |
| 448 | t_ck) - 1) << READ_LATENCY_SHIFT_4D5); |
| 449 | |
| 450 | return phy; |
| 451 | } |
| 452 | |
| 453 | static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) |
| 454 | { |
| 455 | u32 fifo_we_slave_ratio; |
| 456 | |
| 457 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( |
| 458 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); |
| 459 | |
| 460 | return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | |
| 461 | fifo_we_slave_ratio << 22; |
| 462 | } |
| 463 | |
| 464 | static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) |
| 465 | { |
| 466 | u32 fifo_we_slave_ratio; |
| 467 | |
| 468 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( |
| 469 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); |
| 470 | |
| 471 | return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | |
| 472 | fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; |
| 473 | } |
| 474 | |
| 475 | static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) |
| 476 | { |
| 477 | u32 fifo_we_slave_ratio; |
| 478 | |
| 479 | fifo_we_slave_ratio = DIV_ROUND_CLOSEST( |
| 480 | EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); |
| 481 | |
| 482 | return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | |
| 483 | fifo_we_slave_ratio << 13; |
| 484 | } |
| 485 | |
| 486 | static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) |
| 487 | { |
| 488 | u32 pwr_mgmt_ctrl = 0, timeout; |
| 489 | u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; |
| 490 | u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; |
| 491 | u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; |
| 492 | u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; |
| 493 | |
| 494 | struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; |
| 495 | |
| 496 | if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { |
| 497 | lpmode = cust_cfgs->lpmode; |
| 498 | timeout_perf = cust_cfgs->lpmode_timeout_performance; |
| 499 | timeout_pwr = cust_cfgs->lpmode_timeout_power; |
| 500 | freq_threshold = cust_cfgs->lpmode_freq_threshold; |
| 501 | } |
| 502 | |
| 503 | /* Timeout based on DDR frequency */ |
| 504 | timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; |
| 505 | |
| 506 | /* The value to be set in register is "log2(timeout) - 3" */ |
| 507 | if (timeout < 16) { |
| 508 | timeout = 0; |
| 509 | } else { |
| 510 | timeout = __fls(timeout) - 3; |
| 511 | if (timeout & (timeout - 1)) |
| 512 | timeout++; |
| 513 | } |
| 514 | |
| 515 | switch (lpmode) { |
| 516 | case EMIF_LP_MODE_CLOCK_STOP: |
| 517 | pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) | |
| 518 | SR_TIM_MASK | PD_TIM_MASK; |
| 519 | break; |
| 520 | case EMIF_LP_MODE_SELF_REFRESH: |
| 521 | /* Workaround for errata i735 */ |
| 522 | if (timeout < 6) |
| 523 | timeout = 6; |
| 524 | |
| 525 | pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) | |
| 526 | CS_TIM_MASK | PD_TIM_MASK; |
| 527 | break; |
| 528 | case EMIF_LP_MODE_PWR_DN: |
| 529 | pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) | |
| 530 | CS_TIM_MASK | SR_TIM_MASK; |
| 531 | break; |
| 532 | case EMIF_LP_MODE_DISABLE: |
| 533 | default: |
| 534 | pwr_mgmt_ctrl = CS_TIM_MASK | |
| 535 | PD_TIM_MASK | SR_TIM_MASK; |
| 536 | } |
| 537 | |
| 538 | /* No CS_TIM in EMIF_4D5 */ |
| 539 | if (ip_rev == EMIF_4D5) |
| 540 | pwr_mgmt_ctrl &= ~CS_TIM_MASK; |
| 541 | |
| 542 | pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; |
| 543 | |
| 544 | return pwr_mgmt_ctrl; |
| 545 | } |
| 546 | |
| 547 | /* |
| 548 | * Program EMIF shadow registers that are not dependent on temperature |
| 549 | * or voltage |
| 550 | */ |
| 551 | static void setup_registers(struct emif_data *emif, struct emif_regs *regs) |
| 552 | { |
| 553 | void __iomem *base = emif->base; |
| 554 | |
| 555 | writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); |
| 556 | writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); |
| 557 | |
| 558 | /* Settings specific for EMIF4D5 */ |
| 559 | if (emif->plat_data->ip_rev != EMIF_4D5) |
| 560 | return; |
| 561 | writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); |
| 562 | writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); |
| 563 | writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * When voltage ramps dll calibration and forced read idle should |
| 568 | * happen more often |
| 569 | */ |
| 570 | static void setup_volt_sensitive_regs(struct emif_data *emif, |
| 571 | struct emif_regs *regs, u32 volt_state) |
| 572 | { |
| 573 | u32 calib_ctrl; |
| 574 | void __iomem *base = emif->base; |
| 575 | |
| 576 | /* |
| 577 | * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as |
| 578 | * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* |
| 579 | * is an alias of the respective read_idle_ctrl_shdw_* (members of |
| 580 | * a union). So, the below code takes care of both cases |
| 581 | */ |
| 582 | if (volt_state == DDR_VOLTAGE_RAMPING) |
| 583 | calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; |
| 584 | else |
| 585 | calib_ctrl = regs->dll_calib_ctrl_shdw_normal; |
| 586 | |
| 587 | writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * setup_temperature_sensitive_regs() - set the timings for temperature |
| 592 | * sensitive registers. This happens once at initialisation time based |
| 593 | * on the temperature at boot time and subsequently based on the temperature |
| 594 | * alert interrupt. Temperature alert can happen when the temperature |
| 595 | * increases or drops. So this function can have the effect of either |
| 596 | * derating the timings or going back to nominal values. |
| 597 | */ |
| 598 | static void setup_temperature_sensitive_regs(struct emif_data *emif, |
| 599 | struct emif_regs *regs) |
| 600 | { |
| 601 | u32 tim1, tim3, ref_ctrl, type; |
| 602 | void __iomem *base = emif->base; |
| 603 | u32 temperature; |
| 604 | |
| 605 | type = emif->plat_data->device_info->type; |
| 606 | |
| 607 | tim1 = regs->sdram_tim1_shdw; |
| 608 | tim3 = regs->sdram_tim3_shdw; |
| 609 | ref_ctrl = regs->ref_ctrl_shdw; |
| 610 | |
| 611 | /* No de-rating for non-lpddr2 devices */ |
| 612 | if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) |
| 613 | goto out; |
| 614 | |
| 615 | temperature = emif->temperature_level; |
| 616 | if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { |
| 617 | ref_ctrl = regs->ref_ctrl_shdw_derated; |
| 618 | } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { |
| 619 | tim1 = regs->sdram_tim1_shdw_derated; |
| 620 | tim3 = regs->sdram_tim3_shdw_derated; |
| 621 | ref_ctrl = regs->ref_ctrl_shdw_derated; |
| 622 | } |
| 623 | |
| 624 | out: |
| 625 | writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); |
| 626 | writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); |
| 627 | writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); |
| 628 | } |
| 629 | |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 630 | static void get_default_timings(struct emif_data *emif) |
| 631 | { |
| 632 | struct emif_platform_data *pd = emif->plat_data; |
| 633 | |
| 634 | pd->timings = lpddr2_jedec_timings; |
| 635 | pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); |
| 636 | |
| 637 | dev_warn(emif->dev, "%s: using default timings\n", __func__); |
| 638 | } |
| 639 | |
| 640 | static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, |
| 641 | u32 ip_rev, struct device *dev) |
| 642 | { |
| 643 | int valid; |
| 644 | |
| 645 | valid = (type == DDR_TYPE_LPDDR2_S4 || |
| 646 | type == DDR_TYPE_LPDDR2_S2) |
| 647 | && (density >= DDR_DENSITY_64Mb |
| 648 | && density <= DDR_DENSITY_8Gb) |
| 649 | && (io_width >= DDR_IO_WIDTH_8 |
| 650 | && io_width <= DDR_IO_WIDTH_32); |
| 651 | |
| 652 | /* Combinations of EMIF and PHY revisions that we support today */ |
| 653 | switch (ip_rev) { |
| 654 | case EMIF_4D: |
| 655 | valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); |
| 656 | break; |
| 657 | case EMIF_4D5: |
| 658 | valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); |
| 659 | break; |
| 660 | default: |
| 661 | valid = 0; |
| 662 | } |
| 663 | |
| 664 | if (!valid) |
| 665 | dev_err(dev, "%s: invalid DDR details\n", __func__); |
| 666 | return valid; |
| 667 | } |
| 668 | |
| 669 | static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, |
| 670 | struct device *dev) |
| 671 | { |
| 672 | int valid = 1; |
| 673 | |
| 674 | if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && |
| 675 | (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) |
| 676 | valid = cust_cfgs->lpmode_freq_threshold && |
| 677 | cust_cfgs->lpmode_timeout_performance && |
| 678 | cust_cfgs->lpmode_timeout_power; |
| 679 | |
| 680 | if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) |
| 681 | valid = valid && cust_cfgs->temp_alert_poll_interval_ms; |
| 682 | |
| 683 | if (!valid) |
| 684 | dev_warn(dev, "%s: invalid custom configs\n", __func__); |
| 685 | |
| 686 | return valid; |
| 687 | } |
| 688 | |
| 689 | static struct emif_data *__init_or_module get_device_details( |
| 690 | struct platform_device *pdev) |
| 691 | { |
| 692 | u32 size; |
| 693 | struct emif_data *emif = NULL; |
| 694 | struct ddr_device_info *dev_info; |
| 695 | struct emif_custom_configs *cust_cfgs; |
| 696 | struct emif_platform_data *pd; |
| 697 | struct device *dev; |
| 698 | void *temp; |
| 699 | |
| 700 | pd = pdev->dev.platform_data; |
| 701 | dev = &pdev->dev; |
| 702 | |
| 703 | if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, |
| 704 | pd->device_info->density, pd->device_info->io_width, |
| 705 | pd->phy_type, pd->ip_rev, dev))) { |
| 706 | dev_err(dev, "%s: invalid device data\n", __func__); |
| 707 | goto error; |
| 708 | } |
| 709 | |
| 710 | emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); |
| 711 | temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); |
| 712 | dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); |
| 713 | |
| 714 | if (!emif || !pd || !dev_info) { |
| 715 | dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); |
| 716 | goto error; |
| 717 | } |
| 718 | |
| 719 | memcpy(temp, pd, sizeof(*pd)); |
| 720 | pd = temp; |
| 721 | memcpy(dev_info, pd->device_info, sizeof(*dev_info)); |
| 722 | |
| 723 | pd->device_info = dev_info; |
| 724 | emif->plat_data = pd; |
| 725 | emif->dev = dev; |
| 726 | emif->temperature_level = SDRAM_TEMP_NOMINAL; |
| 727 | |
| 728 | /* |
| 729 | * For EMIF instances other than EMIF1 see if the devices connected |
| 730 | * are exactly same as on EMIF1(which is typically the case). If so, |
| 731 | * mark it as a duplicate of EMIF1 and skip copying timings data. |
| 732 | * This will save some memory and some computation later. |
| 733 | */ |
| 734 | emif->duplicate = emif1 && (memcmp(dev_info, |
| 735 | emif1->plat_data->device_info, |
| 736 | sizeof(struct ddr_device_info)) == 0); |
| 737 | |
| 738 | if (emif->duplicate) { |
| 739 | pd->timings = NULL; |
| 740 | pd->min_tck = NULL; |
| 741 | goto out; |
| 742 | } else if (emif1) { |
| 743 | dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", |
| 744 | __func__); |
| 745 | } |
| 746 | |
| 747 | /* |
| 748 | * Copy custom configs - ignore allocation error, if any, as |
| 749 | * custom_configs is not very critical |
| 750 | */ |
| 751 | cust_cfgs = pd->custom_configs; |
| 752 | if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { |
| 753 | temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); |
| 754 | if (temp) |
| 755 | memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); |
| 756 | else |
| 757 | dev_warn(dev, "%s:%d: allocation error\n", __func__, |
| 758 | __LINE__); |
| 759 | pd->custom_configs = temp; |
| 760 | } |
| 761 | |
| 762 | /* |
| 763 | * Copy timings and min-tck values from platform data. If it is not |
| 764 | * available or if memory allocation fails, use JEDEC defaults |
| 765 | */ |
| 766 | size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; |
| 767 | if (pd->timings) { |
| 768 | temp = devm_kzalloc(dev, size, GFP_KERNEL); |
| 769 | if (temp) { |
| 770 | memcpy(temp, pd->timings, sizeof(*pd->timings)); |
| 771 | pd->timings = temp; |
| 772 | } else { |
| 773 | dev_warn(dev, "%s:%d: allocation error\n", __func__, |
| 774 | __LINE__); |
| 775 | get_default_timings(emif); |
| 776 | } |
| 777 | } else { |
| 778 | get_default_timings(emif); |
| 779 | } |
| 780 | |
| 781 | if (pd->min_tck) { |
| 782 | temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); |
| 783 | if (temp) { |
| 784 | memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); |
| 785 | pd->min_tck = temp; |
| 786 | } else { |
| 787 | dev_warn(dev, "%s:%d: allocation error\n", __func__, |
| 788 | __LINE__); |
| 789 | pd->min_tck = &lpddr2_jedec_min_tck; |
| 790 | } |
| 791 | } else { |
| 792 | pd->min_tck = &lpddr2_jedec_min_tck; |
| 793 | } |
| 794 | |
| 795 | out: |
| 796 | return emif; |
| 797 | |
| 798 | error: |
| 799 | return NULL; |
| 800 | } |
| 801 | |
| 802 | static int __init_or_module emif_probe(struct platform_device *pdev) |
| 803 | { |
| 804 | struct emif_data *emif; |
| 805 | struct resource *res; |
| 806 | |
| 807 | emif = get_device_details(pdev); |
| 808 | if (!emif) { |
| 809 | pr_err("%s: error getting device data\n", __func__); |
| 810 | goto error; |
| 811 | } |
| 812 | |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 813 | list_add(&emif->node, &device_list); |
Aneesh V | a93de28 | 2012-04-27 17:54:06 +0530 | [diff] [blame^] | 814 | emif->addressing = get_addressing_table(emif->plat_data->device_info); |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 815 | |
| 816 | /* Save pointers to each other in emif and device structures */ |
| 817 | emif->dev = &pdev->dev; |
| 818 | platform_set_drvdata(pdev, emif); |
| 819 | |
| 820 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 821 | if (!res) { |
| 822 | dev_err(emif->dev, "%s: error getting memory resource\n", |
| 823 | __func__); |
| 824 | goto error; |
| 825 | } |
| 826 | |
| 827 | emif->base = devm_request_and_ioremap(emif->dev, res); |
| 828 | if (!emif->base) { |
| 829 | dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n", |
| 830 | __func__); |
| 831 | goto error; |
| 832 | } |
| 833 | |
Aneesh V | a93de28 | 2012-04-27 17:54:06 +0530 | [diff] [blame^] | 834 | /* One-time actions taken on probing the first device */ |
| 835 | if (!emif1) { |
| 836 | emif1 = emif; |
| 837 | spin_lock_init(&emif_lock); |
| 838 | |
| 839 | /* |
| 840 | * TODO: register notifiers for frequency and voltage |
| 841 | * change here once the respective frameworks are |
| 842 | * available |
| 843 | */ |
| 844 | } |
| 845 | |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 846 | dev_info(&pdev->dev, "%s: device configured with addr = %p\n", |
| 847 | __func__, emif->base); |
| 848 | |
| 849 | return 0; |
| 850 | error: |
| 851 | return -ENODEV; |
| 852 | } |
| 853 | |
Aneesh V | a93de28 | 2012-04-27 17:54:06 +0530 | [diff] [blame^] | 854 | static int get_emif_reg_values(struct emif_data *emif, u32 freq, |
| 855 | struct emif_regs *regs) |
| 856 | { |
| 857 | u32 cs1_used, ip_rev, phy_type; |
| 858 | u32 cl, type; |
| 859 | const struct lpddr2_timings *timings; |
| 860 | const struct lpddr2_min_tck *min_tck; |
| 861 | const struct ddr_device_info *device_info; |
| 862 | const struct lpddr2_addressing *addressing; |
| 863 | struct emif_data *emif_for_calc; |
| 864 | struct device *dev; |
| 865 | const struct emif_custom_configs *custom_configs; |
| 866 | |
| 867 | dev = emif->dev; |
| 868 | /* |
| 869 | * If the devices on this EMIF instance is duplicate of EMIF1, |
| 870 | * use EMIF1 details for the calculation |
| 871 | */ |
| 872 | emif_for_calc = emif->duplicate ? emif1 : emif; |
| 873 | timings = get_timings_table(emif_for_calc, freq); |
| 874 | addressing = emif_for_calc->addressing; |
| 875 | if (!timings || !addressing) { |
| 876 | dev_err(dev, "%s: not enough data available for %dHz", |
| 877 | __func__, freq); |
| 878 | return -1; |
| 879 | } |
| 880 | |
| 881 | device_info = emif_for_calc->plat_data->device_info; |
| 882 | type = device_info->type; |
| 883 | cs1_used = device_info->cs1_used; |
| 884 | ip_rev = emif_for_calc->plat_data->ip_rev; |
| 885 | phy_type = emif_for_calc->plat_data->phy_type; |
| 886 | |
| 887 | min_tck = emif_for_calc->plat_data->min_tck; |
| 888 | custom_configs = emif_for_calc->plat_data->custom_configs; |
| 889 | |
| 890 | set_ddr_clk_period(freq); |
| 891 | |
| 892 | regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); |
| 893 | regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, |
| 894 | addressing); |
| 895 | regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, |
| 896 | addressing, type); |
| 897 | regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, |
| 898 | addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); |
| 899 | |
| 900 | cl = get_cl(emif); |
| 901 | |
| 902 | if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { |
| 903 | regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( |
| 904 | timings, freq, cl); |
| 905 | } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { |
| 906 | regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); |
| 907 | regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); |
| 908 | regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); |
| 909 | regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); |
| 910 | } else { |
| 911 | return -1; |
| 912 | } |
| 913 | |
| 914 | /* Only timeout values in pwr_mgmt_ctrl_shdw register */ |
| 915 | regs->pwr_mgmt_ctrl_shdw = |
| 916 | get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & |
| 917 | (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); |
| 918 | |
| 919 | if (ip_rev & EMIF_4D) { |
| 920 | regs->read_idle_ctrl_shdw_normal = |
| 921 | get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); |
| 922 | |
| 923 | regs->read_idle_ctrl_shdw_volt_ramp = |
| 924 | get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); |
| 925 | } else if (ip_rev & EMIF_4D5) { |
| 926 | regs->dll_calib_ctrl_shdw_normal = |
| 927 | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); |
| 928 | |
| 929 | regs->dll_calib_ctrl_shdw_volt_ramp = |
| 930 | get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); |
| 931 | } |
| 932 | |
| 933 | if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { |
| 934 | regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, |
| 935 | addressing); |
| 936 | |
| 937 | regs->sdram_tim1_shdw_derated = |
| 938 | get_sdram_tim_1_shdw_derated(timings, min_tck, |
| 939 | addressing); |
| 940 | |
| 941 | regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, |
| 942 | min_tck, addressing, type, ip_rev, |
| 943 | EMIF_DERATED_TIMINGS); |
| 944 | } |
| 945 | |
| 946 | regs->freq = freq; |
| 947 | |
| 948 | return 0; |
| 949 | } |
| 950 | |
| 951 | /* |
| 952 | * get_regs() - gets the cached emif_regs structure for a given EMIF instance |
| 953 | * given frequency(freq): |
| 954 | * |
| 955 | * As an optimisation, every EMIF instance other than EMIF1 shares the |
| 956 | * register cache with EMIF1 if the devices connected on this instance |
| 957 | * are same as that on EMIF1(indicated by the duplicate flag) |
| 958 | * |
| 959 | * If we do not have an entry corresponding to the frequency given, we |
| 960 | * allocate a new entry and calculate the values |
| 961 | * |
| 962 | * Upon finding the right reg dump, save it in curr_regs. It can be |
| 963 | * directly used for thermal de-rating and voltage ramping changes. |
| 964 | */ |
| 965 | static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) |
| 966 | { |
| 967 | int i; |
| 968 | struct emif_regs **regs_cache; |
| 969 | struct emif_regs *regs = NULL; |
| 970 | struct device *dev; |
| 971 | |
| 972 | dev = emif->dev; |
| 973 | if (emif->curr_regs && emif->curr_regs->freq == freq) { |
| 974 | dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); |
| 975 | return emif->curr_regs; |
| 976 | } |
| 977 | |
| 978 | if (emif->duplicate) |
| 979 | regs_cache = emif1->regs_cache; |
| 980 | else |
| 981 | regs_cache = emif->regs_cache; |
| 982 | |
| 983 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { |
| 984 | if (regs_cache[i]->freq == freq) { |
| 985 | regs = regs_cache[i]; |
| 986 | dev_dbg(dev, |
| 987 | "%s: reg dump found in reg cache for %u Hz\n", |
| 988 | __func__, freq); |
| 989 | break; |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | /* |
| 994 | * If we don't have an entry for this frequency in the cache create one |
| 995 | * and calculate the values |
| 996 | */ |
| 997 | if (!regs) { |
| 998 | regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); |
| 999 | if (!regs) |
| 1000 | return NULL; |
| 1001 | |
| 1002 | if (get_emif_reg_values(emif, freq, regs)) { |
| 1003 | devm_kfree(emif->dev, regs); |
| 1004 | return NULL; |
| 1005 | } |
| 1006 | |
| 1007 | /* |
| 1008 | * Now look for an un-used entry in the cache and save the |
| 1009 | * newly created struct. If there are no free entries |
| 1010 | * over-write the last entry |
| 1011 | */ |
| 1012 | for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) |
| 1013 | ; |
| 1014 | |
| 1015 | if (i >= EMIF_MAX_NUM_FREQUENCIES) { |
| 1016 | dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", |
| 1017 | __func__); |
| 1018 | i = EMIF_MAX_NUM_FREQUENCIES - 1; |
| 1019 | devm_kfree(emif->dev, regs_cache[i]); |
| 1020 | } |
| 1021 | regs_cache[i] = regs; |
| 1022 | } |
| 1023 | |
| 1024 | return regs; |
| 1025 | } |
| 1026 | |
| 1027 | static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) |
| 1028 | { |
| 1029 | dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, |
| 1030 | volt_state); |
| 1031 | |
| 1032 | if (!emif->curr_regs) { |
| 1033 | dev_err(emif->dev, |
| 1034 | "%s: volt-notify before registers are ready: %d\n", |
| 1035 | __func__, volt_state); |
| 1036 | return; |
| 1037 | } |
| 1038 | |
| 1039 | setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); |
| 1040 | } |
| 1041 | |
| 1042 | /* |
| 1043 | * TODO: voltage notify handling should be hooked up to |
| 1044 | * regulator framework as soon as the necessary support |
| 1045 | * is available in mainline kernel. This function is un-used |
| 1046 | * right now. |
| 1047 | */ |
| 1048 | static void __attribute__((unused)) volt_notify_handling(u32 volt_state) |
| 1049 | { |
| 1050 | struct emif_data *emif; |
| 1051 | |
| 1052 | spin_lock_irqsave(&emif_lock, irq_state); |
| 1053 | |
| 1054 | list_for_each_entry(emif, &device_list, node) |
| 1055 | do_volt_notify_handling(emif, volt_state); |
| 1056 | do_freq_update(); |
| 1057 | |
| 1058 | spin_unlock_irqrestore(&emif_lock, irq_state); |
| 1059 | } |
| 1060 | |
| 1061 | static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) |
| 1062 | { |
| 1063 | struct emif_regs *regs; |
| 1064 | |
| 1065 | regs = get_regs(emif, new_freq); |
| 1066 | if (!regs) |
| 1067 | return; |
| 1068 | |
| 1069 | emif->curr_regs = regs; |
| 1070 | |
| 1071 | /* |
| 1072 | * Update the shadow registers: |
| 1073 | * Temperature and voltage-ramp sensitive settings are also configured |
| 1074 | * in terms of DDR cycles. So, we need to update them too when there |
| 1075 | * is a freq change |
| 1076 | */ |
| 1077 | dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", |
| 1078 | __func__, new_freq); |
| 1079 | setup_registers(emif, regs); |
| 1080 | setup_temperature_sensitive_regs(emif, regs); |
| 1081 | setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); |
| 1082 | |
| 1083 | /* |
| 1084 | * Part of workaround for errata i728. See do_freq_update() |
| 1085 | * for more details |
| 1086 | */ |
| 1087 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| 1088 | set_lpmode(emif, EMIF_LP_MODE_DISABLE); |
| 1089 | } |
| 1090 | |
| 1091 | /* |
| 1092 | * TODO: frequency notify handling should be hooked up to |
| 1093 | * clock framework as soon as the necessary support is |
| 1094 | * available in mainline kernel. This function is un-used |
| 1095 | * right now. |
| 1096 | */ |
| 1097 | static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) |
| 1098 | { |
| 1099 | struct emif_data *emif; |
| 1100 | |
| 1101 | /* |
| 1102 | * NOTE: we are taking the spin-lock here and releases it |
| 1103 | * only in post-notifier. This doesn't look good and |
| 1104 | * Sparse complains about it, but this seems to be |
| 1105 | * un-avoidable. We need to lock a sequence of events |
| 1106 | * that is split between EMIF and clock framework. |
| 1107 | * |
| 1108 | * 1. EMIF driver updates EMIF timings in shadow registers in the |
| 1109 | * frequency pre-notify callback from clock framework |
| 1110 | * 2. clock framework sets up the registers for the new frequency |
| 1111 | * 3. clock framework initiates a hw-sequence that updates |
| 1112 | * the frequency EMIF timings synchronously. |
| 1113 | * |
| 1114 | * All these 3 steps should be performed as an atomic operation |
| 1115 | * vis-a-vis similar sequence in the EMIF interrupt handler |
| 1116 | * for temperature events. Otherwise, there could be race |
| 1117 | * conditions that could result in incorrect EMIF timings for |
| 1118 | * a given frequency |
| 1119 | */ |
| 1120 | spin_lock_irqsave(&emif_lock, irq_state); |
| 1121 | |
| 1122 | list_for_each_entry(emif, &device_list, node) |
| 1123 | do_freq_pre_notify_handling(emif, new_freq); |
| 1124 | } |
| 1125 | |
| 1126 | static void do_freq_post_notify_handling(struct emif_data *emif) |
| 1127 | { |
| 1128 | /* |
| 1129 | * Part of workaround for errata i728. See do_freq_update() |
| 1130 | * for more details |
| 1131 | */ |
| 1132 | if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) |
| 1133 | set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); |
| 1134 | } |
| 1135 | |
| 1136 | /* |
| 1137 | * TODO: frequency notify handling should be hooked up to |
| 1138 | * clock framework as soon as the necessary support is |
| 1139 | * available in mainline kernel. This function is un-used |
| 1140 | * right now. |
| 1141 | */ |
| 1142 | static void __attribute__((unused)) freq_post_notify_handling(void) |
| 1143 | { |
| 1144 | struct emif_data *emif; |
| 1145 | |
| 1146 | list_for_each_entry(emif, &device_list, node) |
| 1147 | do_freq_post_notify_handling(emif); |
| 1148 | |
| 1149 | /* |
| 1150 | * Lock is done in pre-notify handler. See freq_pre_notify_handling() |
| 1151 | * for more details |
| 1152 | */ |
| 1153 | spin_unlock_irqrestore(&emif_lock, irq_state); |
| 1154 | } |
| 1155 | |
Aneesh V | 7ec9445 | 2012-04-27 17:54:05 +0530 | [diff] [blame] | 1156 | static struct platform_driver emif_driver = { |
| 1157 | .driver = { |
| 1158 | .name = "emif", |
| 1159 | }, |
| 1160 | }; |
| 1161 | |
| 1162 | static int __init_or_module emif_register(void) |
| 1163 | { |
| 1164 | return platform_driver_probe(&emif_driver, emif_probe); |
| 1165 | } |
| 1166 | |
| 1167 | static void __exit emif_unregister(void) |
| 1168 | { |
| 1169 | platform_driver_unregister(&emif_driver); |
| 1170 | } |
| 1171 | |
| 1172 | module_init(emif_register); |
| 1173 | module_exit(emif_unregister); |
| 1174 | MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); |
| 1175 | MODULE_LICENSE("GPL"); |
| 1176 | MODULE_ALIAS("platform:emif"); |
| 1177 | MODULE_AUTHOR("Texas Instruments Inc"); |